ﬁ Sensors

Article

SCADA-Based Message Generator for Multi-Vendor Smart
Grids: Distributed Integration and Verification of TASE.2 T

Petr Ilgner *(“, Petr Cika

check for

updates
Citation: Ilgner, P; Cika, P; Stusek,
M. SCADA-Based Message Generator
for Multi-Vendor Smart Grids:
Distributed Integration and
Verification of TASE.2. Sensors 2021,
21, 6793. https://doi.org/10.3390/
521206793

Academic Editor: Juan Manuel

Corchado Rodriguez

Received: 19 August 2021
Accepted: 7 October 2021
Published: 13 October 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Martin Stusek

Department of Telecommunications, Brno University of Technology, 616 00 Brno, Czech Republic;

cika@vut.cz (P.C.); xstuse0l@vut.cz (M.S.)

* Correspondence: petr.ilgner@vut.cz

1 This paper is an extended version of our paper published in International Congress on Ultra Modern
Telecommunications and Control Systems (ICUMT 2020), Brno, Czech Republic, 5-7 October 2020.

Abstract: Recent developments in massive machine-type communication (mMTC) scenarios have
given rise to never-seen requirements, which triggered the Industry 4.0 revolution. The new scenarios
bring even more pressure to comply with the reliability and communication security and enable
flawless functionality of the critical infrastructure, e.g., smart grid infrastructure. We discuss typical
network grid architecture, communication strategies, and methods for building scalable and high-
speed data processing and storage platform. This paper focuses on the data transmissions using
the sets of standards IEC 60870-6 (ICCP/TASE.2). The main goal is to introduce the TASE.2 traffic
generator and the data collection back-end with the implemented load balancing functionality to
understand the limits of current protocols used in the smart grids. To this end, the assessment
framework enabling generating and collecting TASE.2 communication with long-term data storage
providing high availability and load balancing capabilities was developed. The designed proof-of-
concept supports complete cryptographic security and allows users to perform the complex testing
and verification of the TASE.2 network nodes configuration. Implemented components were tested in
a cloud-based Microsoft Azure environment in four geographically separated locations. The findings
from the testing indicate the high performance and scalability of the proposed platform, allowing
the proposed generator to be also used for high-speed load testing purposes. The load-balancing
performance shows the CPU usage of the load-balancer below 15% while processing 5000 messages
per second. This makes it possible to achieve up to a 7-fold improvement of performance resulting in
processing up to 35,000 messages per second.

Keywords: IEC 60870-6; TASE.2; smart grid; traffic generator; Apache JMeter; Apache Kafka; SCADA;
MongoDB; Microsoft Azure

1. Introduction

The fourth industrial revolution (Industry 4.0) started to raise new challenges for
communication between devices, especially in industrial environments where reliability
and performance are the key features. From the communication technologies point of
view, the standardization bodies created an entirely new group of representatives designed
from scratch to cover the never-seen requirements. Even though technologies for wired or
wireless data transmission in harsh conditions were standardized, e.g., Narrowband IoT
or LTE Cat-M for the industry-driven wireless data communication, the already deployed
systems for the industry communication, i.e., supervisory control and data acquisition
(SCADA) systems, are still in operation. As the industrial sector has to play save and
ensure reliable and secure communication, mainly for the critical infrastructure, one can
not expect the seamless integration of the new communication technologies [1].

But it is not only about the technologies. For example, in the case of massive machine-
type communication (mMTC), the communication (application) protocols started to come

Sensors 2021, 21, 6793. https:/ /doi.org/10.3390/s21206793

https:/ /www.mdpi.com/journal/sensors


https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4679-0004
https://orcid.org/0000-0002-3620-6807
https://orcid.org/0000-0001-9030-1322
https://doi.org/10.3390/s21206793
https://doi.org/10.3390/s21206793
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206793
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206793?type=check_update&version=2

Sensors 2021, 21, 6793

2 of 20

to light and play, at the very least, an equally important role. For instance, the Modbus
protocol is a perfect example as it represents the legacy representative for communication
of programmable logic controller (PLC) communications. It has been replaced by the
Profinet bus, but it still took more than two decades to migrate and reach the expected
communication parameters [1].

Within the mMTC, the areas having the most significant momentum in the course
of the past two years are remote meetering and power automatization. Both stay for
the typical representatives of the SCADA systems as they are primarily used to monitor
and control the parts of the critical infrastructure, e.g., (i) smart electricity metering and
management, (ii) system health checks, and (iii) security reports, as well as (iv) periodic
system status reporting. The importance is highlighted even more as renewable energy
sources (wind and solar power plants) are preferred over of legacy energy sources, e.g.,
coal power plants. Then the national supervisory authorities can monitor the system status
of subordinate control centers and exchange data among them [2].

The insights mentioned above are further confirmed by the prediction from the leading
industry companies. Even though the forecast of 50 billion devices by 2022 may be
exaggerated, the general trend that early analysts predicted is indisputable. Current
numbers vary from 6 to 9 billion devices, whereas forecasts predict 20 to 30 billion IoT
devices around 2022. In addition, Gartner launched a forecast suggesting that industrial
Internet of things (IIoT) devices will represent around 37% of the global volume, accounting
for about 57% of the overall IoT expenditures in 2020. This trend includes sending the
acquired data to various on-premises or cloud-based management services, providing
long-term storage of the received data, and further processing information to visualize
system status, minimize failures or increase future efficiency.

This paper focuses specifically on the data transmissions using the sets of standards
IEC 60870-6 (ICCP/TASE.2). The traffic generator for the TASE.2 protocol is designed
together with the data collection back-end, where load balancing functionality is imple-
mented. Although this may not be noticeable at first glance, the industrial protocols’ perfor-
mance analysis in smart grid networks is difficult to obtain. Even more, the performance of
the TASE.2 protocol generator is not possible to find, to the best of the authors” knowledge.
Therefore, the research goals lead us to the testing scenarios, where the performance and
level of availability of the load balancers deployed in the smart grid infrastructure will be
tested. The intended implementation opens the door for the high-availability together with
the load-balancing—enabling the network redundancy and the scalability of the complete
communication platform.

Main Contribution

In terms of SCADA systems, high reliability and communication security are the most
crucial parameters which all parts of the system must ensure. To this aim, we present a
newly developed framework, which allows us to assess and even improve the performance,
security, and reliability of the TASE.2 protocol for use in SCADA systems.

The TASE.2 protocol is already widely used to exchange data between control centers
and power plants in the distribution power grid [3,4]. Hence, in this paper, we propose a
newly designed TASE.2 data generator that can be used for conformity, performance, or
various attacks vulnerability testings. The developed application is capable of generating
real TASE.2 traffic for both PUSH and PULL scenarios. It is also capable of simulating
multiple client/server nodes on a single machine.

Further, we propose utilizing the Apache Kafka event streaming platform in com-
bination with load balancer and collector servers to ensure high availability, ubiquitous
data access, and traffic load-balancing [5,6]. The data traffic can be evenly distributed
over multiple brokers and stored in a geographically separated database using the Apache
Kafka broker, ensuring high data availability. On top of that, utilization of load balancer
servers allows to arbitrary scale the overall system performance on-demand. Aside from



Sensors 2021, 21, 6793

30f20

the load-balancing, the proposed scheme also allows increasing reliability in any case of a
server failure when the traffic is automatically dispersed among the remaining nodes.

The rest of this paper is organized as follows. In Section 2, the protocol in question
(TASE.2) is described in detail. Further, in Section 3, the developed TASE.2 traffic generator
and the data collection backend with the implemented load balancing functionality are
described. The thorough performance evaluation of the designed generator is introduced
Section 4. Finally, the conclusions are drawn in Section 5.

2. Technology Background

For the purpose of this work, we used TASE.2 protocol defined in the fifth part of the
IEC 60870 standard set. This protocol is designed to enable the exchange of time-critical
information among transmission system operators (TSO)s via conventional wide area
networks (WAN)s or local area networks (LAN)s [7]. The protocol consists of three main
parts, defined by the International Electrotechnical Commission (IEC) Technical Committee
(TC) 57, which describes functional and object models. Namely, it covers TASE.2 (i) services
and protocols (IEC 60870-6-503) [8], (ii) functional profile for application service in end
systems (IEC 60870-6-702) [9], and (iii) object models (IEC 60870-6-802) [7,10].

2.1. TASE.2 Architecture

TASE.2 protocol builds upon a well-known ISO/OSI model for packet networks,
see Figure 1. On the transport layer, transmission control protocol (TCP) ensures data
transmission by default utilizing port 102. The object and function model of TASE.2 is
defined on the application layer but uses additional protocols of the ISO family throughout
the whole vertical model. Notably, TASE.2 heavily relies on Manufacturing Message
Specification (MMS), designed to transfer real-time process data and supervisory between
network nodes.

| Layer | Protocols |

TASE.?2 |
MMS ISO 9506 |
IS0 8650 ACSE |

Application

|

|

|
B o o +
| Presentation | ISO 8823/8825 |
| | ASN.1, BER (Basic Encoding Rules) |
. . +
| Session | Connection oriented session |
| | ISO/IEC 8327 |
oo S, o S +
| Transport | ISO/IEC 8073 TP4 | RFC 1006 ISO/IEC 8073 | RFC 1070 ISO/IEC 8073 |
| | | TPO over TCP | TP4 over UDP |
B o S e +
| Network | CLNP - ISO/IEC | IP (RFC 791) |
| | 8473 | |
. o~ o . +
| Link | ISO/IEC 8802-2 LLC |
. o +
| Physical | ISO/IEC 8802.3 |
o b +

Figure 1. TASE.2 ISO/OSI communication model.

It is worth mentioning that TASE.2 by itself does not provide a direct method for
authentication or encryption but instead utilizes a well-established security suite of un-
derlying TCP/IP stack. More specifically, the transport layer security (TLS) encryption
mechanisms are involved. Further, resource access is controlled by the Bilateral Tables
(BLT), which represents a mutual agreement between two TASE.2 nodes. The BLT repre-
sents a set of accessible objects, variables, and services the nodes agreed on. The TASE.2
protocol defines two basic types of services:

e Operations: requests to the server initiated by the client node typically followed by a
server response,
e Actions: server-initiated functions.



Sensors 2021, 21, 6793

4 0f 20

Other data and control elements between client and server can be exchanged as data
objects. TASE.2 defines eight types of these objects, namely: (i) Association, (ii) Data Value,
(iii) Data Set, (iv) Transfer Set, (v) Account, (vi) Device, (vii) Program, and (viii) Event [8-11].

Further, TASE.2 functionality is defined in multiple parts of IC 60870-6 standard as a
part of Conformance Blocks [8-11]. In total, the TASE.2 standard nine of these blocks:

e Block 1: Periodic Power System Data—periodic transfer of power system data with time
stamps.

e Block 2: Extended Data Set Monitoring—non-periodic transfer of data, such as system
changes detection.

e Block 3: Block Transfer Data—mechanism of efficient data transfer of not structured
values.

*  Block 4: Information Message—mechanism of text or binary message transfer.

e Block 5: Device Control—mechanism for transferring a request to operate from another
TASE.2 node.

¢ Block 6: Program Control—allows to control server site from the client node.

e Block 7: Event Reporting—mechanism for reporting system events.

e Block 8: Additional User Object—mechanism for transferring scheduling, accounting,
and other information.

*  Block 9: Time Series Data—mechanism for time series data transmission.

2.2. TASE.2 Join Procedure

From the perspective of communication architecture, the TASE.2 protocols two in-
herently different approaches for accessing requested data. These two approaches, dis-
tinguished by how the data is retrieved, are denoted as PUSH and PULL types of com-
munication. In addition, TASE.2 represents a connection-oriented service; thus, two
communicating nodes always create a client-server connection prior to the actual data
transmission. In other words, one node represents a server (passive node) listening for any
incoming connection from clients (active nodes). Notably, though the server can handle
multiple connections, the client can be connected to only a single node at a time.

When the passive endpoint (server) binds to the socket, the connection procedure
may be initiated by the active endpoint (client), which always starts the joining process.
The client request from the active endpoint, among others, includes information about
proposed conformance building blocks (CBB) and supported services. As a response,
passive endpoint replies with negotiated parameters and supported services. Finally, the
join procedure ends after successfully transmitting the identification information such as
device vendor, model, and revision number. The whole message flow of the TASE.2 join
procedure is depicted in Figure 2. It is worth mentioning that the encryption is handled by
the underlying TLS protocol, which is entirely transparent for TASE.2 messages. For this
reason, the TLS handshake is not depicted in the diagram mentioned above.

2.3. TASE.2 PUSH Model

In this scenario, the control center receives the values from the end-nodes in the
network via data transfer, which is sent when the reported quantity value changes. The
control center, in this case, acts as a passive endpoint waiting for the incoming connections
from other active endpoints that report their current values. We call this a PUSH scenario
since the data is actively pushed towards the TASE.2 server from the connected clients.

First, the passive endpoint sends a confirmed request to obtain variables belonging to
the selected domain (icc1) available via an appropriate data set (dts1). The passive endpoint
then replies with the list of available variables. In the following step, the passive endpoint
requests the next data set transfer set (DSTS), which the active endpoint acknowledges in
the subsequent message. Then, the passive endpoint further negotiates the parameters of
the DSTS, such as read interval, integrity check, and request conditions. Each parameter is
transferred in a separate request (8 messages in our case) and is acknowledged in the same
manner. From now onwards, each change of the value on the active endpoint is followed by



Sensors 2021, 21, 6793

50f 20

the transmission of new DSTS containing the new value targeted for the passive endpoint.
The whole communication sequence is depicted in Figure 3.

Passive Active
Endpoint Endpoint

initiate-RequestPDU ;
meterCBB, serviceSupportedCa ing

propgsedPara

1mtiate-ResponsePDU
negoliatedParameterCBB serviceS)
., ce,

”PPOrtedCal/ed

conﬁrmed-ReqlJestPDU
conﬁrmed—ResponsePDU
identify: vendor, model, revision

conﬁﬂned—RequestPDU

c

onﬁrmed-ResponsePDU
identjfy. vendor, mode; revisj
A on

Figure 2. TASE.2 join procedure.

Passive Active
Endpoint Endpoint
Get DataSet W
&et: {domainrn.
{domainip; 1ecl, item[q- g 1 domainiD: ce1
W itemId: Discretel
GetNext Ofyarities e Disorete2

DSTransfer Set COHﬁl’med-RequestPDU

read {domam]D iccl, temld Next DS;I‘LIIIS e,
/e

I“Se[}
sePDU
conf\rmed—Response?
isi ina: DSTransl}
success: {vtstble-strmg
Transfer Set ‘ ‘
Write/Set X COnfmned-RequeStpDU
write: {Datager Y/

Y€ Interval, [nop,

BufferTime, ConditioierCheck RBE, Criticqy

Request, Status)

3x conﬁrmed-ResponsePDU
success

nﬂrmed‘PDU Update Online Value
lue}

unco

- fsuccess: V&
livtOfAccessresult& {succes

Figure 3. TASE.2 PUSH communication module.
2.4. TASE.2 PULL Model

In this mode, the passive endpoint actively requests messages from the remote client.
Thus, we refer to this scenario as the PULL model. The TASE.2 communication in this
model does not utilize any DSTS, but the requested value is transferred directly in the
protocol data unit (PDU) response.



Sensors 2021, 21, 6793

6 0f 20

The passive endpoint requests the value from the remote client, which conveys the
message with the appropriate status (success status in our case) and the queried value itself.
The whole message flow of the PULL scenario is depicted in Figure 4.

Passive Active
Endpoint Endpoint

domainID: iccl
itemld: Discrete2

conﬁrmed—RcqucsrPDU

read: z’/ile_/Var[ab/e,?

conﬁrmcd—RcsponscPDU

lue

read: success va

Figure 4. TASE.2 PULL communication module.

2.5. TASE.2 Communication Security

As it was mentioned before, the TASE.2 security is ensured transparently by the TLS
protocol [12]. Notably, both the connection initialization and the encryption negotiation
are always initiated by the active endpoint (TASE.2 client). First, the active node sends
the Hello message with a request to initiate authentication. Then, the server also responds
with a Hello message and further sends its certificate and public key. At the same time,
the server requests the client for a certificate to perform mutual verification. The provided
certificates are verified against the certification authority issuing the certificates. After that,
the client’s certificate, including its public key, is sent to the server that performs the same
authentication procedure.

If the verification is successful, the client generates a pre-master secret (PMS) key,
which is encrypted by its private key and sends it back to the server. Further, the PSM key
is used to compute the master-secret (MS) key, which is used to encrypt all subsequent com-
munication using the cipher algorithm negotiated during the connection initialization [13].

3. TASE.2 Generator and Collector Testbed

This chapter describes our TASE.2 testing testbed consisting of the TASE.2 traffic
generator and data collection backend with load balancing functionality. The TASE.2
generator core builds upon MZ Automation ICCP/TASE.2 IEC 60870-6 library written in
C language [14]. For the purposes of this research, we used its built-in JAVA application
programming interface (API), which was necessary due to the use of the Apache JMeter ™
platform for traffic generation.

The second part of the implemented testbed consists of a collecting server that is able
to handle traffic from either virtualized or real TASE.2 nodes and pass the collected values
to the Apache Kafka clusters through the load-balancing servers. Collected data is further
stored in the high-performance No-SQL database MongoDB.

3.1. Developed TASE.2 Generator

To simplify the process of TASE.2 protocol testing, we implemented the proposed
generator as an Apache JMeter " plugin that allows setting all options via a user-friendly
graphical interface with the possibility of exporting the created scenarios into the jmx file.
Such an exported scenario is possible to launch on a machine without a graphical user
interface. On top of that, the test case created in this way can also be part of a continuous
delivery integration pipeline. Further, the use of the JMeter " platform brings the additional
advantage of combining multiple tests under one umbrella, which is difficult to achieve
with single-purpose applications [15,16]. Therefore, integrating our generator with the
already preloaded plugins makes it easy to create complex testing scenarios covering the
whole communication model.

As it was already mentioned, the generator supports both types of TASE.2 commu-
nication models, i.e., PUSH and PULL. In the case of the PUSH scenario, the generator



Sensors 2021, 21, 6793

7 of 20

acts as an active client connecting to the passive endpoint server. Notably, to evaluate the
performance of the remote server, the generator can create multiple virtual nodes on a
single machine. Furthermore, each node is assigned with a unique internet protocol (IP)
address; thus, the remote nodes see the generator as numerous physical machines. When
the testing is finished, all assigned IP addresses are released.

For the PULL scenario, the situation is different. The generator, in this case, represents
the TASE.2 server (or multiple of them) which is in the role of a passive endpoint waiting
for an incoming connection. It must be noted that the created TASE.2 passive nodes must
announce their presence to the active endpoints as they are not directly connected at the
time of creation. For this purpose, a simple representational state transfer (REST) service is
employed. This service is used to send the list of virtual stations together with the test plan
duration on the generator side.

As depicted in Figure 5, the generator allows users to create test scenarios with
support for dynamically created nodes for both PUSH and PULL communication models.
In addition, the generator further supports the staircase strategy of generating nodes when
every n seconds, a new node is started and runs for a defined time period. When the test is
finished, these nodes are terminated. The generator further supports staircase mode when
the maximum number of nodes is generated in half of the simulation scenario. Then the
nodes are gradually removed with the same rate #.

4 Apache JMeter (5.2-SNAPSHOT.2

File Edit Search Run Options T He
Oisa@ld |£Da |[+]=|% kL 4wl o) BB FEom Ao @
tPlan
Thiea! Group TASE.2 Generator
¥ TASEZ Gens | [Name: [TASE 2 Genzrator
Comments:
General settings
Network interface: [virbrl |
Test duration [secands]: (30 |
Startup delay [ ]
Start next endpaint after B
Token:
Message type: @ PUSH ) PULL
Use TLS: []
Remote endpoint settings
Remote IP address: [19216819 130 |
Remote app name: [1.1.699.1 ]
Local endpoint settings
Number of ints: [3 |
First endpointIP: 182168122 11 Prefix: |24 ‘
Local app name prefic: [1.1.999 ]
Data
Variable: [Freguency |
Value: (7 Static @ Fromrange — Min: ‘45 | Max: |55 |
Endpoint 1(192.168.122.11):  Local App Name: [1.1.899.2 | Update rate inl: [60 |
Endpoint2 (192.168.122.12):  Local App Name: [1.1.899.3 | Undate rate inl: [60 |
Endpoint3(182.168.122.13):  Local App Name: [1.1999.4 | Update rate inl: [60 ]
4 ImED

Figure 5. TASE.2 Apache JMeter sampler graphical interface.

It can be seen that the configuration window is divided into three groups which are
dynamically adjusted based on the selected configuration options. For example, the first
group can control general settings such as scenario type, test duration, number of created
nodes, and start delay. It can also be selected on which network interface the test will be
run and whether TLS should be used. Moreover, if authentication is required to access the
generator REST API service, the authentication token can be specified here.

The second group specifies the parameters related to the remote endpoint. It is also
tightly connected to the third group representing local endpoint settings. Notably, it is
essential to set the correct TASE.2 application name prefix for both local and remote nodes;
otherwise, the TASE.2 communication will not work. In the last part, settings related to
transmitted values are present. The reported value can be generated either statically or



Sensors 2021, 21, 6793

8 0of 20

randomly from the specific range. Lastly, a particular application name and update interval
value can be specified for each created endpoint.

3.2. Proposed TASE.2 Collector Backend

Due to the TASE.2 communication architecture, it is possible to establish only a direct
client-server connection between an active and passive endpoint. On the other hand, our
proposed solution extends the communication architecture with load-balancing nodes and
Apache Kafka broker platform with high-performance database storage. These extensions
allow the TASE.2 protocol to provide seamless traffic distribution and provides high data
availability, as depicted in Figure 6.

| EZIE= s
[ZAN(.Z] B ] :
—_—> : :
[EER @ §8 katka i ]
TSO 1 Producer A
TASE.2 Apache Kafka Broker MongoDB
Collector Secondary Server
I ;
ZANLZ] N PRl Database replication
=ER B H 1
e — §g kafka——>i i :
TSO2 HeH :
\ \ Producer " - . H
TASE.2 Apache Kafka Broker |
IEEEE Collector > H
ZANLZ) H
[ o ety
1503 Brata—— _—— o
TASE.2 Secondary Producer
Load Balancer TASE.2 Apache Kafka Broker MongoDB
Collector Secondary Server
i Apache Kafka Cluster
TASE.2

Collector

Figure 6. TASE.2 Collector Backend Architecture.

Notably, high availability is achieved via redundant connection with more than one
load balancer [6,17]. In our testbed, these nodes are denoted as primary and secondary
load balancers. On top of that, each message which is transferred towards the TASE.2
collector cluster is marked with a unique identification and transmitted via both primary
and secondary connections. Thus, the load balancers continuously track the utilization of
each TASE.2 collector cluster and accordingly select the most suitable collector server for
transmission. The process mentioned above represents the basic principle of traffic load
balancing among the TASE.2 collector nodes, which further routes the traffic toward the
Apache Kafka producer brokers.

The Apache Kafka producer then publishes all received data to the appropriate topics
of the Apache Kafka cluster. This architecture allows for logical separation of real-time
data ingestion from tasks that may be handled later in logical queues [18,19]. Typically,
it involves further processing or storing the data in a database. It must be noted that
Apache Kafka represents a fully distributed system with multiple redundant brokers and
typically includes consumers and producers that can either consume or produce messages
to specific topics. Hence, the high availability in the Apache Kafka platform is ensured by
design [20]. Notably, with such an approach, it is clear that messages transmitted from
TSOs are received redundantly (when the load-balancing topology is not broken). Hence,
the broker filters these redundant messages based on their unique identifier and passes
only a single copy to the following topic.

Other elements in the Apache Kafka ecosystem are connectors that allow automated
data writing from external data sources to Kafka broker or, conversely, storing messages
from subscribed topics to the external data sources [18]. In the context of the proposed



Sensors 2021, 21, 6793

9 of 20

systems, long-term storage in the form of a high-performance NoSQL database plays
a crucial role. These database storages may work separately, or they can be mutually
mirrored. In our work, we are utilizing the second option with two MongoDB servers
operating in replica set mode. Finally, the Apache Zookeeper instance manages the whole
cluster, responsible for orchestrating all underlying subsystems. The overall look on the
Apache Kafka platform is depicted in Figure 7. It is worth mentioning that our proposed
scheme provides high availability over all verticals of the communication chains, i.e.,
(i) TSO to load balancer, (ii) load balancer to TASE.2 Collector, and (iii) Kafka broker
to MongoDB.

Apache Zookeeper

Kafka Cluster

Broker 1 Broker 2 Broker N
Producer Topic A | | Topic A | | Topic A | Consumer
Topic B | | Topic B | | Topic B |
Producer Topic C | | Topic C | | Topic C | Kafka Connect
|

MongoDB

The storage of received data is essential for future data analysis, performance evalua-
tion, security assessment, or reliable long-term logging platform. The proposed solution
of data storing is implemented using Kafka connect, which enables flexible, scalable, and
reliable streaming of data between the Apache Kafka and other data warehouses. Notably,
advanced filtering allows selecting only certain topics or specific aggregated metrics to be
stored.

The main advantage of using this approach is that the TASE.2 collector server can be
designed in a minimalistic way, where its main tasks, such as storing data to file systems
or databases. It may require advanced queuing mechanisms that do not block the servers’
communication thread but are delegated to the database engine. The Apache Kafka robustly
handles these tasks. The principle of data retention guarantees messages to be stored in the
database even in the case of a short-term database server outage.

As the database platform, we selected MongoDB, which brings the advantage of
real-time data storage, excellent scalability, and native high availability support. It is also
possible to use indexes, which speed up later queries to the database significantly [21,22].
Moreover, MongoDB natively supports record timestamping, which is excellent for storing
measured values [21]. The internal data structure consists of various JavaScript object
notation (JSON) documents. An example of such a JSON document for a Smart Grid
element with the frequency measurement is depicted in Listing 1.

Figure 7. Apache Kafka Ecosystem Architecture.

3.3. Database Storage Architecture



Sensors 2021, 21, 6793

10 of 20

Listing 1. Sample JSON document of the measured record.

"_id" : Objectld ("61039298d838cf3e8eel4a88"),
"frequency" : 54.500301361084,
"timestamp" : ISODate("2021-05-15T14:31:32.5612"),

"source" : "icc46",
"app" : "1.1.997.47",
Hareaﬂ : IVEUH

3.4. TASE.2 Testbed Security

As we are aware of the need for ensuring security in all individual blocks of the
communication chain, the proposed solution provides data encryption and authentication
on the highest available level. The communication between TASE.2 generator and load
balancers, as well as TASE.2 collectors, is secured by the proven TLS protocol in the
1.2 version.

Apache Kafka cluster supports client authentication and authorization as well as
server authentication since version 0.9. Authentication can be implemented using client
TLS certificates or by utilizing the Kerberos protocol [23]. Notably, the network encryption
allows Apache Kafka to transmit data over the untrusted networks but still ensuring data
authenticity. The access control list (ACL) mechanism can be used to authorize clients
and restrict users’ access to specific topics. The same level of security is also available in
the database storage. MongoDB, aside from the conventional TLS security suite, provides
access restrictions via the use of user accounts and roles.

4. TASE.2 Generator Performance Evaluation

To assess the TASE.2 generator functionality and performance, we conducted a series
of measurements focusing on resource utilization and communication delay over large
geographical areas. We divided the evaluation into two categories related to the PUSH
and PULL communication model. On top of that, we also provide the initial result on
measurements of the high availability and traffic load-balancing.

4.1. Measurement Scenarios and Setup

The communication delay between the TSOs and the control centers plays a crucial
role in the SCADA system. Notably, its increased value may lead to severe damage to the
transmission system or cause fatal injuries; hence, communication delay must be kept as
low as possible. Moreover, the TASE.2 protocol is commonly used for electric distribution
systems on an inter-state basis over large geographical distances. Our simulation scenario
reflects this fact by deploying our virtualized TASE.2 endpoints utilizing Microsoft Azure
cloud. In total, we used four Microsoft Azure datacenters, scattered all over the globe,
namely in Europe, Brazil, South Africa, and Canada [24].

The use of the Microsoft Azure service allowed us to simplify the deployment process,
as the automated orchestration script was created to install all components, prepare the
environment, and launch the tests without the need for user interaction in all geographical
locations. For this purpose, we used predefined Azure machines in D4s_v3 and B2s
configurations for TASE.2 collectors and Apache Kafka brokers with MongoDB, respectively.
The exact hardware parameters of these machines are listed in Table 1 [25].



Sensors 2021, 21, 6793

11 of 20

Table 1. Hardware equipment of used servers.

Generator Server Azure D4s_v3 Azure B2s
CPU Xeon CPU E5-2670 Xeon Platinum 8272CL baseline CPU
vCPU cores 4 4 2
System memory [GB] 8 8 4
SSD capacity [GB] 40 X 8

It must be noted that the communication delay and resource utilization measurements
are primarily focused on the performance evaluation of the TASE.2 generator; hence the
performance of the Apache Kafka ecosystem is not evaluated in detail, and the brokers
were run on a single virtual machine. However, Apache Kafka containers would be run on
different servers with multiple backups in a production environment (such an approach
is utilized in our high availability and load balancing scenario). The overall look at the
measurement scenario topology is depicted in Figure 8. The exact version of the used tools
and software libraries are listed in Table 2.

e
E.:.
A

MongoDB Server

9 s

Microsoft Azure Apache Kafka Cluster server Data logging
TASE.2 Point-To-Point VPN
Generator Server
=i oo
I e
nTute =
TASE.2 Data logging
Collector Server
Data logging

Microsoft Azure Region
Figure 8. Topology of the components used during the experiments.

Notably, the TASE.2 generator was situated in the data center in the Brno University of
Technology network and connected to Azure regions using the Azure point-to-site virtual
private network (VPN). Finally, before the actual communication delay measurements, the
times on all machines had to be synchronized. For this purpose, all nodes synchronized
their internal clocks against the same network time protocol (NTP) server.

Table 2. Used software equipment.

Software Name Software Version
Apache JMeter 521
Apache Kafka 6.2.0
HAProxy 2.0.13
ICCP/TASE.2 IEC 60870-6 Protocol Library 2.1.13
Java Development Kit 1.8.0u292
Linux Kernel 5.8.0
MongoDB 3.6.8

Ubuntu Server 20.04




Sensors 2021, 21, 6793

12 of 20

4.2. Round-Trip-Time Delay

As the first step of our communication delay evaluation, we wanted to delineate the
lower bound on the expected communication delay between the individual geographical
regions. We used a well-known network tool called Packet InterNet Groper (PING) to
determine these reference values, which utilizes internet control message protocol (ICMP)
echo messages to obtain communication round-trip-time (RTT). The observer communi-
cation delays depicted in Table 3 were acquired by transmitting 150 B messages, having
approximately the same size as the MMS protocol data unit (PDU). Notably, the depicted
results are averaged from 1000 samples for each geographical location to achieve sufficient
statistical confidence.

Even cursory analysis of the results confirms the basic assumptions connected with
the communication distance. The lowest average delay is present at the closest node, i.e.,
the west Germany site. Contrary the highest average delay is between Brazil and South
Africa servers. Surprisingly, in this case, the distance between these two countries is not
even the longest. A slow network may cause it along the route or, more probably, the length
of the communication route is not directly in line with the haversine distance. Nevertheless,
the values from Table 3 should represent the lowest possible transmission delay, as they
are not burdened with the overheads of higher layers.

Table 3. Measured communication RTT in ms between the sites used in the experiment.

Czechia West Germany  South Africa Brazil Canada
Czechia - 11.652 192.558 202.295 109.075
West 11.652 - 183.197 191.770 98.314
German
South Africa 192.558 183.197 - 353.562 248.631
Brazil 202.295 191.770 353.562 - 131.953
Canada 109.075 98.314 248.631 131.953 -

4.3. TASE.2 Communication Delay

To evaluate the communication delay of the TASE.2 protocol, we used the same
geographical nodes as in the previous section. However, the measurement results were not
acquired from ICMP echo messages. Therefore, the delay results represent a time difference
between the value update action on the client-side (active node) and the reception of the
DSTS on the collector side (passive node). However, in the PULL scenario, the roles of
active and passive endpoints are reversed. However, it is impossible to accurately evaluate
communication delay due to the impossibility of ensuring precise timing of value readouts
in the PULL scenario. The TASE.2 system only allows you to set the timestamp if the
variable’s value is changed. Furthermore, since the two communication nodes can not
be precisely synchronized, the delay measurements for the PULL communication would
indicate significant jitter. Therefore, the delay measurements for the PULL communication
model are not presented. From the logical point of view, periodical network pulling is not
the optimal solution for nearly real-time communication, and the PUSH scenario is the
preferred option.

It must be noted that all experiments were performed with the TASE.2 generator that
used a step testing strategy where the number of simultaneously connected endpoints was
changed dynamically. In the rising phase, the generator activated a new client every 20 s,
as is depicted in Figure 9. When the number of clients reached the maximum value, the
generation stopped. After a certain period, the clients started disconnecting at the same
rate. Notably, when the number of connected clients reached the maximum value, 20,000
messages were generated, representing a large dataset. To process such a large file, we
used the open-source Pandas Python library [26].



Sensors 2021, 21, 6793

13 of 20

250 20,000 7
&
200 =
=~ 15,000 §
2 150 &
3 10,000 3
S 100 8
N s
3 3
5000
© 50 §
=
v
6]
0
0 2,000 4,000 6,000 8,000 10,000

Test duration [s]

Figure 9. The progression of the number of messages generated in each step.

Figure 10 shows that the average communication delay to the nearest TASE.2 collector
in Germany is below 20 ms. Enabled TLS encryption also leaves a nearly imperceptible
effect on average delay; only the maximum delay increased noticeably. This behavior can
be attributed to the overheads of establishing a TLS session when a new node is connected.
Surprisingly, the communication delay is nearly independent of the number of active nodes.
One may even claim that a higher number of connected nodes indicate lower delay. This
behavior may be connected with the internal processes of the communication network as
more demanding data traffics packet’s route is cached in the network elements; thus, they
can go through with smaller delay.

Il NoTLS I TLS —o— No TLS max —o— TLS max

60
/\ 7 Lo
5015 /
> \’\Wﬁ/"’f\,& P i e 5
g 40 > 60 £
PN AL T &
N N
< 30 Y -3
% AMINEONALS
80 - | S
% 20 E
20
10
0_

-0
10 30 50 70 90 110 130 150 170 190 210 230 250
Number of connected endpoints [-]

Figure 10. Communication delay during performed PUSH test measurements.

The results depicted in Figure 11 demonstrate how the communication latency de-
pends on TASE.2 collector geographical location. It can be seen that the highest delay is
present when the collector is placed in the Brazil data center, while the lowest values are
present for West Germany servers. These findings are in line with the data collected using
the ICMP echo messages. Interestingly, the values gathered from the TASE.2 measurements
are even slightly lower. It is mainly caused by the fact that the ICMP echo replies with the
same 150 B message; on the other hand, TCP only sends short 40 B acknowledging messages
in response. Closer inspection of the results further revealed that the West Germany node’s
maximum delay is significantly higher than ICMP and averaged values. This difference
may be caused by temporary network congestion during measurements.



Sensors 2021, 21, 6793 14 of 20

—o—  West Germany Max —o— Brazil Max I West Germany Avg I Brazil Avg

—o— South Africa Max —o— Canada Max I South Africa Avg Il Canada Avg
300
250

N

Max. delay [ms]
z 8

—_
(=
(=]

wn
(=]

300

N
(%
(=)

[N
S
|

Avg. delay [ms]
2
|

0 4

10 30 50 70 90 110 130 150 170 190 210 230 250
Number of connected endpoints [-]

Figure 11. Communication delays of PUSH test measurements for different Azure sites.

Lastly, we also evaluated the additional delay introduced by using the Apache Kafka
cluster, which was configured to store timestamps of the received records. This fact allowed
us to calculate the total delay from the generation of the message until its delivery. Notably,
the consumer reads the messages from the cluster remotely after 100 ms, so the Apache
Kafka delay is not constant for all readings. Nevertheless, the additional Apache Kafka
delay was 20 ms on average for all performer experiments, with the maximum value not
larger than 78 ms. Thus, although the overall cluster delay is low due to the nature of
platform operation, it is not recommended to use Kafka consumers for tasks that must be
executed in real-time. Such jobs should be handled as close to the source as possible.

4.4. System Resources Utilization

In the case of system resource utilization, we measured the CPU and memory load
of the TASE.2 generator server for both PUSH and PULL scenarios. Moreover, for the
PUSH model, we also provide measurement results of the TASE.2 collector node, including
network utilization evaluation. Notably, the CPU utilization and memory usage represent
the load of the entire virtual machine provided by the operating system.

The results of the PUSH model depicted in Figures 12 and 13 reveal the high-performance
potential of the created platform, and the hardware configuration of the selected platform
has plenty of headroom for more challenging scenarios.



Sensors 2021, 21, 6793

15 of 20

—o— CPU (No TLS) I Memory (No TLS)

—o— CPU (TLS) BN Memory (TLS)
16
14 L 1400
12 ~
L Q
\? 1200 S
10 ~
=
3 S
< 1000
2 3
S S
F800 &
S
600
- 10 30 50 70 9 110 130 150 170 190 210 230 250
Number of connected endpoints [-]
Figure 12. Utilization of system resources on the generator side in a PUSH scenario.
—o— CPU (No TLS) —o— CPU (TLS, Kafka) I Memory (TLS)
—o— CPU (TLS) I Memory (No TLS) Hl Memory (TLS, Kafka)
40 T T T T T ] \ S —— 3000
WW
3014~ 2500
~
20 =
3 M 120003
S 10 S
S =
2 of | 1500 §°
O S
1000 S

-5
10 30 50 70 90 110 130 150 170 190 210 230 250
Number of connected endpoints [-]

Figure 13. Utilization of system resources on the collector side in a PUSH scenario.

The generator’s utilization remains below 15% on the generator side and does not
overcome 20% on the collector node even with the maximum number of simultaneously
connected endpoints. As can be seen, the TASE.2 collector CPU utilization rises almost
linearly with the increasing number of active clients. However, when the number of clients
reaches 190, the TLS CPU utilization reaches its maximum value and does not increase
with the rising number of active connections. The difference between TLS and unencrypted
TCP is also only marginal at a maximum of around 3%. Furthermore, without the Apache
Kafka broker, the CPU utilization of the TASE.2 collector server is nearly identical to
the generator side. Nevertheless, when Apache Kafka is employed, the CPU load rises
significantly by almost 20%. It is a clear indication that the main bottleneck of our system is
not the TASE.2 communication itself but the subsequent message processing. Overall, the
described findings show that, if necessary, another instance of the generator for the PUSH
model can be run concurrently, and the number of generated endpoints can be increased
up to 500 or 750 simultaneously active clients with the current hardware.

Surprisingly, for the PULL communication model, the CPU utilization is significantly
higher, as depicted in Figure 14. The steepness of the curve is more prominent. Moreover,



Sensors 2021, 21, 6793

16 of 20

in line with the fundamental assumptions, the CPU load with active TLS is higher. For
example, with the maximum number of connected nodes, i.e., 250, the difference between
TLS and unencrypted TCP is almost 15%. However, with 10 connections, the difference is
only about 5%. The basic principle of data acquisition most probably causes this increased
CPU load of the PULL scenario. In this case, the generator side creates multiple instances
of passive TASE.2 nodes which have to receive and process the incoming requests for the
data readouts. On the other hand, in the PUSH model, the updated values are transmitted
to the server with each update. Basically, it means almost half of the operations compared
to the PULL scenario.

—o— CPU (No TLS) I Memory (No TLS)

—o— CPU (TLS) BN Memory (TLS)

/V - 1400
50 / ~
Q
S0 SN INac— Zaml 1200,
L ~
EE /] W’/‘V( 3
= Py £ I I F1000 =,
% 20 13 1 I I §
L

800
10 =

0- L 600

10 30 50 70 90 110 130 150 170 190 210 230 250
Number of connected endpoints [-]

Figure 14. Utilization of system resources on the generator side in a PULL scenario.

From the perspective of memory usage, the collector side of the PUSH scenario
indicates exciting results. When the TLS encryption is not employed, the memory usage
increases linearly with the number of connected nodes. However, with TLS, the memory
usage is higher but nearly constant, independently of the number of connections. This
behavior is probably connected with the TLS implementation of the underlying libtase2
library. On the TASE.2 collector side, the memory consumption is nearly constant regardless
of the number of active connections. This behavior is expected as only one instance of a
TASE.2 passive node is running, and the number of clients is allocated beforehand. The
only surprising finding is that for more than 130 clients, the memory usage of the TLS
connection is slightly lower than the unencrypted one. However, this slight discrepancy
may be caused by the overall utilization of the TASE.2 collector server. However, the
Apache Kafka impacts the memory the most, contributing more than 50% of the total usage.
Finally, for the PULL scenario, the memory utilization rises linearly with the number
of connected clients. As expected, the memory load of the TLS connection is higher by
about 20%.

4.5. Network Utilization

To provide a full assessment of the TASE.2 generator, we also present network utiliza-
tion results. For this purpose, we created a dedicated network interface in the Microsoft
Azure platform for TASE.2 traffic, which was connected to the other sites using Azure VPN.
This interface was monitored on the generator side. As presented in Figure 15, the network
utilization increases linearly with the number of active endpoints.



Sensors 2021, 21, 6793

17 of 20

--o--- Received (No TLS) --o-- Received (TLS)
—o— Transmitted (No TLS) —o— Transmitted (TLS)

250 —
’3 )/0/0/0,
%200 A/Q/o/"/O/( |
~ — )/O/()/o’“
S0 150 =
s
< —b—-0-
= R e st { Bt
= 100 P e DD SR S

e i--o—- -0-=¢=°~
.Sy GEEPSERRC.
50| geB=ET"
Y l l l

10 30 50 70 90 110 130 150 170 190 210 230 250
Number of connected endpoints [-]

Figure 15. TASE.2 network interface utilization during PUSH measurements.

Notably, the TLS uses about 25% more bandwidth than the unencrypted connection
due to protocol overheads. The network utilization in the uplink direction (transmitted
data) is significantly higher as the actual measured values are sent in this direction. The
downlink (received data) channel serves only for acknowledgments, which is less than a
third of the total amount.

4.6. TASE.2 Load Balancing

As high availability, performance, and scalability are the crucial requirements of
modern SCADA systems, we evaluated the functionality and performance of our proposed
system. Our solution is designed to distribute the traffic to several TASE.2 collector servers.
Unfortunately, TASE.2 protocol does not provide any form of load-balancing tools; hence
in our solution, we implemented primary and secondary load balancers built upon the
open-source HAProxy server [27]. Overall, the load balancer forwards the incoming traffic
towards the TASE.2 collector servers designated as S1, S2, and S3.

To test the upper limits of our system, we modified our scenario to generate a new
TASE.2 endpoint every 20 s. With the ultimate goal of increasing TASE.2 collector servers
system load, each endpoint transmitted 20 messages per second. Then, when the number
of active connections reached 250, the test was terminated. Notably, in maximum, the
load-balancing server had to process 5000 messages every second. All tests were conducted
in the Microsoft Azure ecosystem, and the collector server was downgraded to Azure B2s
with dual-core CPUs for a higher clarity of results. The measurement results depicted in
Figure 16 show CPU and memory usage of individual machines during the experiment.
The same test was also run with a single server configuration to show the difference in
resource utilization when load-balancing is not employed.

Our initial results confirm that the load balancing is working as the CPU load was
evenly distributed among all servers, i.e., S1, S2, and S3. It is also clear that the CPU
utilization increases linearly with the number of active connections. However, in the case of
memory load, the results differ significantly. The memory usage still rises with the number
of connected clients, but it is not a linear dependency. Notably, it resembles a staircase
pattern as it steeply rises between 40 and 60 endpoints, and then it is nearly constant.



Sensors 2021, 21, 6793

18 of 20

I Load Balancer CPU Load I S3 CPU Load —o— S1 Memory Load

Il Single CPU Load —o— Load Balancer Memory Load S2 Memory Load

Il S CPU Load —o— Single Memory Load —o— S3 Memory Load

S2 CPU Load
100
\/(,__,,__,
80 1500 A3
Qq
_ S
i 1250 :‘
60
S S
S 1000 =
2 )
S 40 750 o
5 S
O F500 S
20 =
250
0 4

20 40 60 80 100 120 140 160 180 200 220 240
Number of connected endpoints [-]

Figure 16. Utilization of system resources on the collector side during load balancing experiment.

Finally, the load balancer CPU utilization is also linearly dependent on the number
of active connections. However, during the whole testing, it was under 15%, even with
240 active nodes. Surprisingly, memory utilization is a nearly constant independent of the
number of active connections. This behavior is primarily caused by the fact that the load
balance only forwards the TCP connection, but further does not process any TASE.2 data.

5. Conclusions

In this work, we approached the problem of evaluating TASE.2 protocol performance
in a multi-node SCADA environment. The main focus was given to communication delay;,
system resources, and network utilization assessment. Moreover, the main benefit of
this paper lies in the implementation and verification of TASE.2 traffic load balancing
and high availability. Together with the communication delay, these two later mentioned
representing the most crucial SCADA systems requirements as unexpected system blackout
or increased communication delay may have fatal consequences.

Thanks to the fully redundant topology, the presented framework allows maintaining
the working communication even in the case of TASE.2 collector or communication link
dropouts. Moreover, the system modularity provides unlimited horizontal scalability,
allowing for creating extensive stress tests scenarios for both virtual and real environments.
As the proposed system implements both generation and collection nodes, complex simu-
lation scenarios can be designed. It allows simulating the real-world environment safely in
a fully virtualized manner without the possibility of damaging the system. This follows
the modern trend of the digital twins.

The designed framework consists of two main parts: (i) TASE.2 traffic generator
and (ii) data collection back-end. Firstly, data generator is possible to use for performance
evaluation of the stability of different TASE.2 systems from different vendors as it integrates
both the PUSH model and PULL model. Secondly, the data collection back-end enables
storing all the information from the TASE.2 systems and further processing.

The performance evaluation was done using the implemented traffic generator, where
up to 250 active connections were established. The performed experiments were done for
five geographically separated networks. The gathered data shows the high performance of
the designed framework. Even without the load balancing integration, the number of active
connections was possible to increase up to 700 (based on the utilized hardware platform).
Once the load-balancing was integrated, the performance improved significantly. The
results show the CPU usage of the load-balancer below 15% while processing 5000 messages



Sensors 2021, 21, 6793 19 of 20

per second. Thus, it makes it possible to achieve up to a 7-fold improvement of performance
resulting in processing up to 35,000 messages per second.

Author Contributions: Conceptualization, PI. and P.C.; methodology, P.I.; software, M.S. and P.I.
and P.C.; validation, P.C. and P.I; resources, M.S. and P.; data curation, PI.; writing—original draft
preparation, PI. and P.C.; writing—review and editing, PI. and M.S.; project administration, P.C. All
authors have read and agreed to the published version of the manuscript.

Funding: Research described in this paper was financed by the Technology Agency of the Czech
Republic under grant TN01000077—National Cybersecurity Competence Centre.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.
14.

15.

16.
17.

18.

Zhang, Y.; Zhang, H.; Wang, L.; Hou, G. Consistency analysis of SCADA data from field power systems. In Proceedings of the
10th International Conference on Advances in Power System Control, Operation Management (APSCOM 2015), Hong Kong,
China, 8-12 November 2015; pp. 1-4. [CrossRef]

Stusek, M.; Moltchanov, D.; Masek, P.; Mikhaylov, K.; Hosek, J.; Andreev, S.; Koucheryavy, Y.; Kustarev, P.; Zeman, O.; Roubicek,
M. LPWAN Coverage Assessment Planning without Explicit Knowledge of Base Station Locations. IEEE Internet Things |. 2021,
in press. [CrossRef]

Zimba, S.; Oosthuyse, C.; Chikova, A.; Muringai, C. Power System Visualisation at Southern African Power Pool. In Proceedings
of the EAI International Conference for Research, Innovation and Development for Africa, Victoria Falls, Zimbabwe, 27-29 June
2017; pp. 266-274.

Stojkovic, B.; Vukasovic, M. A new SCADA System design in the Power System of Montenegro—ICCP/TASE.2 and Web-based
real-time electricity demand metering extensions. In Proceedings of the 2006 IEEE PES Power Systems Conference and Exposition,
Atlanta, GA, USA, 29 October-1 November 2006; pp. 2194-2199. [CrossRef]

Khan, S.; Nazir, B.; Ahmed Khan, I.; Shamshirband, S.; Chronopoulos, A.T. Load Balancing in Grid Computing: Taxonomy,
Trends and Opportunities. J. Netw. Comput. Appl. 2017, 88, 99-111. [CrossRef]

Pramono, L.H.; Buwono, R.C.; Waskito, Y.G. Round-robin Algorithm in HAProxy and Nginx Load Balancing Performance
Evaluation: A Review. In Proceedings of the 2018 International Seminar on Research of Information Technology and Intelligent
Systems (ISRITI), Yogyakarta, Indonesia, 21-22 November 2018; pp. 367-372. [CrossRef]

Savic Novak, A.B.; Miroslav, P.; Miodrag, T. Implementation of TASE.2, MMS and APLI Protocols. In Proceedings of the 2008
IEEE International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), Nis,
Serbia, 25-27 June 2008; pp. 670-673.

IEC. Telecontrol Equipment and Systems—DPart 6: Telecontrol Protocols Compatible with ISO Standards and ITU-T Recommendations—
Section 503: TASE.2 Services and Protocol; IEC 60870-6-702:2014; IEC: Geneva, Switzerland, 2014.

IEC. Telecontrol Equipment and Systems—Part 6-702: Telecontrol Protocols Compatible with ISO Standards and ITU-T Recommendations—
Functional Profile for Providing the TASE.2 Application Service in End Systems; IEC 60870-6-702:2014; IEC: Geneva, Switzerland, 2014.
IEC. Telecontrol Equipment and Systems—Part 6-802: Telecontrol Protocols Compatible with ISO Standards and ITU-T Recommendations—
TASE.2 Object Models; IEC 60870-6-802:2014; IEC: Geneva, Switzerland, 2014.

Becker, D. Inter-Control Center Communications Protocol (ICCP, TASE.2): Threats to Data Security and Potential Solutions; EPRI Report;
EPRI: Washington, DC, USA, 2001.

Volkova, A.; Niedermeier, M.; Basmadjian, R.; de Meer, H. Security Challenges in Control Network Protocols: A Survey. IEEE
Commun. Surv. Tutor. 2019, 21, 619-639. [CrossRef]

Oppliger, R. SSL and TLS: Theory and Practice, 2nd ed.; Artech House: Norwood, MA, USA, 2016.

ICCP/TASE.2 IEC 60870-6 Protocol Library. Available online: https://www.mz-automation.de/communication-protocols/iccp-
tase-2-iec-60870-6-protocol-library/ (accessed on 15 June 2020).

Apache JMeter User’s Manual. Available online: https://jmeter.apache.org/usermanual/index.html (accessed on 4 March 2020).
Jha, N.; Popli, R. Comparative Analysis of Web Applications using JMeter. Int. ]. Adv. Res. Comput. Sci. 2017, 8, 774-777.
Govindan, R.; Minei, I.; Kallahalla, M.; Koley, B.; Vahdat, A. Evolve or Die: High-Availability Design Principles Drawn from
Googles Network Infrastructure. In Proceedings of the 2016 ACM SIGCOMM Conference, SSIGCOMM 16, Florianopolis, Brazil,
22-26 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 58-72. [CrossRef]

Narkhede, N.; Shapira, G.; Palino, T. Kafka: The Definitive Guide: Real-Time Data and Stream Processing at Scale; O’Reilly Media:
Sebastopol, CA, USA, 2017.


http://doi.org/10.1049/ic.2015.0261
http://dx.doi.org/10.1109/JIOT.2021.3102694
http://dx.doi.org/10.1109/PSCE.2006.296282
http://dx.doi.org/10.1016/j.jnca.2017.02.013
http://dx.doi.org/10.1109/ISRITI.2018.8864455
http://dx.doi.org/10.1109/COMST.2018.2872114
https://www.mz-automation.de/communication-protocols/iccp-tase-2-iec-60870-6-protocol-library/
https://www.mz-automation.de/communication-protocols/iccp-tase-2-iec-60870-6-protocol-library/
https://jmeter.apache.org/usermanual/index.html
http://dx.doi.org/10.1145/2934872.2934891

Sensors 2021, 21, 6793 20 of 20

19.

20.

21.

22.
23.

24.

25.

26.

27.

Shree, R.; Choudhury, T.; Gupta, S.C.; Kumar, P. KAFKA: The modern platform for data management and analysis in big data
domain. In Proceedings of the 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), Noida, India,
10-11 August 2017; pp. 1-5.

Wang, G.; Koshy, J.; Subramanian, S.; Paramasivam, K.; Zadeh, M.; Narkhede, N.; Rao, ].; Kreps, ].; Stein, J. Building a Replicated
Logging System with Apache Kafka. Proc. VLDB Endow. 2015, 8, 1654-1655. [CrossRef]

Abramova, V.; Bernardino, J. NoSQL Databases: MongoDB vs Cassandra. In Proceedings of the International C* Conference on
Computer Science and Software Engineering, Porto, Portugal, 10-12 July 2013; pp. 14-22.

MongoDB: The Application Data Platform. Available online: https://www.mongodb.com (accessed on 29 May 2020).

Apache Kafka Stream Security. Available online: https://kafka.apache.org/10/documentation/streams/developer-guide/
security.html (accessed on 21 May 2021).

Azure Geographies. Available online: https:/ /azure.microsoft.com/en-us/global-infrastructure/geographies/ (accessed on 13
June 2021).

Sizes for Virtual Machines in Azure. Available online: https://docs.microsoft.com/en-us/azure/virtual-machines/sizes,
(accessed on 13 June 2021).

Reback, J.; Wes McKinney, J.B. pandas-dev/pandas: Pandas. 2020. Available online: https://github.com/pandas-dev/pandas
(accessed on 7 May 2021). [CrossRef]

Assmann, B. HAProxy Blog: HAProxy’s Load-Balancing Algorithm for Static Content Delivery with Varnish. Available online:
https:/ /www.haproxy.com/fr/blog/haproxys-load-balancing-algorithm-for-static-content-delivery-with-varnish/ (accessed on
15 June 2021).


http://dx.doi.org/10.14778/2824032.2824063
https://www.mongodb.com
https://kafka.apache.org/10/documentation/streams/developer-guide/security.html
https://kafka.apache.org/10/documentation/streams/developer-guide/security.html
https://azure.microsoft.com/en-us/global-infrastructure/geographies/
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes
https://github.com/pandas-dev/pandas
http://dx.doi.org/10.5281/zenodo.3509134
https://www.haproxy.com/fr/blog/haproxys-load-balancing-algorithm-for-static-content-delivery-with-varnish/

	Introduction
	Technology Background
	TASE.2 Architecture
	TASE.2 Join Procedure
	TASE.2 PUSH Model
	TASE.2 PULL Model
	TASE.2 Communication Security

	TASE.2 Generator and Collector Testbed
	Developed TASE.2 Generator
	Proposed TASE.2 Collector Backend
	Database Storage Architecture
	TASE.2 Testbed Security

	TASE.2 Generator Performance Evaluation
	Measurement Scenarios and Setup
	Round-Trip-Time Delay
	TASE.2 Communication Delay
	System Resources Utilization
	Network Utilization
	TASE.2 Load Balancing

	Conclusions
	References

