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ABSTRACT
The presented doctoral thesis is focused on the development of theoretical methods for
probabilistic design and assessment of structures. In order to reduce the computational
burden of the probabilistic approach, the developed methods are based on surrogate
models. Specifically, Taylor series expansion has been utilized for the derivation of a novel
analytical method for a simplified semi-probabilistic design of structures represented by
non-linear finite element models. The novel approach estimates a variance of quantity
of interest and the influence of correlation among input random variables. The second
part of the doctoral thesis aims at the development of efficient numerical algorithms
for the construction of a surrogate model based on polynomial chaos expansion and
its utilization for uncertainty quantification. Although the proposed algorithm is based
on cutting edge techniques, it was beneficial to improve its accuracy and efficiency
by advanced statistical sampling. Therefore, a novel technique for adaptive sequential
statistical sampling, reflecting the exploration of the design domain, and exploitation of
the surrogate model, is proposed specifically for polynomial chaos expansion.

KEYWORDS
Uncertainty quantification, semi-probabilistic approach, surrogate model, polynomial
chaos expansion, Taylor series expansion.

ABSTRAKT
Předložená disertační práce je zaměřena na vývoj teoretických metod pro pravděpod-
bnostní návrh a posouzení konstrukcí. Za účelem snížení výpočetní náročnosti pravdě-
podobnostního přístupu jsou vytvořené metody založené na technikách náhradní plochy
odezvy. Konkrétně byl využit Taylorův rozvoj k odvození originální analytické metody pro
zjednodušený polo-pravděpodobnostní návrh a posouzení konstrukcí reprezentovaných
nelineárním konečněprvkostním modelem. Nově navržený přístup je zaměřen na odhad
rozptylu zájmové veličiny a vliv korelace mezi vstupními náhodnými veličinami. Druhá
část disertační práce se zabývá vývojem efektivních numerických algoritmů pro tvorbu
plochy odezvy založenou na rozvoji polynomiálního chaosu a její využití pro kvantificakci
nejistot. Ačkoli je představený algoritmus založen na aktuálních pokročilých technikách,
bylo vhodné zvýšit jeho efektivitu také pokročilým statistických vzorkováním. Tudíž byla
konkrétně pro PCE vyvinuta technika adaptivního sekvenčního vzorkování, která zohled-
ňuje jak průzkum návrhové domény, tak i využití informace o náhradní ploše odezvy.
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Motivation
Uncertainties appear everywhere! When using
a mathematical model, careful attention must
be given to uncertainties in the model.

— Richard Feynman

The development of computational methods for civil engineering has become
more important than ever, since it is often necessary to employ advanced numerical
methods for the design of new structures in order to fulfil the significantly increas-
ing economical and safety requirements in the last decades. Moreover, there are
a lot of structures, especially bridges, built in the last century, which must often
be enhanced for higher loads assuming actual conditions of the structures. As a
result of these industrial needs, researchers and civil engineers are more interested
in advanced numerical methods to solve the mathematical models of structures –
typically non-linear finite element method (NLFEM). Although NLFEM is a very
accurate numerical method for solving differential equations, there is still a lack
of knowledge of material characteristics (e.g. fracture energy), actual geometrical
properties (e.g. position of reinforcement) and even mathematical models of some
physical phenomena (e.g. fracture mechanics of quasi-brittle materials) collectively
called uncertainties. As can be seen from the given examples, uncertainties play an
important role, especially in the case of concrete structures. This lack of knowledge
may generally lead to inaccurate results and even fatal failures despite the advanced
numerical analysis performed by NLFEM. In modern structural analysis, uncertain-
ties are represented by random variables or vectors described by specific probability
distribution, the structural system can then be seen as a mathematical function of a
set of random parameters. Deterministic numerical analysis of structures must thus
be enriched by stochastic analysis.

The elementary task of stochastic analysis is to propagate uncertainties through
a mathematical model in order to obtain statistical and/or sensitivity information
of outputs [1]. Such process is often called uncertainty quantification (UQ) and
is schematically depicted in Fig. 1. UQ progressively grew to a mature general
scientific area connecting engineers and mathematicians, since it represents a broad
topic focused on practical stochastic analysis employed in almost every branch of
engineering and science [2]. The necessity and popularity of UQ is clearly visible
from the exponentially growing number of published journal papers in this field.

Nevertheless, the designer’s greatest interest is structural reliability, which is as-
sessed through the calculation of the probability of structural failure. The concept
of failure probability was already implemented into the general design standards
for structures, Eurocode 1990 [3], by semi-probabilistic approach. Instead of failure
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probability, semi-probabilistic approach is focused on the estimation of design values
of load effect and structural resistance, which satisfy the given safety requirements
(target failure probability) assuming that both variables are independent and sep-
arated. Design values correspond to a specific quantile of probability distribution
and thus it is necessary to utilize UQ methods for its identification.

The only generally applicable method for UQ is a Monte Carlo (MC) type sam-
pling, which is based on a large number of deterministic simulations with randomly
generated realizations of the input random vector according to its probability distri-
bution. Unfortunately, it is not feasible in practical applications solved by NLFEM,
since each calculation is highly computationally demanding, and MC typically works
with millions of realizations. Naturally, it is possible to reduce the number of calcu-
lations by an assumption of several simplifications and the derivation of simplified
formulas generally called safety formats. However, there is still a gap between a
general MC analysis and significantly simplified approaches, which could lead to
unrealistic results, especially in combination with NLFEM. This thesis is focused on
the development of methods preserving a balance between accuracy and efficiency.
Specifically, the task of the thesis is the development of methods based on surrogate
models (in the context of structural reliability called response surface methods) for
practical design, and the assessment of structures taking uncertainties into account.

Although there are many types of surrogate models, it is beneficial to use the
techniques allowing for analytical statistical analysis of approximated quantity of
interest (QoI). The obtained statistical information can be further utilized for semi-
probabilistic design and the assessment of structures, or the surrogate model can
be used for direct numerical integration. On the one hand, the classical technique
utilized for derivation of simplifying formulas in codes is Taylor Series Expansion
(TSE), which has been commonly used in engineering for decades. On the other
hand, the advanced surrogate model in a form of Polynomial Chaos Expansion
(PCE) has been getting a growing attention in the recent years. Both techniques can
be used for a powerful analytical analysis of QoI resulting in statistical moments and

Stochatic model
X1 X2

Mathematical
model

Stat. Moments

Sensitivity

PDF

Sources of Uncertainty
Uncertainty

Quantification
Y σ

μ

Fig. 1: The uncertainty quantification of a given mathematical model.
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sensitivity indices. The main goal of this thesis is thus a development of theoretical
methods based on the mentioned surrogate models – simplified analytical formulas
derived from TSE applied in semi-probabilistic approach and efficient algorithms
created specifically for PCE, which can be further used for direct MC simulation.

Aims and Objectives

The presented motivation is graphically interpreted together with aims and objec-
tives in the following figures, which clearly divide the solution of the defined problem
into two areas: simplified semi-probabilistic methods based on a limited number of
samples and a development of a novel technique based on TSE, which can be em-
ployed in common applications; and advanced surrogate modeling utilizing PCE for
more complicated examples (multiple failure modes, significant non-linearity etc.),
optimization, or comprehensive stochastic analysis. The following aims and objec-
tives were identified:

• Development of analytical ECoV method based on TSE:
– review of existing methods and their comparison;
– adaptation of TSE for civil engineering;
– simplification of TSE in order to develop an analytical ECoV method.

• Development of efficient numerical algorithms for PCE:
– construction of an efficient algorithm for the construction of PCE;
– comparison with other existing surrogate models;
– development of an innovative sampling scheme for PCE.
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1 Introduction
Assuming a probability space (Ω, ℱ , 𝒫) where Ω is an event space, ℱ is a 𝜎-algebra
on Ω (collection of subsets closed under complementation and countable unions) and
𝒫 is a probability measure on ℱ . If the input variable of a computationally demand-
ing mathematical model representing a physical system, 𝑌 = ℳ(𝑋), is a random
variable 𝑋(𝜔), 𝜔 ∈ Ω, output QoI 𝑌 (𝜔) is also a random variable. Therefore, the
deterministic analysis of ℳ(𝑋) is extended to stochastic analysis, which typically
consists of an estimation of statistical moments, estimation of a probability distri-
bution, sensitivity analysis, and ultimately reliability analysis. Note that, the input
of a mathematical model is typically represented by a random vector X consisting
of 𝑀 marginal random variables and described by a joint probability distribution
function 𝑝X.

The reliability analysis represents a topic of great interest in engineering, and it
is focused on the estimation of the safety margin 𝑍 given as a difference between
structural resistance 𝑅 and action effect 𝐸. The probability of a negative safety
margin – probability of failure 𝑝𝑓 = 𝑃 (𝑍 < 0), is used in reliability analysis to
prove the safety of structures. Nevertheless, the direct analytical calculation of the
𝑝𝑓 is very complicated or impossible in most cases, thus the MC-type simulation
techniques should be employed. MC techniques transform the stochastic problem
into a set of deterministic calculations with randomly generated input variables
according to their probability distribution law.

Although MC type techniques are the only generally usable tools for reliability
problems, the main disadvantage of an MC simulation is the necessity of a large
number of simulations to determine a low probability of failure. Moreover, civil
engineering is a specific area with very low target 𝑝𝑓 around 10−6 (depending on
specific category of structure) and the fact that in practical applications, the ac-
curate, but highly time-consuming, non-linear finite element analysis (NLFEM) is
often employed nowadays. As a result, it is possible to conclude that it is not feasible
to employ MC-type techniques for the practical design and assessment of structures.
The solution of the defined problem can be, on one hand, an approximation of an
original mathematical model by explicit function (typically called surrogate model
in the context of UQ), which can be utilized for reliability analysis, or on the other
hand, a reduction of the number of simulations as much as possible in simplified
safety formats based on semi-probabilistic approach focused on the estimation of
coefficient of variation (ECoV) as described in the following paragraphs.
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1.1 Semi-Probabilistic Approach and Safety Formats
Semi-probabilistic methods were developed as a simplification of mathematical re-
liability methods, where 𝑅 and 𝐸 are separated and design values of structural
resistance 𝑅𝑑 and action effect 𝐸𝑑 (satisfying the given safety requirements) are de-
termined instead of the direct calculation of the failure probability 𝑝𝑓 . The safety
check is thus reformulated to a simple form 𝑅𝑑 ≥ 𝐸𝑑 often utilized in normative doc-
uments. The following text is focused only on the resistance side, since it represents
the main interest of this thesis.

The design value of resistance 𝑅𝑑 in Eurocode [3] is completely described by the
sensitivity factor derived from First Order Reliability Method (usually simplified by
the absolute value of 𝛼𝑅 = 0.8), the target reliability index 𝛽, and finally the first
two central statistical moments together with the assumption of lognormal prob-
ability distribution of 𝑅 . Obviously, for the determination of a design value by
semi-probabilistic approach, it is crucial to correctly estimate the first two central
statistical moments. In the context of semi-probabilistic approach, several meth-
ods were developed or adapted for this task: numerical quadrature [4, 5], ECoV
methods [6, 7] or Latin Hypercube Sampling (LHS) [8, 9]. These methods differ in
sampling of random variables, i.e. the number of realizations of input random vector
and their positions in a probability space. For the sake of completeness, there are
also two methods implemented in Eurocode: Partial Safety Factor (PSF) method
generally used for structural design, and global safety factor method for a non-linear
analysis of concrete structures according to EN 1992-2 (EN 1992-2). Note that meth-
ods implemented in Eurocode need only one calculation of the mathematical model
in order to obtain 𝑅𝑑, and thus these methods are not focused on the estimation of
statistical moments, but they try to directly estimate the design quantile of resis-
tance. Despite the success of such approach in linear calculations, its utilization in
NLFEM is questionable, since calculations with extremely low material character-
istics may lead to unrealistic results (PSF), or implicit assumption for the value of
CoV of 𝑅 in set the global safety factor could lead to a significant deviation from
the real values (EN 1992-2).

The very first study conducted during the author’s Ph.D. research was focused
on the semi-probabilistic assessment of precast prestressed concrete roof girders us-
ing LHS, which is an MC-type method achieving generally higher accuracy in the
estimation of statistical moments. The stochastic analysis consists of sensitivity
analysis via Spearmann rank order correlation and statistical analysis. Since the
stochastic analysis deals with a real structural element, it was also necessary to in-
vestigate the role of correlation among input random variables, which were obtained
from laboratory experiments. More details can be found in Stochastic Modelling
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and Assessment of Long-Span Precast Prestressed Concrete Elements
Failing in Shear [Appendix D]. The obtained statistical moments were utilized
for the determination of 𝑅𝑑 by semi-probabilistic approach and compared to nor-
mative methods according to Eurocode. From the obtained results, it is clear that
semi-probabilistic approach in combination with LHS leads to higher 𝑅𝑑 in compar-
ison to the standard approach implemented in Eurocode, and thus the employment
of the advanced methods is generally beneficial. Unfortunately, the whole analysis
was extremely time-consuming since 100 numerical simulations of NLFEM were per-
formed in order to obtain a reliable estimation of the first two statistical moments,
which is significantly limiting for the industrial application of such approach. This
complication opens up the question of possibilities for the reduction of the num-
ber of numerical simulations maintaining the accuracy of the estimated statistical
moments. Although there are several existing methods for simplified estimation of
coefficient of variation of structural resistance, they are typically based on a vague
theoretical background and cannot incorporate information about correlation struc-
ture of input random vector.

In order to derive a simplified method for statistical analysis based on a solid
theoretical background, it was necessary to review the classic method for construc-
tion of surrogate model – Taylor Series Expansion (TSE). TSE is a very efficient
technique widely accepted in civil engineering, since it was used for the derivation
of First Order Reliability Method (FORM). Moreover, the significant advantages of
TSE are its versatility and adaptivity via arbitrary truncation of infinite series and
various schemes for numerical derivation. From a practical point of view, it is worth
mentioning that TSE truncated to linear terms offers a simple analytical formula
for the estimation of variance based on numerical results of the mathematical model
utilized for numerical derivation. One of the possible formulas for numerical deriva-
tion was proposed by Schlune et. al [6], where derivatives are approximated by a
simple one-sided differencing scheme, and TSE is truncated to linear terms. Despite
the simplicity of this particular form of TSE and differencing scheme, this technique
achieved interesting results in several numerical studies [10, 11, 12], and thus TSE
became a topic of interest for this research. In order to reduce the number of samples
as much as possible while maintaining the accuracy of the approximation, several
differencing schemes adapted for semi-probabilistic approach were proposed in the
paper On Taylor Series Expansion for Statistical Moments of Functions
of Correlated Random Variables [Appendix B]. It is shown in the paper, that
the proposed differencing schemes achieve a higher accuracy, especially in the case
of correlated input random variables. Moreover, the proposed methodology of three
levels of increasing complexity, accuracy, and computational cost can be employed
in order to progressively increase the accuracy of TSE. Although the calculations of

13



the original mathematical model from one level of the methodology are also always
used in the following level of the differencing schemes, it is still expensive for in-
dustrial applications since it represents general surrogate model without additional
simplifying assumptions and thus its computational cost is highly dependent on the
size of the stochastic model, i.e. number of input random variables.

The reduction of computational cost of TSE and derivation of simple analytical
ECoV method was the last task of this research. The main drawback of TSE is
the number of numerical simulations dependent on the size of the stochastic model,
which can be circumvented by an additional strong assumption of fully correlated
random variables. In this case, it was shown that TSE with simple differencing after
Nataf transformation into correlated space coincides with the widely accepted and
employed ECoV by Červenka in Gaussian space. Therefore, an identical process
can be utilized for the transformation of the advanced differencing schemes in order
to obtain analytical formulas for the estimation of mean and variance independent
of the size of the stochastic model – Eigen ECoV method. Theoretical derivation
and limitations of Eigen ECoV together with numerical examples are presented in
Estimation of Coefficient of Variation for Structural Analysis: The
Correlation Interval Approach [Appendix E]. The proposed Eigen ECoV fills
the gap between the existing over-simplified methods implemented in codes com-
monly employed by civil engineers and the advanced techniques generally used by
scientists such as LHS or TSE. It is based on the theoretical background of TSE,
but its computational cost is dramatically reduced, thanks to strong assumptions,
to 3 simulations (regardless of the size of the stochastic model). Naturally, it is
necessary to carefully consider the applicability of these assumptions in industrial
applications and their possible impact.

In order to present the synergy of TSE and the Eigen ECoV method, the corre-
lation interval approach was proposed for industrial applications in the recent paper
[Appendix E]. The estimated variance of QoI is significantly affected by the corre-
lation among input random variables, though the definition of correlation among
material characteristics is still challenging and there are no recommendations in
codes. Therefore, it is beneficial to investigate two limit states: uncorrelated ran-
dom variables and fully correlated random variables. Although both of the limit
states are not physically acceptable, they define the interval of variance, which re-
flects vague or incomplete information about the correlation structure among input
random variables. For practical application, it is suggested to start with the case of
fully correlated random variables solved by computationally efficient Eigen ECoV,
which typically leads to higher variance. If this estimation is too conservative, one
should employ TSE for the estimation of variance in the case of uncorrelated ran-
dom variables. Note that once the TSE is available, it is possible to analytically
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Fig. 1.1: Graphical interpretation of ECoV methods (adapted from Appendix E)

estimate variance for an arbitrary correlation structure, however its construction
might bring high computational burden, and Eigen ECoV might then be the only
feasible technique leading to a rough estimate on the safe side.

The comparison of the proposed techniques is schematically depicted in Fig.1.1
together with LHS and ECoV by Červenka. Note that the number of simulations
for TSE is low in this 2-dimensional example, though it is highly dependent on 𝑀

in contrast to Eigen ECoV. The illustration clearly presents an advantage of the
proposed TSE methodology, that it is possible to progressively enrich the number of
simulations in order to construct a more accurate (and expensive) form of TSE using
also simulations from the previous level of approximation. Similar characteristic can
be also seen in Eigen ECoV, which can be obtained directly from the simulations
used by ECoV by Červenka extended by one intermediate simulation.

The SEMIP software

The proposed Eigen ECoV and adaptations of TSE were, together with the state-
of-the-art methods, implemented into a standalone software tool [13]. SEMIP is
created for practical advanced semi-probabilistic design and assessment of structures
by ECoV methods together with normative methods implemented in Eurocode.
The software contains three functionalities: the definition of stochastic model from
experiments/normative documents, the estimation of coefficient of variation using
probabilistic methods, and the graphical comparison of determined 𝑅𝑑 obtained by
selected techniques.
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1.2 Polynomial Chaos Expansion
In the case of a comprehensive stochastic analysis or complicated examples, it is nec-
essary to employ advanced and accurate methods for construction of the surrogate
model. Naturally, it is necessary to perform a sufficiently large number of NLFEM
calculations in order to obtain sufficient information about the investigated math-
ematical model. Moreover, a theoretical background of various types of surrogate
models is usually complicated and their construction should be performed via effi-
cient numerical algorithms. The combination of the above mentioned aspects clearly
shifts the research from the field of structural safety and safety formats to compu-
tational sciences and applied mathematics, although such advanced computational
methods represent a powerful tool in engineering applications. PCE as a surrogate
model has got significant attention among researchers nowadays. Although a general
theoretical background of this method (stochastic spectral approach) was proposed
by a brilliant mathematician, Norbert Wiener, in 1938 already [14], surrogate model
based on this idea was developed 60 years later [15]. Assuming that QoI has a finite
variance, PCE represents the 𝑌 as a function of another random variable 𝜉 called
the germ with known probability distribution function 𝑝𝜉. The function is in the
form of infinite series of the polynomial chaos expansion consisting of deterministic
coefficients and basis functions orthogonal with respect to 𝑝𝜉. It is necessary to
truncate the infinite series to a final number of terms for practical computation,
which can be achieved by various methods. The standard approach is to select only
those PCE terms whose total polynomial degree is less or equal than the given value.
However, a truncated set of basis functions might be extremely high for practical
computation, especially in the case of a large number of input random variables
or high maximum total polynomial order, and thus there are methods for further
reduction of the number of basis functions typically based on the limitation of inter-
action terms. This can be justified by the sparsity-of-effects principle, which states
that most models describing physical phenomena are dominated by main effects and
interactions of low order [16].

From the computational point of view, the calculation of PCE coefficients can
be formulated in an intrusive or non-intrusive form. The intrusive approach is
not widely used due to its implementation difficulties, since it reformulates the
original deterministic model equations to obtain a system of equations for the PCE
coefficients of the model outputs. This thesis is thus focused on a non-intrusive
approach allowing for the use of third-party software as a black box within involving
the calculation of PCE coefficients based on a set of model evaluations. Specifically,
the regression-based non-intrusive approach is the main topic of this research, since
it can be easily employed for practical UQ involving NLFEM. For the regression-
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based non-intrusive PCE, it is also important to employ the best model selection
algorithms in order to identify the sparse set of basis functions, which is ideal for
the given information matrix and leads to the best possible approximation of the
original mathematical model.

As can be seen in the previous paragraphs, there are various approaches in each
step of the construction process of sparse PCE, and thus the first study was focused
on the comparison of methods for a construction of the truncated set of basis func-
tions and the existing sparsity solvers. The most efficient state-of-the-art methods
were utilized for the construction of an efficient and fully automatic algorithm pre-
sented in Polynomial Chaos Expansion for Surrogate Modelling: Theory
and Software [Appendix A]. The proposed algorithm and its later implementation
into standalone software [17] can be easily coupled with any third-party software for
NLFEM, and it can be employed by users without deep theoretical knowledge of
PCE. The combination of the Least Angle Regression for the best model selection,
maximal polynomial order adaptivity, and implemented Nataf transformation lead
to the best possible approximation of the original mathematical model by PCE
for the given experimental design. Thanks to a combination of simplicity for the
user and accuracy achieved by advanced numerical methods, the algorithm repre-
sents an ideal solution for engineers dealing with UQ of computationally demanding
mathematical models. Moreover, once this algorithm was created and validated on
analytical examples, it was possible to employ it for further theoretical research and
comparison with novel techniques.

The developed PCE algorithm was employed for a comparison with the artifi-
cial neural network (ANN), which represents another popular regression-based non-
intrusive surrogate model. Although ANN is already well known in computational
science, its specific form Neural Network Ensemble (NNE) is a new and promising
technique improving the accuracy of ANN by the construction of several surrogates
and the combination of their estimations. NNE thus might achieve higher accuracy
of an approximation thanks to statistical processing of several single ANNs. The
investigation of NNE in the context of sensitivity analysis is presented in Neural
Network Ensemble-based Sensitivity Analysis in Structural Engineer-
ing: Comparison of Selected Methods and the Influence of Statistical
Correlation [Appendix C]. The paper is focused on several methods of sensitiv-
ity analysis of both the local and global type. The reference solution are Sobol’
indices and their generalization for correlated input random variables, which are
obtained by PCE, and the algorithm presented in the previous paragraph. The
PCE was employed since the orthogonality of basis functions allows for powerful
and efficient post-processing. Once a PCE is created, it is possible to obtain statis-
tical moments of function and Sobol’ indices without any additional computational
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demands. From the obtained results, it is clear that NNE achieves a high accuracy
of an approximation (comparable to PCE), and it significantly outperforms a single
ANN. However, NNE is still a black-box method, and thus its additional analysis
during post-processing is limited, and its error estimation might be complicated.

In contrast to black-box methods, PCE is based on a strong theoretical back-
ground, which can be utilized for the derivation of interesting characteristics. Beside
the error estimators, statistical moments and Sobol’ indices of QoI, one might be
interested in the local characteristics of the created PCE. This idea was recently pre-
sented in Variance-Based Adaptive Sequential Sampling for Polynomial
Chaos Expansion [Appendix F] focused on local variance (variance density) of
QoI. The idea of this approach is based on the definition of the 𝑚th statistical
moment: ⟨

𝑦𝑚
⟩

=
∫︁ [︁

ℳ(𝑋)
]︁𝑚

𝑝𝑋(𝑥)𝑑𝑥 =
∫︁ [︁ ∑︁

𝛼∈N𝑀

𝛽𝛼Ψ𝛼(𝜉)
]︁𝑚

𝑝𝜉(𝜉)𝑑𝜉 =

=
∑︁

𝛼1∈N𝑀

...
∑︁

𝛼𝑚∈N𝑀

𝛽𝛼1 ...𝛽𝛼𝑚

∫︁
Ψ𝛼1(𝜉)...Ψ𝛼𝑚(𝜉)𝑝𝜉(𝜉)𝑑𝜉

It can be seen in the last part of this formula that in the case of PCE it is necessary
to integrate over basis functions Ψ (orthonormal polynomials), which leads to a
dramatic simplification in comparison to the integration of ℳ(X). In the case of
variance, one can utilize the orthogonality properties of basis functions and obtain
the second raw moment of QoI directly as a sum of squared deterministic coefficients
𝛽. However, one can also see this formula as an integration of local contributions
to variance, which is called variance density in the paper. Variance density is a
very interesting characteristic of the PCE, since it shows the local deviations of
the mathematical model from its mean value. Such information can be beneficially
incorporated into the criterion defining the best possible location of samples in
experimental design based on rationale of Koksma-Hlawka inequality [18].

The proposed Θ criterion for sequential sampling consists of two parts: variance
density and geometrical term assuring uniform coverage of the whole design domain.
Both these terms taken together lead to an ideal coverage of the design domain with
respect to local variance, and thus it leads to a dense sampling in locations with
functional extrema. Such approach can be easily coupled with any existing sampling
scheme and it leads to a higher accuracy of PCE in comparison to the non-sequential
approach. This method represents the main advantage of PCE over ANN or NNE,
since the explicit form of PCE allows for analytically deriving important information
about the approximation and efficiently using it for further analysis. Moreover, PCE
is specifically beneficial for UQ thanks to its basis functions orthogonal with respect
to a probability distribution of input random vector, which allows for a simple
analytical derivation of stochastic characteristics of QoI.

18



The PCE-UQ Software

The presented theoretical research was implemented into a standalone software tool
for UQ of mathematical models of physical systems. PCE-UQ represents an efficient
and easy-to-use tool for surrogate modeling of NLFEM, sensitivity analysis and
statistical analysis, and it was already employed in several applications, e.g. [19].
The software can be virtually divided into three parts: pre-processing, processing
and post-processing, as can be seen in Fig. 1.2. presenting a flow diagram.

In the pre-processing part, the users define the stochastic model of a problem
and create an experimental design. This task can be done in cooperation with third
party software. The very last step of pre-processing is a determination of the target
accuracy of an approximation or maximum order of used polynomials. Processing is
fully automatic and it contains several crucial steps. The core of processing is based
on the iterative best-model selection algorithm based on adaptive polynomial order.
Moreover, it is possible to employ the recently proposed sequential sampling. Post-
processing is designed to be easy to understand and it contains sensitivity analysis
of input random variables measured by Sobol indices’, and statistical analysis (the
first four statistical moments) of QoI. Moreover, it is also possible to use PCE as
a computationally efficient approximation of the original mathematical model for
additional analysis.

START

Stochastic 
   model

Statistical
sampling

Experimental
   design X

Results 
+

PCE settings:

PR
E
―

PR
O

C
E
S
S
IN

G

pol. order
 
target error

      Nataf
transformation

[Appendix F] Generation
of PCe basisOptimization

    of 

 Computation
of coefficients

> target

YES

NO

Extension
of    and

PR
O

C
E
S
S
IN

G

END Moment
analysis

Sensitivity
analysisSurrogate

model

Export
DLL

POST―PROCESSING

[Appendix C]

Fig. 1.2: Flow diagram of the PCE-UQ software (adapted from Appendix A)
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2 Discussion and Further Work
The main goal of this thesis was the development of the theoretical methods based
on surrogate models for probabilistic assessment of structures represented by mathe-
matical models solved by NLFEM. Probabilistic approach is especially important in
the case of concrete structures due to significant uncertainties in numerical models,
since a concrete represents material with high variability of its material parameters
with positive correlation among them, and thus it is necessary to employ advanced
methods for UQ. Although it would be ideal to develop a single approach for general
employment, the goal was thematically split into two parts, as was already ratio-
nalized and described together with the published results in the previous chapter.
Surrogate modelling is getting increasing attention among engineers thanks to the
exponential growth of computational power enabling calculation of enough samples
in experimental design for construction of accurate approximation. The combina-
tion of the developed PCE algorithm and the proposed sequential sampling leads to
a superior performance and can be easily used in combination with NLFEM. Nat-
urally, the number of simulations must be significantly larger in comparison with
ECoV methods, but it still represents highly efficient method for construction of the
complete surrogate model, which can be further analyzed instead of original mathe-
matical model. On the other hand, there are still highly computationally demanding
industrial applications of NLFEM (complex structures) requiring the reduction of
a number of numerical simulations as much as possible and thus Eigen ECoV and
TSE should be employed for probabilistic design and assessment in this case.

The significant effort was made in the development of a simple analytical ECoV
method, which can be used for practical design and assessment of structures in in-
dustrial applications. The estimation of the variance interval is based on adapted
TSE and novel Eigen ECoV, proposed together as the correlation interval approach.
Both methods are based on several simplifications, and so there are also limitations
for their employment. TSE is typically truncated only to linear terms, which might
lead to an inaccurate estimation of variance in the case of non-linear functions. Ad-
ditionally, there is an assumption of fully correlated input random variables in Eigen
ECoV, which is not physically correct, but it leads to a dramatic reduction of the
number of NLFEM calculations. The justification of both simplifying assumptions
can be found in ECoV by Červenka generally accepted in the civil engineering com-
munity. As was shown in the original paper [Appendix E], ECoV by Červenka in
Gaussian space corresponds to Eigen ECoV based on linear TSE with simple back-
ward differencing, and since this technique achieves satisfactory results in many
practical comparative studies [10, 11, 12] and it is already implemented in fib Model
Code 2010 [20], it is possible to justify the assumed simplifications.
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The important question arising for discussion is the ideal step-size parameter
used for TSE and Eigen ECoV, since it might significantly affect the accuracy of both
methods. There are generally two possibilities: a step-size parameter dependent on
the target reliability index, or a fixed step-size parameter. Although a step-size
parameter dependent on the target reliability index might achieve a higher accuracy
[6], it is computationally inefficient for a simultaneous analysis of several structural
limit states. The computational burden is caused by the fact that the original
mathematical model must be calculated for each limit state (and thus different target
reliability index) separately with different values of input characteristics. Fixed step-
size does not bring this additional computational burden and the user can obtain
the results for all limit states from a single NLFEM. Moreover, if a fixed step-size
parameter is set to 𝑐 = 1.645, it is also beneficial from a practical point of view, since
Eigen ECoV is then based on three typical calculations with input characteristics
easily obtained from the tables in codes: mean values, characteristic values and
intermediate values.

The remaining question is whether the Eigen ECoV can be used in the case
of structures with multiple failure modes. From the theoretical point of view, the
Eigen ECoV should actually achieve higher accuracy in comparison to the widely
employed ECoV by Červenka, since the Eigen ECoV tries to linearize the response
surface using three calculations and thus it is not as sensitive to the local extrema
as other existing methods (including normative methods). However, this theoretical
behaviour must be also verified in numerical examples, which is a task for future
research.

The second part of the thesis deals with an efficient construction of surrogate
models. The initial stage of the research consisted of the development of the state-
of-the-art algorithm for automatic construction of PCE and its comparison with
NNE. Although NNE is a very promising technique, it is still a black-box method
in contrast to PCE. The advantage of explicit approximation and known theoretical
characteristics of PCE was fully utilized in the final part of the research focused on
the development of an innovative sequential sampling scheme created specifically for
PCE.

Although the proposed criterion for sequential sampling can be coupled with any
non-sequential sampling, it is clear from the obtained results that the final accuracy
of PCE is highly dependent on the selected non-sequential technique, and thus this
choice should be made carefully. Although the proposed sequential sampling leads
to a significantly higher accuracy of PCE based on Latin Hypercube Sampling and
Coherence D-optimal sampling, there is a potential of improvement by the employ-
ment of advanced sampling schemes generated from the target distribution that
additionally avoids clustering or empty regions while maintaining true statistical
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homogeneity via periodic distance-based criteria [21]. The significant drawback of
the proposed sampling technique is its performance based on the size of the pool
of candidates generated by arbitrary non-sequential sampling. It was shown that
the related aspect is a maximum polynomial order of PCE, which might be the
limiting aspect of the proposed approach, and thus further studies should work with
the adaptive value as was shown in the first numerical example in [Appendix F].
However, the adaptivity of maximum polynomial order brings additional computa-
tional burden and non-trivial techniques might be necessary for the construction of
the pool of candidates in the case of coherence D-optimal sampling. Further work
will thus be focused on the comparison of the proposed sequential sampling coupled
with advanced sampling schemes involving adaptive techniques such as adaptive
coherence D-optimal sampling and induced sampling.

The utilization of a high polynomial degree could also be circumvented by a
different philosophy: the division of the design domain into small sub-spaces ap-
proximated by low-order PCEs. Such algorithm could also be based on the identical
Θ criterion, though for a different purpose. In this case, the suitable criterion is used
for the detection of the most important strata associated with high local variance.
The identified strata are further divided into smaller parts, and local PCE approx-
imation is created for each of them. In order to achieve an approximation with
continuous derivatives on boundaries of adjoining sub-spaces, it is also necessary to
use interpolating PCE instead of regression-based PCE.

Although the theoretical development of the proposed methods was successful
and they can be immediately employed for practical design or assessment of struc-
tures, these novel techniques also bring new challenges and reveal new research
topics. Based on the presented discussion of the obtained results, the following
specific tasks will be investigated in future research:

• a comparison of selected ECoV methods with TSE and Eigen ECoV in various
practical examples represented by NLFEM including structures with multiple
failure modes;

• a numerical study of the influence of the step-size parameter on accuracy of
TSE and Eigen ECoV;

• an extensive numerical study focused on the combination of the proposed
sequential sampling for PCE with advanced sampling schemes;

• a development of sequential sampling for local PCEs based on the division of
the design domain into sub-spaces and the proposed Θ criterion.
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3 Concluding Remarks
Obviously, the role of UQ is increasingly more important in the process of design
and assessment of structures, and thus novel numerical methods for civil engineers
should be created. Although the development of such techniques is a broad topic
investigated by many researchers, there is still a gap between purely scientific meth-
ods and techniques for industrial applications. The results of this thesis have the
potential to fill this gap, although the original task was divided into two parts and
two separate techniques were investigated. Specifically, this thesis was focused on
the development of novel theoretical methods for probabilistic design and assessment
of structures via surrogate modeling. For the given task, the following two types of
surrogate models were utilized: PCE and TSE, both employed in different contexts
and for different types of applications.

The simplified safety formats can be easily used for industrial applications, al-
though they have severe limitations. In order to develop a simple analytical the-
oretical method, the advanced differencing schemes adapted for civil engineering
were proposed in order to create accurate TSE. The proposed advanced differencing
schemes for TSE lead to a more accurate, but less efficient approximation of the
original mathematical model in the case of functions of correlated input random
variables, which is typical for NLFEM of concrete structures. Furthermore, TSE
with the proposed differencing schemes was utilized for the development of a novel
analytical method called Eigen ECoV, based on the theory of TSE and Nataf trans-
formation. The Eigen ECoV represents the main result of this thesis for industrial
applications, and it has the potential to significantly affect the semi-probabilistic
design and assessment of structures. TSE and Eigen ECoV together form a correla-
tion interval approach developed for industrial applications with a vague information
about correlation structure among input random variables. A lack of knowledge on
the joint probability distribution is typical for industrial applications, since only
marginal probability distributions are usually known, although it is necessary to
define a correlation structure of the input random variables in order to completely
describe input random vector [22]. The proposed correlation interval approach might
consequently reveal the impact of vague information about a correlation structure.

A complex stochastic analysis is typically based on an MC-type simulation and
thus it is necessary to create an accurate surrogate model of the original function.
The second part of the research was focused on PCE, which generally represents
an efficient surrogate model for UQ. Since the construction of PCE is not simple
task and there are various intrusive and non-intrusive approaches, the first step
of the research was the construction of an automatic software algorithm based on
the most efficient state-of-the-art methods. During the research, an efficient PCE

23



algorithm was also implemented into a stand-alone software tool. The software is
fully automatic and can be generally coupled with any third-party NLFEM software,
which allows for its employment by users without deep theoretical knowledge about
PCE. The developed algorithm was further employed in comparison with NNE in
the context of sensitivity analysis. Although NNE has a high potential for UQ, it
is a black-box method, and its post-processing is complicated. On the other hand,
the theoretical characteristics of PCE were utilized in the research task focused
on the adaptive sequential sampling scheme developed specifically for PCE, which
significantly reduces its computational cost. The sampling technique is based on a
novel philosophy, which has the potential to affect the whole scientific field of UQ.

The developed theoretical methods are based on cutting-edge techniques of UQ
for civil engineering and it can be concluded that all identified aims and objectives
of this thesis were met. The developed theoretical methods also represent a signifi-
cant progress beyond the state-of-the-art techniques and they have the potential to
become efficient tools for industrial design and the assessment of structures as well
as for further theoretical research in the field of computational science and applied
mechanics. However, there still remain some open questions in both research areas
briefly discussed in chapter 2 together with the directions of future research. The
tasks of further work are clearly identified and ensure the continuity of this research.

As can be seen from the nature of the research topic, it was necessary to divide
it into two parts and progressively build the theoretical background of the proposed
methods almost independently in both scientific fields. Therefore, it was decided to
create this thesis by publication (series of published journal papers), which represents
an elegant way for the presentation of the obtained results. To sum up, this thesis
consists of six journal papers listed in Tab. 3.1. As can be seen, the quality of the
journals, measured by the traditional impact factor (IF) and also the novel article
influence score (AIS), is increasing together with the progress of the research. The
latest contributions (Appendices E and F) fall into the first decile according to
AIS/IF, which confirms the significance of the obtained results.

A B C D E F
Year 2018 2020 2021 2021 2021 2021
IF 0.966 2.645 4.578 4.471 5.047 6.756

AIS 0.179 0.304 1.131 0.927 1.461 1.805
Quartile IF/AIS Q3/Q4 Q2/Q3 Q1/D1 Q1/Q1 Q1/D1 D1/D1
Contribution [%] 90 90 40 30 90 60

Tab. 3.1: Journal metrics of the published papers included in this thesis. Note: the
journal metrics from 2020 (latest) are used for the papers C,D,E and F.
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A Polynomial Chaos Expansion for Surro-
gate Modelling: Theory and Software

DOI: 10.1002/best.201800048

A.1 Description
The paper presents a novel algorithm for the construction of surrogate model in
the form of Polynomial Chaos Expansion (PCE). Although there has been a sig-
nificant theoretical development of PCE (especially in the recent decade), it is still
challenging for the application in industrial problems. The selected, highly efficient
algorithms for each sub-task of PCE construction were coupled in order to achieve
the ultimate efficiency and accuracy. The significant advantage of the proposed
algorithm is that it is possible to adaptively build PCE without extensive knowl-
edge of the PCE theory. The paper presents an automatic software tool [17], which
can be easily employed for uncertainty quantification of structures represented by
non-linear finite element models. The developed software tool is directly connected
to the commercial software FReET and ATENA Science developed by Červenka
Consulting. However, it can be easily connected to any software tool via a specific
format of input and output file.

A.2 Role of the Ph.D. Candidate
Percentage of contribution: 90%
Lukáš Novák is the main author of this paper responsible for the concept, the
methodology and the numerical results of the presented research. Furthermore,
he prepared the original draft of the paper which was later reviewed in cooperation
with his supervisor, Drahomír Novák.
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1 Introduction

The mathematical model of a physical problem is repre-
sented by a function of a set of input variables M(X). In 
practical applications, this function is often described in 
implicit form and solved via the non-linear finite element 
method (NLFEM), which is a very accurate method of 
solving mathematical models. However, to obtain realis-
tic results, it is necessary to consider random input varia-
bles described by probability distribution functions as 
well. The combination of structural reliability methods 
and NLFEM is highly time-consuming, especially in the 
case of large mathematical models with many random 
input variables. One of the methods of reducing computa-
tional requirements is the approximation of NLFEM by 
an explicit function – a surrogate model. There are several 
types of surrogate models described in scientific papers 
which are used to solve practical problems: Polynomial 
chaos expansion, kriging, support vector machine and 
artificial neural networks. However, generally speaking 
the main steps are almost the same for all the methods.

First, several repetitive calculations of the original math-
ematical model are performed for the set of sample 
points, which is called the experimental design (ED). 
These points are usually generated by Monte Carlo type 
simulation techniques. Herein, the variance reduction 
method Latin Hypercube Sampling (LHS) [1] was used 
because the initial set of sample points should provide 
uniform coverage over the input space X. A graphical in-
terpretation of LHS can be seen in Fig. 1. The value of the 

i-th realization of random variable xi is obtained from the
cumulative distribution function (CDF) F(x) of the input
variable, which is divided into N intervals, where N is the
number of simulations. Every value is chosen within each
interval. There are several ways to choose probability in
the interval: mean value/median of interval or random
value. Once the realizations are chosen, random permu-
tation is performed. The results of the simulations are
used as a training set for the creation of an approximation
function. The last and most important step is the estima-
tion of the approximation error, which can be done by
various methods, e.g. coefficient of determination or cross
validation. The paper describes the surrogate model
based on polynomial chaos expansion (PCE) [2].

2 PCE methodology

Assume a probability space (Ω, ℱ, ), where Ω is an event 
space, ℱ is a s-algebra on Ω and  is a probability meas-
ure on F. If the input vector of mathematical model is 
random vector X(w), w ∈ Ω, then random model response 
Y(w) is a random variable. Considering Y =  (X) has the 
finite variance s 2, the polynomial chaos expansion 
 according to Soize and Ghanem [3] is the following:

X XY
M



M ∑ β ψ( ) ( )= =
α

α α
∈

(1) 

where M is the number of input random variables, ba are 
unknown deterministic coefficients and Ψa are multivari-
ate basis functions orthonormal with respect to the joint 
probability density function of X. Standard normal input 
variables ξ are assumed herein, thus normalized Hermite 
polynomials orthogonal with respect to the standard nor-
mal probability density function f(x) (PDF) are used as 

The paper is focused on the application of a surrogate model to 
reliability analysis. Despite recent advances in this field, the re-
liability analysis of complex non-linear finite element models is 
still highly time-consuming. Thus, the approximation of the non-
linear finite element model by a surrogate meta-model is often 
the only choice if one wishes to perform a sufficient amount of 
simulations to enable reliability analysis. First, the basic theory 
of polynomial chaos expansion (PCE) is described, including 
the transformation of correlated random variables. The usage 
of the PCE for the estimation of statistical moments and sensi-
tivity analysis is then presented. It can be done efficiently via 
the post-processing of the employed surrogate model in expli-
cit form without any additional computational demands. The 
possibility of utilizing the adaptive algorithm Least Angle 
 Regression is also discussed. The implementation of the 
 discussed theory into a software tool, and its application, 
are presented in the last part of the paper.

Fig. 1 Latin Hypercube Sampling methodology
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:1 X W XT Fx ( )→ =  (4)

:2
1W Z WT ( )→ = Φ−  (5)

The last step contains a transformation to space ξ. For 
this procedure, Cholesky decomposition of the fictive cor-
relation matrix RZ must be performed:

R LLZ
T=  (6)

where L is the lower triangular matrix and L-1 = Γ. The 
transformation is then defined by:

:3 Z ZT ξξ→ = ��  (7)

The critical task for Nataf transformation is finding the 
fictive correlation matrix RZ. The following equation can 
be used to determine the fictive correlation coefficient rzij 
between two random variables:
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where m is the mean and ϕ2 is the bivariate standard nor-
mal PDF:
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Note that Nataf transformation is not feasible for some 
marginal distributions and correlation matrices due to the 
Gaussian copula hypothesis [7].

basis functions. In the case of non-Gaussian or correlated 
input random variables, the Nataf transformation must be 
performed, Fig. 2. This approach is usually called the 
Wiener-Hermite polynomial chaos expansion. Alterna-
tively, it is possible to use the Wiener-Askey generalized 
PCE, where different polynomials related to the PDF 
should be used according to the Wiener-Askey scheme [4] 
e.g. Legendre polynomials for uniform variables over 
[-1,1].

2.1 Transformation of random variables

A standard iso-probabilistic transformation to uncorrelat-
ed standard normal space ξ can be used in the case of 
uncorrelated non-normal input variables as follows:

1 XFxξξ ( )( )= Φ−  (2)

where F –1 is the inverse CDF of standard normal distri-
bution. In the general case of non-normal correlated ran-
dom variables, it is necessary to use more complicated 
transformation methods, e.g. Rosenblatt transformation 
[5].

The special case of Rosenblatt transformation with a nor-
mal copula is also known as Nataf transformation [6], 
which is usually utilized in reliability applications. Trans-
formation to ξ space is composed of three steps:

3 2 1X XT T T TNatafξξ ( ) ( )= = ⋅ ⋅  (3)

The first two steps represent iso-probabilistic transforma-
tion to standard normal space Z according to Eq. 2, i.e.:

Fig. 2 Illustration of a Nataf transformation from original space X to uncorrelated standard normal space Z for a 2 dimensional case 



  Beton- und Stahlbetonbau Spezial 2018 – 16th International  Probabilistic Workshop 29

L. Novak, D. Novak: Polynomial chaos expansion for surrogate modelling: Theory and software

FA
C

H
TH

EM
A

 A
R

TIC
LE

The approximation function in explicit form is fully de-
fined after the estimation of deterministic coefficients, 
and it is not highly computationally demanding to per-
form reliability analysis. This approach is generally called 
response surface methodology.

2.4 Validation of the PCE

The crucial step in response surface methodology is the 
validation of the approximation. For this purpose, various 
methods have been developed. In general, the coefficient 
of determination R2 between the original  and the ap-
proximation PCE is commonly used:

 
1

1
2

2

2

x x
R N

PCEM M

Yσ
( )( ) ( )

= −
∑ −

 (16) 

However, R2 may lead to overfitting in the case of small 
sample size experimental designs. Thus, more robust 
leave-one-out cross-validation Q2 should be used. The core 
of the method is to use one set of sample points to build a 
PCE and another set to compute the error. Q2 sets one 
point apart from the full ED and builds a PCE from the 
remaining points. This process is repeated for every point 
of the experimental design and is time-consuming in the 
case of a complex computational model. The advantage of 
the PCE is the possibility of analytical Q2 determination 
without any additional computational demand:
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where hi represents the i-th diagonal term of matrix 
ψ (ψ Tψ)–1ψ T.

2.5 Post-processing of the PCE

Due to the orthonormality of the PCE basis, some infor-
mation about the mathematical model can be computed 
just by post-processing the estimated coefficients, speci-
fically the estimation of statistical moments and sensitivi-
ty analysis.

Due to the fact that Ψ0 ≡ 1 and E[Ψa(ξ)] = 0 ∀ a ≠ 0, the 
mean value m and variance s 2 of the mathematical model 
can be easily derived:
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2.2 Truncation of the PCE

The quantity of terms in the PCE is generally large and 
must be truncated to a finite number P for practical com-
putation. Usually, terms whose total degree |a | is equal to 
or less than the given p are used, i.e. a truncated set 
of  PCE terms dependent on the size of the stochastic 
model n is:

:,
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The cardinality of the truncated set is given by the num-
ber of permutations:
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! !
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The number of terms P, thus the size of the experimental 
design, is strongly dependent on the number of stochastic 
input variables. In the case of a large stochastic model, 
the advanced selection algorithm Least Angle Regression 
should be utilized in order to find the optimal set of PCE 
terms [8].

2.3 Estimation of PCE coefficients

There is an error e due to missing terms in the definition 
of the truncated PCE:

,

XY
M p

M
A
∑ ξξβ ψ ε( ) ( )= = +

α
α α

∈

 (12)

 
The deterministic coefficients ba are obtained by minimi-
zation of the e. Herein, least-square regression (LSR) is 
utilized for the estimation of PCE coefficients. Thus, a 
sufficient amount of original mathematical model  (X) 
evaluations for sample points in experimental design  
are performed and the results are represented by vec-
tor . The estimated coefficients �̂ are obtained by mini-
mizing L2-norm:

ˆ arg min 1 2

1
N

xT i i

i

N

M∑ ΨΨ ξ( )( ) ( )= −
=

� �  (13)
 

The solution of Eq. 13 is defined by:

ˆ 1
T TYψψ ψψ ψψ( )=

−
�  (14)

where data matrix ψ is:

, 1, , ; 0, , 1, i M j Pi j j
iψψ ψ ψ ξ{ }( )= = = … = … −  (15)

The information matrix ψ Tψ may be ill-conditioned in 
practical computation, thus singular value decomposition 
(SVD) or QR decomposition should be utilized in the al-
gorithm, and the minimum size of the experimental de-
sign should be 2P.
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FReET should be utilized for the main part of pre-process-
ing, i.e. the definition of the stochastic model, the genera-
tion of random vector realizations using Monte Carlo 
simulation techniques and the acquisition of the results of 
the original mathematical model. In the case of the finite 
element model, FReET is able to cooperate with ATENA 
non-linear finite element software. The last step of pre-
processing is the definition of PCE attributes, including 
target accuracy Q2 and the following optional settings: 
the maximal order of the polynomial basis and the opti-
mization technique of the truncated set of PCE terms.

The processing part of the software tool contains the 
above-described PCE theory, including the transforma-
tion of random variables and an adaptive algorithm. 
Once the target accuracy is achieved, post-processing is 
performed. It is possible to export the PCE in Dynamic-
link library (DLL) format.

3.2 Adaptive algorithm

The main advantage of the presented software is the pos-
sibility of the adaptive creation of a PCE surrogate model 
for a given ED and target accuracy. The adaptive algo-
rithm, which is based on least angle regression, was origi-
nally described in [12].

A flowchart of the adaptive algorithm can be seen in 
Fig. 3 (right). If the accuracy of the PCE does not meet 
requirements, optimization of the truncated set by LARS 
is performed. Briefly, in each iteration of LARS one term 
which is most correlated to Y is added to the sparse set of 
basis functions. If the cardinality of the sparse set is equal 
to P, the maximal order of the used polynomials is in-
creased and the process starts from the beginning again. 

Variance-based sensitivity analysis can be computed in a 
similar way; more information can be found in Sudret 
[9]. Briefly, Sobol’ indices of any order for any variable 
are determined from deterministic coefficients b without 
additional computational demand, e.g. the total Sobol’ 
indices are derived as follows:

Si
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T M
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∑ β
σ

α α{ }= = ∈ >
α

α

∈

: 0
2

2
 (20) 

A generalization of variance-based sensitivity analysis 
called analysis of covariance for correlated variables can 
be found in [10].

3 PCE: Software

The presented PCE theory was implemented into a 
stand alone software tool that cooperates with FReET 
(Feasible Reliability Engineering Tool), which is multi-
purpose probabilistic software for the statistical, sensi-
tivity and reliability analysis of engineering problems 
[11]. The software tool is able to automatically build the 
PCE for a target accuracy given by Q2, or the best possi-
ble variant for the initial ED. A surrogate model is used 
for statistical moments and sensitivity analyses or can be 
exported to FReET for advanced probabilistic and 
 reliability analysis.

3.1 General information

A general flowchart of the software tool can be seen in 
Fig. 3 (left). The whole process can be divided to three 
basic imaginary blocks:  pre-processing, processing and 
post-processing.

Fig. 3 A general flowchart of the developed software (left), and a detailed flowchart of the adaptive algorithm (right)
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The second part of the example is the estimation of pf for 
a given threshold. This task was performed utilizing 
FreET software. The PCE was exported in a dynamic li-
brary (DLL) and the failure probability was estimated via 
the Monte Carlo technique for several thresholds using 
FReET. The reference value was estimated to be identical 
to that of the original mathematical model. The results 
are compared in Table 3.

5 Discussion

An academic example was employed for the validation of 
a software tool and the results were compared with those 
obtained via the fully probabilistic method. As can be 
seen, the software tool works correctly even with a small 
number (e.g. 100) of sample points in the ED.

Additionally, it was proved that the developed state-of-the-
art software tool is able to create a PCE for surrogate mod-
elling via an adaptive algorithm without any special inter-

In the case of high target accuracy, extension of the ex-
perimental design is required.

It is clear that the described adaptive algorithm is able to 
find the best possible solution for a given target accuracy 
and ED without any user action. Thus, due to this adap-
tive feature, it is possible to recommend the software tool 
for users without deep knowledge regarding PCE.

3.3 Post-processing

Once the PCE approximation function is available, sev-
eral important characteristics of model response Y can be 
obtained, as described in Ch. 2.5.

In structural reliability analysis, statistical moments and 
the influence of input variables on the behaviour of a 
given structure represent the most important information 
in many cases. Thus, the ability to provide this informa-
tion without additional computational demand is a large 
advantage of PCE as regards its practical usage.

4 Application of the software tool

The algorithm used by the developed software was vali-
dated by the following academic example of the midspan 
deflection of a simply supported concrete beam with uni-
formly distributed load vL/2. The stochastic model con-
tains five random variables with lognormal distribution 
mentioned in Table 1, where b and H represent the width 
and height of the cross section, E is the Young’s modulus 
of the concrete, q is the intensity of uniform load and L is 
the length of the beam, as is displayed in Fig. 4.

The mathematical model in explicit form is given by:

5
32/2

4

3
v qL

EbHL =  (21)
 

The example is focused on the quantification of statistical 
moments and failure probability pf for a given threshold 
of deflection. The reference value was obtained via the 
Latin Hypercube Sampling method with 106 evaluations 
of the original mathematical model.

The target accuracy of PCE was set as Q2 = 1, i.e. the best 
possible solution for the given ED containing 100 sample 
points generated by LHS. The LARS adaptive algorithm 
was employed and the maximal order of the polynomial 
basis was set as p = 4.

4.1 Results

The statistical moments of the model’s response are 
shown in Table 2. As can be seen, the results obtained by 
the post-processing of the PCE are in good agreement 
with the reference values.

Fig. 4 Mathematical model: deflection of a simply supported beam

Tab. 1 Stochastic model of the example

Variable m s Units

b ∼ LN 0.15 0.075 [m]

H ∼ LN 0.3 0.015 [m]

E ∼ LN 30 4.5 [GPa]

q ∼ LN 10 2 [kN/m]

L ∼ LN 5 0.05 [m]

Tab. 2 Comparison of statistical moments obtained by PCE and LHS

Parameter PCE (ED=100) LHS (reference)

m 8.366 8.368

s 6.429 6.446

Tab. 3 Comparison of failure probability estimated for the original model and 
the PCE

Threshold PCE Original model

15 mm 1.716 e-2 1.719 e-2

20 mm 1.017 e-3 1.015 e-3

25 mm 6.250 e-5 6.180 e-5

30 mm 4.300 e-6 4.200 e-6
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chaos expansion. A necessary overview of PCE theory 
was given briefly in the first sections and the transforma-
tion of random variables to uncorrelated standard normal 
space was also discussed. The implementation of the the-
oretical methodology in a standalone software tool and 
an adaptive algorithm based on least angle regression was 
then presented. Finally, a simple numerical example was 
utilised for the validation of the software tool, and the 
excellent results were discussed.
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active user actions. It can thus be used for complex im-
plicit mathematical models, and especially for highly com-
putationally demanding non-linear finite element analysis.

The software tool has already been employed in the com-
plex, computationally demanding reliability analysis of 
prestressed concrete roof girders failing in shear and the 
results from the analysis described in [13] were also com-
pared with those from an artificial neural network. A sig-
nificant advantage of the PCE is the explicit form of the 
approximation function, which enables powerful post-pro-
cessing without additional computational requirements.

6 Conclusion

The paper presented a recently developed state-of-the-art 
software tool for surrogate modelling using polynomial 
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Abstract: The paper is focused on Taylor series expansion for statistical analysis of functions of
random variables with special attention to correlated input random variables. It is shown that the
standard approach leads to significant deviations in estimated variance of non-linear functions.
Moreover, input random variables are often correlated in industrial applications; thus, it is crucial
to obtain accurate estimations of partial derivatives by a numerical differencing scheme. Therefore,
a novel methodology for construction of Taylor series expansion of increasing complexity of
differencing schemes is proposed and applied on several analytical examples. The methodology is
adapted for engineering applications by proposed asymmetric difference quotients in combination
with a specific step-size parameter. It is shown that proposed differencing schemes are suitable for
functions of correlated random variables. Finally, the accuracy, efficiency, and limitations of the
proposed methodology are discussed.

Keywords: Taylor series expansion; estimation of coefficient of variation; semi-probabilistic approach;
structural reliability

1. Introduction

Mathematical modeling in civil engineering is often represented by the finite element method
(FEM). Although FEM is an accurate and efficient technique, it is still highly time-consuming,
particularly in the case of non-linear FEM including geometrical and material non-linearity. Therefore,
from a practical point of view, it is necessary to decrease the number of FEM calculations as much
as possible while satisfying the given safety requirements of the analyzed structure. A solution can
be represented by a semi-probabilistic approach widely accepted in the engineering field [1] and
implemented into the national codes such as Eurocode [2]. Such approach is able to greatly reduce the
number of necessary calculations for the design and an assessment of structures. The basic reliability
concept is given as Z = R− E, where Z is a safety margin, which is defined as the difference between
the structural resistance R and the load effect E. The task of reliability analysis is the estimation of
failure probability p f = P (Z < 0), which might be highly computationally demanding. According
to the semi-probabilistic approach, the resistance of a structure R is separated, and the design value
Rd satisfying given safety requirements is evaluated instead of calculating the failure probability.
Such approach directly leads to the design value of resistance, which is obtained by the traditional
Partial Safety Factor (PSF) approach, and thus can be easily used for a design and an assessment of
structures. The PSF method is based on a simple assumption, that a calculation with design values
of input random variables leads to the design value of resistance Rd = r (xd), where design values
of input random variables xd are derived under several simplifications, such as a linearization of a
limit state function. In consequence, PSF works well for standard linear calculations, but there may
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be a significant error for a non-linear analysis, which is far more popular nowadays. Therefore, it is
necessary to develop new methods in compliance with the semi-probabilistic approach applicable for
non-linear analysis. The semi-probabilistic approach is briefly presented in the following paragraph.

It is assumed that R and E are independent, and separated R is lognormally distributed; thus, the
design value of resistance Rd is defined as

Rd = µR · exp(−αRβvR), (1)

where vR is the coefficient of variation (CoV) of resistance, and αR represents the sensitivity factor
associated with R derived from the First Order Reliability Method (FORM) [1,3]. FORM is commonly
applied to linearization of limit state function at the most probable failure point by Taylor series
expansion. FORM assumes the uncorrelated standardized Gaussian space ξ; thus, all variables must
be transformed by Rosenblatt transformation [4] from the original space. The coordinates of the most
probable failure point, also called the design point, are thereafter described by the shortest distance β

to the origin of the ξ space, direction cosines αR associated with resistance and αE associated with load.
The shortest distance β is defined as the Hasofer–Lind reliability index, and its minimal value is given
for various conditions in normative documents, in order to achieve the target safety of structures.

For industrial applications, FORM is simplified by the statistical estimation of fixed value αR = 0.8.
Therefore, to determine the design value by a semi-probabilistic approach, it is crucial to correctly
estimate the mean value and variance of structural resistance R, which can be seen as a function of
multiple random variables. This task may be challenging due to the fact that input random variables
can generally be non-Gaussian and correlated. There have been several methods proposed in last
two decades to estimate the variation coefficient of R (ECoV methods) [5–10]; however, mathematical
background and limitations of these methods are often missing, and there is no solution for correlated
random variables, which is common for material characteristics.

The only general approach to estimate statistical moments is pseudo-random sampling by a Monte
Carlo type algorithm such as Crude Monte Carlo or Latin Hypercube Sampling [11,12] employed in
numerical examples as a reference solution. However, it is necessary to perform a high number of
simulations of the original mathematical model, which is not feasible in industrial applications due to
the enormous computational burden. On the other hand, it is possible to assume several simplifications
and create an approximation of the original mathematical model of R.

The approximating function is called a surrogate model, or a metamodel, and it is a topic of
great interest among researchers from various research fields. The Polynomial Chaos Expansion (PCE)
is often used for uncertainty quantification [13,14]. The Gaussian process or Krigging has recently
received significant attention in reliability analysis of systems with very low failure probabilities [15],
and artificial neural networks are often utilized for reliability-based optimization [16]. Although PCE,
Krigging, and ANN represent very powerful and efficient approaches with many advantages,
these advanced techniques require deep knowledge of theoretical background, and it is necessary to
use developed algorithms with great caution.

Another well-known approximation of functions is Taylor series expansion (TSE), which was
also used for derivation of PSF and FORM as described, for example, in [17]. Although TSE is often
used to estimate statistical moments of functions of random variables by mathematicians, it has not
yet been well investigated in the context of non-linear FEM in civil engineering in order to adapt and
directly use TSE for structural reliability and semi-probabilistic approaches. For industrial applications,
it is crucial that the proposed methods are easy to implement and easy to use with the same level of
knowledge about the mathematical model as in the case of PSF. Therefore, it makes perfect sense to
generalize TSE, which is already utilized for the derivation of PSF implemented in codes, to directly
use in combination with FEM and semi-probabilistic ECoV approach. Therefore, the ECoV method
based on TSE adapted for civil engineers is discussed, and several modifications of this approach are
proposed in the next section. Moreover, the whole methodology of increasing complexity and accuracy
of TSE suitable for industrial applications is proposed in this paper.
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2. Taylor Series Expansion

An original mathematical model is often highly time-consuming, and it is necessary to create an
approximation—a simplified function in explicit form. Although there are several advanced types of
surrogate models, it is still common to use the traditional approach, called Taylor series expansion,
which can be truncated to arbitrary order and used with various differencing schemes. Although such
adaptivity makes TSE a powerful technique, there are severe problems for practical computations in the
case of non-linear functions with complex stochastic models containing a dependence structure. In the
following paragraphs, let us assume an original mathematical model in form of software algorithm
(e.g., FEM); thus, the derivatives must be calculated numerically.

Let (Ω,F ,P) be a probability space, where Ω is an event space, F is Borel σ-algebra on Ω, and P is
a probability measure P : F → [0, 1]. Let us assume a random vector X = (X1, X2, ...Xn)

T consisting of
random variables X(ω), ω ∈ Ω with existing mean values µX1 , µX2 , ..., µXn and a mathematical model
of this input random vector r (X). The response of the mathematical model is thereafter a random
variable R described by a specific probability distribution and statistical moments. Further, let us
assume the mathematical model r (X) to be infinitely differentiable in some open interval around
the vector of mean values µX = µX1 , µX2 , ..., µXn . Under this assumption, it is possible to expand the
original model to the infinite Taylor series according to Taylor’s theorem:

r(X) = r(µX) +∇r(µX) · (X− µX) +
1
2
(X− µX) · ∇∇r(µX) · (X− µX) + · · · =

= r
(
µX1 , µX2 , ..., µXn

)
+

n

∑
i=1

∂r(X)

∂Xi

(
Xi − µXi

)
+

1
2

n

∑
i=1

n

∑
j=1

∂2r(X)

∂XiXj

(
Xi − µXi

) (
Xj − µXj

)
+ ... (2)

where the derivatives are evaluated at µX1 , µX2 , ..., µXn . Note that TSE consists of a constant term,
linear term, quadratic term, etc. For a practical computation, it is crucial to reduce Taylor series to a
finite number of terms and to obtain derivatives by numerical differentiation. There are many possible
differencing schemes, which are more or less suitable for specific applications. One of the possible
formulas for numerical derivation was proposed by Schlune et al. [9], especially for civil engineers,
where derivatives are approximated by the asymmetric difference quotient as follows:

∂r(X)

∂Xi
=

RXm − RXi∆

∆Xi

. (3)

where the response of mathematical model RXm is a calculation with mean values of X, and RXi∆

is the result of the model using reduced mean values of the i-th input random variables by ∆Xi .
This differencing scheme is adapted for a structural design and an assessment by the step-size
parameter c = (αRβ)/

√
2, and Xi∆ corresponds to quantile F−1

i (Φ(−c)), where F−1
i is an inverse

cumulative distribution function of the i-th variable, and Φ is the cumulative distribution function
of standardized Gaussian distribution. For the sake of clarity, the difference is calculated as
∆Xi = Xim − Xi∆. Note that the step-size parameter is a function of the reliability index; thus,
it is in compliance with the philosophy of a semi-probabilistic approach implemented in civil
engineering codes [1]. Following this idea, additional asymmetric differencing schemes adapted
for civil engineering used in combination with TSE of the first and the second order are proposed in
the following subsections.

2.1. Linear Terms of Taylor Series Expansion

In engineering applications, it is common to assume only linear terms of TSE and independent
input random variables. Since a semi-probabilistic approach is focused on practical applications,
the significant advantage of TSE reduced to linear terms is the possibility of analyzing expressions for
an expected value and a variance, see e.g., [17].
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Theorem 1. If an original mathematical function r : Rn → R of n independent random variables described by
mean value µXi and variance σ2

Xi
is approximated by Taylor series expansion reduced to linear terms, the first

two statistical moments of the response RT of linear Taylor approximation are analytically obtained as follows:

ERT ≈ r (µX) (4)

VarRT ≈
n

∑
i=1

(
∂r(X)

∂Xi

)2

σ2
Xi

(5)

Proof of Theorem 1. For the sake of clarity, the estimations of expected value ERT and variance VarRT

for the function of n independent random variables are as follows:

ERT ≈ E
[
r
(
µX1 , µX2 , ..., µXn

)]
+

n

∑
i=1

E
[

∂r(X)

∂Xi

(
Xi − µXi

)]
≈ r

(
µX1 , µX2 , ..., µXn

)
(6)

and

VarRT ≈ Var

[
r
(
µX1 , µX2 , ..., µXn

)
+

n

∑
i=1

∂r(X)

∂Xi

(
Xi − µXi

)
]
=

n

∑
i=1

Var
[

∂r(X)

∂Xi

(
Xi − µXi

)]
+

+ ∑
i,j=1,...,N

i 6=j

Cov

[
∂r(X)

∂Xi

(
Xi − µXi

)
,

∂r(X)

∂Xj

(
Xj − µXj

)]
=

n

∑
i=1

(
∂r(X)

∂Xi

)2

σ2
Xi

(7)

where the final equation arises from the definition of variance Var(X) = σ2
X = E

[
(X− µ)2

]

and property of variance Var(cXi + dXj) = c2Var(Xi) + d2Var(Xj) + 2cd Cov(Xi, Xj). Moreover,
for independent variables, the covariance between variables is equal to zero, and thus the formula
is reduced.

As can be seen from the proof above, there is a strict assumption of uncorrelated random variables
for Equation (5). However, it is necessary to assume correlated random variables in some practical
examples solved by FEM to represent realistic behaviors of structures. An extension of the method
for dependent random variables can be obtained from the proof above using first-order Taylor series
expansion assuming correlation among random variables represented by the correlation coefficient ρ

in analytical form as

VarRT ≈
n

∑
i=1

(
∂r(X)

∂Xi

)2

σ2
Xi
+ ∑

i,j=1,...,n
i 6=j

ρi,jσXi σXj

∂r(X)

∂Xi

∂r(X)

∂Xj
. (8)

However, higher terms of TSE or more accurate approximation of derivatives should be
considered for the correct estimation of variance in the case of dependent input random variables
and non-linear functions. Otherwise, the correlation term may lead to significant inaccuracy of
the resulting variance. We propose the second-order backward asymmetric differencing according
to Equation (9), which is adapted for structural design utilizing the parameter c = (αRβ)/

√
2

analogously to Equation (3) proposed by Schlune et al. The middle additional term RXi ∆
2

is obtained
by an evaluation of the original mathematical model with reduced i-th variable Xi ∆

2
= Xim − ∆Xi /2.

Note that the proposed approach needs 2n + 1 evaluations of the original model, while the scheme
proposed by Schlune needs n + 1 simulations. In practice, an analyst could use the derivative scheme
according to Schlune and further compute additional n simulations in order to obtain RXi ∆

2
and more

accurate results.
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∂r(X)

∂Xi
=

3RXm − 4RXi ∆
2
+ RXi∆

∆Xi

. (9)

2.2. Higher-Order Taylor Series Expansion

If higher terms of TSE are considered, it is inefficient to derive analytical formulas for statistical
moments [18], and thus mean and variance should be calculated numerically by simulation techniques
directly from Equation (2) truncated to quadratic terms. Moreover, additional higher-order derivatives
must be evaluated, which might not be feasible in computationally demanding practical examples.
Therefore, linear TSE is preferred for practical computations. However, for specific cases with
significant interaction of input variables, one may use second-order TSE for the estimation of coefficient
of variation. In this case, it is necessary to compute all second-order partial derivatives. For numerical

calculations of ∂2r(X)

∂X2
i

, it is possible to use the already defined simulations RXm , RXi∆ , RXi ∆
2

in a standard

asymmetric backward differencing scheme:

∂2r(X)

∂Xi∂Xi
=

RXm − 2RXi ∆
2
+ RXi∆

∆2
Xi

(10)

The only additional computations of the original mathematical model needed are for mixed

partial derivatives ∂2r(X)
∂Xi∂Xj

. Note that it is necessary to perform additional (n
2) simulations in order to

obtain all the mixed partial derivatives. In total, it is necessary to calculate 2n + (n
2) + 1 simulations for

second-order TSE using the proposed asymmetric differencing schemes.

Theorem 2. Mixed partial derivatives can be approximated by the simple backward finite differencing as

∂2r(X)

∂Xi∂Xj
=

RXm − RXi∆ − RXj∆ + RXi∆Xj∆

∆Xi ∆Xj

, (11)

where RXi∆Xj∆ represents the response of a mathematical model with reduced mean values of both i-th and j-th
input random variables. All other variables were defined in the previous differencing schemes.

Proof of Theorem 2. Using the simple one-sided backward differencing defined by Equation (3),
one can derive mixed partial derivatives as follows:

∂2r
∂Xi∂Xj

≈
∂r(X)
∂Xj

(
µXi , µXj

)
− ∂r(X)

∂Xj

(
Xi∆, µXj

)

∆Xi

(12)

where ∂r(X)
∂Xj

is computed for specific coordinates
(

µXi , µXj

)
and

(
Xi∆, µXj

)
as

∂r(X)

∂Xj

(
µXi , µXj

)
≈

RXm − RXj∆

∆Xj

(13)

and
∂r(X)

∂Xj

(
Xi∆, µXj

)
≈

RXi∆ − RXi∆Xj∆

∆Xj

(14)

Therefore, the final derivative scheme for mixed second partial derivatives based on the simple
backward differencing adapted for a semi-probabilistic approach is

∂2r(X)

∂Xi∂Xj
=

RXm − RXi∆ − RXj∆ + RXi∆Xj∆

∆Xi ∆Xj

(15)
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3. Numerical Computation

3.1. Methodology of ECoV by TSE

Since TSE can be constructed in various forms, it is beneficial to create ECoV methodology using
TSE, composed of the three levels of an approximation using asymmetric differencing schemes already
described in the previous section in combination with linear and quadratic TSE as follows:

1. linear TSE with a simple differencing scheme using Equation (3)—nsim = n + 1,
2. linear TSE with an advanced differencing scheme using Equation (9)—nsim = 2n + 1,
3. TSE truncated to quadratic terms with a differencing scheme using Equation (9) for the first-order

derivatives, Equation (10) for the second-order partial derivatives, and Equation (11) for the
mixed derivatives—number of calculation is nsim = 2n + (n

2) + 1 in total.

The first level was proposed by Schlune et al. [9] for uncorrelated random variables, and it was
used in several practical studies [19–21]. However, its behavior for functions of correlated input
random variables has not been investigated yet, though it is often necessary to assume correlated
random material characteristics in industrial applications. It can be expected that the accuracy of the
first level is not sufficient for dependent variables, which will be investigated in numerical examples.

The second level with the advanced differencing scheme still uses only linear terms of the TSE,
and thus it is possible to calculate variance by the simple Equation (8), which might be important for
easy applications in industry. The accuracy of the second level is significantly improved by additional
simulations; however, interaction terms are missing due to a linear truncation of TSE.

The third level of approximation is especially suitable for mathematical models with strong
interaction among random variables. However, it is also the most expensive approach, and statistical
moments of the model response should be obtained numerically since an analytical calculation
is inefficient. Therefore, it can be seen as a simple surrogate model that might be used in combination
with Monte Carlo techniques.

Note that the calculations of the original mathematical model from one level are also always used
in the following level of approximation. It represents the significant characteristic of the proposed
approach, which is beneficial for industrial applications, where it is crucial to decrease the number
of calculations as much as possible due to computational demands. Therefore, an analyst can start
with the first level of an approximation and eventually increase the number of simulations only if
it is necessary. The asymmetric differencing schemes for each level of approximation are depicted
in Figure 1 together with iso-lines of bivariate standard Gaussian probability distribution in σ, 2σ,
and 3σ distance, represented by dotted circles.

Advanced Linear TSE

Quadratic TSE

Simple Linear TSE1.

2.

3.

Figure 1. Proposed methodology composed of the three levels of Taylor series expansion (TSE)
approximation using asymmetric differencing schemes adapted for civil engineering. Iso-lines of
bivariate standard Gaussian probability distribution are represented by dotted circles.
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3.2. Reference Solution

In industrial applications, only marginal distributions and a correlation matrix are usually known,
which does not represent complete information about the joint probability distribution. Therefore, it is
necessary to assume a specific copula [22]. A special case of Rosenblatt transformation assuming the
Gaussian copula is also known as the Nataf transformation [23], which is usually utilized in reliability
applications. The Nataf transformation is composed of three steps:

ξ = TNata f (ξ) = T3 ◦ T2 ◦ T1(ξ) (16)

The first step represents a transformation from uncorrelated standard Gaussian space ξ to
correlated standard normal space Z using linear transformation.

T1 : ξ 7→ Z = Lξ (17)

For this procedure, Cholesky decomposition of the fictive correlation matrix RZ must be performed:

RZ = LLT (18)

The following two steps are commonly known as an iso-probabilistic transformation by an inverse
cumulative distribution function F−1

x and the standard Gaussian cumulative distribution function Φ:

T2 : Z 7→ W = Φ(Z) (19)

T3 : W 7→ X = F−1
x (W) (20)

It is clear that the critical task of the Nataf transformation is to determine RZ. The relationship
between the fictive correlation coefficients ρzij and ρij between i-th and j-th variable is defined by the
following integral equation:

ρij =
1

σiσj

∫∫

R2

{
F−1

i [Φ (zi)− µi] F−1
j
[
Φ
(
zj
)
− µj

]
× φ2

(
zi, zj, ρzij

) }
dzidzj, (21)

where µ is the mean value, σ is the standard deviation, and φ2 is the bivariate standard normal
probability density function parametrized by fictive correlation coefficients ρzij:

φ2(zi, zj, ρzij) =
1

2π
√

1− ρ2
zij

exp

(
−

z2
i − 2ρzijzizj + z2

j

2(1− ρ2
zij)

)
. (22)

Numerical examples are constructed in order to show the behavior of the presented differencing
schemes and identify their limitations. For each example, the reference solution is obtained by
numerical simulation with nsim = 105 realizations of a given random vector generated by Latin
Hypercube Sampling (LHS) in uncorrelated space ξ and transformed into the correlated space X by
the Nataf transformation. The reference solution by LHS is compared with the results obtained by TSE
of increasing complexity using the proposed methodology.

Since this paper is focused on the potential of the presented differencing schemes for industrial
applications, the input variables are assumed to be lognormally distributed with coefficient of variation
CoV = 0.1–0.2 , which is common for material characteristics. Specifically, all examples work with
the following stochastic model of two input variables: vector of mean values µ = [40, 300] and the
corresponding vector of coefficients of variation CoV = [0.1, 0.2]. Moreover, Pearson’s correlation
coefficients (parameterizing Gaussian copula) are assumed to be positive in the range 〈0, 0.9〉.
The results of the numerical simulations are statistically processed in order to obtain the mean value,
variance, and coefficient of variation of the model response.
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3.3. Example 1: Simple Linear Model

The very first example represents the entire methodology. It is a simple linear model
R = r(X) = X1 + X2. The selected realizations generated by Latin Hypercube Sampling, which illustrate
the uniform cover of the design domain, together with iso-lines of joint probability density of
random vector in uncorrelated and correlated space (Gaussian copula parametrized by the correlation
coefficient ρ = 0.8) are depicted in Figure 2. A reference solution based on a sample with nsim = 105 is
calculated for all examples.

X
2
 [

-]

X1 [-]

Figure 2. Realizations (red dots) generated by Latin Hypercube Sampling (LHS) and iso-lines of joint
probability density of input random vector in uncorrelated (left) and correlated (right) space.

In this case, all the presented differencing schemes led to the exact solution, as can be seen in
Figure 3, since a linear approximation fits the original model. For the sake of clarity, the figures in this
section show estimation of CoV (top) and variance (bottom) as well, since CoV takes the estimation
of mean value into account. The graphs in the right column represent CoV or variance for correlated
variables with subtracted uncorrelated values, which represent pure influence of correlation estimated
by the presented methods.
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Figure 3. Estimation of coefficient of variance (CoV) (top) and variance (bottom) of the first example
by the presented methods.
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3.4. Example 2: Linear Model with Interactions

The second example is focused on the comparison of the first-order and the second-order
Taylor series expansion. The first and the second level of approximation use the first-order
Taylor expansion; thus, they are not recommended for mathematical models with significant
interaction terms, since there are no mixed derivatives in the approximation, and the influence of the
interaction is therefore underestimated. The quadratic TSE is the most computationally demanding and
the only one reflecting the interaction terms. For the demonstration of this characteristic, the following
adaptation of the previous simple mathematical model is assumed:

R = r(X) = X1 + X2 + 5 (X1X2) (23)

The obtained results are depicted in Figure 4 in the same manner as in the previous example.
The estimated mean value for the uncorrelated input random variable was accurate (µR = 260).
However, using only linear terms of Taylor expansion led to an identical mean value independent of
the correlation among input variables. Therefore, the results of CoV are affected by this characteristic,
and all methods seem comparable. The accuracy of the used approximations can be clearly seen on the
estimation of variance, where the first two levels of an approximation led to identical results, with the
error increasing together with the correlation between input random variables. Of course, the obtained
results are exact only if the third-level approximation (quadratic Taylor expansion) is used for the
estimation of variance, since Hessian of this function is not equal to the zero matrix 0. As can be seen,
neglecting an interaction among random variables by the first-order Taylor expansion may lead to
a significant error in the estimation of statistical moments even for simple linear functions; thus, an
analyst should carefully choose the level of approximation in industrial applications considering the
nature of the studied physical system.
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Figure 4. Estimation of CoV (top) and variance (bottom) of the second example by the
presented methods.
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3.5. Example 3: Approximation of Industrial Example

The third example is motivated by the industrial applications in civil engineering often
represented by non-linear finite element models—typically ultimate resistance given by the peak
of the load-deflection curve of concrete structural element. The behavior of such a physical system is
often monotone with a slightly non-linear progress. A typical function solved by FEM can be found,
for example, in [9], and due to the computational demands of FEM, its shape was replicated by the
following artificial function:

R = r(X) = X1X2 − X2
1 −

(
X2

2
30

)
− (X1 − 30) (X2 − 200) (24)

The exact mean value estimated by LHS was µR = 6264 and by Taylor series ERT = 6400, which
leads to the difference between the estimation of CoV and variance depicted in Figure 5. However,
the estimation of variance and CoV by linear TSE with advanced differencing together with quadratic
TSE was accurate. On the other hand, linear Taylor expansion with simple one-sided backward
differencing showed a significant error in estimation for all correlation coefficients. The results on the
right-hand side of Figure 5 represent the pure influence of correlation, and as can be seen, the slope of
the curve estimated by simple linear TSE was significantly different. Thus, this method is not able to
correctly identify the role of correlation.

From the previous examples, it is clear that simple linear Taylor expansion as proposed by
Schlune et al. is suitable only for functions of uncorrelated variables, which is not a typical industrial
problem. However, it is possible to start with simple differencing for uncorrelated problem and add n
additional simulations in order to adapt an approximation for correlated variables.
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Figure 5. Estimation of CoV (top) and variance (bottom) of the third example by the presented methods.
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3.6. Example 4: Non-Linear Function

The last example is created in order to show the limitations of all the presented methods with
increasing non-linearity of the original mathematical model. The following function has a similar
shape as the model in the previous example; however, it is significantly more non-linear:

R = r(X) = X1X2 cos
(

πX1

200

)
cos
(

πX2

2000

)
(25)

The estimated mean value by TSE for the uncorrelated case was ERT = 8650, and the exact value
estimated by LHS was µR = 8468. Variance and CoV of R estimated by the presented methods are
summarized in Figure 6. As can be expected, with higher non-linearity of mathematical models,
it was not suitable anymore to use TSE of lower orders as an approximation of the original model.
Since computational requirements of higher-order Taylor series expansions are comparable to the
commonly known surrogate models, and the estimation of statistical moments is inefficient, one should
prefer more advanced surrogate models (e.g., Polynomial Chaos Expansion or Kriging) together with
standard statistical methods.

Specifically in this example, the worst results were obtained by the linear TSE with simple
differencing, which represents a poor approximation of the original function; thus, the estimation of
variance was not satisfied as well. Similarly, a poor accuracy of the estimated influence of correlation
can be clearly seen from the different trends of the curves in the column on the right-hand side in
Figure 6. However, since there is no significant interaction between the input random variables,
the results obtained by linear Taylor series with advanced differencing were almost identical to the
more computationally demanding quadratic Taylor series, which might be a crucial advantage in
high-dimensional industrial applications solved by FEM.
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Figure 6. Estimation of CoV (top) and variance (bottom) of the fourth example by the presented methods.

4. Discussion

The TSE represents a powerful and accurate technique with a strong mathematical background.
Unfortunately, it is usually truncated to linear terms in engineering applications, which may generally
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lead to poor results in the case of non-linear functions and correlated random input variables.
Although Schlune et al. proposed the ECoV method based on linear TSE with a simple asymmetric
differencing, there are no studies on its limitations and possible generalizations, although TSE is a
highly modifiable technique via differencing schemes and a truncation order of an approximation.
Therefore, it was necessary to propose different variations of TSE for specific problems and create
the novel methodology of three levels of TSE. The proposed methodology was applied on several
analytical examples in order to show the limitations of each level. The variations of TSE were proposed
with attention to the reduction of computational cost as much as possible, since derivations are
computed by finite differencing of FEM in industrial applications. Therefore, each additional level of
the methodology works with the information previously obtained from calculations of the original
mathematical model; thus, an approximation can be sequentially made more accurate by calculating
several additional simulations and combining them with the previous results used in the asymmetric
differencing scheme of lower levels of the proposed methodology.

It can be seen from the presented results, that linear TSE fails in the case of significantly non-linear
functions (the last example) and functions with important interaction terms (the second example).
In such cases, it is necessary to use quadratic TSE (3rd level of proposed methodology) as an
approximation. Moreover, the main motivation of this paper is dealing with correlation among
random input variables, which has not been investigated yet in the context of ECoV methods. It is
clear from the presented examples that the linear TSE with simple differencing (1st level of the
proposed methodology) is not suitable for functions of correlated variables. However, once the
differencing scheme according to Equation (9) is used in combination with linear TSE (2nd level of the
proposed methodology), its accuracy is significantly improved. Thus, if there is not a strong interaction
among input random variables, it is not necessary to use quadratic TSE (3rd level of the proposed
methodology), which leads to additional computational requirements.

From the point of view of computational costs, it is possible to add higher terms of Taylor
series, but it significantly increases the number of derivatives. Therefore, TSE above the second
order is inefficient, and advanced surrogate models such as PCE, Krigging, or ANN should be used.
On the other hand, a better accuracy of estimation of CoV and variance can be reached by the
improved asymmetric differencing scheme as proposed in this paper. Computational requirements
are slightly increased from n + 1, for the traditional scheme according to Equation (3), to 2n + 1
for the proposed scheme according to Equation (9). It is obvious that variance estimation using
Equation (9) is significantly improved in comparison to the traditional differencing scheme represented
by Equation (3). However, the main advantage of the proposed method is the accuracy of variance
estimation in the case of correlated random variables. It is obvious that there is a difference between
the curves representing an increment of variance due to correlation (second part of Equation (8))
estimated by both approaches. The difference between both differencing schemes is proportional to a
correlation among input random variables; thus, special attention should be given to functions with
high correlation among input random variables.

Generally, the proposed methodology proved to be well-suited for typical industrial mathematical
models in civil engineering. Moreover, the paper shows the influence of different variants of TSE and
level of statistical correlation on estimated CoV, which is a base for semi-probabilistic approaches to
determine design value in civil engineering. Such influence can be significant, for more basic random
variables certainly amplified, which will be studied on practical examples represented by non-linear
finite element models of structures in further research, and the obtained results will be compared to
standard normative approaches as PSF and global safety factor method [24] designed specifically for
civil engineering.

5. Conclusions

The non-linearity of functions and statistical correlation of input random variables represent
crucial aspects in estimating statistical moments of industrial mathematical models. Unfortunately,
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the accuracy of standard existing methods is not satisfying for such models. Therefore, this paper
presents a novel methodology to estimate the coefficient of variation for functions of correlated
input random variables. Since mathematical models in civil engineering are often functions of
input correlated random variables, it is necessary to develop new and efficient methods based on a
semi-probabilistic approach widely accepted for the design and assessment of structures satisfying
given safety requirements. Therefore, the methodology of three levels of increasing complexity,
accuracy, and computational cost based on Taylor series expansion is proposed and described.
The methodology consists of three advanced differencing schemes adapted for civil engineering
by step size parameter. The differencing schemes are based on the asymmetric quotient, which is
typical for engineering applications, where one is interested in extreme structural behavior leading
to failure. The proposed methodology is applied to four analytical examples, and the results are
compared to reference solutions obtained by Latin Hypercube Sampling. The analytical examples
are constructed in order to show the efficiency and limitations of each differencing scheme: simple
linear function, linear function with strong interaction terms, and finally two non-linear functions.
From the obtained results, extensively discussed in the previous section, it is clear that it is necessary to
choose advanced asymmetric differencing schemes in the cases of correlated input random variables or
increase the truncation order of Taylor series expansion. It was shown that its accuracy is significantly
higher in comparison to the simple linear TSE (in absolute values but also in a relative trend of influence
of correlation). The slight increment of computational demands of the proposed differencing schemes
is a significant advantage in comparison to Taylor series of a higher order, where it is necessary to
numerically evaluate a large number of additional derivatives. However, it was shown that quadratic
TSE is necessary for mathematical models with strong interaction terms.
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Surrogate model-based sensitivity analysis, especially framed by neural network ensemble (NNE), is an
attractive but unresolved issue in structural reliability assessment. In this paper, differing from existing
studies, an overview and assessment of typical methods for surrogate model-based parameter sensitivity
analysis, namely the input perturbation method, the local analysis of variance, the connection weight
method, the non-parametric Spearman rank-order correlation method, and the Sobol indices method,
are performed and demonstrated on three illustrative cases of increasing complexity: a simple theoretical
instance, an engineering case of midspan deflection of a simply-supported beam, and a real-world prac-
tical application of shear failing in a precast concrete girder. Through comprehensive comparisons, sev-
eral findings are obtained as follows: (i) the NNE is testified a superior surrogate model for sensitivity
analysis to a single artificial neural network; (ii) robustness and accuracy of an NNE in sensitivity analysis
are demonstrated; (iii) the properties of these parameter sensitivity analysis methods are fully clarified
with distinguished merits and limitations; (iv) mechanism of local- and global- sensitivity analysis meth-
ods is revealed; and (v) the strategy for sensitivity analysis of correlated descriptive variables are elabo-
rated to address the impact of correlation among random variables in engineering systems.

� 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The consideration of uncertainties in computational mechanics
for structural reliability assessment has been a topic of growing
importance during the last few decades, as it can provide valuable
information as to the reliability of engineering structures [1]. These
uncertainties generally affect input variables such as geometry,
materials, loads and environment-related properties. These ran-
dom variables operate within several stages of computational
modelling. Moreover, they are often statistically correlated. The
main aim of stochastic computational modelling is to propagate
uncertainties through a mathematical model in order to obtain sta-
tistical information on outputs, which are typically structural
responses such as ultimate capacity, deflection, etc. This process
is often called uncertainty propagation, or the statistical analysis
of a computational model.

In computational mechanics, computational models (mathe-
matical functions) are often defined using the finite element

method (FEM). This imposes a high computational burden, espe-
cially when calculating structures made of materials that exhibit
nonlinear response and under nonlinear vibration [2]. The situa-
tion is even worse when the reliability analysis of structures is per-
formed in a fully probabilistic manner. This means carrying out a
large set of Monte Carlo-type numerical simulations, the number
of which increases as the expected failure probability decreases.
This process may be highly time-consuming without a surrogate
model.

To overcome the above-mentioned high computational burden,
it is desirable to employ methods which replace the initial compu-
tationally expensive model with a simpler model that can be eval-
uated more quickly. This approach is called surrogate modelling,
meta-modelling or the response surface (RS) method in cases when
the original function represents a limit state function. Together
with sensitivity analysis (SA), it is a very important part of struc-
tural reliability assessment [3–5]. A great many improvements
have been proposed since the first use of surrogate modelling in
reliability analysis [6]. Recent contributions have been concerned
with kriging [7,8], support vector machine algorithms [9,10] and
polynomial chaos expansion [11–13]. Adaptive schemes are also
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of great interest since they allow more precise results to be
obtained with a reduced number of simulations. Despite their dif-
ferences, the main steps of these procedures are always the same:
First, an initial experimental design is chosen – supporting points
in a multi-dimensional space of random variables. Second, a speci-
fic type of RS is built. The idea was first introduced by Bucher and
Bourgund [14], who used (in turn) double RS. They build support-
ing points using a star-shaped experimental design around the
mean point. Rajashekhar and Ellingwood [15] suggested that this
method could be improved by considering several iterations until
a convergence criterion is satisfied. Once the surrogate model is
available, it is feasible to perform a large number of evaluations
in a matter of seconds. Note that it is of paramount importance
for many types of sensitivity analysis to achieve such a drastic time
reduction.

Sensitivity analysis (SA) is a crucial part of computational mod-
elling and assessment [16]. It is an important step in every simula-
tion and assessment, which is why it has received so much
attention in the literature over the past decades. SA is important
for the reduction of the space of random variables for stochastic
calculations, the building of response surfaces, the training of neu-
ral networks, etc. Several interrogations are possible and several SA
methods have been developed, giving rise to a vast and growing
body of literature. An overview of the available methods is given
in review papers such as those of Novák at al. [17], Kleijnen [18],
Antucheviciene et al. [19] and Borgonovo and Plischke [20].

There are generally two types of sensitivity analysis. Local sen-
sitivity analysis focuses on the behaviour of a function around a
point of interest (e.g. one-at-a-time and screening). Global sensi-
tivity analysis investigates the whole design domain, considering
the probability distribution of input random variables. Local and
global sensitivity analyses have different purposes and the inter-
pretation of their results is frequently inaccurate or even erro-
neous. This is because the user often employs just one
‘‘available” method and states global conclusions without deeper
knowledge of the problem.

Artificial neural networks (ANNs) are powerful, flexible, versa-
tile techniques which are often employed as surrogate models in
the solution of various types of engineering problem, including
prediction, classification, approximation, etc. [21–27]. Apart from
these prevailing applications, the use of ANNs to perform parame-
ter sensitivity analysis for engineering systems is still uncommon,
although the huge potential of ANNs has become evident in this
area of research.

Many researchers currently engaged in the use of ANNs for
parameter sensitivity analysis focus on the employment of a single
ANN [28–36]. Compared to a single ANN, a neural network ensem-
ble (NNE) is a construct made up of many neural networks which
are jointly used to solve a particular task. The ensembling of mul-
tiple predictions is a widely used technique for improving the
accuracy of various tasks. Due to its higher generalization ability,
an NNE is more accurate than a single ANN, leading to more precise
and reliable results [37–40]. Lehký et al. [41] compared an NNE
with other two sensitivity analyses techniques applied to pre-
stressed concrete girders. NNEs also have the potential to be used
in efficient surrogate modelling in close connection with sensitiv-
ity analysis. This aspect has not been studied until now.

As already mentioned, statistical correlation among random
variables plays an important role in statistical and reliability anal-
yses and cannot generally be neglected. The probabilistic analysis
of mathematical models of correlated random input variables is
an important current research topic [42,43]. On the other hand,
the role of statistical correlation in sensitivity analysis has seen less
investigation in the literature since its effect is usually hard to
interpret [44].

This paper serves to complement the parameter sensitivity
analysis of NNE for engineering system and to exploit the poten-
tiation of NNE as a powerful tool in engineering application.
What is more, the unsolved issue of dependent input random
variables, which is universally encountered in engineering, is
addressed. We also provide guidance for an engineer to select
the proper sensitivity analysis method. This paper is structured
as follows. In Section 2, the element neural network of NNE
applied in this paper and the general procedure of NNE are
briefly described. Then five selected methods of parameter sensi-
tivity analysis are introduced in Section 3. They are the input
perturbation method, local analysis of variance, the connection
weight method, non-parametric Spearman rank-order correlation
and Sobol indices. To better understand the correlation among
the inputs, the statistical correlation is presented in Section 4.
In Section 5, comparisons are made among the five proposed
methods in three examples of increasing complexity – a simple
theoretical example, an engineering example and a complex
application concerning a precast concrete girder failing in shear.
Moreover, the role of statistical correlation among random vari-
ables is investigated in depth, as all examples are performed in
both correlated and uncorrelated spaces of input random vari-
ables. The merits and limitations of the five selected sensitivity
analysis methods are summarized. Section 6 shows the
conclusions.

2. Framework of the neural network ensemble

2.1. Artificial neural network

It can be seen from the existing literature that surrogate models
such as kriging, radial basis functions, artificial neural networks,
etc. are widely used [45]. In this study, an NNE, which comprises
a finite number of artificial neural networks, is applied as the sur-
rogate model because of its ability to model complex systems accu-
rately and stably. The artificial neural network that is used as the
basic form/element of the NNE model applied in this study is rep-
resented by the following equation:

T ¼ f 2
X

j
W2f 1

X
i
W1P þ h1

� �
þ h2

� �
ð1Þ

where P ¼ p1; � � � ; pmð Þ are the independent variables (ANN

inputs), T ¼ T
0
1; � � � ; T

0
s

� �
are the dependent variables (ANN out-

puts), W1 and h1 are the weights and biases between the input
layer and hidden layer, W2 and h2 are the weights and biases
between the hidden layer and output layer, and f 1 and f 2 are pre-
defined activation functions, e.g. hyperbolic tangent, sigmoid func-
tion, softmax function, linear function. The neural network
modelling starts with random initial weights and biases. A set of
samples of independent variables are passed through the model
and then the predictions are obtained. A comparison is made
between the predictions and the desired results of the dependent
variables, and the loss they incurred is calculated. Then the calcu-
lated loss is back propagated to every one of the parameters that
make up the model of the neural network so that the weights
and biases of the neural network are updated to reduce the loss.
The step of updating weights and biases is based on some opti-
mization, e.g. gradient descent, Levenberg-Marquardt algorithm,
Newton etc. In this study, the Levenberg-Marquardt algorithm is
applied with its fast and stable convergence [46]. To avoid the
overfitting, the Bayesian regularization is used [47,48]. The above
processing is iterated until good predictions are obtained. The cri-
terion index used to evaluate the predictions is the mean square
error (MSE), which is defined:
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MSE ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1
h kð Þ � T kð Þð Þ2

r
ð2Þ

where MSE means the mean square error, N is the number of
training samples;h kð Þ are the real (desired) dependent variables,
and T kð Þ are the outputs calculated by the neural network.

The MSE is obtained after the training of each neural network.
In step 3 (see the following subsection), the training of each neural
network candidate, which is repeated t times, results in a statistical
distribution (the mean value l and the standard deviation r) of the
MSEs. This can be used as the criteria for the selection of a superior
neural network. l reflects the average accuracy of the neural net-
work and r shows the network’s stability.

2.2. Concept and procedure

A neural network ensemble is a construct made up of many
neural networks which are jointly used to solve a problem [37].
The fundamental mathematical idea of a neural network ensemble
rationally originates from the weak law of large numbers in probabil-
ity [49]. According to the law, the average of the results obtained
from a large number of trials should be close to the expected value
and will tend to become closer as more trials are performed. How-
ever, during the practical operation of neural network ensembles it
is not possible to meet the requirement that the law only applies
(as the name indicates) when a large number of observations is
considered. In this situation, the mathematical optimization con-
cept that many could be better than all [37] is a valuable means of
gaining a better result. It entails picking out excellent neural net-
works and eliminating the poorer ones via a specific procedure.

The procedure of using the NNE to perform prediction, classifi-
cation, and sensitivity analysis involves four basic steps:

Step 1: The creation of a basic neural network (called the seed)
which correctly captures the intrinsic relationship between the
explicative and dependent variables.

Step 2: The use of the seed network to produce a family of k
candidate neural networks with dissimilar network structures.

Step 3: The repeated training of all candidate networks t times
with different numbers of hidden layers or different numbers of
hidden neurons. Subsequently, N (N � k) superior neural networks
with better performance (see the statistical characteristics of
MSEs) are selected to form an NNE.

Step 4: The repeated training of each superior neural networkM
times (here the topological structure of the neural network is fixed,
while the synaptic weights and biases are adjusted during the
training course). Then, the post-processing of the results including
prediction/sensitivity can be carried out. The type of post-
processing depends on its purpose: the validation of the neural
network by verifying the accuracy of the predicted outputs, or
the obtaining of sensitivity analysis results. In order to validate
the neural network’s performance, the average of N � M results
is used. The particular steps to be taken during post-processing
in order to obtain sensitivity measurements depending on the
specific method of sensitivity analysis will be described in
Section 3.

Through the four steps, the stability and robustness are
improved. The selection of a superior neural network in step 3
and the repeated training of each superior neural network in step
4 lead to a decrease in the uncertainty of the neural structures.
The integration of N � M results equalizes the different conditions
to show a more general result.

Fig. 1 shows a schematic view of NNE-based parameter sensitiv-
ity analysis, including all of the above-mentioned components
such as the seed, candidate networks, NNE and summary.

3. Selected methods of parameter sensitivity analysis

A number of parameter sensitivity analysis methods exist in the
literature. They are classified into local and global sensitivity anal-
ysis methods. The methods selected among them for this study
comprise the input perturbation algorithm, local sensitivity analy-
sis of variance, the connection weight method, non-parametric
Spearman rank-order correlation and global sensitivity analysis

Fig. 1. Schematic view of neural network ensemble-based sensitivity analysis.
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of variance (ANOVA) – Sobol indices. The basic concept and usage
of these methods are briefly introduced in this section.

3.1. Input perturbation algorithm

The input perturbation algorithm [50] is the simplest way to
interrogate a model. It produces sensitivity analysis results based
on the assessment of the effect of input perturbation in each input
on the neural network output [51]. The proper adjustment of the
values of each explicative variable while keeping all the others
unchanged allows the effect of the output variables corresponding
to each perturbation in the input variable to be recorded. The result
of sensitivity analysis is yielded by ranking the effect on neural
network output induced by the same manner of perturbation in
every input variable. The input variable whose perturbation influ-
ences the output most possesses the highest sensitivity or
importance.

In principle, the MSE of a neural network’s output increases as
the selected input variable increases. The changes to the input vari-
able take the form of xi = xi + d, where xi is the selected input vari-
able and d is the perturbation value. The input variables can be
ranked according to the increasing magnitude of the MSE due to
each input variable change. In other words, the result is a sensitiv-
ity analysis outcome.

It is common to choose a perturbation value d as an increment
or decrement in the percentage of the input variable. However, this
approach fails to take into account the specific variance of random
variables. Therefore, an alternative approach can be recommended
where d is represented by a standard deviation e.g. ± 3r. This alter-
native approach directly reflects the variability of every input ran-
dom variable [52].

3.2. Local analysis of variance

The simple analysis of variance technique, which focuses on the
area around mean values, can be seen as a study of the influence of
the uncertainty of a given variable. Such a study may be desired in
engineering practice for the identification of important variables
and the improvement of quality control (e.g. of the quality of con-
crete mixture) in order to achieve lower uncertainty in the beha-
viour of a structure.

The idea behind the method is straightforward and simple:
What is the influence of the variance of the ith random variable
on the variance of the mathematical model result? Novak et al.
[17] proposed a simple method within which it is necessary to gen-
erate n sets of realizations while assuming the ith variable to be
random and keeping other variables at their mean values. This
method can be easily improved in order to take interaction among
random variables into account. In that case, the sensitivity indica-
tor is obtained by estimating the variance of the given mathemat-
ical model while assuming the fixed ith variable is at its mean
value l and all other variables are free to vary. The sensitivity indi-
cator can be then obtained as follows:

Oi ¼ 1� ri

roriginal
ð3Þ

where ri is the standard deviation of the output if the ith input
is fixed at l and roriginal is the standard deviation of the output
whose realizations are the original data (all random variables are
free to vary). It is clear that the value Oi is close to one for the most
important variables. In other words, Oi ¼ 1 means that all of the
variability in our mathematical model is caused only by the ith
random variable and that the other variables do not have a signif-
icant influence on the variability of the result. Note that in some
cases it is even possible to obtain indices with a negative value
(especially in the case of correlated random variables), which

means that fixing the ith variable can actually increase the variabil-
ity of a mathematical model. This result is surprising and reflects
the significant role of statistical correlation and the weakness of
the overly simple analysis of variance technique.

3.3. Connection weight method

The connection weight method [53], which is an evolution of
Garson’s algorithm, calculates the importance values assigned to
each input random variable by the summed product of raw
input-hidden and hidden-output connection weights (shown in
Fig. 2). The actual values should only be interpreted based on the
relative sign and magnitude between explanatory variables.
Explanatory variables with larger connection weights represent
greater signal transfer intensities, and therefore are more impor-
tant in the prediction process than variables with smaller weights.
Negative connection weights represent inhibitory effects on neu-
rons (reducing the intensity of the incoming signal) and decrease
the value of the predicted response, whereas positive connection
weights represent excitatory effects on neurons (increasing the
intensity of the incoming signal) and increase the value of the pre-
dicted response. The importance value can be then obtained as
follows:

Ris ¼
Xr

j¼1
wijwjs ð4Þ

where Ris means the importance value of the ith input with
respect to the output neuron s, wij represents the connection
weight between the input neuron i and the hidden neuron j, and
wjs stands for the connection weight between the hidden neuron
j and the output neuron s.

In this study, based on the importance value, there are two evo-
lution results: qualitative description by ordinal number and quan-
titative illumination by relative value. As for the qualitative
description, in every training, the influence of the input is ranked
according to the importance value, e.g. the most influential input
whose ordinal number is 1. Through integration, there are N � M
ordinal numbers of each input, then sum them up. Based on the
sum, re-rank the inputs again; the smaller the sum, the more
important the input is. As for the quantitative value, in every train-
ing, the important value needs to be normalized as follows,

RRis ¼ RisPm
i¼1Ris

ð5Þ

RRis is the relative importance value of the ith input to sth out-
put among all the m inputs.

Through integration, there are N � M normalized importance
values of each input, then make average of them. Based on the
average value, the influence of the input could be illuminated by

Fig. 2. The structure of a neural network with one hidden layer.
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the detail value. The lager the average value is, the more important
the input is.

3.4. Non-parametric Spearman rank-order correlation

The traditional sensitivity analysis method in statistics is repre-
sented by the correlation between an input variable and the quan-
tity of interest of mathematical model [54]. Although standard
measurement via the Pearson correlation coefficient is simple
and efficient enough for linear monotonic dependency, it is neces-
sary to utilize a generalized measure for nonlinear monotonic rela-
tionships called the non-parametric Spearman rank-order
correlation technique [52,55]. This method is used to determine
the relationship between two variables. For example, X and Y are
two sets of variables. Through being sorted in an ascending order,
the corresponding ordinal numbers of X = (x1, x2, . . ., xi, . . ., xn) and
Y = (y1, y2, . . ., yi ,. . . ,yn) are U = (u1, u2,. . ., ui,. . .,un) and V = (v1,
v2,. . ., vi,. . .,vn), respectively, where 1 � i � n , 1 � ui � n and 1 � vi-
� n. The biggest value in one set belongs to the ordinal number 1,
while the the ordinal number n will get the smallest value. This
should be done for both sets of measurements. The non-
parametric Spearman rank-order correlation q is calculated
according to the following equation:

q ¼ 1� 6
P

d2
i

n n2 � 1ð Þ ð6Þ

di ¼ ui � v i ð7Þ
where n is the number of date in one set; di is the difference in

paired ranks; q will always be a value between �1 and 1. The
higher absolute value of q corresponds to the stronger relationship
between the two variables. If it is positive, then as one variable
increases, the other tends to increase. If it is negative, then as
one variable increases, the other tends to decrease.

3.5. Global sensitivity analysis of variance (ANOVA) – Sobol indices

One of the most important tasks in uncertainty quantification is
the analysis of variance – the analysis of the influence of input vari-
ables on the variance of a mathematical model. Such information
may be utilized to practically reduce the uncertainty of important
input variables (material characteristics) used in mathematical
model by experiments and measurements, which leads to a signif-
icant reduction in the uncertainty of the quantity of interest.
Herein, the well-known ANOVA method represented by Sobol
indices [56,57] is employed. The Sobol indices method is the most
advanced and well developed method for sensitivity analysis and
thus is considered as a reference solution herein. However, it is still
highly computationally demanding to evaluate Sobol indices via
the classical double loop Monte Carlo method, and thus efficient
calculation via Polynomial Chaos Expansion in the manner pro-
posed in [58] is used. A software tool for the automatic creation
and post-processing of PCE is employed [59] for the practical com-
putation tasks required.

Let X=(X1,. . .,XM) be a random vector with independent mar-
ginal distributions and joint probability distribution denoted
bypX xð Þ ¼ px1 � :::pxM . For anyx 2 RMand any sub-
setu# I ¼ 1; :::;Mf g, xu concatenates the components of x whose
indices are included in u. According to Hoeffding-Sobol decompo-
sition, any square-integrable function f(X) can be decomposed as:

f xð Þ ¼ f 0 þ
PM
i¼1

f i xið Þ þ PM
16i<j6M

f ij xi; xj
� �þ :::þ f 1;2;:::M xð Þ ¼

¼ f 0 þ
P

u� 1;:::;Mf g
u–£

f u xuð Þ: ð8Þ

In consequence of the defined decomposition, the variance of Y
can be decomposed as:

r2
Y ¼ Var Y½ � ¼

X
u� 1;:::;Mf g
u–£

Var f u xuð Þ½ �; ð9Þ

where Var f u xuð Þ½ � are partial variances. The first Sobol’ indices
are obtained if u contains a single i-th input variable, i.e.:

Si ¼ Var f i Xið Þ½ �
Var Y½ � ð10Þ

The second-order indices correspond to two input variables etc.
Important information about the influence of input variables and
all interactions can be expressed by total Sobol indices, which
include all interactions, and thus may be computed as

STi ¼
X
i2u

Su ð11Þ

Due to the statistical dependence among input random vari-
ables, it is not possible to derive a unique decomposition in terms
of orthogonal summands of increasing order. However, it is possi-
ble to cast the variance of Y as a covariance decomposition
(ANCOVA). More theoretical details can be found in [60]. The esti-
mation of covariance decomposition via PCE consists of two steps:

	 building a PCE f(X) approximation assuming uncorrelated ran-
dom variables

	 using the PCE as a surrogate model in order to evaluate the vari-
ance of output with the correlated input variables f(Xc)

The variance of the model response, assuming correlated input
random variables, is defined as

Var f Xcð Þ½ � ¼
X

u� 1;:::;Mf g
u–£

Cov f u Xð Þ; f Xcð Þ½ � ð12Þ

The covariance-based total sensitivity index Scovi is then
obtained as:

Scovi ¼ Cov f u Xð Þ; f Xcð Þ½ �
Var f Xcð Þ½ � ð13Þ

which can be further decomposed into the sum of a structural
(uncorrelated) sensitivity index, Sui , and a correlative sensitivity
index, Sci , defined as:

Sui ¼ Var f u Xð Þ½ �
Var f Xcð Þ½ � ð14Þ

Sci ¼ Scovi � Sui ð15Þ
The global ANCOVA method is a very powerful technique,

though problems often occur when interpreting the results [44].

4. Statistical correlation

It is clear that sensitivity analysis plays an important role in the
stochastic analysis of structures. Moreover, it is important to
understand and clearly interpret the results obtained from differ-
ent types of sensitivity analysis. Such information could be
strongly influenced by statistical correlation among material char-
acteristics. Therefore, it is important to understand the differences
between results gained for correlated and uncorrelated random
variables. Herein, the commonly known and widely used Nataf
transformation technique is utilized for the transformation of real-
izations to correlated space, as will be briefly described in this
section.
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In the general case of non-normal correlated random variables,
it is necessary to use a more complicated process for transforma-
tion, called Rosenblatt transformation [61]. However, in practical
applications only the marginal distributions and correlation matrix
are usually known, which does not represent a complete informa-
tion about the joint probability distribution [62]. Therefore, it is
necessary to assume a specific copula [63]. A special case of Rosen-
blatt transformation that assumes a Gaussian copula is also known
as Nataf transformation [64], which is very often utilized in relia-
bility applications. The Nataf transformation to uncorrelated stan-
dard normal space is composed of 3 steps and proceeds as follows
(see Fig. 3):

n ¼ TNataf Xð Þ ¼ T

3T



2T1 Xð Þ ð16Þ

The first two steps represent an isoprobabilistic transformation
to correlated standard normal space:

T1 : X ! W ¼ Fx Xð Þ ð17Þ

T2 : W ! Z ¼ U�1 Wð Þ ð18Þ
The last step represents a transformation to uncorrelated space

using linear transformation. For this procedure, Cholesky decom-
position of the correlation matrix is commonly utilized:

RZ ¼ LLT ð19Þ

T3 : Z ! n ¼ CZ ð20Þ
RZ is a fictive correlation matrix and C is the inverse of a lower

triangular matrix, L, obtained via Cholesky decomposition. The
assumed Gaussian copula is parametrized by elements qzij of RZ

and the relationship between the fictive correlation coefficients qzij

and the linear correlation coefficients defined in physical space qxij

is defined by the following integral equation:

qxij ¼ 1
rirj

RR
F�1
i U zið Þ½ � � li

n o
� F�1

i U zj
� �� �� lj

n o

�u2 zi; zj;qzij

� �
dzidzj;

ð21Þ

where l is a mean value, r is a standard deviation and u2 is the
bivariate standard normal probability density function with the
fictive correlation coefficients qzij:

u2 zi; zj;qzij

� �
¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qzij

2
q exp � z2i � 2qzijzizj þ z2j

2 1� qzij
2

� �
0
@

1
A: ð22Þ

The whole process can be simply reversed to transform the real-
izations n ! X. The reverse approach is employed for the genera-
tion of correlated realizations of a random vector in the following
examples.

5. Numerical examples

The comparison of the methods is performed in a progressive
order starting from a theoretical example, then progressing to a
simple engineering example, and finally moving on to a more com-
plex practical application. The theoretical example concerns an
analytical function of only two input random variables, while the
engineering example is a formula for the midspan deflection of a
simply-supported beam and the practical application deals with
a precast concrete girder failing in shear. The sensitivity analysis
is performed in two scenarios – one where the correlation among
the input variables is considered, and the other where it is not.
Therefore, the examples are treated in both a correlated and an
uncorrelated space of basic random variables. For each case, the
selected methods are compared and evaluated, and their advan-
tages and disadvantages are highlighted.

5.1. Theoretical example: Analytical function

The first theoretical example is a simple analytical function
which defines the numerical relationship between a response vari-
able and two input random variables with standard Gaussian dis-
tribution (with zero mean and unit standard deviation):

y ¼ x1 þ x2 þ x22 þ x1 � x2 þ 3 ð23Þ

Fig. 3. Illustration of a Nataf transformation from an original space X to an uncorrelated standard normal space Z for a 2-dimensional case.
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The realizations of the input random vector are generated by a
Monte Carlo-type technique – the Latin Hypercube Sampling
method [65], which is implemented in FReET software [66]. In this
first example, it was decided that 10,000 simulations of the original
model would be used as the training data set and 100 realizations
as the testing data set for the validation of the approximation. The
purpose of this example is to demonstrate the convergence of an
approximation to an exact solution with a sufficient number of
simulations. The evaluation of sensitivity indices is performed for
both uncorrelated and correlated random variables, and the corre-
lation coefficient used is 0.8. Therefore, it was necessary to perform
the procedure described in Section 4 in order to generate corre-
lated realizations assuming a Gaussian copula.

5.1.1. Sensitivity analysis with uncorrelated variables
A multilayer perceptron artificial neural network was selected

as the seed, and it was utilized in the rest of the examples. 10 can-
didate neural networks with different numbers of hidden neurons
were constructed as shown in Fig. 4. Each candidate neural net-
work was repeated 15 times with 10,000 training realizations,
which produced 15 sets of MSEs. The statistical characteristics of
the MSEs are reference indices for the selection of the superior
neural networks. The neural networks with low values for both
the means and standard deviations of the MSEs are selected as
neural networks with better performance. Here, neural networks
with the structures 2-3-1 and 2-5-1 (i.e. the latter is a structure
with two inputs, five hidden neurons and one output) were
selected as the candidates for the neural network ensemble. To
examine the robustness of the selected structures, comparisons
were made between the real output of 100 new samples and the
results calculated by the NNE, repeating each superior structure
15 times and calculating the average of 30 sets of results. Fig. 4
shows the good agreement between the exact results and the
results calculated by the NNE (represented by the MSE which is
close to zero, as can be seen in Fig. 4).

Once the neural network ensemble is available, it is possible
to utilize it for sensitivity analysis. Herein, it was used in combi-
nation with several sensitivity analysis methods found in the
literature and described in Section 3. First of all, the input per-

turbation method for local sensitivity analysis was performed.
It is clear that the results of perturbation are strongly dependent
on the perturbation parameter. Therefore, it was decided that
sensitivity measurements would be determined in three loca-
tions of input space, as can be seen in Fig. 5 in the form of a
bar diagram where the perturbation parameter varies
by ± 10%, ±30% and ± 3 standard deviations of the input variable.
As can be seen in Fig. 5, the MSE of x2 is distinctly larger than
that of x1. In other words, a change to the input parameter x2
leads to a significantly higher change in the model output than
in the case of input parameter x1.

The reference solution for global sensitivity analysis is to
employ Sobol indices (ANOVA), which are computationally
demanding even in combination with a surrogate model. There-
fore, a simplified version of ANOVA was proposed in Section 3
under the name ‘local analysis of variance’. This approach may be
of use to engineers and designers in the reduction of uncertainty.
The idea behind this method can be seen in Fig. 6, where it is pos-
sible to see a comparison of the results of a mathematical model in
which one variable is assumed to be a deterministic value and the
variables of the original stochastic model are assumed to be free to
vary. The method is based on the quantification of the reduction of
output variability due to the reduction of input variability, which
can be clearly seen in Fig. 6. If we assume x2 is a mean value, the
variability of the result drastically decreases. This means that x2
is more important in the sense of variability reduction, as can be
seen from the numerical results in Table 1, which are in agreement
with the first order Sobol indices.

According to the connection weight method, after each impor-
tance value is obtained for the input, it is given an ordinal number
as its rank. However, it is possible to observe that some variables
have importance values that are very similar, thus making them
difficult to differentiate. Consequently, the ranks determine
whether one variable is more meaningful than another, but they
do not specify by how much. The present study also used normal-
ized importance values. In the ‘ANN weight’ column in Table 1, the
number in bold script inside the brackets represents the sum of
each input’s rank order, while the number in normal script means
the normalized importance value. In this case, the sum of rank

Fig. 4. The MSE information of different hidden neurons for a simple analytical function with uncorrelated variables.
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order shown in Table 1, x1 is 50, and it is higher than x2. In other
words, x2 is more important than x1. As for the normalized impor-
tance value, x1 is 0.452, while x2 is 0.548. If the non-parametric
Spearman rank-order correlation is excluded from Table 1, the
ranks calculated by the proposed methods are identical.

5.1.2. Sensitivity analysis with correlated variables
It is necessary to assume statistical correlations among input

random variables in many practical cases, and therefore the study
of the influence of correlation is of high interest and represents a
significant part of this study. In the first analytical example, an
assumed correlation between two standard normal variables is
given by the Pearson correlation coefficient as equal to 0.8. The
whole process of ANN creation and sensitivity analysis was per-
formed for correlated variables generated by Nataf transformation
again, and the obtained results are presented in this subsection.
The characteristics of the MSE were similar to those in the uncor-
related case in this very simple analytical function, as can be seen

in Fig. 7, and thus the complexity of the NNE was not increased –
the selected structures were 2-3-1 and 2-4-1.

It is obvious that the correlation between input random vari-
ables can affect the results of sensitivity analysis, and therefore
the results in the correlated space of this example are slightly dif-
ferent compared to those from the uncorrelated space. The results
obtained from the input perturbation technique are depicted in
Fig. 8.

In Table 2 the numerical results of global sensitivity methods
are summarized. Please note that in correlated space it is possible
to decompose Sobol first order indices into a correlative part and
an uncorrelated part. Such information can play a significant role
in the interpretation of obtained results, as will be described in
the next subsection. From the connection weight method, the
sum of rank order shown in Table 2, x1 is 51, and it is higher than
x2. In other words, x2 is more important than x1. From the relative
quantification of influence shown in Table 2, x1 is 0.431 while x2 is
0.569. This value is very similar to the results obtained for uncor-
related variables.

Table 1
The sensitivity results for a simple analytical function with uncorrelated variables.

Random variable Non-parametric Spearman rank-order correlation Sobol first order Connection weight method Local analysis of variance

x1 1 (0.559) 2 (0.200) 2 (50/0.452) 2 (0.225)
x2 2 (0.362) 1 (0.600) 1 (40/0.548) 1 (0.552)

(Note: the numbers outside the brackets are the rank order and those inside the brackets are the normalized sensitivities).

Fig. 5. The sensitivity results obtained by the input perturbation method for a simple analytical function with uncorrelated variables.

Fig. 6. The local analysis of variance for a simple analytical function with uncorrelated variables.

L. Pan et al. Computers and Structures 242 (2021) 106376

8



5.1.3. Comparison and remarks
In the case of the uncorrelated situation, the input perturbation

method could exactly distinguish the most important/influential
parameter: the MSE of x2 is obviously larger than the MSE of x1.
What is more, the differences between the yellow bar and blue
bar in Fig. 5 show the linearity/nonlinearity of parameters. As for
the nonlinear parameter, the output changes are different for the
increased input and decreased input values with the same range
(x2 shows the nonlinearity). Global sensitivity methods examine
the whole design space and thus can be represented by one specific
value for the whole function in contrast to local sensitivity analysis
methods such as input perturbation. Remember that the non-
parametric Spearman rank-order correlation method gives us
information about the strength and direction of the dependence
between a specific input and output of a mathematical model,
and thus represents an additional source of information together
with variance based methods (Sobol indices and local analysis of
variance).

As regards the correlated situation, input perturbation could
also sort the parameters in terms of influence. With the presence
of the correlation between x1 and x2, the sensitivity gap between
the parameters becomes smaller, which affects the results of the
sensitivity analysis. This can be clearly seen in the results of the
non-parametric Spearman rank-order correlation method, which
naturally identified both input variables as being almost identically
important for the mathematical model due to the fact that the
higher values generated for one input variable correspond to the
higher values obtained for the other input variables, which leads
to higher results of mathematical model. Sobol first order and local
analysis of variance are variance based methods, and thus the
effect of correlation is not so significant. Although the connection
weight method could quantify the influence of the parameters, it
couldn’t exactly distinguish the effect from the correlation among
the input parameters. As the weights are parts of the neural net-
work, the connection weight method ignores the influence of
biases and the activation function.

Table 2
The sensitivity results for a simple analytical function with correlated variables.

Random
variable

Non-parametric Spearman rank-order
correlation

Sobol first
order

Sobol correlative
part

Connection Weight
method

Local analysis of
variance

x1 1 (0.640) 2 (0.190) 0.01 2 (51/0.431) 2 (0.432)
x2 2 (0.566) 1 (0.540) 0.06 1 (39/0.569) 1 (0.671)

Fig. 7. The MSE information of different hidden neurons for a simple analytical function with correlated variables.

Fig. 8. The sensitivity results shown by the input perturbation method for a simple analytical function with correlated variables.
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5.2. Engineering example: Midspan deflection of a simply-supported
beam

As a second, more complex example, the sensitivity analysis
methods described above were applied to the following engineer-
ing example of the midspan elastic deflection of a simply-
supported concrete beam with uniformly distributed load vL=2.
The stochastic model of the beam, which contains five random
variables with lognormal distribution, is summarised in Table 3.
b and H represent the width and height of the cross section, E is
the Young’s modulus of the concrete, q is the intensity of the uni-
formly distributed load and L is the length of the beam, as depicted
in Fig. 9.

The mathematical model in explicit form is given by:

Y ¼ vL=2 ¼ 5
32

qL4

EbH3 ð24Þ

5.2.1. Sensitivity analysis with uncorrelated variables
The 100 training realizations of a random vector were gener-

ated by the Latin Hypercube Sampling method. The same proce-
dure was followed as in Section 2. After a trial run with 15
different neural network structures, shown in Fig. 10, the struc-
tures 5-12-1 and 5-14-1 were selected as the candidates for the
neural network ensemble. Note that both structures have relatively
low values for the mean and the standard deviation of the MSE.

The example was focused on the validation of the NNE approach
via the quantification of statistical moments and failure probability
for a given threshold of deflection by the NNE and the LHS tech-
nique. Note that once the NNE is available, it is possible to evaluate
millions of simulations in a few seconds, and thus the approach can
even be applied to highly time-consuming mathematical models.
The reference value was obtained analytically in this simple equa-
tion and the results are compared in Tables 4 and 5. The statistical
moments obtained by the NNE are in excellent agreement with
those obtained analytically (see Table 4).

The accuracy of approximation can be validated clearly and in
depth via the estimation of low probabilities, which is a challeng-
ing task for any type of surrogate model. In Table 5, there is a com-
parison between the results obtained by a single superior ANN and
by an NNE. As can be seen, the NNE is able to estimate much lower
probabilities (e.g. 10e�5 or 10e�6) even for a low number of train-
ing realizations. Note that the accuracy of a single ANN (which
could not calculate failure probabilities at all for the thresholds
of 25 and 30 mm in this case) can be improved for lower probabil-
ities using the updating procedure proposed by Lehký and
Šomodíková [67] in which a new set of training realizations are
generated close to the design point. The updated surrogate model
consequently fits the original function in the failure region better.
Nevertheless, the NNE is able to provide more accurate results
without the need to generate new training samples, which can cer-
tainly be considered as a significant advantage. Specific failure
probabilities were calculated via the crude Monte Carlo simulation
technique with 108 numerical simulations of the surrogate model.

Once the NNE was available, it was possible to perform sensitiv-
ity analysis for 5 input random variables in the same manner as in

the previous example. The results obtained from the global sensi-
tivity methods for uncorrelated space are summarized in Table 6,
and it is clear that load intensity q is the most important variable
from the global point of view. Nevertheless, the results of local sen-
sitivity analysis via the perturbation method (see Fig. 11) do not
correspond to that conclusion. According to the diagrams, it is clear
that the results of local sensitivity analysis are highly dependent on
the location of interest. This important characteristic can be bene-
ficial in practical cases where one might be interested in a location
that corresponds to one’s practical possibilities, e.g. 10% increase-
ment of the compressive strength.

In the case of the connection weight method, the sum of the
rank order could qualify the influence of the input shown in Table 6,
where q, E and H are the three most important parameters, fol-
lowed by b and L. On the other hand, normalization may be able
to show more details about the percentage/difference among the
inputs shown in Table 6 and Fig. 14. This could also be seen from
the sign of the important value of each parameter: b, H and E are
the same sign, while L and q are opposite. This phenomenon is in
accordance with the mathematical model formula, where b, H
and E have a negative influence on the deflection, while L and q
have a positive influence. In other words, increasing the values of
b, H and E decreases the deflection value. Otherwise, if the values
of L and q are enlarged, the deflection increases.

It can be seen that the more complex example naturally
requires a more complicated interpretation of the sensitivity anal-
ysis, e.g. the differences in the results obtained by the local and glo-
bal sensitivity techniques. Moreover, the problem can be even
more complicated in correlated space, as will be described in the
next subsection.

5.2.2. Sensitivity analysis with correlated variables
The statistical correlation among random parameters should be

considered in order to ensure the mathematical model behaves
realistically for all realizations of a random vector. The correlation
matrix shown in Table 7 is composed of Spearman correlation coef-
ficients between each pair of random variables. In this example, it
assumes correlation among geometrical parameters H, L and b due
to the quality of fabrication.

From Fig. 12 it can be seen that even the creation of an NNE was
affected significantly by correlation due to the complexity of corre-
lated space. Consequently, it was necessary to use more neurons in
the hidden layer to correctly represent the original mathematical
model. Specifically, structures 5-13-1 and 5-15-1 were used for
the NNE.

The results of the perturbationmethod shown in Fig. 13 are pro-
portional to the results in uncorrelated space. However, the MSE is
bigger in the absolute values for the uncorrelated variables.

On the other hand, the influence of correlation on sensitivity
measurements can be clearly seen in the global sensitivity analysis
results summarized in Table 8. Note that the influence of b and L is
significantly higher due to its correlation with H, which is the

Table 3
Stochastic model of the beam.

Variable l r Units

b ~ lognormal 0.15 0.0075 [m]
H ~ lognormal 0.3 0.015 [m]
E ~ lognormal 30 4.5 [GPa]
q ~ lognormal 10 2 [kN/m]
L ~ lognormal 5 0.05 [m]

Fig. 9. The simple beam.
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second most important variable in uncorrelated space. Such phe-
nomena can be seen significantly in the results from the non-
parametric Spearman rank-order correlation method and from
local analysis of variance, which are also depicted in Table 8.

Another very important result is the negative sign of the sensi-
tivity indices for L obtained from Spearman’s q, local analysis of
variance and reference Sobol indices. Several authors have already
discussed this possible negative value of Sobol indices [68] and, as
can be seen, the same phenomena can also occur in other global
sensitivity methods in correlated space.

According to the sum of rank order, E, q and H are the three
most important parameters for the connection weight method, fol-
lowed by b and L. On the other hand, normalization can sometimes
show more details about the percentage/difference among the
inputs shown in Table 8 and Fig. 14. The influence gap between
the top three parameters and the last two parameters is large.

5.2.3. Comparison and evaluation
It can be seen from Figs. 11 and 13 that the dominant param-

eters vary for different perturbations. The same trend exists in the
results gained from perturbation by 10% and 30%. Of course, the
most important variables are H and L because these values are
raised to the 3rd and 4th power in the formula. However, in this
second example the input variables have different variance (in
contrast to the first example with standard Gaussian variables)
and thus the results of the third perturbation, which takes vari-
ance into account, are significantly different in comparison to
the results assuming a perturbation parameter in percentages.
Note that the dependence of the perturbation parameter on vari-
ance increases the sensitivity measure for variables with higher
uncertainty.

In the case of the global sensitivity methods, the results are
similar to the form of the sensitivity rank for both uncorrelated
and correlated conditions. However, there are still some differ-
ent quantitative values. The results calculated via the connection
weight method (shown in Tables 6 and 8) are normalized values
which represent the relative influence. Actually, the contribu-
tions of the independent variables to the dependent variables
depend primarily on the magnitude and direction of the connec-
tion weights. In this study, before normalization, the connection
weight shows the positive/negative influence on the output
through the sign: E, b and H have a ‘‘�”, while q and L have
a ‘‘+”. This information is in agreement with the accurate
relation between the independent variables and the dependent
output.

The non-parametric Spearman rank-order correlation sensitiv-
ity method leads to interesting results for correlated variables,
where the influence of b significantly increases in absolute value
due to correlation among b, H and L. Moreover, the result of Spear-

Table 4
Statistical moments.

Parameter NNE Analytical solution Units

l 8.367 8.367 [mm]
r 2.530 2.538 [mm]

Table 5
Failure probability of a given threshold of deflection.

Threshold Single ANN NNE Analytical solution

15 mm 1.730e�2 1.709e�2 1.721e�2
20 mm 1.490e�4 8.027e�4 1.019e�3
25 mm [–] 2.940e�5 6.232e�5
30 mm [–] 1.000e�6 4.268e�6

Table 6
The sensitivity results for a simple beam with uncorrelated variables.

Random variable Non-parametric Spearman rank-order correlation Sobol first order Connection weight method Local analysis of variance

b 4 (�0.16131) 4 (0.03) 4 (80/0.076) 4 (0.019)
H 2 (�0.4879) 3 (0.24) 3 (60/0.237) 3 (0.163)
L 5 (0.12912) 5 (0.02) 5 (100/0.056) 5 (0.002)
E 3 (�0.48497) 2 (0.25) 2 (37/0.294) 2 (0.177)
q 1 (0.6498) 1 (0.42) 1 (23/0.338) 1 (0.259)

Fig. 10. The MSE information of different hidden neurons for a simple beam with uncorrelated variables.

L. Pan et al. Computers and Structures 242 (2021) 106376

11



man correlation between L and Y is negative due to input correla-
tion between L and H, which has a significant negative influence on
deflection (higher H leads to lower deflection). Therefore, it is obvi-
ous that the results of Spearman’s q in correlated space may lead to

the misunderstanding of the meaning of input variables, and this
technique should be performed in uncorrelated space.

The negative sign of the first order Sobol index of L might be
confusing to interpret. It reflects the fact that the correlative part
of Sobol indices indicates the influence of the interaction between
L and other input random variables, and that fixing L can actually
increase the variance of the mathematical model output, which
leads to negative covariance between L and Y. Note that in the case
of uncorrelated random variables E and q, there is no correlative
part in Sobol indices, and thus ANCOVA reduces to the ordinary
ANOVA method in this case. Local analysis of variance is based
on a simplified idea like ANCOVA and thus the negative value of
index OL is caused by correlation as well.

Table 7
Correlation matrix.

b H E q L

b 1 0.7 0 0 0.7
H 0.7 1 0 0 0.7
E 0 0 1 0 0
q 0 0 0 1 0
L 0.7 0.7 0 0 1

Fig. 12. The MSE information of different hidden neurons for a simple beam with correlated variables.

Fig. 13. The sensitivity results shown by the input perturbation method for a simple beam with correlated variables.

Fig. 11. The sensitivity results shown by the input perturbation method for a simple beam with uncorrelated variables.
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5.3. Practical application: a precast concrete girder failing in shear

The analyzed structure was a full-scale LDE7 precast pre-
stressed roof girder produced by Franz Oberndorfer GmbH & Co
KG in Austria. Details concerning the FEM and stochastic model
are described in the following paragraphs. The surrogate modelling
was carried out as part of a long-term research project that
includes laboratory experiments [66], mathematical modelling
[69], semi-probabilistic design [70] and stochastic analysis using
a surrogate model [4].

The girder was made from C50/60 concrete and was prestressed
by 2 � 8 strands in each web (cables - St 1570/1770 – F93). The
strands are located at the following distances from the bottom:
70 and 7 � 40 mm. The girder had a TT-shaped cross-section, a
total length of 30.00 m and a height of 0.50 m at the ends and
0.90 in the middle. The reinforcement and geometry of the beam
was symmetrical along the middle cross-sectional and longitudinal
plane. The load was applied at 4.125 m from the support above
both webs and the ultimate limit state was represented by the crit-
ical value of the force applied during the simulation (the peak of
the load–deflection diagram). The geometry of the girder, the
cross-section and the place of applied load can be seen in Fig. 15.

5.3.1. Stochastic nonlinear finite element model
The finite element model was created in ATENA Science soft-

ware, which is focused on the nonlinear fracture mechanics mod-
elling of concrete structures [71]. The geometry of the beam,
supports and reinforcement was created exactly according to
drawings provided by the manufacturer. The ‘3D Nonlinear
Cementitious 20 material model was used for the concrete. The
steel reinforcement and prestressing tendons were modelled using
1D elements with a multilinear stress vs. strain diagram with hard-
ening. Prestressing was applied in the form of initial strain in the
tendons. Prestress losses (immediate and long-term) were taken
into account according to the fib Model Code (2012). The result
of the FEM is the ultimate resistance of the prestressed concrete
roof girder, i.e. maximal applied load leading to the failure of the
structure, typically identified as a peak of loading-deflection curve.

Fig. 16 shows crack patterns captured via nonlinear simulation at
peak load, documenting the complexity of the advanced computa-
tional FEM model. The FEM evaluation is highly time-consuming
(one simulation takes approx. 8 h), so it is necessary to use a sur-
rogate model to perform the stochastic analysis.

The original stochastic model contained 12 random variables,
though a reduced stochastic model was utilized for the surrogate
modelling. The reduced stochastic model was based on a sensitiv-
ity analysis of scaled girders performed during previous research
[4]. The model contains 5 lognormally distributed random vari-
ables, as can be seen in Table 9: Fc stands for the compressive
strength of concrete, E is Young’s modulus of concrete, Ft is the ten-
sile strength of concrete, Gf is the fracture energy of concrete and
P_Uncert stands for the uncertainty of calculated immediate pre-
stressing losses, i.e. immediate prestressing losses are calculated
according to fib Model Code and the resulting value is multiplied
by P_Uncert in order to include the uncertainty of the used simpli-
fied analytical formula.

5.3.2. Sensitivity analysis with uncorrelated variables
This example can be seen as a highly non-linear mathematical

model in implicit form, and therefore the most difficult and chal-
lenging model for an NNE. For the sake of clarity, this example
was treated in the same way as the previous examples. First of
all, Latin Hypercube Sampling was employed via FReET software
to create a training data set containing 100 realizations in uncorre-
lated space. The best ANN structures 5-6-1, 5-8-1, and 5-9-1were
chosen for the NNE according to the study illustrated in Fig. 17.
It is clear that the MSE is higher than in the previous analytical
examples and thus such an approach was necessary to obtain an
NNE with sufficient accuracy.

Once the NNE was ready, it was validated on 30 samples gener-
ated via LHS, and the result in terms of the prediction vs. the orig-
inal model can be seen in Fig. 18. It is clear that the NNE’s
predictions of the realizations are in very good agreement with
those of the NLFEM, though some of the realizations have signifi-
cant differences. The general behaviour of the surrogate model in
the form of the NNE can be validated by estimating the statistical

Table 8
The sensitivity results for a simple beam with correlated variables.

Random
variable

Non-parametric Spearman rank-order
correlation

Sobol first
order

Sobol correlative
part

Connection weight
method

Local analysis of
variance

b 4 (�0.39909) 4 (0.07) 0.04 4 (120/0.081) 4 (0.072)
H 2 (�0.50286) 2 (0.26) 0.02 3 (89/0.226) 2 (0.183)
L 5 (�0.31665) 5 (�0.04) �0.06 5 (150/0.052) 5 (-0.063)
E 3 (�0.48737) 3 (0.25) 0.00 1 (35/0.347) 3 (0.176)
q 1 (0.66195) 1 (0.42) 0.00 2 (56/0.294) 1 (0.277)

Fig. 14. The sensitivity results shown by the connection weight method for a simple beam with uncorrelated and correlated variables.
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moments of the original mathematical model. The obtained results
should be in agreement with the statistical moments of the train-
ing set. This approach was utilized herein, and the results can be
seen in Table 10. Considering the quite complex nonlinear beha-
viour of the NLFEM and the 5-dimensional space of random vari-
ables, the resulting NNE surrogate model exhibits very good
behaviour. Although a very accurate surrogate model is needed
for the estimation of failure probabilities in practical applications,
the obtained accuracy of the NNE is sufficient for sensitivity anal-
ysis as sensitivity obviously targets the statistical moments of the
model.

The results from the perturbation method shown in Fig. 19
exhibited the same trend as in the previous example, but the dif-
ferences were even more significant. The sensitivity indices were
totally different for the selected locations, which was caused by
the physically non-linear nature of this example – the shear failure
of a prestressed concrete girder.

The results obtained by the NNE from the global sensitivity
methods, which are summarized in Table 11, are in accordance
with the reference solution given by Sobol first order indices in
uncorrelated space. The compressive strength and tensile strength
of concrete have the greatest influence on the ultimate limit state
of girders. The negligible influence of fracture energy can be
explained by the strut inclination method when calculating shear
capacity according to EN 1992 (1995), and where shear is resisted
by concrete struts acting in compression when cracks have already
occurred. The connection weight method and local analysis of vari-
ance give more or less the same sensitivity results (see Table 11).

5.3.3. Sensitivity analysis with correlated variables
Statistical correlation among random concrete material

parameters should be considered in order to ensure the mathe-
matical model behaves realistically for all realizations of a ran-
dom vector. This is especially true in the case of the nonlinear
finite element modelling of concrete structures. The main reason
is that correlated random variables are able to represent real
possible combinations of material parameters, and thus the
behaviour of the material model should represent that of a real
structure. If true correlation is ignored, it is possible to create an
unrealistic combination of realizations of material characteristics,
which may lead to unrealistic material model behaviour or even
a numerical convergence problem. The correlation matrix shown
in Table 12 is composed of Spearman correlation coefficients for
each pair of random variables and was considered according to
[69,72].

On the other hand, the complexity of the mathematical model
significantly increases in correlated space and sensitivity analysis
interpretation can be much more difficult than in the case of
uncorrelated space. The first part of the analysis, which is the selec-
tion of superior ANNs for the NNE, is depicted in Fig. 20. The two
best ANN structures, namely 5-5-1 and 5-13-1, significantly dif-
fered in the number of hidden neurons.

The results of the perturbation method in correlated space
depicted in Fig. 21 are totally different due to the correlation
among concrete material parameters in comparison to the uncor-
related case. The most significant difference is for Fc, which has
the least influence in correlated space. Moreover, E is an important
variable in this case due to its correlation with Ft, Fc and Gf. It is
clear that the interpretation of these results is not easy and
straightforward, and that the influence of correlation must be
taken into account.

Similar phenomena can be seen in the results of the global sen-
sitivity methods summarized in Table 13. They are also clear in
Fig. 22, which presents the results of the connection weight
method. The influence of Fc is drastically reduced, and the influ-
ence of E is significantly higher, as is that of Gf.

Table 9
Stochastic model.

Parameter Mean Coefficient of Variation [%] Probability distribution

Fc [MPa] 77 6.4 Lognormal
E [GPa] 34.8 10.6 Lognormal
Ft [MPa] 3.9 10.6 Lognormal
Gf [Jm2] 219.8 12.8 Lognormal
P_Uncert [-] 1 10 Lognormal

Fig. 15. Prestressed concrete roof girder failing in shear.

Fig. 16. Crack patterns obtained by the nonlinear finite element simulation of a girder.
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However, the representation of the results is problematic due to
the different nature of these methods. For example, non-
parametric Spearman rank-order correlation is highly affected by
correlation and it can be seen that all material parameters have
similar coefficients due to the generated correlated values of ran-
dom variables. On the other hand, Sobol indices are able to give
us similar results as in the case of uncorrelated space. As for the
connection weight method, P_Uncert, Gf and Ft are the three most
important parameters, which is quite different from the results
for the uncorrelated variables and other global sensitivity analysis
methods.

5.3.4. Comparison and discussion
In this very last example, the presented methods were applied

to the nonlinear finite element model of a real structure, which
is the most challenging task for theoretical methods of sensitivity
analysis. The strong nonlinearity of the mathematical model is
clear from the results of the perturbation method, where the influ-
ence of variables is highly dependent on the location of interest of
the design domain.

From the practical point of view, the results in uncorrelated
space are important for the correct identification of the failure
mode. According to the results of the global sensitivity analysis,
the compressive strength and tensile strength of concrete have
the greatest influence on the ultimate limit state of girders. The
negligible influence of fracture energy can be explained by the fact
that the modelled structure is at ultimate capacity. This is reflected
by the well-known and widely used strut inclination method for
shear capacity prediction, where shear is resisted by concrete
struts acting in compression when cracks have already occurred,
and thus fracture energy has no influence at that time. All of the
global sensitivity analysis methods could identify the influential
parameters, and they could even quantify the degree of the influ-
ence exactly. Compressive strength strongly affects the ultimate
limit state of girders (see Table 11). Its sensitivity is significantly
higher compared to other parameters – compressive strength is
0.743, while the second most important parameter, tensile
strength, is 0.418 with the non-parametric Spearmen rank-order
correlation method.

Correlation among random variables leads to significantly dif-
ferent results from all of the performed sensitivity methods in
comparison to uncorrelated space. The differences among random
variables are not very clear from the results of the perturbation
technique for correlated variables, except for the reduction in the
influence of Fc, which is caused by the high influence of the corre-
lated group of variables Ft, Gf and E. The influence of P_Uncert is
more or less the same as for uncorrelated variables.

Spearman’s q is highly affected by correlation as in the previous
examples, and thus all the correlated concrete material parameters
have a high positive influence on the ultimate limit state. Although
it can still be identified that the most important variables for ulti-
mate shear capacity are Ft and Fc, the influence of Gf and E is over-
estimated due to imposed correlation. This phenomenon is in

Table 10
Statistical moments of the ultimate resistance.

Parameter NNE LHS 100 samples Units

l 284.129 284.2 [kN]
r 28.684 29.7 [kN]

Fig. 17. The MSE information of different hidden neurons for a precast concrete girder with uncorrelated variables.

Fig.18. Comparison of the results gained from the original FEM output and those
calculated by the NNE.
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compliance with ANOVA, as can be seen from the correlative parts
of the Sobol indices. It can be seen that the results of the local anal-
ysis of the variance method are different, which is caused by the
nonlinearity of the mathematical model and the nature of the
method, where the location of interest is near the mean value of
the random variables. As for the connection weight method, the
sensitivity analysis results are totally different. Such results may
be caused by the mechanism of the artificial neural network and

Table 11
The sensitivity results for a precast concrete girder with uncorrelated variables.

Random variable Non-parametric Spearman rank-order correlation Sobol first order Connection weight method Local analysis of variance

P_Uncert 3(0.264) 3(0.08) 3(89/0.189) 3(0.098)
Fc 1(0.743) 1(0.28) 1(30/0.377) 1(0.334)
E 5(0.147) 5(0.01) 5(147/0.083) 5(0.008)
Ft 2(0.418) 2(0.09) 2(64/0.231) 2(0.101)
Gf 4(0.202) 4(0.02) 4(120/0.121) 4(0.023)

Table 12
Correlation matrix.

Fc E Ft Gf

Fc 1 0.8 0.7 0.6
E 0.8 1 0.5 0.5
Ft 0.7 0.5 1 0.8
Gf 0.6 0.5 0.8 1

Fig. 20. The MSE information of different hidden neurons for a precast concrete girder with correlated variables.

Fig. 21. The sensitivity results shown by the input perturbation method for a precast concrete girder with correlated variables.

Fig. 19. The sensitivity results shown by the input perturbation method for a precast concrete girder with uncorrelated variables.
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its ability to establish the relation between the independent vari-
ables and the dependent variables. This relation is not dependent
only on weights, but also on ANN structure, activation functions,
and neuron biases. Note that the nonlinear relations in the pre-
sented example are complicated even with correlated input
quantities.

6. Conclusions

The paper shows the possibility of utilizing a neural network
ensemble for sensitivity analyses of different types. The efficiency
of an NNE as a surrogate model coupled with the sensitivity anal-
ysis method is verified.

Several sensitivity analysis methods are compared: the input
perturbation method, local analysis of variance, the connection
weight method, non-parametric Spearman rank-order correlation
and Sobol indices. They are applied to three examples of increasing
complexity – a simple function, an analytical formula for the
deflection of a simple beam, and a nonlinear finite element model
of a real structure. The results are discussed in depth for each
example. The general conclusions can be highlighted as follows:

	 Local and global sensitivity analyses have different purposes
and interpretations. It is necessary to distinguish clearly
between these two types of sensitivity. This is demonstrated
by the three cases in this paper. The input perturbation algo-
rithm is a straightforward sensitivity analysis method which
is easy to apply, but it is local and pays no attention to joint
probability and correlation among the inputs. Nonetheless, such
a sensitivity study can give us a first insight into a mathematical
problem of interest, especially if one is interested in a special
location in the design domain. The connection weight method
is a global sensitivity analysis method and could serve as a mea-
sure of both relative qualitative ranks and quantitative specific
values However, it is sensitive to initial weights and fails to take
into account the influence of the activation function and biases.
Local analysis of variance is visual and quantitative, but it only
works properly for nearly linear cases. Non-parametric

Spearman rank-order correlation is easy to apply even for corre-
lated inputs, while the relation between the input and output is
linear and monotonic, but it is necessary to perform a large
number of numerical simulations to obtain accurate results.
Sobol indices are a typical global sensitivity analysis method
and are able to clearly quantify the influence of the correlations
among the inputs, but they need more computations. Moreover,
it may be complicated to interpret the obtained results.

	 As regards robustness, the employed NNE could perform the
calculations needed to approximate the desired output in the
two applications of failure probability evaluation and test ulti-
mate limit state prediction. Specifically, it has better perfor-
mance in comparison to a single ANN, as was shown in the
analytical formula for the deflection of a simple beam. This
means that the NNE could be used efficiently as a surrogate
model.

	 NNE-based sensitivity analysis methods, such as the input per-
turbation algorithm, connection weight method and local anal-
ysis of variance, could be used for different levels of sensitivity
analysis tasks ranging from local to global and from qualitative
to quantitative in nature. What is more, the accuracy of such
methods was verified herein. Therefore, the NNE has high
potential for use in surrogate modelling in close connection
with sensitivity and reliability analysis.

	 Statistical correlation among material characteristics should be
considered when attempting to perform the realistic modelling
of structures. It is necessary to perform sensitivity analysis in
both correlated and uncorrelated space in order to correctly
identify the roles of input variables. In this study, the Sobol
indices are able to shed light on the difference between uncor-
related and correlated cases, and to identify the influences
caused by the correlation clearly. However, it is usually compu-
tationally demanding to obtain all Sobol indices. Therefore, the
obtained Sobol indices were compared to other sensitivity mea-
surements and the influence of correlation was explained.

	 The potential of NNE for surrogate modelling and sensitivity
analysis has been verified, and good performance has been
obtained. In some cases, the NNE-based sensitivity analysis

Table 13
The sensitivity results for a precast concrete girder with correlated input variables.

Random
variable

Non-parametric Spearman rank-order
correlation

Sobol first
order

Sobol correlative
part

Connection weight
method

Local analysis of
variance

P_Uncert 5(0.264) 4/5(0.08) 0.00 1(57/0.269) 4(0.098)
Fc 1(0.991) 1(0.48) 0.20 5(149/0.026) 5(0.049)
E 4(0.766) 4/5(0.08) 0.07 4(113/0.182) 3(0.165)
Ft 2(0.849) 2(0.25) 0.16 3(71/0.250) 2(0.247)
Gf 3(0.774) 3(0.11) 0.09 2(60/0.273) 1(0.286)

Fig. 22. The sensitivity results shown by the connection weight method for a precast concrete beam with uncorrelated and correlated variables.
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method is still not precise enough – as with the shear failure of
precast concrete girders with correlated variables. The method
will be improved so that it is not only sensitive to weights but
also reflects other network parameters.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

The first author is grateful for the support from the Fundamen-
tal Research Funds for the Central Universities, China (Grant No.
2017B659X14); the Postgraduate Research & Practice Innovation
Program of Jiangsu Province (Grant No. KYCX17_0492) and the
China Scholarship Council (Grant No. 201706710090).The authors
acknowledge the financial support provided by the Czech Science
Foundation under project RESUS No. 18-13212S, and by the Min-
istry of Education, Youth and Sports of the Czech Republic under
mobility project No. 8JCH1074.

References

[1] Bayat M, Pakar I, Ahmadi HR, Cao M, Alavi AH. Structural health monitoring
through nonlinear frequency-based approaches for conservative vibratory
systems. Struct Eng Mech 2020;73(3):331–7.

[2] Bayat M, Kia M, Soltangharaei V, Ahmadi HR, Ziehl P. Bayesian demand model
based seismic vulnerability assessment of a concrete girder bridge. Adv Concr
Constr 2020;9(4):337–43.

[3] Saltelli A. Sensitivity analysis for importance assessment. Risk Anal 2002;22
(3):579–90.
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and sensitivity analysis of damage ratio coefficient. Expert Syst Appl 2011;38
(10):13405–13.

[32] Hao J, Wang B. Parameter sensitivity analysis on deformation of composite
soil-nailed wall using artificial neural networks and orthogonal experiment.
Math Probl Eng; 2014.

[33] Mozumder RA, Laskar AI. Prediction of unconfined compressive strength of
geopolymer stabilized clayey soil using artificial neural network. Comput
Geotech 2015;69:291–300.

[34] Shafabakhsh G, Naderpour H, Noroozi R. Determining the relative importance
of parameters affecting concrete pavement thickness. J Rehabil Civil Eng
2015;3(1):61–73.

[35] Cidade RA, Castro DS, Castrodeza EM, Kuhn P, Catalanotti G, Xavier J, et al.
Determination of mode I dynamic fracture toughness of IM7-8552 composites
by digital image correlation and machine learning. Compos Struct
2019;210:707–14.

[36] Pires dos Santos R, Dean DL, Weaver JM, Hovanski Y. Identifying the relative
importance of predictive variables in artificial neural networks based on data
produced through a discrete event simulation of a manufacturing
environment. Int J Model Simul 2019;39(4):234–45.

[37] Zhou ZH, Wu J, Tang W. Ensembling neural networks: many could be better
than all. Artif Intell 2002;137(1–2):239–63.

[38] Cao M, Qiao P. Neural network committee-based sensitivity analysis strategy
for geotechnical engineering problems. Neural Comput Appl 2008;17(5–
6):509–19.

[39] De Oña J, Garrido C. Extracting the contribution of independent variables in
neural network models: a new approach to handle instability. Neural Comput
Appl 2014;25(3–4):859–69.

[40] Cao MS, Pan LX, Gao YF, Novák D, Ding ZC, Lehký D, et al. Neural network
ensemble-based parameter sensitivity analysis in civil engineering systems.
Neural Comput Appl 2017;28(7):1583–90.
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A B S T R A C T   

The shear behaviour of reinforced and prestressed concrete structures has been extensively studied over the last 
decades. However, there are still numerous open questions, concerning, e.g. the effects of normal-shear force 
interaction and material properties on shear performance. While the elastic behaviour of structures can be 
accurately captured by existing analytical approximations available within code standards, the description of the 
plastic behaviour of prestressed concrete elements occurring before typically quasi-brittle shear failure requires 
nonlinear analysis. Therefore, most prestressed concrete structures are designed to utilise only the elastic ca-
pacity of the material to avoid the performance of a complex nonlinear finite element analysis (hereinafter 
NLFEA) of pre-failure behaviour. In the case of mass-produced precast elements, however, the higher cost of 
performing NLFEA to provide valuable information on the complete loading of such element’s history might be 
justified and economically beneficial. NLFEA can give much more objective information on a structure’s per-
formance and ultimate capacity, its cracking behaviour and failure indicators which can be utilised for the 
optimisation of the design, maintenance and inspection of produced structural elements. However, deterministic 
NLFEA cannot capture the naturally uncertain character of structural response. Current code standards provide a 
framework for NLFEA using several safety formats. The fully probabilistic approach remains the most general, 
straightforward and least conservative way of considering uncertainties, however. The stochastic modelling of a 
precast element’s shear response requires the performance of a series of fracture-mechanical experiments with 
material samples, the evaluation of stochastic features of material parameters, and the use of identified random 
parameters as inputs for highly accurate nonlinear finite element models of destructive experiments. The in-
formation on material uncertainty is then used for the virtual statistical simulation of Monte Carlo type to obtain 
the probability distribution of structural resistance. This paper aims to describe the application of stochastic 
NLFEA to the shear behaviour simulation of a for wide-span prestressed reinforced concrete lightweight roof 
element. Extensive experimental studies on small specimens and scaled and full-scale girders have been per-
formed to acquire the required information for the implementation of complex material laws in advanced 
probabilistic nonlinear numerical analyses. This information is used together with advanced monitoring systems 
to investigate stochastic features of shear structural response, the probabilistic safety level in terms of code-based 
design levels, and the experimental findings.   

1. Introduction 

The shear strength of prestressed reinforced concrete girders has 
been extensively studied over the last five decades, (e.g. [1–6]). The 
complex mutual influences of multi-axial states of stress, the anisotropy 
of composite materials caused by diagonal cracking, the interactions 
between concrete and steel reinforcement or tendons, and the brittle 
failure mode of prestressed concrete beams, all act together to render the 

existence of a generally applicable analytical approximation of shear 
ultimate capacity unlikely (if not impossible) to achieve. Despite the 
significant progress made in understanding shear failure mechanisms 
[7], and the many shear tests conducted over the last decades [8], 
NLFEA remains the most accurate and only generally applicable 
approach for modelling shear structural behaviour. Most structural de-
signs produced in engineering practice aim to utilise the strictly elastic 
shear capacity of prestressed structures to avoid the performance of 
complicated and computationally demanding NLFEA analysis. While 
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earlier obstacles to the widespread use of NLFEA, such as its computa-
tional and algorithmic complexity, have slowly been removed by the 
development of information technology and dedicated advanced soft-
ware tools ([9,10]), other barriers remain to be overcome. Complex 
NLFEA models require precise knowledge of material parameters, pro-
duction processes and storage conditions in order to capture structural 
behaviour accurately. Such information is often unavailable before a 
design process starts, and a series of expensive fracture experiments 
need to be performed to obtain it. While linear elastic analysis is well 
established within design codes ([11,12]), the usage limitations and 
recommendations regarding NLFEA that are currently implemented 
within codes [12] are too general and require further specification. 
Users often need to rely (in specific cases) on various guidelines devel-
oped by researchers ([13,14]) instead of legally acceptable code 
frameworks. The available software solutions are still quite expensive, 
and the engineering time necessary for NLFEA is considerably higher 
compared to classical linear analysis. These obstacles render NLFEA a 
rather costly tool in spite of the existence of efficient software. The 
higher cost of NLFEA might very well be justified in the case of mass- 
produced precast elements, however. It provides objective information 
on a structure’s ultimate capacity, its cracking behaviour and failure 
indicators which can be utilised for the optimisation of design and 
maintenance, and for the inspection of a produced structural element. 

Moreover, simple deterministic NLFEA does not capture the uncer-
tain nature of material properties, production deviations and other 
random effects resulting in variability of structural response. The 
probabilistic assessment of structural response represents the most ac-
curate way to evaluate structural reliability using NLFEA. However, this 
procedure involves significant computational burden due to the many 
NLFEA runs necessary to assess the required (typically very low) prob-
abilities of structural failure [15]. Since even a single NLFEA run can be 
computationally demanding, many advanced procedures have been 
suggested with the aim of reducing the significant computational burden 
of the probabilistic approach. Stratified simulation techniques such as 
Latin Hypercube Sampling (hereinafter LHS) [16] help to reduce the 
variance in statistical moment estimates that occurs compared to crude 
Monte Carlo sampling for the same sample size (see [17]). Importance 
sampling techniques ([18,19]) aim the course of the simulation so that it 
is close to the border of the failure domain using adjusted distribution 
functions of input random variables (known as weight functions). Such 
methods are often employed within design point search algorithms [20] 
involved in 2nd level reliability approaches such as the FORM and 
SORM approximation techniques ([21,22]). Also, other advanced 
simulation techniques such as asymptotic, adaptive or directional 

sampling ([23,24,25]) can be utilised for efficient reliability evaluation. 
While FORM and SORM techniques approximate failure surfaces with 
multidimensional planes or parabola, response surface methods perform 
reliability analysis with simplified surrogate models represented by 
polynomial or polynomial chaos-based expressions or artificial neural 
networks ([26–28]). Despite the significant reduction of simulations 
necessary for the proper estimation of structural reliability compared to 
Crude Monte Carlo integration, most of the approaches mentioned 
above still need hundreds or thousands of simulations to be sufficiently 
accurate. Promising results have been obtained via the use of some 
advanced response surface methods combined with LHS-type simula-
tions ([29–31]). However, the necessary computational burden com-
bined with the lack of process automation remains a significant obstacle 
for the widespread application of the fully probabilistic approach within 
engineering practice. Despite its complexity, the fully probabilistic 
approach is necessary for the verification of developed simplified 
models and their overall safety level and becomes more attractive in the 
industry. Stochastic NLFEA modelling can also be utilised to virtually 
extend the number of performed destructive experiments, which are 
usually expensive or even impossible to conduct. It is possible to perform 
several destructive experiments and subsequently set up and verify 
deterministic models which can be utilised for stochastic analysis, 
significantly extending the number of observed tests. 

This paper describes the stochastic modelling of long-span precast 
concrete roof girders failing in shear, built on the accurate deterministic 
modelling procedure summarised within [13]. The primary motivation 
for the conducted research was to obtain detailed information on the 
nonlinear behaviour of the shear structural response of prestressed TT- 
shaped LDE7 roof girders produced by Franz Oberndorfer GmbH & Co 
KG, Austria. The studied structural member typically fails in shear. This 
fact can be proven via NLFE analysis using a three-point bending 
(hereinafter 3 PB) loading configuration. Fig. 1 captures the crack 
pattern and relative bending deformation of the investigated girder at 
ultimate limit state under 3 PB loading. 

The conducted analysis, therefore, focuses on the shear behaviour of 
the studied girder under a complex combination of internal forces (shear 
force (V), the normal force (N), and bending moment (M)). Different 
alternative approaches for V models can be found in the literature, e.g. 
[32–34] and [35]. Such approaches and historical numerical models 
mainly deal with the combination of shear force and/or torsion (V + T), 
or combinations of the moment and/or normal force (M + N) together 
with V + T, or occur in partial combinations. The traditional approaches 
and models only enable limited consideration of the combinations V +
N, V + M and V + N + M within limit states. Nonlinear numerical 

Notations 

Variables and functions 
Z Safety margin 
T Correlation matrix 
Nvar Number of variables 
μg Mean value 
pf Probability of failure 
R Structural response 
E Load actions 
Nsim Number of simulations 
s Standard deviation 
X Vector of random input variables 
E Error matrix 
Xd Design values of random variables 
β Reliability index 
αX Directional cosines derived from First Order Reliability 

Method 

vX Coefficient of variation of variable X 
α Coefficient of thermal expansion 
E Young’s modulus 
ft Tensile strength 
fc Compressive strength 
Gf Fracture energy 
ρ Density of concrete mixture 
fy Yield strength of steel 
IL Uncertainty for immediate losses of prestress 
LTL Uncertainty for long term losses of prestress 
ρs Spearman rank-order correlation index 

Abbreviations 
NLFEA Nonlinear finite element analysis 
CoV Coefficient of Variation 
FORM First Order Reliability Method 
LHS Latin hypercube sampling 
LD Load vs. displacement curve  
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approaches and appropriate material models are well suited for calcu-
lating stress and strain states and for the verification of the complex 
shear capacity of prestressed concrete components. Regardless of the 
calculation or simulation models used, the properties of the materials 
(reinforcing steel and prestressing steel) and of the composite material 
of the prestressed concrete form an essential basis for capturing load- 
bearing behaviour under mutual shear and normal force loads realisti-
cally. Due to the very high stresses which occur very early (usually at 
ages < 24 h) as a result of the prestressing procedure in the pre-
tensioning bed, there is a great need for research on the time-dependent 
behaviour of concrete (creep, shrinkage and relaxation), bond stresses 
(the influence of the Hoyer effect), tension-stiffening and tension- 
softening, the dowel effect, and crack friction. Even though these indi-
vidual properties and behaviours have been investigated in several sci-
entific articles [36], in-depth research on their interaction and mutual 
influence is still required. Consequently, the simulation strategies and 
methods presented below were chosen so as to condense what limited 
information there is about V + N + M interaction in shear fields. 

The producer followed multiple interests such as the development of 
structural design and monitoring systems, crack propagation analysis, 
the analysis of time-dependent behaviour, the evaluation of the fracture- 
mechanical properties of materials, and the estimation of shear struc-
tural response, and it’s stochastic features. A keystone of the conducted 

research is the use of NLFEA based on the well-identified fracture pa-
rameters of the utilised concrete mixture combined with the stochastic 
modelling of destructive shear experiments. 

Extensive experimental studies were performed on small specimens 
and small- and full-scale beams to obtain the required information for 
the implementation of complex material laws in advanced probabilistic 
nonlinear numerical analyses. It was understood from the early begin-
ning that developing an excellent numerical model for comparison with 
experiments conducted on real structures would be impossible without 
proper knowledge of fracture-mechanical parameters. Therefore, a 
comprehensive experimental study of material parameters was per-
formed first [37,38]. The aim was to expand the database of results for 
specified types of concretes by including the mean values, the standard 
deviations, the time of testing of the fracture mechanical concrete pa-
rameters and the most suitable mathematical model for probability 
distribution functions [37]. 

The fracture experiments were followed by destructive experiments 
with scaled precast elements and proof loading tests with full-scale TT 
roof girders [39]. The obtained information was utilised for the 
nonlinear deterministic modelling of the conducted destructive experi-
ments and subsequent model updating connected with the development 
of the proper modelling procedure itself [13]. The resulting accurate 
numerical models were consequently utilised for the stochastic analysis 

Fig. 1. Shear failure of an LDE7 roof girder in the 3 PB loading configuration.  

Fig. 2. The presented work within the broader context of conducted research.  
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presented within this paper. 
The whole research program is summarised within the flow chart 

depicted in Fig. 2. Further efforts will be focused on the reliability-based 
optimisation of LDE7 girder’s reinforcement layout. Since a specific load 
action system cannot be determined at the time a precast element is 
designed, conducted evaluations of failure probabilities can only be 
based on the separation of load actions and structural response allowed 
by [11]. The aim of the research is to assess the statistical moments of 
the ultimate shear strength of girders using the statistical simulation and 
to identify dominant random variables by the sensitivity analysis. 

The complex methodology utilised for deterministic modelling and 
the experimental campaign necessary to obtain the used numerical 
models and the information on input random quantities was described in 
detail within the referenced papers ([13,37–41]). The other procedures 
necessary to complete the steps before stochastic analysis was performed 
(see Fig. 2.) will just be briefly mentioned/reviewed in Section 3 - 
experimental program and in Section 4 - development of the determin-
istic computational model. 

2. Methodology 

The most important efficient methods used for stochastic modelling 
are described here. Software tools combining existing software solutions 
for nonlinear modelling and stochastic simulation are briefly mentioned. 

2.1. Statistical analysis and probability of failure 

The following is a common definition of an engineering problem 
involving uncertainty and randomness, which is to be numerically 
analysed. A random variable, Z, represents a limit state of the studied 
engineering system (e.g. a structure and corresponding loading situa-
tion). In statistical analyses, Z may represent the random response of a 
system (e.g. limit deflection, limit stress, ultimate capacity, etc.), while 
during reliability determination, Z is referred to as a safety margin. 
Random variable Z is a function of random variables X = X1,X2,…,XNvar 

(or random fields): 

Z = g(X) (1)  

where the function g(X), a computational model, is a function of a 
random vector X (and of other, deterministic quantities). Random vector 
X follows a joint probability distribution function (PDF) fX(X). In gen-
eral, its marginal variables can exhibit a statistical correlation. The 
paper focuses on situations when the information about fX(X) is limited 
to knowledge regarding univariate marginal distributions f1(x),…,

fNvar (x) and a correlation matrix, T (a symmetric square matrix of order 
Nvar corresponding to the number of random inputs), which does not 
constitute complete information about the joint PDF. The aim is to 
perform sensitivity, statistical and reliability analysis upon the output 
quantity (generally a vector) Z representing a transformed variable. In 
the case of nonlinear analysis, the direct analytical description of the 
transformation of input variables to Z is not possible. It is typically 
performed in a numerical way by Monte Carlo type simulation. 

The approach focused on the estimation of statistical moments of 
response quantities, such as means or variances, is commonly called 
statistical analysis, i.e. the estimate of the mean value of Z approximates 
the integral: 

μg =

∫

g(X)f (X)dX (2) 

Higher statistical moments of the response might be obtained by 
integrating polynomials of g(X). 

If g(X) represents a failure condition, it is called the limit state 
function, and Z is referred to as the safety margin. Usually, the 
convention is that it takes a negative value if a failure event occurs; 
Z ≤ 0, and a survival event is defined as Z = g(X) > 0. The limit state 

function can reach various complexity an explicit or implicit function of 
basic random variables (e.g. in the form of a computer program). The 
aim of reliability analysis is to estimate unreliability using a probability 
measure called the theoretical failure probability pf = P(Z ≤ 0). 

The standard definition of a reliability indicator in the form of the 
probability of failure requires knowledge of load actions, and their 
statistics since safety margin Z is expressed as: 

Z = R − E = g(X) (3)  

where R represents a selected quantity of structural response and E a 
benchmark quantity caused by load actions. The value of E cannot be 
known in the case of precast element design since environmental con-
ditions and loads imposed during the lifetime of a structure rely on case- 
specific design situations concerning structures built from precast ele-
ments. It is, therefore, crucial to provide statistical data on the structural 
response of precast elements as an output from statistical analysis, ac-
cording to Eq. (2). 

The analytical calculation of the integral in Eq. (2) is generally 
impossible. Many efficient stochastic analysis methods have, therefore, 
been developed over the last seven decades (see Introduction). A 
straightforward solution to these tasks is numerical simulation. The 
principle behind the method is to introduce an analytical model – a 
computer-based response or limit state function (Eq. (1)) that predicts 
the behaviour of the studied system and repeat analysis many times 
under randomly generated conditions according to their probability 
distribution law. This simulation principle has remained formally the 
same up until the present day, and it was utilised for this study. The 
statistical analysis described below thus estimates the mean value of 
shear structural response (ultimate capacity) utilising the best linear 
unbiased estimator (the arithmetical mean), which is defined as: 

μg ≈
1

Nsim

∑Nsim

i=1
g(Xi) (4) 

The Nsim samples Xi (realisations, integration points) of the primary 
random vector X are selected to have an identical probability 1/Nsim (as 
in Eq. (2)). The corresponding standard deviation is then estimated as: 

s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Nsim − 1

∑N

i=1
(Xi − μg)

2

√
√
√
√ (5) 

In the case studies described below functions g(X) (see Eq. (1)) were 
represented by a complex NLFEA computational model developed ac-
cording to the procedure described within [13]. Since one single simu-
lation with NLFEA model took hours to complete, the LHS mean 
simulation technique was utilised in order to reduce the number of 
necessary simulations. LHS yields lower variance in statistical moment 
estimates compared to crude Monte Carlo sampling at the same sample 
size [17]. Thus, the technique has become very attractive for dealing 
with computationally intensive problems like, e.g. complex finite 
element simulations. 

It has been shown that a preferable LHS strategy is the approach 
where the representative value of each interval corresponds to the mean 
value of interval. The sample averages equal the mean values of vari-
ables exactly, and the variances of the sample sets are much closer to the 
target values than those provided by other selection schemes; see [43] 
for details. 

2.2. Statistical correlation among random variables 

The required correlation among design variables can be introduced 
using traditional approaches such as Nataf’s or Rosenblatt’s trans-
formations [44], or via the combinatorial optimisation of random per-
mutations within generated design vectors minimising the error 
between desired and generated correlation matrixes [43]. The correla-
tion among simulated variables is a research topic that lies beyond the 
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scope of this paper. Thus, only a brief description of the practical 
approach is given in the following subsections. 

2.2.1. Nataf ’s transformation 
In the general case of non-normal correlated random variables, it is 

necessary to use a more complicated process for transformation called 
Rosenblatt transformation [45]. However, in practical applications, only 
marginal distributions and the correlation matrix are usually known, 
meaning that the information about a joint probability distribution is 
incomplete [46]. Therefore, it is necessary to assume a specific copula 
[47]. A case of Rosenblatt transformation, which assumes a Gaussian 
copula, is also known as Nataf’s transformation [48], which is very often 
utilised in reliability applications. Nataf’s transformation, to uncorre-
lated standard normal space, is composed of 3 steps, which are as 
follows: 

ξ = TNataf (X) = T◦

3T◦

2T1(X) (6) 

The first two steps represent an isoprobabilistic transformation to 
correlated standard normal space: 

T1 : X→W = Fx(X) (7)  

T2 : W→Z = ϕ− 1(W) (8) 

The last step represents a transformation to uncorrelated space using 
a linear transformation. For this procedure, Cholesky decomposition of 
the correlation matrix is commonly utilised: 

Rz = LLT (9)  

T3 : Z→ξ = ΓZ (10) 

The Rz is a fictive correlation matrix and Γ is the inverse of a lower 
triangular matrix, L, obtained via Cholesky decomposition. The assumed 
Gaussian copula is parametrised by elements ρzij of RZ and the rela-
tionship between the fictive correlation coefficients ρzij and the linear 
correlation coefficients defined in physical space ρxij is defined by the 
following integral equation: 

ρxij =
1

σiσj

∫∫
{

F− 1
i [ϕ(zi)] − μi

}
∙
{

F− 1
j

[
ϕ
(
zj
) ]

− μj

}
× φ2

(
zi, zj, ρzij

)
dzidzj

(11)  

where μ is the mean value, σ is the standard deviation, and φ2 is the 
bivariate standard normal probability density function with fictive 
correlation coefficients ρzij: 

φ2
(
zi, zj, ρzij

)
=

1

2π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ρ2

zij

√ exp

(

−
z2

i − 2ρzijzizj + z2
j

2
(
1 − ρ2

zij
)

)

(12) 

The whole process can be reversed to transform realisations ξ→X. 
Unfortunately, there is no guaranteed solution for specific combinations 
of input parameters and correlation coefficients. More details about the 
limitations of Nataf’s transformation can be found in [43]. 

2.2.2. Combinatorial optimisation 
A robust technique to impose statistical correlation based on the 

stochastic method of optimisation called simulated annealing has been 
proposed by Vořechovský and Novák [43]. The imposition of the pre-
scribed correlation matrix on the sampling scheme can be understood as 
a combinatorial optimisation problem: The difference between the 
specified (target) T and the generated (actual) A correlation matrices 
must be as small as possible. Let us denote the difference matrix (error- 
matrix) E: 

E = T − A (13) 

A suitable norm of the matrix E is introduced to obtain a scalar 
measure of the error. Two different norms have been defined in [43], 

denoted as ρmax and ρms. These norms have to be minimised. The 
objective function for optimisation is the error norm. The design vari-
ables are related to the ordering in the sampling scheme. We want to find 
an efficient near-optimal solution. It can be achieved, e.g. by applying 
the Simulated Annealing optimisation algorithm. 

The mutation by a transition called a swap from the parent config-
uration to the offspring configuration s performed at each step of the 
combinatorial optimisation algorithm. A swap (or a trial) is a small 
change to the arrangement of the sampling table. It is done by randomly 
interchanging a pair of values, xij and xik. In other words, one needs to 
generate i (select the variable) randomly, and a couple, j, k, (choose the 
pair of realisations to interchange); One swap may or may not lead to a 
decrease (improvement) in the error norm. Immediately, one configu-
ration between the parent and offspring is selected to survive. The 
Simulated Annealing algorithm is employed for the selection step. De-
tails on the algorithm and the implementation can be found in [43]. 

Extensive studies on the performance of the algorithm [43] show 
that it performs considerably better than other widely used algorithms 
for correlation control, namely both Iman and Conover’s Cholesky 
decomposition and Owen’s Gram-Schmidt orthogonalisation. Its per-
formance for an extremely small number of simulations should mainly 
be highlighted here, along with the possibility to add additional samples 
correctly, as is described in [49]. 

2.3. Probabilistic design 

The description above demonstrates that the probabilistic approach 
that directly evaluates failure probability is too complicated and time 
consuming for practical design and assessment of structures. Therefore, 
the semi-probabilistic approach was developed to reduce the high 
number of simulations necessary for traditional probabilistic analysis 
while ensuring the acceptable reliability of structures designed using 
NLFEA tools. Such procedures evaluate design values of action Ed and 
resistance Rd satisfying the given safety requirements instead of the 
direct calculation of the probability of failure pf. If both R and E are 
lognormally distributed independent random variables, their design 
values are defined as: 

Xd = μXexp(− αXβnvX) (14)  

where vX is the coefficient of variation (CoV of X), αX represents the 
directional cosines derived from First Order Reliability Method (FORM), 
and the recommended values are αR = 0.8 and αE = − 0.7 according to 
[11]. βn represents the required (target) reliability index prescribed by 
normative standards [11]. The aim is limited to the estimation of Rd, 
which is crucial, especially in case of design and assessment of precast 
structural members. 

The target reliability index for the ultimate limit state, moderate 
consequences of failure and reference period of 50 years is set at βn = 3.8 
according to [50], and corresponding target failure probability in semi- 
probabilistic design and assessment of structures is pf = ϕ− 1

N ( − β*αR) =

ϕ− 1
N ( − 3.8*0.8) = 0.0012. Obviously, for the determination of a design 

value via the semi-probabilistic approach, it is crucial to correctly esti-
mate the basic statistical moments. This can be done using various sta-
tistical methods or Monte Carlo simulation techniques in combination 
with statistical analysis. 

3. Software tools 

It was necessary to combine existing software solutions for nonlinear 
modelling and stochastic simulation in order to perform the analysis 
described below. The ATENA Science [9] software environment was 
utilised for the creation of numerical models. This solution allows the 
definition of model geometry, materials and solution parameters within 
the GID preprocessor [9], and the subsequent performance of calcula-
tions via an automatically generated input file in the ATENA Studio 
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processor. ATENA software provides a state-of-the-art environment [51] 
for NLFEA evaluations of concrete structures. It offers advanced material 
models for the accurate description of concrete behaviour [9] and allows 
input files to be easily manipulated by third-party applications. The 
utilisation of the ATENA environment was also supported by the strong 
connection and close cooperation between the authors of this paper and 
the developers of ATENA software [13,52]. 

The ATENA environment can be seamlessly connected with FReET 
software for simulation and reliability analysis [52] (see the brief 
description below) using the SARA software shell [53]. However, the 
SARA environment does not provide all of the functionality necessary 
for the stochastic analysis of prestressed structures. Prestressing losses 
calculated according to [12] are dependent on concrete material pa-
rameters and the applied prestressing force, which are represented by 
random quantities. The losses themselves must be defined at the 
beginning of each analysis. It was, therefore, necessary to create a dy-
namic library (hereinafter dll) for the evaluation of losses and plug this 
routine into the task solution procedure between the simulations (con-
ducted in FReET) and the NLFEA performed within ATENA. A new 
ATENA-FReET interface was developed in order to automate the solu-
tion procedure. The following paragraphs briefly describe FReET and 
the new interface. This approach allowed the applicability of current 
software tools to be extended, and enabled the use of some previously 
developed routines and scripts with a relatively low programming cost 
compared to the development of interfaces for ATENA from scratch 
using different software and programming tools. 

3.1. FReET 

FReET multipurpose probabilistic software for the statistical, sensi-
tivity and reliability analysis of engineering problems [46] is based on 
the efficient reliability techniques described in [16,17]. The software 
allows the definition of a stochastic model of the given problem along 
with the performance of advanced simulation within the design space, 
and the calculation of reliability using one of the built-in methods. 
FReET enables the probability distribution function to be defined for 
each random variable (via the selection of predefined functions and their 
parameters based on raw data, etc.). For simulation, FReET offers the 
simple Monte Carlo method or the above-described LHS methods (in 
random, median or mean form). It is also possible to prescribe a corre-
lation matrix for random variables. 

Simulated annealing approach defined in [43] is utilised to achieve 
the required correlation structure among generated simulations. For 
reliability calculations, FReET enables the use of simple Cornell index 
calculations, the Curve fitting technique or FORM. Other useful features 
of FReET are described fully in detail in [52]. 

3.2. The ATENA-FReET interface 

The ATENA-FReET interface is a simple software environment 
developed in order to connect the finite element-based software package 
ATENA Science with FReET reliability software in a way that is both 
general and user-friendly. The environment mimics the basic concept of 
SARA software shell but adds some the functionality necessary to 
perform the stochastic analysis of complex prestressed structures. The 
software allows a task to be defined, the loading of a prepared ATENA 
input file containing a defined numerical model, the marking of quan-
tities to be randomised, the calling of FReET to prepare a stochastic 
model (or utilise a predefined one), the generation of numerical model 
realisations based on simulated values, the connection of user-defined 
dll routines between simulation and analysis within ATENA, the 
running of simulations (also multiple in parallel) and management of 
computation resources, the postprocessing of output files and the 
extraction of defined quantities to be processed in FReET or any table 
processor. The current plan is to integrate the developed interface into a 
general software solution for reliability-based optimisation, which is 

currently under development [54]. 

4. Experimental programme 

The stochastic modelling of shear structural response using NLFEA 
requires solid knowledge of the utilised material model’s fracture- 
mechanical parameters and their statistics. The required information 
must be obtained by an experimental study performed using concrete 
mixtures used for the casting of modelled structural members. 

NLFEA can be carried out by many software solutions with generally 
different material models and solution procedures using a wide range of 
parameter sets. It also allows the modelling of detailed aspects of 
structural behaviour such as bond behaviour, the cracking of material 
and its plastic behaviour without any strictly defined “level of detail” 
required to achieve sufficient accuracy in solving the given task. It is up 
to the user’s “expert guess” as to which model simplifications are 
acceptable. In the case of mass-produced precast elements, it is therefore 
beneficial to perform a set of destructive experiments to verify the uti-
lised modelling procedure and its outcomes. 

The following paragraphs will briefly describe an experimental 
campaign performed before the numerical and stochastic modelling of 
LDE7 roof girders took place (see the research workflow in Fig. 2). The 
results and findings acquired during the experiments have already been 
published ([13,37,38,39]). This section is therefore included to improve 
the readability of the paper and to provide context. Detailed information 
about the experimental phase of the research can be found within the 
papers mentioned above. 

4.1. Fracture-mechanical quantities 

A broad sampling and testing program has been conducted by the 
Institute of Structural Mechanics, Faculty of Civil Engineering at Brno 
University of Technology (BUT), Czech Republic, and the Institute for 
Structural Engineering at the University of Natural Resources and Life 
Sciences (BOKU) in Vienna in collaboration with the Austrian firm Franz 
Oberndorfer GmbH & Co KG. The program was performed to ensure the 
database for specified types of concrete including the mean values, the 
standard deviations, the time of testing of the fracture-mechanical 
concrete parameters and the most suitable models of probability dis-
tribution functions. The three-point bending (3 PB) and wedge-splitting 
tests were conducted on C50/60 and C40/50 concrete specimens (see 
[37]) with a central edge notch, and their results were assessed using the 
effective crack and work-of-fracture methods [40]. Through the 
advanced identification approach based on artificial neural network 
(ANN) modelling [41], the following essential material parameters of 
the utilised 3D Nonlinear Cementitious 2 material model of concrete 
(see Section 5.2) were identified: tensile strength fct, modulus of elas-
ticity Ec, and specific fracture energy Gf. The compressive strength fc was 
measured using standard cubic compression tests. The identification of 
the below-mentioned material parameters was carried out using Fra-
MePID- 3 PB software, which was developed in order to automate the 
time-consuming process of ANN-based inverse analysis. The lynchpin of 
the method is an AAN which transfers the input data obtained from the 
fracture test to the desired material parameters. For theoretical details 
on ANN-based inverse analysis, which lie beyond the scope of the pre-
sent paper, we refer the interested reader to [55]. The FraMePID-3 PB 
software itself is described in depth in [41]. 

Table 1 
Adjusted stochastic parameters of C50/60 concrete (age 28 days).  

Parameter Mean COV PDF 

Compressive strength 77 MPa 6.4% Lognormal 
Tensile strength 3.9 MPa 10.6% Lognormal 
Modulus of elasticity 34.8 GPa 10.6% Lognormal 
Fracture energy 219.8 Jm− 2 12.8% Lognormal  
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In total, 134 concrete conformity specimens made from two concrete 
mixtures commonly used within the industry were tested at hardening 
times of 1, 7, 28 and 126 days to estimate the stochastic attributes (Ec, fct, 
Gf and fc) of the concrete mixtures material parameters. At the time of 
the destructive beam experiments (see Section 3.2), small-scale samples 
prepared according to EN 206 were also tested in order to characterise 
the fracture-mechanical parameters fc and Ec directly. The parameters 
displayed in Tab. 1 were derived using an ANN-based approach for a 
grade of concrete C50/60 at the age of 28 days of hardening rapt from 
the 134 specimens [37]. 

Since the number of tested specimens is not high enough to disprove 
the prevailing opinion on the typical PDF for mentioned parameters [58] 
it was decided that lognormal distributions would be used instead of 
those identified using curve fitting and experimental realisations. 
Table 1 displays the adjusted (utilised) stochastic model of concrete. 
Note that values of material parameters summarised within Table 1 
represent input parameters of CC3DNonLinCementitious2 material 
model [9] corresponding to virtual models of conducted 3 PB experi-
ments [41]. 

4.2. Experiments conducted on prestressed full- and reduced-scale 
concrete girders 

The primary area of interest is the normal-shear force interaction of 
long-span TT concrete roof elements made of C50/60 concrete (see 
Section 5). Proof loading tests carried out according to CEB-FIP Model 
Code 2010: Design Code to define the shear performance within linear 
brunch of the working diagram have been performed on three of these 
TT concrete roof girders. More details on testing and monitoring of the 
TT concrete roof elements are given in [39]. Note that due to the rela-
tively large size of the full-scale precast elements, destructive experi-
ments would be expensive and complicated. Thus, the performed proof 
loading tests cannot provide information about the plastic and pre-peak 
behaviour of the tested elements. Therefore, NLFEA was used to char-
acterise the geometric and mechanical properties of the laboratory 
tested beams concerning their shear resistance performance. In partic-
ular, NLFEA was used to verify the layout of reinforcement, to choose 
suitable monitoring systems and to define the testing and loading pro-
cedures for scaled models of prestressed girders. Subsequently, 
destructive experiments were performed with scaled precast beams. 

The ten laboratory tested beams were continuously prestressed at 

449 MPa to 1105 MPa by four to eight strands (St 1570/1770). A span 
length of 5.00 m characterises the ten laboratory beams, a web width of 
0.14 m and a height of 0.30/0.45/0.60 m. The slabs of the T shaped 
elements have a width of 1.50 m and a thickness of 0.07 m. The primary 
interest in testing the ten laboratory beams lies, just as with the TT roof 
elements, in the normal force-shear interaction. The performed 
destructive experiments helped to establish the NLFEA modelling pro-
cedure using the ATENA Science software environment [9]. The devel-
opment of the NLFEA computational model mentioned above was 
summarised and demonstrated at the benchmark of the scaled T-shaped 
girder T30150 V2 in [13]. Material parameter calibration was per-
formed based on experimental testing and a complex updating simula-
tion. The below-described numerical model of full-size LDE7 girder was 
developed using this methodology and experience from scaled girder 
testing and simulation. The charts in Fig. 3can demonstrate the resulting 
NLFEA accuracy. These charts display a comparison between the 
experimentally obtained and numerically derived load vs deflection 
(hereinafter LD) diagram for beams T30 150 V2 and R45 V2 (scaled 
experimentally tested girders). 

Note that standard cubic specimens for compression tests were cast 
along with each girder. Those specimens were utilised to determine the 
material properties of the concrete employed for the casting of the 
beams. 

5. The numerical model of an LDE7 roof girder 

The numerical model was created using the ATENA Science software 
environment [9] and the modelling procedure described in [13]. Since 
losses of prestressing are dependent on random inputs such as fc, Ec, 
prestressing force, etc. it was necessary to evaluate prestressing losses 
(according to [12]) before the NLFEA of each simulation in order to 
conduct stochastic simulation above the developed numerical model. 
The tools currently available within the ATENA Science environment do 
not allow the evaluation of quantities based on random inputs before the 
randomisation of the NLFEA input data itself. It was, therefore, neces-
sary to develop a simple software shell (briefly described within Section 
3.2) to perform the presented stochastic analysis. 

The loading procedure is defined in the ATENA Science [9] envi-
ronment using “intervals”. Specified loads and constraint conditions are 
applied within a specified number of load steps utilised in each interval. 
The employed software solution combined with the given NLFEA input 
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file structure requires the application of prestressing force and live load 
within separate intervals. This separation can only be used without 
complications for the numerical models of scaled girders [13]. In case of 
the full-size LDE7 roof girder, it was necessary to introduce ten load 
intervals for live load application and ten intervals for prestressing. 
During the solution, one interval with 1/10 of prestressing was always 
followed by one interval with 1/10 of live load. The adjusted load 
application scheme was the only difference compared to the modelling 
procedure presented within [13]. 

Prestressing using initial strain was applied for the pretensioning 
wires. This application ensures that any loss of prestressing due to the 
elastic deformation of concrete is calculated directly. However, the 
prestressing force was applied to concrete with an age of only 14 h 
during the production process. It means that Young’s modulus of the 
concrete was different (approximately half) from the value of elastic 
modulus after 28 days of hardening. The initial strain for the rein-
forcement should be reduced by the difference between the strain of 
prestressed concrete at 14 h and the strain of prestressed concrete at 28 
days of hardening. The corresponding strains were calculated as ratios of 
stress within the cross-section of the beam caused by the application of 
prestressing normal force and the corresponding Young’s modulus 
value. The second loss of prestressing, which was applied by the 
reduction of initial strain for the reinforcement line, occurred due to the 
relaxation of the tendons. This was evaluated according to [12]. 

Temperature loading was utilised to simulate the rheological 
behaviour of the precast concrete elements. Creep and shrinkage de-
formations also lead to losses of prestressing. MC 2010 was utilised for 
the calculation of creep and shrinkage strains after 28 days of hardening. 
The uniform temperature gradient to be applied in order to invoke 
equivalent strains was calculated with the assumption of a thermal 
expansion coefficient of α = 1.00e-05 K− 1. The creep and shrinkage 
affect the concrete throughout its volume. A temperature gradient can 
be utilised in order to mimic creep and shrinkage strains in all directions. 
This allows them to affect the whole structure, including the 
reinforcement. 

5.1. Geometry and numerical model of an LDE7 roof girder 

The beam has a TT-shaped cross-section, a total length of 30.00 m 
and a height of 0.50 m at the ends and 0.90 m in the middle of the beam. 
The width webs are 0.14 m (note that 0.14 m is the bottom dimension – 
the web a little conical). The slab has a dimension b/h of 3.00 m/0.07 m. 
The reinforcement and geometry of the beam are symmetrical along the 
middle cross-sectional and longitudinal plane. The girder is continu-
ously prestressed to 1107.53 MPa via 32 (16 in each web) × 7-wire 1/2- 
inch strands with a wire quality of ST 1570/1770. The prestressing 
reinforcement is divided into four layers depending on the length of the 
isolated part of the cables (the part where the wires have no bond to the 
concrete). The lowest six cables in each web are connected to the con-
crete along the whole length of the beam. The four wires in the second 
layer of each web are isolated 2.00 m from both sides of the beam. The 
four cables in the third layer of each web are isolated 4.00 m from both 
sides of the girder. The two cables in the fourth layer of each web are 
isolated 5.60 m from both sides of the beam. In addition to the pre-
tensioning wires, two reinforcement bars with a diameter of 0.02 m are 
located at the bottom of webs, and six reinforcement bars with a 
diameter of 0.014 m are located in the upper reinforcement layer of each 
web. The areas at the ends of girder are reinforced using four horizontal 
rebars in a U-bolt shape with a diameter of 0.012 m. Despite the fact that 
basically no stirrup reinforcement was planned according to the rein-
forcement layout, 13 stirrups with a diameter of 0.006 m at a distance of 
0.50 m from each other at the ends of the beam. Another 16 rebars with a 
diameter of 0.006 m were mounted in the middle of the girder. The plate 
of the girder was equipped with orthogonal reinforcement composed of 
0.008 m diameter rebars at a distance of 0.20 m from each other in the 
longitudinal and transverse directions. Fig. 4 shows the reinforcement of 

the area of expected shear failure (side view). Fig. 5 (left) shows a cross- 
sectional detail of the position of the reinforcement within the webs. 

The modelled girder was loaded by displacement applied 4.125 m 
from the support above both webs. Loading was applied via steel plates 
(0.50 × 0.50 × 0.05 m). The webs of the beam were supported by four 
steel plates (0.14 × 0.14 × 0.05 m). Fig. 4 (right) displays the layout of 
the numerical simulation. 

A regular hexagonal FE mesh of 61,784 finite elements was gener-
ated using GID software. The final 3D geometry of the model is shown in 
Fig. 6, along with the support conditions. The utilised model of rein-
forcement (including tendons) is visible in Fig. 7. The edge size of the 
elements in the area with condensed mesh was approximately 20 mm. 
Elements with edge size of roughly 35 mm were utilised for the rest of 
the beam. The ratio between the edge sizes of a single element never 
exceeded 3:1. The finite element mesh was condensed in the region of 
expected shear failure. The region of shear failure was estimated based 
on data obtained from performed experiments and numerical simula-
tions (see description above). It was located at the web of the beam 
between the support and the point of loading. 

Note that the numerical model can be reduced due to the longitu-
dinal symmetry of the beam and low deformations in the direction 
perpendicular to the plane defined by the load vector and the longitu-
dinal axis of the beam. This reduction was utilised for the below- 
mentioned stochastic simulations to decrease computational demand. 

The element type of the concrete volume and steel plates was set to 
hexahedral linear eight nodal brick elements (CCIsoBrick [9]). These are 
isoparametric elements integrated by Gauss integration at defined 
integration points. The same elements were used for the web as well as 
for the flange of the beam (shell elements were not utilised). The rein-
forcement was modelled using two-nodal linear truss elements (CCIso-
Truss [9]). The bond properties of the reinforcement were not 
investigated and thus kept at the default setting (perfect bond) [9]. 

Loading force was distributed via a 0.50 × 0.50 × 0.05 m steel plate 
(shown in Fig. 5). The Steel VonMises 3D material model (in its default 
setting within the ATENA – GID environment) was utilised for the steel 
plates. The plates are connected to the beam using a master/slave-type 
contact with a rigid connection definition. The loading in the numerical 
model was applied using controlled displacement. The Newton-Raphson 
solution algorithm was utilised for the described NLFEA. 

5.2. Materials 

The steel reinforcement and tendons were modelled using the 1D 
Reinforcement material. The utilised stress–strain diagrams are pre-
sented in Fig. 8. The material of tendons was modelled using a bilinear 
diagram with hardening. This simplification was possible since 
modelled girders typically fail due to brittle shear failure of concrete. 

The value of elastic modulus used for steel reinforcement was 200 
GPa. The density of the reinforcement steel was considered to be 7850 
kg/m3. The coefficient of thermal expansion (α - necessary due to the 
applied temperature load in order to simulate long-term losses of pre-
stressing) was set to be 1.2 e− 5C− 1. 

The geometrical nonlinearity of material was neglected. The pre-
stressing reinforcement was considered to have a perfect bond. The 
bilinear diagram with hardening utilised for the tendons is shown in 
Fig. 8. Young’s modulus for the tendons was set to 195 GPa. The cross- 
section area was considered to be 9.3 e-5 m2. The density and α coeffi-
cient values for tendons were the same as for steel reinforcement. 

The “3D Nonlinear Cementitious 2” material model was used to 
govern the gradual evolution of localised damage. The model is 
formulated in the total format assuming additive decomposition of small 
strains and initial isotropy of the material. The tensile behaviour is 
governed by the Rankine-type criterion with exponential softening ac-
cording to Hordijk [56], while the Menétrey–Willam yield surface with 
hardening and softening phases is used for the behaviour in compression 
[57]. The fracture model employs the orthotropic smeared crack 
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formulation and the rotational crack model with the mesh-adjusted 
softening modulus. This model is defined based on characteristic 
element dimensions in tension and compression to ensure objectivity in 
the strain-softening regime; see [9] for details. 

6. Stochastic modelling 

The study aimed to estimate the statistical variability of the shear 
capacity of prestressed girders, to propose probabilistic design re-
sistances and to establish a stochastic modelling procedure applicable 
within a reliability-based optimisation algorithm. For stochastic anal-
ysis, the ATENA-FReET interface (see Section 3.2) connecting the 

Fig. 4. Reinforcement of the area of expected shear failure.  

Fig. 5. Detail of the reinforcement position within the webs (left), and the layout of the numerical simulation (right).  

Fig. 6. 3D geometry of the model along with support conditions and loading.  
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ATENA solver and the FReET reliability tool were utilised. A set of 12 
parameters was used for the stochastic evaluation of structural response 
variability. The stochastic model of the concrete (probability distribu-
tion functions of concrete parameters) was defined according to Table 1. 
The value of load actions cannot be known in the case of precast element 
design since environmental conditions and the loads imposed during the 
lifetime of a structure rely on case-specific design situations concerning 
structures built from precast elements. It is, therefore, crucial (from the 
manufacturer’s point of view) to provide statistical data on the struc-
tural response of precast elements as an output from statistical analysis, 
conducted using Eq. (2). 

The stochastic models of the steel reinforcement (Bst 550B) and the 
tendons (cables - ST 1570/1770) were based on JCSS recommendations 
[45] (variability) and information from the manufacturer (mean value). 
The prestressing force was randomised according to the recommenda-
tion of the JCSS [50]. Prestressing losses were also calculated for each 
realisation according to the FIB model code 2010 [12]. Ideally, model 
uncertainties should be obtained from a set of representative laboratory 
experiments and measurements conducted on real structures where all 
input values are measured or controlled. In such cases, model uncer-
tainty has the nature of intrinsic uncertainty. If the number of mea-
surements is small, the statistical uncertainty may be large. In addition, 
there may be uncertainty due to measurement errors both in the input 
and in the modelled output. Bayesian regression analysis is usually the 
appropriate tool to deal with the above situation. In many cases, how-
ever, a good and consistent set of experiments is lacking, and the sta-
tistical properties of the model uncertainties are purely based on 

engineering judgement [50]. The most common way of introducing the 
model uncertainty into the calculation model is as follows: 

Y
′

= θl × f (X1…Xn) (15)  

where Y′ is a new model response including model uncertainty, the 
variables θl are referred to as parameters which contain the model un-
certainties and are treated as random variables, and f(X1…Xn) is the 
original response of the model. The model uncertainties were introduced 
only for the calculation of losses of prestressing [12]. It was decided that 
the uncertainty of calculated losses would be introduced with a vari-
ability corresponding to COV 10%. This value is lower compared to the 

Fig. 7. 3D geometry of the modelled reinforcement.  
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Table 2 
The utilised stochastic model.  

Parameter Mean COV PDF 

E 34.8 GPa 10.6% Lognormal 
ft 3.9 MPa 10.6% Lognormal 
fc 77 MPa 6.4% Lognormal 
Gf 219.8 J.m− 2 12.8% Lognormal 
ρ 0.0023 kton/m3 4% Normal 
Es 200 GPa 2% Normal 
fys 610 MPa 4% Normal 
Et 195 GPa 2% Normal 
fyt 1387.88 MPa 2.5% Normal 
P 0.0835 MN 6% Normal 
I. L. 1 10% Lognormal 
L. T. L. 1 10% Lognormal  
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loss uncertainty recommended by the JCSS (COV 30%). However, the 
introduced reduction reflects the variability of losses explicitly intro-
duced by random quantities used for the evaluation of losses (such as Ec, 
fc, prestressing force, etc.). The utilised complete stochastic model is 
summarised within Table 2, which displays random quantities and their 
stochastic parameters. The employed variables are E – Young’s modulus 
(E - concrete, Es - steel reinf., Et - tendons), ft - tensile strength, fc - 
compressive strength, Gf - fracture energy, ρ - density of the concrete 
mixture, fys - yield strength of steel reinforcement, fyt - yield strength of 
tendons, IL – model uncertainty for immediate losses of prestress, LTL – 
model uncertainty for long term losses of prestressing and P – initial 
prestressing force. The mean value of prestressing force was defined by 
the producer, while the variability and distribution function were 
defined according to [50]. The geometrical uncertainties are minimal 
due to the applied manufacturing procedure, and their effect can be 
neglected. 

Also, statistical correlations were considered. The simulated 
annealing optimisation method [38] was utilised to introduce the 
required statistical correlations. The employed correlation matrix is 
shown in Table 3. The correlation of the material parameters of the 
concrete was set based on data combined from multiple sources. The 

outcomes from the experimental campaign described in Section 4 led to 
the results summarised in [59]. The acquired data, however, might not 
represent a convincing set in terms of the number of performed exper-
iments. The utilised correlation coefficients were therefore adjusted 
based on data from other sources [60]. The correlation among the ma-
terial parameters of concrete is the subject of much debate, and it re-
quires further experimental research. The correlation of other 
parameters, such as the E modulus and yield strength of the reinforce-
ment, was considered according to JCSS recommendations contained in 
[50]. Within the utilised analytical models [12], both immediate and 
long-term losses of prestressing are dependent on the material param-
eters of the concrete and the initial prestressing force. This dependency 
should also be reflected in the uncertainties applied for model of pre-
stressing losses. Therefore, it was decided that correlation would be 
introduced between I.L. and L.T.L. (see Table 3). 

6.1. Results of statistical analysis 

First of all, numerical simulation with mean values of input random 
variables was calculated, and the obtained result is compared to design 
value determined by a standard approach according to EN 1992 (127 

Table 3 
The utilised correlation matrix.   

E ft fc Gf ρ Es fys Et fyt P I. L. L. T. L. 

E 1 0.5 0.8 0.5 0 0 0 0 0 0 0 0 
ft 0.5 1 0.7 0.8 0 0 0 0 0 0 0 0 
fc 0.8 0.7 1 0.6 0 0 0 0 0 0 0 0 
Gf 0.5 0.8 0.6 1 0 0 0 0 0 0 0 0 
ρ 0 0 0 0 1 0 0 0 0 0 0 0 
Es 0 0 0 0 0 1 0.6 0 0 0 0 0 
fys 0 0 0 0 0 0.6 1 0 0 0 0 0 
Et 0 0 0 0 0 0 0 1 0.6 0 0 0 
fyt 0 0 0 0 0 0 0 0.6 1 0 0 0 
P 0 0 0 0 0 0 0 0 0 1 0 0 
I. L. 0 0 0 0 0 0 0 0 0 0 1 0.5 
L. T. L. 0 0 0 0 0 0 0 0 0 0 0.5 1  
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Fig. 9. EN 1992-1-1 ultimate capacity design value versus mean values-based NLFEA.  
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kN) in Fig. 9. The presented comparison shows there is significant un-
used capacity within the nonlinear branch of the calculated LD diagram. 
Note that unused capacity can be taken into account just up to a design 
value derived from the Fully Probabilistic approach (hereinafter FP) 
according to the recommendation in [11] (see Section 6.3). 

It is necessary to assume correlated random material characteristics 
in order to represent real material, especially in the case of concrete. 
However, probabilistic analysis becomes much more complicated in 
such cases. The very first problem is sampling from a joint probability 
distribution described by marginal distributions and a correlation ma-
trix, which is not a complete set of information [46]. There are two 
possible solutions for practical analysis: the assumption of a specific 
copula (Nataf transformation), or combinatorial optimisation. Since the 
choice is not easy, and this paper is intended to demonstrate and 
examine the real application of the probabilistic design of structures, it 
was decided that both methods would be used, and the results 
compared. Note that the evaluation of a single NLFEA run took about 10 
h and thus it was decided to generate a set of 100 simulations using the 
small-sample LHS mean technique with input random variables corre-
lated by combinatorial optimisation to conduct sensitivity analysis and 
subsequently create efficient surrogate models to be utilised for further 
research purposes [61]. Fig. 10 shows the LD curves of the generated 
simulations used to construct a surrogate model based on polynomial 
chaos expansion [61]. 

For comparison, a traditional approach consisting of LHS mean and 
Nataf’ transformation was employed to generate a set of 100 correlated 
input random vector realisations. The obtained results (depicted in 
Fig. 11) are in agreement with the results of the alternative combina-
torial optimisation approach and the statistical moments are identical 
for both methods. Therefore, it can be concluded that the combinatorial 
optimisation approach is an efficient alternative for the small-sample 

stochastic analysis of computationally demanding mathematical 
models and it can be recommended especially in cases with complicated 
joint probability distribution function of input random variables, where 
traditional approach might fail to create a correlated sample. On the 
other hand, in case of lognormally or normally distributed random 
variables, it is beneficial to use Nataf’s transformation due to the pos-
sibility of backward transformation to uncorrelated space. This might be 
crucial for sensitivity analysis, as is described in the following 
subsection. 

6.2. Results of sensitivity analysis 

The traditional sensitivity analysis method in statistics is represented 
by the correlation between an input variable and the quantity of interest 
[62,63]. Although standard measurement via the Pearson correlation 
coefficient is simple and efficient for linear monotonic dependency, it is 
necessary to utilise a generalised measure for non-linear monotonic 
relationship called non-parametric Spearman rank-order correlation 
technique. This method only works with ranks of input and output 
realisations as follows: 

rs,i =

∑Nsim
j=1 xrjyrj − Nsimxryr

(Nsim − 1)σxrσyr
, rs,i ∈ 〈− 1; 1〉 (16)  

where xr and yr are the two ranks of each observation sorted in ascending 
order, Nsim is the number of performed simulations xr and yr are the 
arithmetical mean of obtained ranks and σxr and σyr are standard de-
viations of ranks. In case of simulation within the continual design 
where the probability of occurrence of two simulations with an equal 
value of some parameter is 0 might be Spearman rank-order correlation 
evaluated as: 

Fig. 10. LD curves: output from 100 NLFEA simulations.  

Fig. 11. LD curves: output from 100 NLFEA simulations.  
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ρS = 1 −
6
∑

d2
i

n(n2 − 1)
(17)  

where n is the number of realisations, and di is the difference between 
paired ranks. The input-result diagrams are depicted in Fig. 12. This 
technique gives essential information about the strength and direction of 
dependence between input variables and the result of the mathematical 
model. The advantage of Spearman rank-order correlation is that results 
are naturally obtained as a by-product of LHS simulation and no addi-
tional demanding computation is needed. 

Sensitivity analysis may be profoundly affected by the correlation 
among input random variables. The correlation among variables might 
be understood as a stochastic description of the complex natural re-
lations which are not directly involved within a numerical model. 
Sensitivity analysis of the correlated model captures the cumulative 
effects of interdependent parameters. Such analysis corresponds to real- 
life behaviour of the modelled entity, but it does not provide objective 
information of the influence of numerical model parameters to the 

observed output. Thus, it is necessary to analyse uncorrelated space as 
well to identify the actual role of input random variables. The obtained 
results for correlated space are depicted in Fig. 13 and for uncorrelated 
space in Fig. 14. In both cases, the essential material characteristics of 
concrete are apparent. It is possible to see the significant difference 
between correlated and uncorrelated space. Generally, in correlated 
space, there is a high correlation among concrete material characteris-
tics, and thus their influence is together dominant in comparison to 
other variables. For correct interpretation of such results, correlated 
variables must be assumed as a group of variables. Note that, informa-
tion about sensitivity in correlated space is valid only for this one sto-
chastic model, including the given dependency structure. The mutual 
influence of concrete material parameters observed in model with cor-
relation was verified by analysis of model without correlation showing 
that introduced uncertainty has a significant influence on immediate 
losses of prestressing. According to expectation, the compressive 
strength of concrete does not influence the model’s performance (for 
given limit state). The significant influence of Young’s modulus of 
concrete might be explained by the fact that it is involved within the 
utilised model for evaluation of prestressing losses. The assumption of 
uncorrelated material characteristics is not realistic, but such informa-
tion may be crucial for the reduction of the stochastic model and further 
work possibly utilising different dependency structures etc. 

The computational requirements of many available probabilistic 
methods, safety formats and surrogate models are strongly dependent on 
the size of the stochastic model. Thus, it is crucial to reduce the sto-
chastic model as much as possible for further research. The reduced 
stochastic model contains only concrete material characteristics and 
uncertainty for immediate losses of prestressing in agreement with the 
sensitivity analysis described above. The stochastic model of concrete is 
fully described by the data available in Table 1. Note that the full sto-
chastic model corresponds to the one described in Table 2. Random 
variables of concrete characteristics are statistically correlated accord-
ing to the correlation among concrete parameters in Table 3. The cor-
relation among concrete parameters is based on the results of laboratory 
experiments and information provided by the manufacturer. 

Fig. 12. Random material characteristics of concrete versus ultimate shear strength.  

Fig. 13. Spearman rank-order correlation between input random variables and 
the ultimate shear strength of precast prestressed concrete roof girders for 
correlated space. 
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The motivation for the performed sensitivity analysis was to reduce 
the stochastic model of the LDE7 roof girder utilised for the subsequent 
reliability-based optimisation of the LDE7 girder’s structure. The per-
formed sensitivity analysis helped to increase the accuracy of the sur-
rogate models utilised within the reliability-based optimisation and to 
reduce the otherwise huge computational burden. 

6.3. Probabilistic design of girders 

In compliance with the semi-probabilistic approach implemented in 
the Eurocodes, the CoV of resistance vR should generally consist of three 
parts: geometrical uncertainties vg, modelling uncertainties vm, and the 
uncertainty of the resistance due to material variability vf. The 
geometrical uncertainties are minimal due to the applied manufacturing 
procedure, and their effect can be neglected. Modelling uncertainties are 
included in the stochastic model by IL and LTL - uncertainty for imme-
diate or long-term losses of prestress. Therefore, the total CoV vR is 
reduced to vf , which can be obtained directly from statistically pro-
cessed LHS results, as mentioned (for example) in [64,65], in this spe-
cific application. Nonetheless, note that the estimation of the modelling 
uncertainty of NLFEA has been a topic of high interest for the last decade 
and is not connected to the estimation of vf. As a result, it is generally 
possible to use the additional safety factor γRd associated with model 
uncertainty, which can be based on additional information (i.e. recom-
mendations from scientific papers which are usually focused on specific 
structures, e.g. [66]), or on additional analysis, which is typically based 
on Bayesian calibration, as described in [67]. The design value of 

resistance can then be further reduced to: 

Rd =
μRexp(− αRβnvf )

γRd
(18) 

As was already discussed, in order to estimate a design value for 
resistance which satisfies the given safety requirements, it is necessary 
to calculate the percentile of shear resistance corresponding to the target 
failure probability pf = 0.0012 according to recommendations included 
in [11] (the nominator of the above equation). The procedure is based 
on the separation of resistance and the load action variables under the 
assumption of the lognormal distribution of R. Thus, one only needs the 
first two statistical moments of R. Therefore, the mean and variance 
obtained from LHS samples were used for the estimation of the given 
percentile. It is interesting that Nataf’s transformation and combinato-
rial optimisation lead to identical results (the difference between the 
mean value and standard deviation is around 1kN). Thus, the results of 
the small-sample approach implemented in FReET (FP) were assumed 
for the estimation of the design value depicted in Fig. 15, and the result 
is compared to that of normative methods found in Eurocode EN 1992-1- 
1, the global safety factor (GSF) method stated in EN 1992-2 for the non- 
linear analysis of concrete structures, and the standard partial safety 
factor (PSF) method laid down in EN 1990. PSF and GSF are simplified 
probabilistic methods based on FORM and thus can be compared to the 
general FP method, even though PSF and GSF assume conservative 
generally applicable values for the material or modelling uncertainties, 
which are different from the FP of a specific structure. Of course, FP is 
much more time-consuming, and it needs additional information about 
the stochastic model. Due to this, it is usually used for the calibration of 
the PSF for specific types of structures, such as membranes [68], or it can 
be beneficially employed for precast structural members, as described in 
this paper. 

As can be seen, the design value determined by FP method is 
significantly higher in comparison to normative methods. Analytical 
approach, according to EN 1992-1-1 leads to lower design value due to 
the linearization of a real problem. Nevertheless, PSF and EN 1992-2 
should generally lead to similar results as FP, and such differences 
might be interesting for practice. Note that our mathematical model is 
represented by the non-linear finite element method with the complex 
stochastic model including dependency structure of concrete material 
characteristics and thus it is not generally recommended to apply PSF 
due to non-linearity of the model. Last normative approach EN-1992 is 
recommended only for the compressive type of failure, and thus it 
should not be applied for general structures. Moreover, none of these 
methods is able to take correlation among input variables into account. 

Fig. 15. Estimated structural response statistic and left tail of PDF of ultimate shear capacity.  

precast prestressed concrete roof girders for correlated space 

Fig. 14. Spearman rank-order correlation between input random variables and 
the ultimate shear strength of precast prestressed concrete roof girders for 
uncorrelated space. 
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Considering FP as the most advanced reference method (209,97 kN =
100%), we observe a significant drop of design ultimate shear capacity 
in case of normative conservative approaches: EN 1992-2 - decrease 
28%, EN 1992-1-1 – 40% and PSF – 42%. Although normative methods 
are regularly used for design and analysis of structures represented by 
non-linear FEM, the FP method is the only solution, which is advanced 
and not extremely conservative, applicable for complex problems as the 
one presented herein. Future research will be focused on advanced and 
simplified methods for estimation of the coefficient of variation to 
determine design capacity, which is beyond the scope of this paper. 

7. Conclusion 

The paper describes the integration/application of the modelling of 
nonlinearity and uncertainty to predict the shear failure behaviour of 
prestressed concrete girders in the light of advanced statistical simula-
tion and probabilistic-based design. The approach is complex, going 
from fracture-mechanical parameter determination through the 
advanced deterministic 3D computational modelling of girders up to 
stochastic modelling. The aim was to estimate the mean value and 
variability of ultimate shear capacity, and subsequently to present and 
verify the probabilistic design. 

The complex stochastic modelling and design of precast prestressed 
concrete girders failing in shear involved several key steps: First, 
experimental studies were performed on scaled elements as well as on 
full-scale girders. These tests served as the basis for developing the 
deterministic nonlinear model and for the subsequent probabilistic 
assessment of structural resistance. Sensitivity analyses were performed, 
and a surrogate model was also used. Finally, the fully probabilistic 
design method was performed and compared with rather conservative 
normative approaches. 

State-of-the-art methods were used to perform this practical 
industry-oriented research: For the preparation of the stochastic model, 
fracture-mechanics parameter identification was carried out based on an 
experimental/computational method using an ANN, while advanced 
NLFEA analysis was utilised for the nonlinearity modelling and small- 
sample simulation with correlation control was employed for the sto-
chastic modelling. The degree of complexity that was used for this in-
dustrial application is, in a certain sense, unique. 

The paper mainly describes stochastic modelling as part of a complex 
approach using a full-scale TT shaped roof girder as a benchmark. The 
mean value and variance of ultimate shear capacity were estimated with 
high accuracy. It was found that probabilistic design leads to a signifi-
cantly higher design shear capacity (210 kN) in comparison to conser-
vative design according to EN methods. This finding contributed to cost 
savings during girder production, while ensuring the manufactured 
structural elements exhibited the required level of reliability. 

Generally, the developed procedures can be routinely applied for the 
modelling of other precast products. Future research will be based on the 
developed deterministic and stochastic models of girders and focused on 
the utilisation of alternative semi-probabilistic approaches for the 
design of these concrete elements. A further goal is to perform the 
reliability-based optimisation of a LDE7 girder element in order to in-
crease capacity and to reduce the cost of production further. 
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A B S T R A C T

The paper is focused on the efficient estimation of the coefficient of variation for functions of correlated
and uncorrelated random variables. Specifically, the paper deals with time-consuming functions solved by
the non-linear finite element method. In this case, the semi-probabilistic methods must reduce the number
of simulations as much as possible under several simplifying assumptions while preserving the accuracy of
the obtained results. The selected commonly used methods are reviewed with the intent of investigating their
theoretical background, assumptions and limitations. It is shown, that Taylor series expansion can be modified
for fully correlated random variables, which leads to a significant reduction in the number of simulations
independent of the dimension of the stochastic model (the number of input random variables). The concept of
the interval estimation of the coefficient of variation using Taylor series expansion is proposed and applied to
numerical examples of increasing complexity. It is shown that the obtained results correspond to the theoretical
conclusions of the proposed method.

1. Introduction

Today, non-linear finite element analysis (NLFEA) is employed ever
more frequently for the design and assessment of structures, especially
concrete structures with significant non-linear behaviour. Moreover in
the last decade, it has become more common to use reliability analysis
of real structures. This trend reflects the higher economical and safety
requirements placed on engineering in todays society. Therefore, it is
natural to connect NLFEA and reliability analysis in order to obtain ac-
curate results [1–4]. Although the combination of NLFEA and reliability
analysis is a strong tool for the realistic modelling of structures, it is also
still highly time consuming to perform the reliability analysis of large
non-linear mathematical models with many input random variables.

This paper is focused on the semi-probabilistic approach, which
is well known from EN 1990 and partial safety factors [5]. This ap-
proach is able to greatly reduce the number of non-linear calculations
necessary in order to estimate the design value of resistance satisfy-
ing the target reliability when the approach is used instead of the
direct calculation of failure probability. However, it is still challeng-
ing to apply the semi-probabilistic approach to non-linear mathemat-
ical models solved by finite element software, when one deals with
the non-linearity of functions combined with highly computationally
demanding calculations.

Assuming a mathematical model of input random vector 𝐗 de-
scribed by a specific joint probability distribution, the basic reliability

∗ Corresponding author.
E-mail addresses: novak.l@fce.vutbr.cz (L. Novák), novak.d@fce.vutbr.cz (D. Novák).

concept is given as 𝑍(𝐗) = 𝑅−𝐸, where 𝑍(𝐗) represents safety margin,
which is defined as the difference between structural resistance 𝑅 and
action effect 𝐸. Failure of the structure is represented by condition
𝑍(𝐗) < 0. In the semi-probabilistic approach, the resistance of structure
𝑅 is separated and the design value of resistance 𝑅𝑑 that satisfies safety
requirements is evaluated, instead of the direct calculation of failure
probability 𝑝𝑓 = 𝑃 (𝑍(𝐗) < 0). The typical formula for the estimation
of 𝑅𝑑 , assuming a lognormal distribution of 𝑅, is

𝑅𝑑 = 𝜇𝑅 ⋅ 𝑒𝑥𝑝(−𝛼𝑅𝛽𝑣𝑅), (1)

where 𝜇𝑅 is the mean value, 𝑣𝑅 is the coefficient of variation (CoV)
and 𝛼𝑅 represents sensitivity factor derived from First Order Reliability
Method (FORM) [6,7]; the recommended value is 𝛼𝑅 = 0.8 according
to [5]. The target reliability index 𝛽 for the ultimate limit state,
moderate consequences of failure and a reference period of 50 years
is set at 𝛽 = 3.8 according to the Eurocode. Note that, from a proba-
bilistic point of view, the whole process represents the estimation of a
quantile satisfying the given safety requirements under the prescribed
assumption of lognormal distribution.

Obviously, for the determination of a design value by a semi-
probabilistic approach, it is crucial to estimate the mean value and
variance of structural resistance 𝑅 = 𝑟 (𝐗) accurately. This can be done
via various techniques, such as numerical quadrature [8], simplified
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methods for the estimation of the coefficient of variation (ECoV meth-
ods) [9], or stratified sampling [10]. Although simplified ECoV methods
are often discussed at conferences, e.g. [11–14], and recommendations
already exists in fib Model Code 2010 [15] and such methods are
expected to be included in the Eurocode and fibModel Code 2020, there
are still no significant scientific publications presenting the theoreti-
cal background and more importantly the limitations of the existing
methods. Therefore, this paper contains a brief review of commonly
used methods and also an investigation of the theoretical background
of selected methods and their connection to well-known mathematical
concepts.

ECoV methods offer a balance between computational cost and
accuracy. However ECoV methods also have several limitations due to
the assumed simplifications. Therefore besides an overview of ECoV
methodology, this paper presents a novel generalization of ECoV meth-
ods for correlated random variables, since material characteristics (es-
pecially in the case of concrete structures) are correlated and this may
play a crucial role in probabilistic analysis. In most cases, there is a
lack of information on statistical correlation. Therefore, it is useful to
examine two extreme cases (uncorrelated and fully correlated random
variables). The interval ECoV approach and novel Eigen ECoV for fully
correlated case are thus proposed in this paper.

2. Safety formats for NLFEA

The safety formats that include ECoV methods can be sorted by type
of simplification into three levels as will be described in this section.
Since non-linear mathematical models are generally not proportional,
the standard quantile-based approach (level I) may lead to incorrect
results. Accurate results are only guaranteed if the probability distri-
bution of resistance 𝑓𝑅 is identified together with statistical moments
(Level III methods), which might not be a simple matter in general cases
and is definitely time-consuming. Therefore, it is beneficial to assume
several simplifications and employ Level II methods representing a
compromise between accuracy and efficiency.

2.1. Level I: Quantile-based methods

Quantile-based methods are based on the very strict assumption
that 𝑟(𝐗𝑑 ) = 𝑅𝑑 , i.e. a numerical simulation with input variables
set to a generally desired quantile (e.g. design 𝐗𝑑) leads to a result
corresponding to the identical desired quantile of response distribution
𝑅. Of course, this might be a severe problem in case of NLFEA,
where a simulation with extreme input variable values may lead to
the unrealistic behaviour of the computational model, which is usually
verified within a specific range of input variables. However, such an
approach can still be acceptable for simple structural members with
a single almost linear failure mode and low 𝑣𝑅, e.g. the bending of a
simple beam.

2.1.1. Partial safety factors
According to Partial Safety Factors (PSF) method proposed in EN

1990 [5], NLFEA is computed with design values of input random
variables and it is assumed that the obtained result corresponds to the
design value of resistance 𝑅𝑑 [16]. The design values of input vari-
ables are typically derived from characteristic values using normative
coefficients 𝛾𝑀 , which consider material and model uncertainty:

𝑅𝑑 = 𝑟(𝑋1∕𝛾𝑀 , 𝑋2∕𝛾𝑀 ,…). (2)

Note that, the design values in the partial safety factors method
are extremely low, thus possibly leading to the unrealistic redistribu-
tion of internal forces and even to different structural failure modes.
One solution might be the calibration of partial safety factors based
on laboratory experiments involving material and structural measure-
ments [17].

2.1.2. Global safety factor according to EN 1992-2
In the global safety factor concept according to EN 1992-2 [18], the

design value is estimated as follows:

𝑅𝑑 =
𝑟(𝑓𝑦𝑚, 𝑓𝑐𝑚,…)

𝛾𝑅
, (3)

where 𝑓𝑦𝑚 = 1.1𝑓𝑦𝑘 is the mean value of the yield strength of steel rein-
forcement and 𝑓𝑦𝑘 represents its characteristic value (5% quantile), 𝑓𝑐𝑚
is the reduced mean value of concrete because of its higher variability
and the idea shown in Eq. (4) that design values should correspond
to the same probability and reflect the safety of normative material
partial safety factors 𝛾𝑠 = 1.15 and 𝛾𝑐 = 1.5. The global safety factor
for resistance is set as 𝛾𝑅 = 1.27 including model uncertainty.

𝑓𝑐𝑚 = 𝛾𝑠 1.1
𝑓𝑐𝑘
𝛾𝑐

≈ 0.85 𝑓𝑐𝑘. (4)

It is assumed that design values of concrete and steel should corre-
spond to an identical quantile of probability. Furthermore, it is assumed
that the mean value of steel can be obtained as 𝑓𝑦𝑚 = 1.1𝑓𝑦𝑘, and thus
𝑓𝑦𝑑 = 𝑓𝑦𝑚∕1.27.

Therefore, 𝑓𝑐𝑚, according to Eq. (4), reflects the partial safety factors
by virtue of the presented rationale. Note that 𝑓𝑐𝑚 does not represent
the mean value of concrete material characteristics and it is lower
than the characteristic values. As a result, it includes additional safety
due to the higher variability of concrete. Also note that for concrete
characteristics, Eurocode 2 allows only the compressive type of failure.

2.2. Level II: Simplified probabilistic methods

The task of Level II methods is reduced to the estimation of the mean
value 𝜇𝑅 and variance of 𝑅, represented by the coefficient of variation
𝑣𝑅, which can be further decomposed as:

𝑣𝑅 =
√

𝑣2𝑔 + 𝑣2𝑚 + 𝑣2𝑓 , (5)

where 𝑣𝑔 or 𝑣𝑚 represents the coefficient of variation caused by geomet-
rical or model uncertainties and the 𝑣𝑓 coefficient of variation caused
by the material. There are several studies dealing with model uncer-
tainties and it is necessary to adopt 𝑣𝑔 or 𝑣𝑚 for specific structures [16,
19,20]. Therefore for the sake of generality, the paper is focused only
on the estimation of the coefficient of variation of mathematical model
caused by the uncertainty of material parameters 𝑣𝑓 .

2.2.1. Numerical quadrature
A classic method to estimate moments of function 𝑅, was proposed

in 1975 by Rosenblueth [8]. This point estimate method is simple and
direct, thus the method can be easily employed in practical applica-
tions. Moreover, Christian and Baecher [21] have shown its robustness
and mathematical background in numerical quadrature. The expected
value of the m-th moment of function 𝑟(𝐗) can be estimated as:

E
[
𝑅𝑚] ≈

2𝑁∑
𝑖=1

𝑃𝑖 ⋅ 𝑟
𝑚
𝑖 , (6)

where 𝑃𝑖 =
1
2𝑛 are weighting factors and 𝑟𝑖 is a result of mathematical

model. Since the function 𝑟(𝐗) is computed in 2𝑁 points with coor-
dinates plus/minus one standard deviation 𝜎𝑋𝑖

for the 𝑖-th random
variable, the computational requirements increase rapidly with the
number of input random variables – 2𝑛 simulations are needed to esti-
mate the statistical moments of 𝑅 and thus it cannot be recommended
for typical engineering applications.
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2.2.2. ECoV by Červenka
The computationally efficient ECoV method was proposed in 2008

by Červenka [22]. The method is based on a simplified formula for
the estimation of a characteristic value corresponding to a lognormal
variable with the mean value 𝜇𝑅 and 𝑣𝑓 :

𝑅𝑘 = 𝜇𝑅 𝑒𝑥𝑝
(
−1.645 𝑣𝑓

)
, (7)

where −1.645 corresponds to the 5% quantile of standardized Gaus-
sian distribution 𝛷(0.05). After simple mathematical operations and
under the assumption that 𝑅𝑚 ≈ 𝜇𝑅, the coefficient of variation of 𝑅
associated with material uncertainties 𝑣𝑓 can be estimated as:

𝑣𝑓 = 1
1.645

𝑙𝑛
(
𝑅𝑚
𝑅𝑘

)
, (8)

and the global resistance safety factor is calculated as:

𝛾𝑅 = 𝑒𝑥𝑝(𝛼𝑅𝛽𝑣𝑓 ). (9)

Note that, just 2 NLFEA simulations are needed in this approach in-
dependent of the size of the stochastic model – 𝑅𝑚 ≈ 𝑟

(
𝝁𝑿

)
with mean

values of input random variables and 𝑅𝑘 using characteristic values (5%
percentile) of input variables. Obviously, there is the strong assumption
that 𝑅𝑘 ≈ 𝑟

(
𝑿𝒌

)
. However there is significant advantage in comparison

to previous methods, since it estimates 𝑣𝑓 and thus the design value 𝑅𝑑
corresponds to target safety requirements and the specific distribution
of 𝑅. Moreover the characteristic values of material parameters are not
as extremely low as in the case of PSF and may not lead to structural
system or material model exhibiting unrealistic behaviour, which can
be considered as a significant advantage. Note that, the described
concept was adopted in the fib Model Code 2010 [15] and is widely
accepted in the engineering community todays [23]. However, in spite
of the success of this method, its theoretical background has not yet
been sufficiently investigated. In this paper an attempt to fill this gap
has been made, primarily in Section 4.1.

2.2.3. Taylor series expansion
Let us assume the mathematical model 𝑟 (𝐗) is infinitely differen-

tiable in an open interval around the mean values. Under this assump-
tion, it is possible to expand the original model into an infinite Taylor
series:

𝑅 = 𝑟(𝐗) = 𝑟(𝝁𝑿 )+∇𝑟(𝝁𝑿 ) ⋅ (𝐗−𝝁𝑿 )+
1
2
(𝐗−𝝁𝑿 ) ⋅∇∇𝑟(𝝁𝑿 ) ⋅ (𝐗−𝝁𝑿 )+⋯

(10)

where the derivatives are evaluated at 𝝁𝑿 . In engineering applications,
it is common to assume that the terms of TSE are only linear and
that input random variables are independent. For the sake of clarity,
the commonly known analytical expressions for the estimation of the
expected value E [𝑅] and variance VAR [𝑅] of a function 𝑟 (𝐗) of 𝑁
independent random variables, approximated by linear terms of the
TSE, are as follows:

E[𝑅] ≈ 𝑟
(
𝜇𝑋1

, 𝜇𝑋2
,… , 𝜇𝑋𝑛

)
, (11)

and

VAR[𝑅] ≈
𝑁∑
𝑖=1

(
𝜕𝑟(𝑋)
𝜕𝑋𝑖

)2
𝜎2𝑋𝑖

, (12)

As can be seen from the equations, the efficiency and accuracy of
TSE depends on the number of used terms and the differencing scheme
for the practical computation of derivatives. A practical example of
TSE utilization is the ECoV method proposed by Schlune et al. [24],
which can be seen as a TSE in which, derivatives are approximated by
one-sided differencing as:
𝜕𝑟(𝑋)
𝜕𝑋𝑖

=
𝑅𝑚 − 𝑅𝐗𝐢∆

𝛥𝑋𝑖

. (13)

where the response of mathematical model 𝑅𝑚 is determined by a
calculation with mean values, and 𝑅𝐗𝐢∆ is the result of a model using
mean values of input random variables and a value of the 𝑖-th random
variable which has been reduced by 𝛥𝑋𝑖

. This differencing scheme has
been adapted for structural design according to Schlune et al. using
step size parameter 𝑐 = (𝛼𝑅𝛽)∕

√
2 and 𝑋𝑖𝛥 = 𝐹−1

𝑖 (𝛷(−𝑐)), where 𝐹−1
𝑖

is an inverse cumulative distribution function of the 𝑖-th variable and
𝛷 is the cumulative distribution function of the standardized Gaussian
distribution. For the sake of clarity, the difference is calculated as
𝛥𝑋𝑖

= 𝜇𝑋𝑖
−𝑋𝑖𝛥.

Schlune et al. thus proposed a simple formula [24] for the co-
efficient of variation caused by material uncertainty 𝑣𝑓 if material
parameters are not correlated as:

𝑣𝑓 ≈ 1
𝑅𝑚

√√√√√
𝑁∑
𝑖=1

(
𝑅𝑚 − 𝑅𝐗𝐢∆

𝛥𝑋𝑖

𝜎𝑋𝑖

)2

. (14)

Note that this approach requires 𝑁+1 simulations of NLFEA, where
𝑁 is the number of random variables. However, all simulations act as
a parametric study of a numerical model, which is usually performed
during the development of a model in industrial applications. As a
result, TSE can be recommended due to its medium computational cost
and strong theoretical background.

Of course, one can use various differencing schemes instead of
Eq. (13) depending on ones computational possibilities, as was pro-
posed by the authors of this paper in [25]. Assuming linear TSE, one of
the most promising advanced differencing schemes using 𝑛𝑠𝑖𝑚 = 2𝑁 +1
simulations is defined as:

𝜕𝑟(𝑋)
𝜕𝑋𝑖

=
3𝑅𝑚 − 4𝑅𝐗𝐢∆𝟐

+ 𝑅𝐗𝐢∆

𝛥𝑋𝑖

, (15)

where the middle additional term 𝑅𝐗𝐢∆𝟐
is obtained via the evaluation

of the original mathematical model with mean values and a reduced
𝑖-th variable 𝑋𝑖 𝛥2

= 𝜇𝑋𝑖
− 𝛥𝑋𝑖

∕2.

2.3. Level III: Monte Carlo methods

Monte Carlo (MC) type sampling methods are the only general tools
available for reliability or statistical analysis. However, it is necessary
to perform large number of calculations if they are used. Nonetheless,
the number of simulations is still lower than in the case of Level II
methods for large stochastic models and thus Level III for ECoV [10]
is recommended for large stochastic models or computationally cheap
computational models.

The main feature of MC techniques is their use of pseudo-random
sampling and the statistical analysis of performed deterministic sim-
ulations. Crude Monte Carlo is not efficient because thousands of
simulations are needed and the use of this approach in combination
with NLFEA, is not feasible in industrial applications. A stratified sam-
pling technique called Latin Hypercube Sampling (LHS) was developed
for the efficient estimation of statistical moments [26,27]. It drastically
reduces the number of needed simulations. LHS is not dependent on the
size of the stochastic model, and thus it is recommended for extensive
stochastic models. The cumulative distribution function of the input
variable is divided into 𝑛𝑠𝑖𝑚 equal intervals, where 𝑛𝑠𝑖𝑚 is the number
of simulations. Every value is picked within each segment. There are
several ways to choose the probability of picked value — mean value
of interval, median or random value. Once the values are chosen, the
random permutation of realizations is performed and random vectors of
input variables are generated. The described approach leads to uniform
distribution within a design domain. Additionally, MC type simula-
tion techniques are able to take the correlation among input random
variables into account. Several methods have been developed for this
purpose, e.g. generalized Nataf transformation [28] and optimization
techniques [29,30].
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Fig. 1. The presented semi-probabilistic methods together with their computational cost 𝑛 are depicted in 2-dimensional space (figure adapted from [31])..

2.4. Graphical comparison of safety formats

As was already shown by Pimentel et al. [31], each NLFEA sim-
ulation can be represented by a point in 𝑁-dimensional space called
the design domain. The design domain is considered to be the domain
of sampling probabilities, where coordinates of sampling points are
described by an input random vector. The 2-dimensional case can be
seen in Fig. 1 together with the sampling points used for the presented
safety formats. The stochastic model contains only 2 typical input
material characteristics – the yield strength of reinforcement 𝑓𝑦 and the
compressive strength of concrete𝑓𝑐 , which are considered to be random
variables described by specific probability distributions.

Level I: The PSF and the EN-1992 methods represented by triangles
are very efficient from the computational point of view — only one
simulation is needed but CoV is not estimated. Although quantile-based
methods are sufficient for a linear mathematical model, they may lead
to severe problems depending on the degree of non-linearity of mathe-
matical models solved by the NLFEA. Moreover, design values of input
random variables are defined only for selected material parameters
(excluding e.g. fracture energy).

Level II: ECoV by Červenka (represented in Fig. 1 by circles) always
works with 2 simulations — the mean and the characteristic values
of input random variables. On the other hand, TSE with differencing
according to Schlune et al. (represented in Fig. 1 by squares) is linearly
dependent (𝑛𝑠𝑖𝑚 = 𝑁 + 1), and the Numerical Quadrature (stars) is
exponentially dependent (𝑛𝑠𝑖𝑚 = 2𝑁 ) on the number of input random
variables. Although such dependency is not a problem for low dimen-
sional space, it can play a crucial role in industrial applications with
many input variables and thus it might be more efficient to employ
Monte Carlo type methods. The level III Monte Carlo type method is
represented by LHS (crosses) in the figure. LHS can be used for general
stochastic models and will be employed in this paper as a reference
solution.

3. Correlation among random variables

The presented ECoV methods are recommended for the practical
assessment of structures assuming that material characteristics are
independent, which is usually incorrect. This is especially true in the
case of concrete structures, where a correlation among compressive
strength, tensile strength and fracture energy is usually assumed [3,
32]. Therefore, the paper is focused on the generalization of ECoV
methods for structures with dependent input material characteristics,
which are typically obtained from laboratory experiments or assumed
according to the literature. General transformation between correlated
and uncorrelated space is briefly described in this section.

3.1. Nataf transformation

In a general case involving non-normal correlated random variables,
it is necessary to utilize what is known as the Rosenblatt transfor-
mation [33]. However, in practical applications only the marginal
distributions and the correlation matrix are usually known, which does
not provide complete information about the joint probability distribu-
tion [34]. Therefore, it is necessary to assume a specific copula [35]
or construct an arbitrary joint distribution using vine copulas [36],
which is beyond the scope of this paper. A special case of Rosenblatt
transformation that assumes Gaussian copula [37] is also known as
the Nataf transformation [38], which is usually utilized in reliability
applications. Nataf transformation to 𝝃 space is composed of three
steps:

𝝃 = 𝑇𝑁𝑎𝑡𝑎𝑓 (𝐗) = 𝑇3◦𝑇2◦𝑇1(𝐗). (16)

The first two steps are commonly known as iso-probabilistic trans-
formation, which uses the cumulative distribution function of variables
𝐹𝑥 and the Gaussian inverse cumulative distribution function 𝛷−1 as
follows:

𝑇2◦𝑇1(𝐗) ∶ 𝐗 ↦ 𝐙 = 𝛷−1(𝐹𝑥(𝐗)). (17)

The last step represents a transformation to uncorrelated space using
linear transformation. For this procedure, we can use the Cholesky
decomposition or the Eigen decomposition of the fictive correlation
matrix 𝐑𝐙. Using Cholesky decomposition, the decomposition is

𝐑𝐙 = 𝐋𝐋𝑇 , (18)

and final transformation using 𝜞 = 𝐋−1 thus reads

𝑇3 ∶ 𝐙 ↦ 𝝃 = 𝜞𝐙. (19)

The Nataf transformation, can be easily inverted in order to trans-
form 𝝃 ↦ 𝐗. Note that the transformation matrix 𝐋 is a lower triangular
matrix with a unit on the first entry of the main diagonal and therefore
the first coordinate 𝑥1 remains unchanged. This complication can be
circumvented by using Eigen decomposition instead of Cholesky de-
composition. The target covariance matrix Σ can be decomposed using
Eigen decomposition as:

Σ = Θ𝜆
1
2 𝜆

1
2 Θ𝑇 , (20)

where 𝝀 is the diagonal matrix of eigenvalues of Σ and Θ is the
eigenvector matrix associated with the eigenvalues. Instead of the
transformation matrix 𝐋, one can then use Θ𝜆

1
2 .
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3.2. Fictive correlation matrix

A critical task for Nataf transformation is the determination of 𝐑𝐙.
The fictive correlation matrix 𝐑𝐙 is a square symmetric positive-definite
matrix, and thus it is possible to perform Cholesky decomposition.
The assumed Gaussian copula is parametrized by elements 𝜌𝑧𝑖𝑗 of 𝐑𝐙.
Note that 𝜌𝑧 = 0 ↔ 𝜌𝑥 = 0 and ||𝜌𝑥|| ≤ ||𝜌𝑧|| as was shown in [34].
The relationship between fictive correlation coefficients 𝜌𝑧𝑖𝑗 and 𝜌𝑥𝑖𝑗
determined for 𝐗 is defined by the following integral equation:

𝜌𝑥𝑖𝑗 =
1

𝜎𝑖𝜎𝑗 ∬R2

{
𝐹−1
𝑖

[
𝛷
(
𝑧𝑖
)
− 𝜇𝑖

]
𝐹−1
𝑗

[
𝛷
(
𝑧𝑗
)
− 𝜇𝑗

]
× 𝜙2

(
𝑧𝑖, 𝑧𝑗 , 𝜌𝑧𝑖𝑗

)}
,

(21)

where 𝜇 is the mean value, 𝜎 is the standard deviation and 𝜙2 is the
bivariate standard normal probability density function parametrized by
fictive correlation coefficients 𝜌𝑧𝑖𝑗 . The computation of Eq. (21) might
be complicated for practical usage. Moreover, for specific combina-
tions of input parameters there is not a guaranteed solution (more
details about the limitations of Nataf transformation can be found
in [35]). Generally, a simplification of Eq. (21) according to Liu &
Kiureghian [39] can be in the form 𝜌𝑧 = 𝑡 ⋅ 𝜌𝑥, where 𝑡 is known for
several combinations of probability distributions of random variables.
The material characteristics are often assumed to be lognormaly dis-
tributed with coefficient of variation 𝑣 ≤ 0.5 in practical applications.
Assuming both random variables to be lognormally distributed, Liu &
Kiureghian derived 𝑡 in the following form:

𝑡 =
𝑙𝑛

(
1 + 𝜌𝑥𝑣1𝑣2

)

𝜌𝑥
√

𝑙𝑛
(
1 + 𝑣12

)
𝑙𝑛

(
1 + 𝑣22

) , (22)

where 𝑣1 and 𝑣2 are coefficients of variation of the first and second
random variable respectively. As can be found in [39], the derived
formula is exact in this specific case. Additionally, in common practical
applications, one can assume there is a positive correlation among
material characteristics which leads to negligible differences between
𝜌𝑧 and 𝜌𝑥 [34].

4. Ecov for functions of correlated random variables

Besides the general probabilistic methods in level III, it is also
possible to extend Level II of safety formats for correlated random vari-
ables. The numerical quadrature can be easily extended for correlated
variables via the modification of weighting factors 𝑃𝑖 as follows [21]:

𝑃(𝑠1 ,𝑠2 ...𝑠𝑛) =
1
2𝑛

[
1 +

𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

(𝑠𝑖)(𝑠𝑗 )𝜌𝑖𝑗

]
, (23)

where 𝑠𝑖 is a positive sign when the value of the 𝑖-th variable is the
mean plus the standard deviation 𝜎 and negative for points with a
coordinate mean value minus the standard deviation. Although it is
generally possible to use numerical quadrature, it is highly computa-
tionally demanding (𝑛𝑠𝑖𝑚 = 2𝑁 ) and thus its potential for industrial
applications is limited, and it will not be employed in numerical
examples.

The next presented Level II method – TSE – is more interesting
for industrial applications, since it is not highly computationally de-
manding. It is possible to generalize the TSE for correlated variables
using additional terms of the expansion. Specifically, an extension of
the method for dependent random variables can generally be obtained
from a first order TSE assuming correlation among random variables
represented by the correlation coefficient 𝜌 in analytical form as

VAR[𝑅] ≈
𝑁∑
𝑖=1

(
𝜕𝑟(𝑋)
𝜕𝑋𝑖

)2
𝜎2𝑋𝑖

+
∑

𝑖,𝑗=1,…,𝑁𝑖≠𝑗
𝜌𝑖,𝑗𝜎𝑋𝑖

𝜎𝑋𝑗

𝜕𝑟(𝑋)
𝜕𝑋𝑖

𝜕𝑟(𝑋)
𝜕𝑋𝑗

. (24)

However, higher terms of the TSE or more accurate approximations
of derivatives should be considered for the correct estimation of vari-
ance in the case of dependent input random variables and non-linear

functions. The authors of this paper recently proposed a methodology
consisting of three levels of increasing accuracy and complexity de-
scribed from the mathematical point of view in [25]. This methodology
can be used for an arbitrary correlation matrix.

There is no theoretical background available in literature for the
second presented Level II method (ECoV by Červenka), and thus it
is not possible to directly generalize it for any correlation matrix.
Therefore, the TSE for functions of fully correlated random variables
and its connection to ECoV by Červenka are investigated in the next
subsection.

4.1. Special case: ECoV for fully correlated random variables

There is often a strong assumption of fully correlated input random
variables in industrial applications, which will be adopted for the fur-
ther investigation of TSE. Without loss of generality, let us investigate
the situation in Gaussian space. Similarly as in the case of Eq. (7) for
lognormal distribution, ECoV by Červenka, which assumes Gaussian
distribution, is based on the following formula:

𝑅𝑘 = 𝜇𝑅
(
1 − 1.645 𝑣𝑓

)
, (25)

and 𝑣𝑓 is therefore obtained as:

𝑣𝑓 =
𝑅𝑚 − 𝑅𝑘
1.645 𝑅𝑚

, (26)

where 𝑅𝑘 = 𝑟
(
𝑿𝒌

)
and 𝑅𝑚 = 𝑟

(
𝑿𝒎

)
≈ 𝜇𝑅.

For further comparisons, let us set up the step size parameter of TSE
as 𝑐 = −𝛷(0.05) ≈ 1.645, which corresponds to the same quantile as in
ECoV by Červenka. The differencing scheme defined for the uncorre-
lated case in Eq. (13) can be transformed by a Nataf transformation
which has been parametrized by arbitrary correlation coefficients, as
can be seen in Fig. 2 (left).

The 𝑁-dimensional ellipsoid corresponding to 𝑠𝑖𝑔𝑚𝑎-distance is de-
scribed by eigenvectors (𝜃1,… , 𝜃𝑁 ) and eigenvalues (𝜆1,… , 𝜆𝑁 ) ob-
tained from the Eigen decomposition of a covariance matrix. Note that
in the limit case lim𝜌→1 𝜆1 = 𝑡𝑟 (𝜮) = 𝜎2𝛩 and lim𝜌→1 𝜆𝑖 = 0∀𝑖 > 1. In other
words, the 𝑁-dimensional joint probability distribution is reduced to a
1-dimensional projection with the distribution 𝑋𝛩 ∼  (

𝜇𝛩, 𝜆1
)
. The

Nataf transformation of 𝑿𝒊𝜟 is depicted in standardized Gaussian space
𝝃 for a 2D case with increasing positive 𝜌 ∈ ⟨0, 1) together with isolines
of bivariate Gaussian distribution in 𝑐 ⋅ 𝑠𝑖𝑔𝑚𝑎-distance. As can be seen
in Fig. 2 (left), with increasing 𝜌 → 1 the coordinates of 𝑿𝟏𝜟 transform
to 𝑿𝒌 and 𝑿𝒊𝜟∀𝑖 > 1 to 𝑿𝒎, and thus:

𝜕𝑟(𝑋)
𝜕𝑋𝑖

=
𝑅𝑚 − 𝑅𝑿𝒊𝜟

𝛥𝑋𝑖

= 0 ∀𝑖 > 1. (27)

The limit cases 𝜌 = 0 and 𝜌 = 1 are compared in Fig. 2 (right). As
can be seen, the iso-lines of bivariate Gaussian distribution in 𝑠𝑖𝑔𝑚𝑎-
distance (grey) and 𝑐 ⋅ 𝑠𝑖𝑔𝑚𝑎-distance (red) are reduced to a single line.
From the simple geometry, one can derive the following expressions:

𝛥𝛩 = 𝑐 ⋅
√
𝜆1 =

√√√√ 𝑁∑
𝑖=1

(
𝜇𝑋𝑖

−𝑋𝑖𝛥

)2
. (28)

Finally, the variance estimated by linear TSE for fully correlated
input variables can be estimated as:

VAR[𝑅] =
(
𝜕𝑟 (𝐗)
𝜕𝑋𝛩

)2
𝜆1, (29)

where the derivative is obtained from two simulations 𝑅𝑚 = 𝑟(𝑿𝒎) and
𝑅𝜣𝜟 = 𝑅𝑘 = 𝑟(𝑿𝟏𝜟) as

𝜕𝑟 (𝐗)
𝜕𝑋𝛩

=
𝑅𝑚 − 𝑅𝜣𝜟

𝛥𝛩
. (30)
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Fig. 2. Nataf transformation of a TSE in standardized Gaussian space. Transformation of 𝑿𝒊𝜟 with increasing 𝜌 together with isolines of bivariate Gaussian distribution (left).
Comparison of limit cases for 𝜌 = 0 and 𝜌 = 1 (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

For a direct comparison with ECoV by Červenka, 𝑣𝑓 from the
equation above is obtained as:

𝑣𝑓 =
𝜎𝑅
𝜇𝑅

=

√√√√√
(
𝑅𝑚 − 𝑅𝜣𝜟

𝑐 ⋅
√
𝜆1

)2

𝜆1
1
𝜇𝑅

=
𝑅𝑚 − 𝑅𝑘
1.645 𝑅𝑚

. (31)

Therefore, ECoV by Červenka (see Eq. (26)) can be seen as a special
case of the TSE for fully correlated random variables that assumes lin-
earity of the mathematical model together with a specific distribution
of 𝑅 (typically lognormal). If these assumptions are fulfilled ECoV by
Červenka is a highly efficient method. In the opposite case, it may lead
to inaccurate results. Note that this method is widely used without
knowledge of assumed fully correlated input random variables, which
usually increases the variance of the function in practical applications
and thus obtains conservative results.

As significant disadvantage of ECoV by Červenka is its theoretical
background based on the simplified formula Eq. (7), which is only
accurate for low 𝑣𝑅. Moreover, it cannot be easily generalized and thus
more complex ECoV formulas using different derivative schemes are
derived from the TSE for fully correlated variables in the following
section.

4.2. Eigen ECoV

Using differencing schemes proposed by the authors of this paper
in [25], one can create several formulas similar to ECoV by Červenka
directly from a TSE transformed by Nataf transformation for fully cor-
related random variables, which is depicted in Fig. 3 for Gaussian input
random variables. In the special case that 𝜌 → 1, the joint probability
distribution is reduced to the 1D distribution 𝑋𝛩 ∼  (𝜇𝛩, 𝜆1), which
can be expanded by the TSE.

If there is no assumption of Gaussian input random variables, one
has to use a corresponding probability distribution of input random
variables, i.e. 𝑋𝑖𝛥 = 𝐹−1

𝑖 (𝛷(−𝑐)). Moreover, the geometrical properties
become more complex and thus one has to assume a specific distribu-
tion of 𝑋𝛩 in order to calculate 𝛥𝛩 in physical space. Typically, one can
assume lognormal distribution and thus 𝛥𝛩 can be estimated as follows:

𝛥𝛩 = 𝜇𝛩 − 𝜇𝛩 ⋅ 𝑒𝑥𝑝(−𝑐 ⋅
√
𝜆1

𝜇𝛩
), (32)

where 𝜇𝛩 is calculated as:

𝜇𝛩 =

√√√√ 𝑁∑
𝑖=1

(
𝜇𝑋𝑖

)2
. (33)

Fig. 3. Graphical interpretation of Eigen ECoV.

The first order TSE leads to well known expressions for the variance
(Eq. (29)) and mean value 𝑅𝑚 ≈ 𝑟(𝑿𝒎) of structural resistance 𝑅. Fur-
thermore, one can use an arbitrary differencing scheme and step-size
parameter 𝑐. As was shown, simple backward differencing is used with
different 𝑐 by Schlune et al. [24] (𝑐 = (𝛼𝑅𝛽)∕

√
2) and Červenka [22]

(𝑐 = 1.645). Note that 𝑐 = 1.645 is assumed in Fig. 3. For the sake of
clarity, let us recall the following notation: 𝑅𝜣𝜟 = 𝑟(𝑿𝜣𝜟) and 𝑿𝜣𝜟 =
(𝑋1𝛥,… , 𝑋𝑁𝛥). The input vector consists of reduced values of input
random variables 𝑋𝑖𝛥 = 𝐹−1

𝑖 (𝛷(−𝑐)). The 𝛥𝛩 is calculated according
to Eq. (32) under the assumption of lognormally distributed 𝑋𝛩 or
Eq. (28) under the assumption of Gaussian 𝑋𝛩 (Gaussian input random
variables). The variance of 1D Eigen distribution is 𝜆1 = 𝑡𝑟 (𝛴) =∑𝑁

𝑖=1 𝜎
2
𝑋𝑖

. Based on the presented theory and notation, the following
variants of Eigen ECoV are proposed:

(a) The Eigen ECoV derived from the first order TSE using simple
backward differencing leads to the following expression for the
expected value, variance and CoV using two simulations:

E[𝑅] = 𝑅𝑚 ≈ 𝑟(𝑿𝒎), (34)

VAR[𝑅] ≈
(
𝑅𝑚 − 𝑅𝜣𝜟

𝛥𝛩

)2
⋅ 𝜆1, (35)
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𝑣𝑓 ≈
𝑅𝑚 − 𝑅𝜣𝜟

𝛥𝛩
⋅

√
𝜆1

𝑅𝑚
. (36)

(b) Furthermore the Eigen ECoV derived from the first order TSE
using advanced backward differencing leads to the following
expression for mean, variance and CoV using three simulations:

E[𝑅] = 𝑅𝑚 ≈ 𝑟(𝑿𝒎), (37)

VAR[𝑅] ≈
⎛
⎜⎜⎝

3𝑅𝑚 − 4𝑅𝜣 𝜟
𝟐
+ 𝑅𝜣𝜟

𝛥𝛩

⎞
⎟⎟⎠

2

⋅ 𝜆1, (38)

𝑣𝑓 ≈
3𝑅𝑚 − 4𝑅𝜣 𝜟

𝟐
+ 𝑅𝜣𝜟

𝛥𝛩
⋅

√
𝜆1

𝑅𝑚
, (39)

where 𝑅𝜣 𝜟
𝟐
= 𝑟(𝑿𝜣 𝜟

𝟐
) and position of 𝑿𝜣 𝜟

𝟐
= (𝑋1 𝛥

2
,… , 𝑋𝑁 𝛥

2
) is

depicted in Fig. 3. The input vector consists of reduced values of
input random variables:

𝑋𝑖 𝛥2
= 𝜇𝑋𝑖

−
𝜇𝑋𝑖

−𝑋𝑖𝛥

2
= 𝜇𝑋𝑖

−
𝛥𝑋𝑖

2
. (40)

(c) Additionally, using three identical simulations to those used
in case (b), one can derive the Eigen ECoV from the second
order TSE and thus obtain more accurate expressions. However
it is necessary to include the information of higher statistical
moments into the expression for variance in the case that 𝑋𝛩
has an assumed lognormal distribution (lognormally distributed
input random variables). The following expressions are derived:

E[𝑅] ≈ 𝑅𝑚 +
𝑅𝑚 − 2𝑅𝜣 𝜟

𝟐
+ 𝑅𝜣𝜟

𝛥2
𝛩

⋅
𝜆1
2
, (41)

𝑣𝑓 ≈
√
VAR[𝑅]
E[𝑅]

. (42)

• Assuming Gaussian 𝑋𝛩, the third central moment 𝜇3 = 0 and the
fourth central moment 𝜇4 ≈ 3𝜆21, and thus the variance is obtained
via the following expression:

VAR[𝑅] ≈
⎛⎜⎜⎝

3𝑅𝑚 − 4𝑅𝜣 𝜟
𝟐
+ 𝑅𝜣𝜟

𝛥𝛩

⎞⎟⎟⎠

2

𝜆1 +
⎛⎜⎜⎝

𝑅𝑚 − 2𝑅𝜣 𝜟
𝟐
+ 𝑅𝜣𝜟

𝛥2
𝛩

⎞⎟⎟⎠

2
𝜆21
2
.

(43)

• Assuming lognormally distributed 𝑋𝛩, higher central moments
must be included in the expression as follows:

VAR[𝑅] ≈
⎛
⎜⎜⎝

3𝑅𝑚 − 4𝑅𝜣 𝜟
𝟐
+ 𝑅𝜣𝜟

𝛥𝛩

⎞
⎟⎟⎠

2

𝜆1 +
⎛
⎜⎜⎝

𝑅𝑚 − 2𝑅𝜣 𝜟
𝟐
+ 𝑅𝜣𝜟

𝛥2
𝛩

⎞
⎟⎟⎠

2
𝜇4𝛩 − 𝜆21

4
+

+𝜇3𝛩

⎛⎜⎜⎝

3𝑅𝑚 − 4𝑅𝜣 𝜟
𝟐
+ 𝑅𝜣𝜟

𝛥𝛩

⎞⎟⎟⎠

⎛⎜⎜⎝

𝑅𝑚 − 2𝑅𝜣 𝜟
𝟐
+ 𝑅𝜣𝜟

𝛥2
𝛩

⎞⎟⎟⎠
. (44)

The third and fourth central moments can be derived for lognor-
mal distribution 𝑋𝛩 ∼  (𝜇𝐿𝑁 , 𝜎𝐿𝑁 ) directly from the shape
parameter 𝜎2𝐿𝑁 = 𝑙𝑛(1 + 𝜆1

𝜇2𝛩
) as:

𝜇3𝛩 =

[(
𝑒𝜎

2
𝐿𝑁 + 2

)√
𝑒𝜎

2
𝐿𝑁 − 1

]
𝜆

3
2
1 , (45)

𝜇4𝛩 =
[(

𝑒4𝜎
2
𝐿𝑁

)
+ 2

(
𝑒3𝜎

2
𝐿𝑁

)
+ 3

(
𝑒2𝜎

2
𝐿𝑁

)
− 3

]
𝜆21. (46)

4.3. Correlation interval ECoV

Since the information about correlation among input random vari-
ables is often vague and usually based on expert judgement, it is
beneficial to study two limit cases: uncorrelated variables and fully
correlated variables. The obtained results can be used for the reliable
estimation of variance or CoV. Moreover, an analyst can clearly see

Fig. 4. Interval ECoV approach assuming identical increasing 𝜌 among all variables.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

the consequences of the imprecise determination of correlation matrix,
which is often neglected. In the case of uncorrelated input random
variables, TSE with simple (𝑛𝑠𝑖𝑚 = 𝑁 +1) and advanced (𝑛𝑠𝑖𝑚 = 2𝑁 +1)
differencing can be used according to the TSE methodology presented
in [25]. The fully correlated case is examined via the proposed Eigen
ECoV methods in three variants together with ECoV by Červenka. This
methods are utilized in numerical examples in order to compare and
show the limitations of the existing and proposed ECoV methods. From
the practical point of view, it is beneficial to estimate variance while
assuming fully correlated random variables in the case of a limited
computational budget (large mathematical models) and only make
further use of the TSE in order to obtain an accurate estimate of the
role of correlation.

5. Numerical examples

The results of the numerical examples in this section are presented
for two variants of stochastic models: under the assumption of Gaus-
sian input variables and under the assumption of lognormal input
variables. The reference solution is obtained by LHS with 𝑛𝑠𝑖𝑚 = 104
for uncorrelated random variables and also for increasing 𝜌 = ⟨0, 1)
with step 0.1 (identical 𝜌 is assumed among all input variables). The
two extremes (fully correlated and uncorrelated) define the boundaries
for the interval of variance as can be seen in Fig. 4, where the blue
line represents the reference solution obtained by a Monte Carlo type
simulation technique for increasing 𝜌, and the interval is highlighted
in grey. The depicted results correspond to Example 3, though the
approach was used for all examples.

The variance of the uncorrelated case is estimated via a linear TSE
with a simple derivative scheme (Eq. (13)) represented in the figures by
a dashed line, and with an advanced differencing scheme (Eq. (15)) in
figures represented by a dot-and-dash line. Note that these two methods
represent the first and second order of the methodology proposed
in [25]. The estimation of variance for a fully correlated limit case is
obtained by the proposed Eigen ECoV and ECoV by Červenka, which is
equal to Eigen ECoV (a) in Gaussian space, though there is a difference
due to the approximation of lognormal distribution by Eq. (8).

5.1. Example 1: Ultimate bending moment

The very first example is a classical mathematical model of the
ultimate bending moment of a reinforced section taken from Ditlevsen
[40]:

𝑅 = 𝑟(𝐗) = 𝑋1𝑋2𝑋3 −𝑋4
𝑋2

1𝑋
2
2

𝑋5𝑋6
, (47)
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Fig. 5. Results of example 1 assuming Normal (left) and Lognormal (right) distribution of input variables. The variance of the uncorrelated case is estimated by the TSE with
simple (dashed) and advanced (dot-and-dash) differencing. The variance of the correlated case is estimated by ECoV methods, which are depicted in the corresponding columns
by solid lines. The reference solution (grey interval) is estimated by LHS.

Table 1
Stochastic model of the first example described by the first and the second statistical
moments of input random variables.

Variable 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6

Mean value 1260 mm2 250 N/mm 770 mm 0.55 30 N∕mm2 250 mm
Standard deviation 63 mm2 17.5 N/mm 10 mm 0.055 4.5 N∕mm2 5 mm

and the stochastic model contains six input random variables summa-
rized in Table 1.

The results are compared in Fig. 5. The 𝑋-axis is divided into
four columns representing the results of the ECoV methods used for
the estimation of variance for fully correlated variables, and the 𝑌 -
axis represents VAR [𝑅]. Note that the grey colour corresponds to the
variance interval determined by LHS (for the sake of clarity, results
for intermediate 𝜌 are not depicted). The TSE with both differencing
schemes for uncorrelated random variables estimated almost identical
variance, which reflects the linearity of the mathematical model. From
the obtained results for fully correlated variables it is clear that ECoV
by Červenka provided a very good estimate of the variance of the
lognormal case, since this case fulfils both assumptions of the method:
that the mathematical model is almost linear and the distribution of
𝑅 is close to lognormal. In such cases, ECoV by Červenka represents
the most efficient method. However, if the stochastic model contains
Gaussian distribution, ECoV by Červenka fails. Note that ECoV (a)
leads to inaccurate results in both cases due to the simple derivative
scheme employed. However, using one more simulation (𝑛𝑠𝑖𝑚 = 3) and
expressions (b) and (c) of Eigen ECoV leads to accurate results that are
independent of the distribution of input variables.

5.2. Example 2: Approximation of an industrial example

The second example is motivated by the industrial applications in
civil engineering that are often represented by non-linear finite element
models — typically the ultimate resistance given by the peak of the
load–deflection curve of a concrete structural element. The behaviour
of such physical system is often monotone with a slightly non-linear
progression. A typical function solved by the FEM can be found for
example in [24], and due to the computational demands of FEM, its

shape was replicated by the following artificial function suitable for
the purposes of our tests:

𝑅 = 𝑟(𝐗) = 𝑋1𝑋2 −𝑋2
1 −

(
𝑋2

2
30

)
−
(
𝑋1 − 30

) (
𝑋2 − 200

)
. (48)

This function is significantly non-linear, and the stochastic model con-
tains two input variables with the vector of mean values 𝝁 = [40, 300]
and the corresponding vector 𝐂𝐨𝐕 = [0.10, 0.15].

The non-linearity of the second mathematical model can be clearly
seen from the difference between both TSE approximations used for the
uncorrelated case. Generally, the difference between the two results
is more significant with increasing non-linearity of the mathematical
model, which is additionally highlighted by non-Gaussian distribution.
Of course, Eigen ECoV (a) leads to a value identical to that obtained
by ECoV by Červenka in Gaussian space, and a similar result is gained
in lognormal space. With only one additional calculation, the results
obtained by Eigen EcoV (b) and (c) are far more accurate. The superi-
ority of these two methods is obvious from Fig. 6. In Gaussian space the
results are almost exact and identical to each other, since higher central
moments have negligible influence. However, in the lognormal case
there is an obvious difference between both methods using identical
calculations of the original mathematical model.

5.3. Example 3: Truss structure 2D NLFEA

The third example is represented by the 2D truss structure shown in
Fig. 7. The ultimate load 𝐹 for the allowed midspan deflection (the blue
point in the figure) of 𝑣 = 10 cm is obtained by NLFEA implemented
in OpenSeesPy [41]. Uniaxial Giuffre–Menegotto–Pinto steel material
with isotropic strain hardening is used to represent all structural mem-
bers. The stochastic model contains six random variables: yield strength
𝑓𝑦 and initial elastic tangent 𝐸 for the top chords (1), web members
(2) and bottom chords (3), with the mean values 𝜇𝑓𝑦 = 255 MPa,
𝜇𝐸 = 210 GPa and CoVs: 𝐶𝑜𝑉𝑓𝑦 = 0.10, 𝐶𝑜𝑉𝐸 = 0.05.

The reference solution was obtained by LHS with 𝑛𝑠𝑖𝑚 = 104
simulations for each 𝜌 and both variants (Gaussian and lognormal). The
results gained by TSE and Eigen ECoV for this NLFEA are depicted in
Fig. 8. Note that the function exhibits significant non-linearity, since
the variance estimated by the linear TSE with simple differencing is
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Fig. 6. Results of example 2 assuming Normal (left) and Lognormal (right) distribution of input variables. The variance of the uncorrelated case is estimated by the TSE with
simple (dashed) and advanced (dot-and-dash) differencing. The variance of the correlated case is estimated by ECoV methods, which are depicted in the corresponding columns
by solid lines. The reference solution (grey interval) is estimated by LHS.

Fig. 7. Scheme of 2D truss structure. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

significantly different from the reference solution and thus simple linear
differencing is not able to approximate the function. On the other hand,
the TSE with advanced differencing is very accurate, especially for the
Gaussian variant. For the fully correlated random variables, Eigen ECoV
(b) and (c) with 𝑛𝑠𝑖𝑚 = 3 calculations lead to very accurate results in
both the Gaussian and the lognormal case. Moreover, Eigen ECoV is
not limited to lognormal distribution but works generally for arbitrary
distributions of response in similar manner to TSE.

6. Discussion

The proposed Eigen ECoV is derived directly from TSE, which is in
compliance with PSF defined in Eurocode [7,42] and therefore can be
recommended for the design and assessment of structures. Moreover,
it is a general method that works without assumptions about the prob-
ability distribution of 𝑅, which stands in contrast to the widely used
ECoV by Červenka implemented in Model Code 2010, which assumes
Gaussian or lognormal distribution (with 𝑣𝑅 < 0.2) of 𝑅. On the other
hand, if these assumptions are fulfilled and the mathematical model is
nearly linear, ECoV by Červenka is highly efficient.

The significant advantage of Eigen ECoV is its adaptivity using
various differencing schemes. Eigen ECoV (a) represents an equivalent
method to ECoV by Červenka. It is derived from the first order TSE
with simple backward differencing and thus leads to identical results in
Gaussian space. However, it has been shown that it is not suitable for
non-linear mathematical models. Eigen ECoV (b) is derived from the
first order TSE with advanced backward differencing, which leads to
more accurate estimates and preserves the simplicity of the formulas for
variance. Therefore, it can be easily used by civil engineers in industrial

Table 2
Comparison of estimated variance for example 2 assuming increasing uncertainty of
input random variables.

CoV LHS Eigen ECoV b) Eigen ECoV c) 𝜖

[0.10, 0.15] 0.82 ⋅ 106 0.90 ⋅ 106 0.88 ⋅ 106 2%
[0.30, 0.35] 4.63 ⋅ 106 6.47 ⋅ 106 5.82 ⋅ 106 14%
[0.40, 0.45] 7.14 ⋅ 106 11.15 ⋅ 106 9.32 ⋅ 106 26%

applications using NLFEA. Although Eigen ECoV (c) is derived from
the second order TSE, it uses identical numerical calculations of the
original mathematical model to those employed by Eigen ECoV (b). It
typically leads to slightly improved estimates of variance and expected
values of 𝑅, taking higher moments of probability distributions of
input random variables into account. However, the ECoV formula is
much more complicated and should be implemented into a software
application.

The difference between proposed Eigen ECoV (b) and (c) is higher
with growing skewness and kurtosis of 𝑋𝛩. Naturally, this plays sig-
nificant role in case of lognormal distribution of 𝑋𝛩 with high CoV as
can be clearly seen in Eq. (44). In order to amplify this difference, let
us artificially increase the uncertainty of both input random variables
in Example 2 as follows: 𝐂𝐨𝐕 = [0.30, 0.35] and 𝐂𝐨𝐕 = [0.40, 0.45]. The
estimated VAR[𝑅] assuming both input random variables lognormally
distributed and fully correlated are summarized in the Table 2. Note
that the percentual difference 𝜖 is defined as an absolute value of
a difference between variance estimated by Eigen ECoV (b) and (c)
divided by the reference solution estimated by LHS. We would like to
note that, such high uncertainty of input variable is not common in
industrial applications and thus the difference between both solutions
is typically much lower.

In practical application of the correlation interval approach, one
should start with Eigen ECoV for the estimation of the variance of
fully correlated cases and then use standard TSE in order to obtain
the variance of uncorrelated cases if necessary. The difference between
variances is a direct measure of the impact of the vagueness of avail-
able information about the dependency structure among input random
variables. Higher correlation among random variables typically leads
to higher variance of 𝑅, and thus one can assume Eigen ECoV as a
conservative estimate. However, analysts might need more accurate
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Fig. 8. Results of example 3 assuming Normal (left) and Lognormal (right) distribution of input variables. The variance of the uncorrelated case is estimated by the TSE with
simple (dashed) and advanced (dot-and-dash) differencing. The variance of the correlated case is estimated by ECoV methods, which are depicted in the corresponding columns
by solid lines. The reference solution (grey interval) is estimated by LHS.

results, and thus the standard TSE with simple or advanced differencing
should be employed. More accurate results are especially important in
case of existing structures, since the economic impact of unnecessary
interventions could be significant. It naturally leads to more advanced
structural analysis by NLFEA but it should be also reflected in semi-
probabilistic analysis [31]. Note that for the practical design and
assessment of structures, it is necessary to additionally include model
uncertainty and geometrical uncertainty according to Eq. (5). The
correlation interval ECoV approach then leads to minimal or maximal
𝑣𝑅 and thus to the maximal (unsafe) design value 𝑅𝑑 or the minimal
(safe) design value 𝑅𝑑 obtained as a corresponding quantile of the
structural resistance.

7. Conclusions

The paper is focused on estimation of coefficient of variation meth-
ods for NLFEA. ECoV methods are the basis for the semi-probabilistic
approach for the design and assessment of structures and thus it is
crucial to use accurate and efficient methods for industrial applications.
The review of existing methods and three levels of assumed simpli-
fications is presented with attention to the theoretical mathematical
background of each method. Furthermore, the influence of correlation
among random variables and Nataf transformation is briefly described.
Finally, the general Eigen ECoV method for functions of fully correlated
random variables and the interval ECoV approach are proposed. The
Eigen ECoV is analytically compared to the existing well known ECoV
method by Červenka. It is shown that Eigen ECoV represents a special
case of the general Taylor Series Expansion and can be directly com-
pared to the ECoV method by Červenka in Gaussian space. However, it
is a general method without any assumption regarding the probability
distribution of structural resistance, which is in contrast to existing
methods. The presented methods are applied for three numerical exam-
ples, and the expected behaviour of Eigen ECoV is proved. The most
efficient method for industrial applications is Eigen ECoV (b) using
three numerical calculations of the original mathematical model since
it leads to the accurate estimation of variance, preserving the simplicity
of analytical formulas that are easily applicable in industrial practice.
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stage of the adaptive sequential surrogate model construction process. The proposed
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and the exploration of the design domain. The original idea comes from Koksma-
Hlawka inequality (which predicts an upper bound of MC integration error) and its
utilization for sequential Monte Carlo sampling. In this paper, the proposed crite-
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PCE basis functions), and a geometrical term assuring uniform coverage of the whole
design domain and that the algorithm does not get stuck in local minima. It can
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Abstract

This paper presents a novel adaptive sequential sampling method for building Polynomial Chaos Expansion surrogate models.
The technique enables one-by-one extension of an experimental design while trying to obtain an optimal sample at each stage
of the adaptive sequential surrogate model construction process. The proposed sequential sampling strategy selects from a pool
of candidate points by trying to cover the design domain proportionally to their local variance contribution. The proposed
criterion for the sample selection balances both exploitation of the surrogate model and exploration of the design domain.
The adaptive sequential sampling technique can be used in tandem with any user-defined sampling method, and here was
coupled with commonly used Latin Hypercube Sampling and advanced Coherence D-optimal sampling in order to present its
general performance. The obtained numerical results confirm its superiority over standard non-sequential approaches in terms
of surrogate model accuracy and estimation of the output variance.
c⃝ 2021 Elsevier B.V. All rights reserved.

Keywords: Polynomial Chaos Expansion; Adaptive sampling; Sequential sampling; Coherence optimal sampling

1. Introduction

The Polynomial Chaos Expansion (PCE), originally proposed by Norbert Wiener [1] and further investigated in
the context of engineering problems by many researchers, e.g. [2,3], represents a spectral expansion of the original
stochastic problem in a polynomial basis. PCE approximation represents very efficient method for sensitivity
analysis, uncertainty quantification or reliability analysis [4]. Moreover, once the PCE is available, it is possible
to investigate the constructed explicit function in order to estimate additional information about the original
problem including its statistical moments, output probability distribution or sensitivity indices without additional
sampling [5], which is especially beneficial in industrial applications [6,7]. PCE can be generally formulated in
intrusive or non-intrusive form. Despite the recent progress in research on the intrusive approach [8], it is still rarely
employed in practical applications since it requires redesign of the mathematical model solver.

On the other hand, the non-intrusive approach offers a convenient way to perform probabilistic analysis of
any black-box model. There are generally two types of non-intrusive methods for calculation of deterministic
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coefficients: spectral projection and linear regression. The spectral projection approach utilizes the orthogonality
of multivariate polynomials and calculates the coefficients using inner products. Although the integrals in spectral
projection can be calculated by traditional tensor-product quadrature rules, the number of collocation points
grows exponentially with the number of input random variables which is called curse of dimensionality and thus
computationally far more efficient sparse grids [9,10] should be employed. The second type of the non-intrusive
approach is based on linear regression. Although it is typically less expensive than spectral projection (the number
of samples should be at least O(P ln(P)), where P is the number of terms in PCE [11,12]) it suffers from the curse
of dimensionality as well, since number of PCE terms is extremely large for high dimensions and high polynomial
orders. Therefore, it is necessary to employ advanced adaptive techniques for construction of sparse PCE in order
to obtain efficient solutions for real-life physical systems. Moreover, the regression based PCE can be significantly
affected by sampling schemes as was recently shown in extensive review paper [13]. Therefore, this paper is focused
on the combination of PCE adaptivity with a sequential sampling strategy designed for the non-intrusive approach
based on linear regression.

Since each evaluation of a computer model representing the engineering problem is typically highly time-
consuming (e.g. non-linear finite element method), it is necessary to reduce the number of model evaluations as much
as possible in the process of training the surrogate model, while maintaining the accuracy of the approximation.
The balance between accuracy and computational requirements is strongly connected to the selection of the support
points in the design domain of input variables — a computational design of experiments (DoE). Besides the
commonly used crude Monte Carlo sampling, there are several advanced techniques developed in the fields of
statistical/numerical estimation of integrals which improve the efficiency and accuracy of the DoE. One of the
most widely used techniques is Latin Hypercube Sampling (LHS) [14], a variance reduction technique that uses
stratified selection of sampling points. Another popular strategy for DoE is to uniformly fill the design domain
according to some space-filling criteria such as miniMax, Maximin [15] or generalized versions of distance-based
criteria [16,17], or to decrease the discrepancy of the point set. Low discrepancy designs can be obtained either
by direct algorithmic minimization of selected discrepancy measure or as Quasi Monte Carlo sequences (known
also as low-discrepancy sequences, or number-theoretical designs; see e.g. the sequence due to Halton [18,19],
Sobol’ [20,21], Niederreiter [22–24], Faure [25], the generalization of the Faure sequences by Tezuka [26], and
others). These techniques for DoE can be used for general probabilistic analysis (=numerical integration) without
any knowledge about the specific mathematical model or surrogate model.

Further it is often beneficial to include additional information into the DoE stemming from the specific type
of the surrogate model at hand. The coherence-based sampling was proposed specifically for PCE constructed by
ordinary least squares regression (OLS) [27] and it leads to higher stability in estimation of PCE coefficients in
comparison to general sampling methods such as LHS, which is commonly used in combination with PCE. Another
method developed specifically for OLS is induced sampling [28], which has been proved to be optimal for weighted
least-squares methods.

Methods for DoE construction usually need to specify the number of simulations a priori. It is however much
more efficient and practical to sample additional points one-by-one until desired accuracy of the approximation
is reached. Such methodology for sample size extension is referred to as sequential sampling and it is especially
beneficial in practical engineering applications. Sequential sampling schemes are often driven by a defined criterion
to compare candidates for sample size extension. The concept of adaptive experimental design for learning surrogate
models is often termed active learning. This approach is a common approach when the goal is reliability analysis
with a surrogate: an initial experimental design is iteratively updated based on the current estimation of the limit-
state surface in an active learning algorithm [29–31]. Active learning approach involving PCE in the context of
reliability analysis was used e.g. in [32–34].

Although there are recent studies focused on general sequential sampling based on space-filling criteria or
alphabetical optimality used for PCE [35,36], it is beneficial to use both exploitation (leveraging model behavior)
criteria and exploration (space filling) criteria for definition of an optimally balanced criterion [37]. Such sequential
sampling for sparse Bayesian learning PCE combining both aspects — epistemic uncertainty of the statistical
inference (exploration) together with quadratic loss function (local exploitation) was recently proposed [38].
However, its application is limited to PCE build by sparse Bayesian learning only. This paper presents a novel
adaptive sequential sampling technique with such a balanced criterion. The technique presented in this paper can
be coupled with any sparse regression solver and common methods for DoE such as LHS and thus can be easily
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implemented into the existing software solutions for PCE construction (e.g. [39–43]). Additionally, in order to
increase the efficiency of the proposed scheme, the developed technique is coupled with coherence D-optimal
sampling created specifically for non-intrusive PCE solved by OLS and thus all parts of the method are designed
in order to increase the efficiency and accuracy of this particular type of surrogate model.

2. Polynomial Chaos expansion

Assume a probability space (Ω ,F ,P), where Ω is an event space, F is a σ -algebra on Ω (collection of subsets
closed under complementation and countable unions) and P is a probability measure on F . If the input variable of
a mathematical model, Y = g(X ), is a random variable X (ω), ω ∈ Ω , the model response Y (ω) is also a random
variable. Assuming that Y has a finite variance, PCE represents the output variable Y as a function of an another
random variable ξ called the germ with given distribution

Y = g(X ) = gPCE(ξ ), (1)

and representing the function g(X ) via polynomial expansion in a manner similar to the Fourier series of a periodic
signal. A set of polynomials, orthogonal with respect to the distribution of the germ, is used as a basis of the Hilbert
space L2 (Ω ,F ,P) of all real-valued random variables of finite variance, where P takes over the meaning of the
probability distribution. The orthogonality condition for all j ̸= k is given by the inner product of L2 (Ω ,F ,P)
defined for any two functions ψ j and ψk with respect to the weight function pξ (probability density function of ξ ) as:

⟨ψ j , ψk⟩ =

∫
ψ j (ξ )ψk(ξ )pξ (ξ ) dξ = 0. (2)

This means that there are specific orthogonal polynomials associated with the corresponding distribution of
the germ via its weighting function. For example, Hermite polynomials orthogonal to the Gaussian measure
are associated with normally distributed germs. Orthogonal polynomials corresponding to other distributions can
be chosen according to Wiener–Askey scheme [44]. For further processing, it is beneficial to use normalized
polynomials (orthonormal), where the inner product is equal to the Kronecker delta δ jk , i.e. δ jk = 1 if and only if
j = k, and δ jk = 0 otherwise

⟨ψ j , ψk⟩ = δ jk . (3)

In the case of X and ξ being vectors containing M independent random variables, the polynomial Ψ (ξ ) is
multivariate and it is built up as a tensor product of univariate orthogonal polynomials as

Ψα(ξ ) =
M∏

i=1

ψαi (ξi ), (4)

where α ∈ NM is a set of integers called the multi-index. The quantity of interest (QoI), i.e. the response of the
mathematical model Y = g(X), can then be represented, according to Ghanem and Spanos [3], as

Y = g(X) =
∑

α∈NM

βαΨα(ξ ), (5)

where βα are deterministic coefficients and Ψα are multivariate orthogonal polynomials.

2.1. Non-intrusive computation of PCE coefficients

For practical computation, PCE expressed in Eq. (5) must be truncated to a finite number of terms P . The
truncation is commonly achieved by retaining only terms whose total degree |α| is less than or equal to a given p.
Therefore, the truncated set of PCE terms is then defined as

AM,p
=

{
α ∈ NM

: |α| =

M∑
i=1

αi ≤ p

}
. (6)

The cardinality of the truncated index set AM,p is given by

card AM,p
=
(M + p)!

M ! p!
. (7)
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Moreover, in practical applications, it is beneficial to prefer only basis functions with lower number of interaction
terms. Therefore, it was proposed by Blatman and Sudret [2] to create a PCE basis by a “hyperbolic” truncation
scheme:

AM,p,q
=

{
α ∈ NM

: ∥α∥q ≡

( M∑
i=1

α
q
i

)1/q
≤ p

}
. (8)

Note that selection of q = 1 corresponds to the standard truncation scheme according to Eq. (6) and, for q < 1,
terms representing higher-order interactions are eliminated. Such an approach leads to a dramatic reduction in the
cardinality of the truncated set for high total polynomial orders p and high dimensions M .

When PCE is truncated to a finite number of terms, there is an error ε of the approximation such that

Y = g(X) =
∑
α∈A

βαΨα(ξ )+ ε.

From a statistical point of view, PCE is a simple linear regression model with intercept. Therefore, it is possible
to use ordinary least square (OLS) regression to minimize the error ε

β = arg min
β∈RP

1
nsim

nsim∑
i=1

[
βTΨ

(
ξ (i))
− g

(
x(i))]2

. (9)

Knowledge of vector β fully characterizes the approximation via PCE. To solve for β, first it is necessary to
create nsim realizations of the input random vector X and the corresponding results of the original mathematical
model Y , together called the experimental design (ED). Then, the vector of P deterministic coefficients β is
calculated as

β = (Ψ TΨ )−1 Ψ TY, (10)

where Ψ is the data matrix

Ψ =
{
Ψi j = Ψ j (ξ (i)), i = 1, . . . , nsim, j = 0, . . . , P − 1

}
. (11)

Note that the number of terms P is highly dependent on the number of input random variables M and the maximum
total degree of polynomials p. Estimation of β by regression then needs at least the number of samples O(P ln(P))
for stable solution [11,12]. Therefore, in case of a large stochastic model, the problem can become computationally
highly demanding. However, one can utilize advanced model selection algorithms such as Least Angle Regression
(LAR) [45] to find an optimal set of PCE terms and thus reduce the number of samples needed to compute the
unknown coefficients if the true coefficient vector is sparse or compressible as proposed by Blatman and Sudret [2].
Note that beside LAR, there are other best model selection algorithms such as orthogonal matching pursuit [46] or
Bayesian compressive sensing [47] with comparable numerical results. The sparse set of basis functions obtained
by any adaptive algorithm is further denoted for the sake of clarity as A.

2.2. Estimation of approximation error

Once the PCE is constructed, it is crucial to estimate its accuracy. Further, the accuracy of PCE can be used for
the direct comparison among several PCEs in order to choose the best surrogate model. Therefore it is beneficial to
use methods which do not need any additional sampling of the original mathematical model. A common choice is the
coefficient of determination R2, which is well known from machine learning. However, R2 may lead to overfitting
and thus advanced methods should be used. One of the most utilized methods for measuring the performance of
the learning algorithm in recent years is the leave-one-out cross validation error Q2. This statistic is based on
residuals between the original surrogate model and the surrogate model built with the ED while excluding one
realization. This approach is repeated for all realizations in the ED and the average error is estimated. Although
the calculation of Q2 is typically highly time-consuming, it is possible to obtain results analytically from a single
PCE as follows [48]

Q2
= 1−

1
nsim

∑nsim
i=1

[
g
(

x(i)
)
−gPCE

(
x(i)

)
1−hi

]2

σ 2
Y,ED

, (12)
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where σ 2
Y,ED is a variance of experimental design calculated using the original mathematical model and hi represents

the i th diagonal term of matrix H = Ψ
(
Ψ TΨ

)−1
Ψ T .

2.3. Statistical moments derived from PCE

The specific form of PCE together with the orthogonality of the polynomials allows for a powerful and efficient
post-processing. Once a PCE approximation is created, it is possible to obtain statistical moments of the QoI.
Generally, its raw statistical moment of the mth order is defined as⟨

Y m ⟩
=

∫ [
g
(
X

)]m pX
(
X

)
dX =

∫ [ ∑
α∈NM

βαΨα(ξ )
]m pξ

(
ξ
)

dξ (13)

=

∫ ∑
α1∈NM

. . .
∑

αm∈NM

βα1 . . . βαmΨα1 (ξ ) . . .Ψαm (ξ ) pξ (ξ ) dξ

=

∑
α1∈NM

. . .
∑

αm∈NM

βα1 . . . βαm

∫
Ψα1 (ξ ) . . .Ψαm (ξ ) pξ (ξ ) dξ .

As can be seen from the final part of the formula, in case of PCE, it is necessary to integrate only over the basis
functions (orthonormal polynomials), which leads to a dramatic simplification in comparison to the integration of
the original mathematical function. Moreover, it is also possible to write an analytical expression of the integral in
several cases. Specifically, the first statistical moment (mean value) is obtained as

µY =
⟨
Y 1⟩
=

∫ [ ∑
α∈NM

βαΨα(ξ )
]1 pξ

(
ξ
)

dξ =
∑

α∈NM

βα

∫
Ψα(ξ ) pξ

(
ξ
)

dξ . (14)

Considering the orthonormality of the polynomials∫
Ψα(ξ )pξ

(
ξ
)

dξ = 0 ∀α ̸= 0, Ψ0 ≡ 1,

it is possible to obtain the mean value directly from the PCE deterministic coefficients. Namely, the mean value is
equal to the first deterministic coefficient of the expansion

µY =
⟨
Y 1⟩
= β0. (15)

The second raw statistical moment,
⟨
Y 2

⟩
, is written as

⟨
Y 2⟩
=

∫ [∑
α∈A

βαΨα (ξ)

]2

pξ (ξ) dξ =
∑
α1∈A

∑
α2∈A

βα1βα2

∫
Ψα1 (ξ)Ψα2 (ξ) pξ (ξ) dξ (16)

=

∑
α∈A

β2
α

∫
Ψα (ξ)

2 pξ (ξ) dξ =
∑
α∈A

β2
α ⟨Ψα,Ψα⟩ .

Considering again the orthonormality of the polynomials, defined by the inner product in Eq. (3), it is possible to
obtain the variance σ 2

Y =
⟨
Y 2

⟩
−µ2

Y as the sum of all squared deterministic coefficients except the intercept (which
represents the mean value), i.e.

σ 2
Y =

∑
α∈A
α ̸=0

β2
α. (17)

Note that, higher statistical central moments skewness γY (3rd moment) and kurtosis κY (4th moment) need
precomputing of the triple and quadruple products.

In the following, we select the variance of the output variable, i.e. σ 2
Y in Eq. (17), as the target characteristic of Y

and we focus on development of the sequential sampling strategy in order to estimate this variance as accurately as
possible at any stage of PCE build. The reason for selection of variance is that we expect a monotonic relationship
between function variation in the sense of Hardy and Krause [49] and its variance. As will be shown below,
Eq. (16) can be modified in order to obtain the local contribution to variance. We conjecture that it is therefore
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important to place samples densely in regions of large local variance and sparsely in regions of small local variance,
in order to obtain a near-optimal sample [37]. This arrangement of samples may decrease the error of the function
approximation and its integral.

3. Sampling methods

Assuming a non-intrusive approach for calculation of the PCE coefficients using OLS defined in Eq. (9),
it is necessary to create an ED containing nsim realizations of the input random vector and the vector of
corresponding results of the original mathematical model. Typically we consider sampling of ξ using its density
fξ , which represents the distribution according to the Wiener–Askey scheme. For the M-dimensional Legendre
polynomials this means sampling uniformly from the M-dimensional hypercube [−1, 1]M and for M-dimensional
Hermite polynomials, it corresponds to sampling from the M-dimensional Gaussian distribution with independent
standardized Gaussian marginal distributions. Naturally, it is crucial to use an efficient sampling scheme for the
DoE of ξ in order to obtain accurate results for a given computational budget.

DoE has been an area of interest for many researchers since the beginning of uncertainty quantification and
structural reliability. The most simple but generally applicable method is crude Monte Carlo Sampling (MC),
i.e. a method associated especially with robust (and inefficient) numerical integration. In standard Monte Carlo
integration, the important condition of integration being unbiased is that the sample is selected uniformly and
independently with respect to the target density. In MC the sampling points are selected independently of each
other and therefore, clusters of points emerge randomly as well as regions which are not covered by any point.

There has been considerable effort spent on improving the spatial arrangement of points in a sample. The
Koksma–Hlawka inequality [49], which was developed to predict an upper bound of integration error, motivates the
decrease in discrepancy of the sample set (ED). Discrepancy in a way measures uniformity of a point set, i.e. the
difference between the desired uniform distribution and the empirical distribution of the point set. Such uniformity
of point distribution may be useful also for initial screening or building a surrogate model. Low discrepancy
can be achieved either by direct minimization of a suitable discrepancy measure [17,50–52] or simply by using
various Quasi Monte Carlo sequences mentioned in the Introduction section. Quasi Monte Carlo sequences are
deterministic point sets and they allow for sequential addition of points one-by-one while retaining an optimal rate
of star discrepancy decrease with increasing sample size [53].

Another branch of research focuses on variance reduction techniques such as importance sampling which place
points according to a predefined or adaptively adjusted sampling density which can be different from the target
density or methods of stratified selection of sampling points that improve spatial arrangement of the sampling points.
One of the most widely used techniques is Latin Hypercube Sampling (LHS) first suggested by Conover [14];
see also [54]. LHS specifically has the effect of reducing variance associated with the additive components of
a transformation. Hence, for functions that are dominated by the main effects of the individual variables, LHS will
significantly reduce variance. For functions with significant variable interactions, it is less effective. [55–58].

Another important aspect of sample selection for DOE is the uniformity of filling of the design domain. This
aspect is important for function approximation and resulted in the seminal works on space-filling criteria based
on mutual distances among points: the Maximin and miniMax criteria [15]. These criteria prefer designs without
point clusters or without large empty areas. A generalization of the Maximin criterion to the phi-criterion [16] was
presented along with a heuristic construction algorithm that can be combined with the LHS strategy. Similarly,
the miniMax criterion can be generalized [59]. Moreover, the recently developed periodic versions of the whole
class of distance-based criteria [17,60] guarantee statistically uniform distribution of points along with even point
distribution within each single design. These distance-based criteria can be employed for direct design optimization.

Uniformity of ED and space-filling criteria are important characteristics to obtain a quality ED for PCE. The
LHS thus typically leads to more accurate estimation of β in comparison to crude MC [61,62]. Sampling for PCE,
however, might be motivated by additional criteria of optimality than the space-filling property, discrepancy or
statistical uniformity with respect to the target distribution. The optimality criterion should consider aspects related
to the particular method of identification of the polynomial modes and their coefficients.

This naturally leads to sampling from a probability measure different from the input distributions, which minimize
a selected characteristic of the ED. Moreover, it is also necessary to modify the basis functions in order to preserve
orthonormality of the data matrix. Minimizing the coherence parameter of a PCE basis functions [63] leads to
the coherence optimal and related asymptotic sampling [27], which is theoretically more efficient in comparison
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to standard sampling based on the input distribution. Similarly the Christoffel sparse approximation [64] was
derived using a different definition of the coherence parameter. Note that these sampling strategies are derived
for a specific purpose (non-intrusive PCE) and thus their efficiency in general probabilistic analysis might be
unsatisfying. Although coherence optimal sampling is more computationally demanding, it is not a crucial problem
in engineering, where the calculation of mathematical models takes the largest part of the whole process.

Also, it would be optimal if the PCE that has been set at any stage of sampling based on the available information
about the samples and the corresponding function values g(x), can propose the new sampling point (sample size
extension). With such an algorithm at hand, one can build the PCE approximation incrementally while exploiting
all the knowledge available so far. For efficient accurate exploitation, it is necessary to use an adaptive algorithm
for PCE construction (by adaptive we mean selection of the most important combinations of modes in the index
set A). There are several methods for adaptive selection of the optimal PCE basis functions such as LAR [45]
employed in numerical experiments. The selected basis functions are further used for the process of exploitation
and thus it is crucial to identify new basis functions in every iteration of the sequential sampling in order to obtain
the best possible location for a new sampling point. Moreover, the adaptivity of the basis functions is important for
the accurate coherence optimal sampling briefly described in the following paragraphs.

3.1. Coherence-optimal sampling

Generally, it is beneficial to take all pieces of information about the given mathematical task into account in order
to choose a correct methodology. Although standard sampling based on the input distribution is suitable for any
probabilistic analysis, there are more efficient methods developed specifically for PCE solved by over-determined
OLS [27], which is employed in this paper.

Coherence-optimal sampling constructs a new sampling measure minimizing a coherence parameter associated
with stability and convergence of the PCE solved by OLS. The coherence parameter µ (Y ) is defined as [65]

µ
(
Y

)
:= sup

ξ

P∑
j=1

|w(ξ )ψ j (ξ )|2, (18)

where the weight function w(ξ ) is

w(ξ ) :=
P

B(ξ )
. (19)

The analytical expression of B(ξ ) is generally not available, but it is possible to evaluate its value for arbitrary
ξ as

B(ξ ) =

√ P∑
j=1

|ψ j (ξ )|2. (20)

Finally, the coherence-optimal probability measure is defined as

fcoh(ξ ) := P−1 f (ξ )B2(ξ ). (21)

In order to sample from fcoh(ξ ) one may use Markov Chain Monte Carlo (MCMC) [65]. The proposal distribution
for MCMC is suggested for case when p ≤ M where one should use standard sampling from distributions naturally
orthogonal to the employed polynomial basis as already described for standard sampling. If p ≥ M , samples should
be independently drawn from a uniform distribution on a M-dimensional ball of radius

√
2
√

2p + 1 for Hermite
polynomials, and a M-dimensional Chebyshev distribution for Legendre polynomials.

Note that the coherence-optimal sampling does not generally lead to the orthonormal columns of the data matrix
and the deviation

⟨
Ψα1 ,Ψα2

⟩
− δα1α2 may be significant. Therefore, one has to apply a weight function w(ξ ) to the

basis functions and use weighted least squares in order to estimate β using coherence-optimal sampling as described
in previous paragraphs. Weighted least squares method is a special case of generalized least squares containing only
diagonal members of the correlation matrix of residuals. Optimal values of the deterministic coefficients is then
obtained by solution of the following system of equations:

WΨβ ≈WY, (22)

where matrix W is a diagonal matrix with Wi,i = w(ξ (i)).
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Fig. 1. An ED containing 100 samples generated by LHS, coherence-optimal sampling and coherence D-optimal sampling for Legendre
polynomials.

3.2. D-optimal experimental design

Optimality of the ED for OLS can also be measured by the so-called alphabetic criteria of the information
matrix I := 1

nsim
Ψ TΨ , which is crucial for stability of OLS. There are several types of criteria focused on various

characteristics of the information matrix; see [62] for a review of criteria in the context of PCE. Although one of
the most promising is the S-optimal criterion [35], it is also highly computationally demanding especially for large
M . Therefore, in this paper we use the following cheaper and well known estimation-oriented criterion D-optimal
design, which is focused on accurate estimation of β.

Since the PCE basis functions are orthonormal, I is on average identity, but for finite sample size nsim there is
a deviation from the identity matrix

∥I − I∥ > 0. (23)

The D-optimal design, obtained by maximizing the determinant of the information matrix, leads to small deviation
and thus stable estimation of β. For the practical construction of D-optimal ED, it is possible to employ Fedorov
exchange algorithm [66], greedy algorithm [67] or rank revealing QR decomposition [68] to find an optimal
information matrix containing nsim rows out of a candidate pool containing npool ≫ nsim rows.

3.3. Coherence D-optimal experimental design

As originally proposed together with coherence optimal sampling [68], it is beneficial to merge the previous two
techniques in order to obtain a Coherence D-optimal (Coh D-opt) ED for the stable and accurate solution of WLS.
Although Coh D-opt was originally proposed for compressed sensing in the context of PCE [68], D-optimality was
already employed in combination with standard sampling (LHS and MC) for OLS and LAR in [35]. Therefore, Coh
D-opt can similarly be used also for the non-intrusive approach based on WLS and LAR as employed in this paper.
The pool of candidates is generated by coherence optimal sampling and further reduced by D-optimality criterion
which leads to uniform ED without clusters of samples as can be seen in Fig. 1.

4. Adaptive sequential sampling

In industrial applications, it is often not feasible to perform a large number of evaluations of the original
mathematical model (e.g. FEM) and thus it is important to reduce the number of simulations as much as possible.
An efficient approach therefore is adaptive sequential sampling, which uses iterative selection of the new sampling
points according to specific criteria while exploiting the already available information. Although general sequential
sampling is an area of interest for many researchers [69–72], there is still a lack of studies focused specifically
on PCE. The recent study [35] compared several simple sequential sampling methods based on D/S-optimality of
samples or maximin criterion of samples.
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Note that there are two different strategies for sequential sampling. The first is to enrich the initial ED according
to a space-filling criterion (exploration) without assuming any knowledge of the mathematical model or PCE form;
see e.g. [71,73]. The motivation is clear: we do not want to locate an augmented point very close to an existing
point to avoid getting redundant information in the nearby region. However, by obtaining data sequentially, it is
possible to learn from the early stages to inform subsequent data collection, minimize wasted resources, and provide
answers for various objectives (exploitation). Therefore, the second strategy works with the structure of the PCE
(basis functions) in order to identify an optimal sample. Unfortunately, in situations when the initial screening
overlooks a globally important region, the exploitation criterion may continue refinement of some other, locally
important region that was detected, and there is a risk of never discovering a globally important region. Therefore,
it is beneficial to include a balance between both criteria in search for a suitable candidate. Note that, such approach
was employed e.g. in [37] in a different context: a criterion motivated by the Koksma–Hlawka inequality [49] was
proposed and coupled with stratified sampling in order to improve the efficiency of statistical integration.

As discussed above, the adaptivity feature of the PCE surrogate model can be ensured by any model selection
algorithm. Moreover, it can be combined also with hyperbolic truncation according to Eq. (8), which is efficient for
high P . A general adaptive sequential algorithm thus should adaptively reconstruct the PCE using model selection
algorithms in order to identify a sparse set of basis functions A in each iteration.

The sequential feature can be added by using a comparison criterion for selection of the best candidate from
a pool of candidates while balancing between exploration and exploitation. Exploitation of the local areas of
the design domain is focused on identification of sub-domains associated with a defined characteristic of the
mathematical model such as high gradient, local maxima etc. The candidates from the identified sub-domains are
further preferred. Another typical example can be identification of sub-domains associated with high variation of
the mathematical model. Although exploitation is a powerful technique for identification of the best candidate, it
is typically based on a built surrogate model and thus it is highly dependent on the quality of a given ED. On the
other hand, exploration assures uniform coverage of the whole design domain, possibly with respect to specific
characteristic as in case of alphabetical optimality [74], and it assures that the algorithm does not get stuck in local
minima. It opens the door to detection and exploration of important areas in design domain, where the behavior of
the studied function g(x) might be significantly different from possibly incorrect expectation based on the surrogate.

4.1. The proposed Θ criterion for sequential sampling

We propose an adaptive sequential sampling strategy accompanied by a criterion designed for efficient and
accurate estimation of β using least squares. Consider a pool of candidates containing npool realizations of the
random vector ξ generated by an arbitrary sampling technique. Once the pool of candidates conditioned by the
selected PCE basis is generated, it is necessary to construct a criterion for the selection of the best candidate
balancing between the exploitation and exploration of the design domain. Such criterion, called the Θ criterion
from here on, is proposed as follows

Θ(ξ (c)) ≡ Θc =

√
σ 2
A (ξ (c)) · σ 2

A (ξ (s))

ave variance density

l M
c,s

vol.

≡

√
σ 2

c · σ
2
s l M

c,s. (24)

where we introduce an abbreviated notation by dropping the point designation ξ (·) and using simply the lower index
instead and also by dropping the set of basic functions, A, which is selected for every instant of the algorithm and
thus may differ as the sample size increases. The criterion has an intuitive meaning and also has units of variance
and is a product of two parts: the exploitation part (denoted as “ave variance density”) and the exploration part (the
distance term lc,s raised to the domain dimension). Multiplication of these two independent contributions maintains
the optimal balance between exploration and exploitation.

The exploration aspect is maintained by accounting for the distance lc,s between a candidate ξ (c) and its nearest
neighboring point from the existing ED, ξ (s). For the distance term a suitable metric must be selected. In this paper,
we select the Euclidean distance between the candidate and its nearest neighbor as

lc,s =

√ M∑
i=1

|ξ
(c)
i − ξ

(s)
i |

2
, (25)

although other distances can be considered, particularly in high dimension.
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Fig. 2. Geometrical meaning of the proposed Θ criterion for a candidate “c” in two and three dimensions. Black solid circles are existing
points and point “s” is the nearest neighbor to candidate “c”. The solid thin curve/surface represents the current estimation of variance
density over the design domain.

The exploitation in candidate selection is motivated by our desire to uniformly cover local contributions to
the total variance, σ 2

Y . By recalling Eq. (17), we know that σ 2
Y can be estimated simply as the sum of all squared

deterministic coefficients except the intercept. The mean square can be obtained as the integral featuring the selected
polynomial basis over the design domain; see Eq. (16). This means that the variance can be thought of as an integral
of local contributions over the design domain indexed by coordinates ξ . In other words, we need to integrate a local
variance density σ 2

A(ξ ). Once the PCE has been established at any given stage of the algorithm, the variance density
is computationally cheap to evaluate for any location ξ as

σ 2
A (ξ ) =

[∑
α∈A
α ̸=0

βαw (ξ)Ψα (ξ)
]2 pξ (ξ) . (26)

The local variance is therefore estimated based on the basis functions and coefficients β of the PCE. Depending
on technique utilized for sampling of candidates, one should apply the weight w (ξ) (also used in weighted least
squares) to basis functions in order to reflect influence of sampling from a probability measure different from the
input distribution. Specifically in this paper, w (ξ) is defined for Coh D-opt according to Eq. (19) and w (ξ) = 1 for
LHS. When considering a candidate “c”, one might think about the variance contribution of the region between the
candidate and its nearest neighbor. A rough estimation may be obtained by considering an average of local variance
densities between the candidate and its nearest neighbor, “s”. This average is represented by the geometric mean
between the two numbers. The geometric mean between n numbers xi is defined as (

∏n
i=1 xi )1/n and therefore, we

take the geometric mean of two local variance densities simply as the square root of the local variance densities of the
candidate and its nearest neighbor, see the first term in Eq. (24). When this geometric mean is multiplied by the M th
power of the distance between the two points, l M

c,s, the volume (variance contribution) of a neighborhood between
them is estimated; see the sketch in Fig. 2. In other words, the criterion estimates the amount of variance in a “bite”
by the candidate. Note that Eq. (24) defines the bite as a hypercube of side-length lc,s. However, other geometric
entities may be considered without practical impact on the algorithm. The reason is that all the geometric volumes
for various candidates under comparison would have the same positive multiplier of l M

c,s which can be dropped as
it does not change the ranking of the compared candidates. Therefore, we can say that the proposed criterion helps
to select a candidate with roughly the largest amount variance being refined. The balance between exploration and
exploitation is maintained: a candidate which is close to an existing point can only be selected if the corresponding
variance density is large. Similarly, when a region with low contribution is being detected by the PCE, candidates
from such regions are ignored.

In situations when the variance density is a constant function, the criterion collapses to a simple space-filling
criterion (a form of miniMax criterion); [15,60]. Such criterion ensures the preference of candidates filling the
largest empty regions in the design domain and thus leading to uniform distribution of points in the sense of
miniMax design criterion. We remark that miniMax design is a preferable choice for the construction of emulators
because it minimizes the worst case prediction variance.
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A question may arise: why do we propose to use the geometrical mean instead of arithmetical mean? The reason
is that the criterion may also be used for infinite design domains (for example in conjunction with Gaussian germ).
In such situation, the pool of candidates may contain points ξ (c) that are very far from the mean value and such
a point may have (almost) zero variance density. Yet, the criterion would prioritize it due to the large distance from
the nearest neighbor ξ (s) as the arithmetical average with its variance density would equal one half of the two local
densities. In other words, infinitely distant candidate points would always win the comparison, despite a vanishing
contribution of one of them. Using the geometrical mean prevents unimportant distant points with zero density from
being selected.

Maximization of the criterion leads to the best candidate, which is added to active ED. As can be seen, the
proposed criterion prefers candidate points in parts of multidimensional space associated with higher contribution
to the variance of the mathematical model. This idea is similar to the sequential sampling proposed in [37] based
on Koksma–Hlawka inequality respecting both variation of the function and discrepancy of realizations, however
the proposed criterion is constructed specifically for PCE and thus it can use the PCE basis functions in order
to increase the efficiency of the computation. The significant advantage of the proposed method is the ability to
add candidates into existing ED one-by-one and thus it can be employed at any moment of the PCE construction
process and it can be combined with any sampling algorithm for construction of initial ED marked with subscript
as ξED, WED, YED.

4.2. Adaptive sequential sampling with LHS-based candidates

LHS represents perhaps the most common sampling technique in surrogate modeling and it can be easily coupled
with the proposed sequential sampling in a simple manner. The pool of candidates is generated by LHS and the
proposed criterion is employed for the selection of the best candidate. This process is repeated at every iteration
of the sequential sampling (with the pool being either regenerated or reused from the preceding step). In order to
illustrate the proposed sequential adaptive algorithm, we selected five iterations and depict the corresponding states
in Fig. 3. The initial ED is represented by solid black circles and the sequentially selected realizations are plotted
using solid red circles. The color maps represent the value of the proposed criterion (right column) and also its
individual components (the preceding columns). Since the generation of the pool of candidates by LHS is simple
and fast, LHS-based adaptive sequential sampling represents an efficient extension to non-sequential LHS and it
could be easily implemented into existing software tools.

4.3. Adaptive sequential sampling with coherence-based candidates

The proposed criterion can generally be coupled with any sampling technique. However, since coherence-based
sampling is highly affected by the set A, it might be ideal if the pool of candidates is generated by coherence-
based sampling. Further, in order to obtain stable estimates of β, the pool of candidates should be reduced using
D-optimality criterion calculated by QR factorization with column pivoting [68] also called rank revealing QR
factorization (RRQR). Note that it is necessary to evaluate the proposed criterion for every candidate and thus it
might be computationally demanding for large npool. Therefore, we propose to generate the pool of candidates by
coherence D-optimal sampling in every loop of sequential sampling instead of a single large pool generated before
the start of the iteration process. Smaller pools for every iteration are not only computationally efficient but such
approach reflects the actual sparse set of basis functions of PCE obtained by LAR in each iteration. This might
be crucial for the candidate set generated by coherence-based sampling, since it is optimized for the selected basis
functions in each step. Moreover, the proposed criterion gives higher importance to basis functions associated to
higher β, which is important for identification of functional extremes.

Algorithm 1 thus reflects all pieces of information about the stochastic model (probabilistic distribution of
input variables), investigated mathematical model (sparse set of basis functions) and even type of solver for PCE
construction (weighted least squares) in order to obtain accurate and stable estimates of the deterministic PCE
coefficients β. Combination of all techniques used in the algorithm thus leads to superior performance as will be
shown in the numerical examples. However, generation of the pool of candidates is much more computationally
demanding in comparison to the LHS-based adaptive sequential sampling.
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L. Novák, M. Vořechovský, V. Sadı́lek et al. Computer Methods in Applied Mechanics and Engineering 386 (2021) 114105

Fig. 3. Illustration of five stages during the proposed sequential sampling. Black solid circles: initial design. Red circles: extended sample.
Crossed empty circle: the best candidate. The value of the proposed criterion and its components are depicted using the underlying color
maps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Numerical experiments

The proposed algorithm was numerically tested on several examples of increasing complexity. The setup common
to all examples was as follows: PCE is solved by non-intrusive OLS (LHS) or WLS (Coh D-opt), a sparse set of
the basis functions A is obtained by LAR with maximum total polynomial order p = 10, if not said otherwise.
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Algorithm 1 Coherence-Based Adaptive Sequential Sampling — one iteration

Input: ξED, WED, YED, A, β, (nsim) current Experimental Design and the corresponding PCE
1: n = 5P , npool = 3P set the pool sizes based on the p and M
2: ξ coh ← n samples from fcoh(ξ ) using MCMC (Eq. (21)) draw points from the coherence density
3: Wcoh ← weights corresponding to ξ coh (Eq. (22)) calculate the corresponding weights
4: ξ pool, Wpool ← npool D-optimal samples & weights preselect the final pool of candidates
5: for all ξ (c)

∈ ξ pool do loop thru all candidates
6: ξ (s)

← arg min
ξ∈ξED

lc,s(ξ (c), ξ ) find the nearest neighbor

7: Θc = Θ
(
ξ (c), ξ (s)) compute the criterion (Eq. (24))

8: end for
9: ξ (new)

← arg max
ξ (c)

Θc select the best candidate

Output: ξ (new), w(ξ (new)) return the best candidate and the corresponding weight

Identical p for all examples simulates a possible engineering situation with a black-box function (e.g. finite element
analysis) where it is not possible to select the best p a priori. The initial ED for the PCE construction before the
first step of the proposed iterative algorithm is generated by LHS and it contains an initial screening design with
nsim = 10 realizations of the input random vector for the first three examples and nsim = 20 for the last example.

Although the proposed criterion can be coupled with any sampling technique for ED generation, only two selected
techniques (LHS and Coh D-opt) were employed and compared in the numerical examples. LHS was selected for
this study as it is the most common sampling technique for surrogate modeling due to its efficiency and simplicity.
Existing software applications and packages for PCE construction (e.g. [39–43]) usually contain implementation of
LHS and thus the process can be easily extended by proposed selection criterion. On the other hand, Coh D-opt is
not a common approach, thus it is representative of advanced sampling methods suited specifically for least-squares
PCE. Coh D-opt EDs usually achieve higher accuracy but their implementation is not straightforward.

Each example is solved by three types of strategies:

• non-sequential approach (non-seq) with ED generated via LHS for each sample size at once — this represents
the most common approach employed in surrogate modeling,
• the proposed sequential sampling with candidates generated by LHS, and
• the proposed sequential sampling with candidates generated by Coh D-opt.

The sample size in the first (LHS) strategy is fixed and we study the PCE behavior for a range of these sample
sizes selected a priori.

The two sequential sampling strategies differ in the way the pool of candidates is proposed. For the sake of
clarity, the pool of candidates obtained by Coh D-opt for sequential sampling contains 3P D-optimal samples,
which are selected from a greater pool of 5P Coh-optimal samples; for LHS sequential sampling, it contains 3P
samples generated by LHS.

The results are compared in terms of the (i) relative error in variance of QoI

ϵ =
|σ 2
− σ 2

Y |

σ 2
Y

, (27)

defined as the absolute deviation of the estimated variance σ 2 from the exact value σ 2
Y divided by the exact variance,

and the (ii) leave-one-out error of PCE approximation Q2 according to Eq. (12). In order to get a picture about
reproducibility of the results, the calculations were repeated 100 times for each set of settings. The averages of
log10(ϵ) (the order of relative error in variance) and log10(1 − Q2) are depicted by solid-lines and the scatters
represent ± σ confidence intervals.
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5.1. Toy 2D function

Consider a simple 2D function in which the two independent input random variables are uniformly distributed,
X ∼ U , with the mean values µ = {0, 0} and variances σ 2

= {6, 6}. The design domain is thus a square
[−
√

18;
√

18]2. The output variable (symmetrical and highly non-normal with zero mean value and skewness) is
the following transformation

Y = cos
(

X1π

5

)
sin

(
X2π

3

)
,

[
σ 2

Y ≈ 0.199 575 434
]

(28)

which should be easily approximated by all employed methods and the whole process is easily tractable.
Non-sequential LHS was calculated for 10 increasing sample sizes in range ⟨24, 150⟩. The supposedly uniform

distribution of LH-samples is compared with the proposed algorithm for sequential selection of 140 candidates
(to reach the same final sample size of 150 points). The rows in Fig. 3 show selected iterations of the sequential
algorithm. The color maps show the local variance density (left column), and then spatial distribution of the two
components of the proposed criterion: the average variance computed using the geometrical mean with the nearest
neighbor and the squared distance to the nearest neighbor. The maps on the right hand side finally present the spatial
distribution of the proposed Θ criterion. A relatively large pool of LHS candidates was generated and the color
maps were computed on a fine grid of coordinates. The scale of Θ in the rightmost column is proportional to the
amount of variance associated with individual candidates. It can be seen that the value Θ of the best candidate also
indicates how much gain in the variance accuracy can be expected by adding one point. This information can be
incorporated as a kind of “stopping criterion”. The scales in Fig. 3 show that refining from nsim = 10 to nsim = 35
decreases the variance bites from 10−1 to roughly 7.5 · 10−3. However, further increase in sample size (and the
associated time spent on evaluation of the g(x) function) leads only to minor decrease in Θ criterion for the best
candidate and this improvement may not be deemed as worth the expense.

This reasoning is well supported by the plots of variance error in Fig. 4 (left column). One can see that from the
ED with nsim ≈ 25 points, further decreases in variance error are obtained at low rates. This is emphasized by a thin
vertical dashed line showing that the available polynomial basis is saturated as the maximum polynomial order is
exhausted. The decision to consider is either (i) stop the algorithm: the accuracy is acceptable or computing resources
are too expensive (ii) increase the maximum polynomial order p with a chance to improve the convergence rate for
further size extensions. Indeed, one can see in Fig. 4 (left column, bottom plot) that after adding about 15 points to
the initial design with 10 points, the maximum polynomial degree of p = 10 gets almost always fully exploited and
the error almost stabilizes (both the error in variance estimation and also the Q2). When the experiment is repeated
with p = 20 (see the middle column in Fig. 4), the saturation is postponed and both errors quickly decrease until
the design reaches about nsim = 120 points. This fact documents that the adaptivity feature should also increase the
polynomial degree if higher accuracy is requested.

To conclude, the proposed sequential sampling clearly outperforms standard non-sequential sampling in error in
estimated variance. Although difference in the approximation error Q2 between non-seq and sequential LHS is not
significant for p = 10, its sequential variant leads to the most accurate estimation of variance. In case of p = 20,
the superiority of the sequential sampling is even more significant.

For the sake of completeness, the adaptivity of p was coupled with the proposed sequential sampling (see the
right column in Fig. 4). Although there exist advanced adaptive algorithms such as adaptive Coh-D opt [75], the
simplest algorithm with iterative increment of p was employed for both sampling schemes, i.e. p was iteratively
increased from p = 5 to p = 20 and PCE was built for a given ED and finally p yielding the lowest approximation
error measured by Q2 was selected. The obtained results show the similar behavior of the sequential technique as
in case of p = 20, as can be expected. Note that, techniques for p-adaptivity and many other advanced sampling
techniques are beyond the scope of this paper. This research is focused on the proposed sequential sampling and
for the possibility of direct comparison, such type of adaptivity is excluded in the following examples in order to
show purely the role of Θ criterion, though they can generally lead to more accurate approximations.

5.2. Ishigami function

Consider now a three-dimensional Ishigami function [76]. The function is strongly nonlinear, non-monotonic and
presents strong interactions. We set the coefficients as in [77]. Let X ∼ U[−π, π]3 and the mathematical model

Y = sin (X1)+ 7 sin2 (X2)+ 0.1X4
3 sin (X1) .

[
σ 2

Y ≈ 13.844 587 940
]

(29)
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Fig. 4. Results for Toy 2D function obtained with maximum polynomial order p = 10 (left), p = 20 (middle) and adaptive p (right).
The first two rows represent the accuracy measured by ϵ and Q2. The last row shows the mean value (solid blue line) and the empirical
probability mass function (blue points) of the maximum order p in active A for LHS. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

The Ishigami function represents a well-known benchmark function for surrogate modeling and sensitivity
analysis and thus additional analysis with a very large pool size was performed in order to show additional results
discussed extensively in Section 6. First of all, non-sequential PCE based on Coh-D optimal sampling was created
for the direct comparison. The obtained results for standard setting are summarized in Fig. 5 (left column).

The non-sequential Coherence-D optimal ED leads to unsatisfactory results both in variance estimation and Q2.
Although the convergence rate is lower for our purpose (low number of samples), note that it is significantly more
efficient with increasing number of samples. As can be seen, the proposed sequential sampling clearly outperforms
the non-seq standard approach. Moreover, the convergence rate is significantly higher, until the polynomial chaos
gets saturated by reaching the maximum order p = 10 as can be seen in Fig. 5 (left column, bottom plot). Naturally,
non-sequential technique converges to identical accuracy with increasing number of samples.

Since the Ishigami function is a low-dimensional and inexpensive example, it was also possible to perform
calculation with ED pool containing a large number npool = 5000 of simulations and 100 repetitions in order to
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Fig. 5. Results for the Ishigami function. The first two rows represent the accuracy measured by ϵ and Q2. The last row shows the mean
value (solid blue line) and the empirical probability mass function (blue points) of the maximum order p in active A for LHS. The maximum
polynomial order is p = 10 for the left (npool = 858) and right columns. The pool size for the middle column is npool = 3P = 5313
candidate points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

obtain statistical estimates. Note that the pool for Coh-D opt was obtained by D-optimal reduction from larger pool
generated by coherence optimal sampling as in the previous examples.

The obtained results, for the case of an extremely large pool of candidates, depicted in Fig. 5 (right column)
are slightly worse in comparison to the moderate size of the pool. This phenomenon is extensively discussed in
Section 6. Additionally, note that the presented results are obtained for the fixed maximum polynomial order p = 10,
which imposes a strong limit on achievable accuracy for nsim ⪆ 120. Similarly to the previous numerical example,
allowing a higher p leads to higher accuracy of the PCE, which can be seen in Fig. 5 (middle column) using
p = 20 (the saturation is postponed to about nsim ≈ 200).

5.3. 2D mirror line singularities

The 2D line singularities function is a mirrored version of a function used in [37]. The true surface of this
function is studied for three different values of the parameter δ; see Fig. 6. In order to document the effectiveness
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Fig. 6. 2D mirror line singularities: underlying map shows function values (the top row) and Θ criterion (others). Points represent the initial
design ED (black points) and selected four iterations of algorithm adding candidates to the existing ED. Mathematical model for different
parameters δ: δ = 1 (left), δ = 0.1 (middle), δ = 0.01 (right). The maximum polynomial degree was p = 12 and therefore the ability of
PCE to mimic a sharp singularity was limited.

of the proposed sequential sampling in the convergence plots, we selected the case of δ = 0.1. Let X ∼ U[0, 1]2

and the mathematical model be in the following form

Y =
1

|0.3− X2
1 − X2

2| + δ
−

1
|0.3− (1− X1)2 − (1− X2)2| + δ

.
[
δ = 0.1 : σ 2

Y ≈ 13.070 477 042
]

(30)
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Fig. 7. Numerical results for Example 3 (left), Example 4 (middle) and Example 5 (right). The rows represent the accuracy measured via
ϵ and Q2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Note that, this example represents a challenging task for PCE especially for low values of δ. There are curved
singularities located in a narrow vicinity of two circular arcs and thus it is crucial to identify the location of the
singularity and use high-degree interacting polynomials for approximation. The values of the function range between
its extremes of roughly ±δ−1. We remark that the results of non-seq Coh D-opt are out of the graph range and thus
this technique is not depicted in Fig. 7. Fig. 7 (top-left) shows a typical comparison of sequential and non-sequential
LHS techniques. Sequential sampling is significantly better for mid-size ED, while the differences are reduced for
large sample sizes when the polynomial chaos gets saturated. We remark that the high convergence rate for small
to medium sample size is the practical range for which the proposed method is developed. Coh-D opt sequential
strategy shows the best accuracy in Q2 as well as in estimated variance. On the other hand, as can be seen in Fig. 7
(bottom-left) sequential LHS leads to low accuracy measured by Q2.

5.4. Truss structure (Hermite polynomials)

This problem involves nonuniform input variables and thus the selected set of polynomials is composed of
Hermite polynomials. The design domain becomes open: RM . The mathematical model represents deflection of
the truss structure depicted in Fig. 8. The deflection can be computed using the method of virtual work (unit load
method). This method results in the following expression for the mid-span deflection

Y = F
(

552
Ah Eh

+
50.9117

Ad Ed

)
.

[
σ 2

Y ≈ 0.000 2373
]

(31)

The input random vector of the model, X , consists of five independent random variables: the properties of
the horizontal bars (Young’s modulus Eh and cross-section area Ah), the properties of the diagonal bars (Young’s
modulus Ed and cross-section area Ad), and the magnitude of the loading forces F on the top joints. The properties
of the input random variables are summarized in Table 1.

First of all, in order to construct PCE, the input random vector is transformed to standardized Gaussian random
space by Nataf transformation [78,79] corresponding to Hermite germs. Further full set of polynomial basis functions
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Fig. 8. Truss structure constructed from two types of bars.

Table 1
Five random variables featured in the truss example.

Variable Distribution Mean Units CoV

Eh, Ed Log-normal 210 GPa 0.10
Ah Log-normal 2000 mm2 0.10
Ad Log-normal 1000 mm2 0.10
F Gumbel-Max 50 kN 0.15

P is reduced by hyperbolic truncation with q = 0.5 according to Eq. (8). The initial ED contains nsim = 20
realizations of X generated by LHS. We remark that Nataf transformation might increase the polynomial degree
required to compute the PCE approximation of a function. To avoid the increase in nonlinearity of the problem by
using the Nataf transformation, one could also compute the polynomials numerically in practical applications [80].

Obtained results can be seen in Fig. 7 (middle column). Similar to the previous example, sequential LHS leads
to higher accuracy in estimated variance but the approximation error Q2 is comparable to non-sequential LHS. The
proposed sequential Coh D-opt method is clearly the most accurate and convergence rate is significantly faster both
in Q2 and variance estimation. The Coh-D sequential sampling converges to errors several orders of magnitude
smaller than commonly used non-sequential LHS.

5.5. Truss structure (Hermite polynomials) — Reduced dimension

Adaptivity of the proposed algorithm is provided by the best model selection algorithm (LAR in this paper),
which should be able to select the best possible set of basis functions A. In order to examine this feature in
the context of the proposed adaptive sequential sampling, the results of the previous example are compared to
a manually reduced stochastic model of the previous example (Truss structure) preserving identical mathematical
model as follows [81]:

Y = F
(

552
Æh
+

50.9117
Æd

)
,

[
σ 2

Y ≈ 0.000 2373
]

(32)

where Æh is a Log-normal random variable with mean of 420 MN and Æd is a Log-normal random variable with
mean of 210 MN, CoV of both random variables equals 0.141 77. The results obtained from the sequential sampling
are summarized in Fig. 7 (right). As can be seen, the final accuracy of this example measured by relative error in
variance ϵ is similar to the 5D formulation of the g(X) when the size of ED reaches the final nsim = 220, although
the convergence of the reduced model to this value is significantly faster for lower nsim. This is in compliance with
the theoretical behavior of the model selection algorithm, which becomes more efficient with greater samples size.
The faster convergence also affects the final accuracy of Coh D-opt measured by Q2, which is able to converge to
lower values for the final nsim.

6. Discussion

6.1. Optimal pool size and the maximum polynomial order p

As already briefly mentioned above, the selection of fixed maximum polynomial order p may impose a lower
bound on achievable accuracy. This phenomenon was visible in the first “Toy” example (see Fig. 4) as well as
for the “Ishigami function”, see Fig. 5. In these examples, the initial guess on p = 10 was found insufficient and
selection of p = 20 allowed for much higher accuracy of the surrogate. This is documented by examination of the
set A, specifically maximum p in the active set of basis functions A chosen by LAR depicted by blue color in
the bottom rows of Figs. 4 and 5. It can be seen, that convergence rate is very low once the maximum order p in
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active A achieves its prescribed maximum of p = 10 since there are no additional possibilities for improvement of
the approximation (the space of basis functions is out of suitable candidates). Therefore, if one extends the space
of basis functions by sufficiently incrementing p, the decrease in error does not stop and ϵ for maximum nsim is
significantly lower. Unfortunately, the ideal p is not known a priori and thus one should adaptively increase it with
growing active ED. However, as discussed already in [2], it is possible to employ an adaptive selection of the best
p for each iteration. Such a feature might play a significant role in some cases. Such approach was deliberately
not employed in this paper because the influence of the proposed sampling scheme might not be clearly separable
from the model selection.

The proposed sequential technique achieved higher accuracy of estimated variance for lower number of samples
in comparison to non-sequential sampling in all presented numerical examples. However, as can be seen from
numerical results of the Ishigami function, increasing the pool size does not generally lead to higher accuracy or
faster convergence rate. In fact, a very large number of candidates might cause slower convergence (comparable to
non-sequential sampling). After detailed examination of this example, one can see the different structure of A for
the large set of candidates depicted in Fig. 5 (rightmost column). During the initial phase of the adaptive sequential
sampling, LAR algorithm typically selects high-order polynomials since there is not enough information about
a mathematical model, which leads to overfitting. Further increasing the sample size enables the adaptive algorithm
to identify more appropriate low-order basis functions (nsim ≈ 50 for Ishigami function). Sequential sampling in the
following steps of algorithm selects the candidates with respect to the current A and exploration aspect. Note that
high-order basis functions are selected by adaptive algorithm once the new regions associated to high local variance
are discovered (peaks of the given mathematical model). However, such regions are not preferred by the selection
criterion since low-order basis functions ignore the currently unknown extremes. Therefore, the convergence rate
of the adaptive sequential sampling can be significantly affected by the number of candidates, since if there are no
candidates in regions favored by low-order basis functions, the exploration part of the proposed criterion could
investigate new functional extremes and adapt A to a set of high-order basis functions. This phenomenon is
illustrated by blue color in numerical results in Fig. 5 (left). In the first case with npool = 3P (and p = 10),
one can see a fast convergence for nsim ranging between 50 and 150 (associated to lower maximum p in active A)
until the space of basis functions is out of suitable candidates as described in the paragraph above. On the other
hand, for the second case with npool = 5 000 (and p = 10 again; see Fig. 5 right), an active A contains low-order
basis functions for a range of significantly greater nsim, which leads to a slower convergence of accuracy ultimately
leading to the identical final error.

In summary, the achievable accuracy of the adaptive sequential sampling is limited by the maximum polynomial
order p used. Simply, the flexibility of the polynomial approximation may not be sufficient to approximate the
original function at a given precision level. In practical applications, a sufficient polynomial order is not known
a priori and therefore p should be adaptively increased with increasing nsim in order to achieve the best performance
of the proposed algorithm. On the other hand, the convergence rate is significantly affected by npool and extremely
large pool leads to slow convergence, since a selection of high-order basis functions is postponed to higher nsim.
Therefore the heuristic rule npool = 3P is recommended for practical applications.

6.2. High dimensions

What remains an open question is the behavior of the proposed criterion in high dimensions. In particular, we
need to understand the effect of the exploration part l M

c,s in Eq. (24). Generally, in high-dimensional space with
independent and identically distributed (iid) components, the Minkowski distance of order P > 0 (sometimes
referred to as the P-norm) concentrates, i.e. the coefficient of variation of the norm decreases with increasing
dimension, M . This effect on P-norm of letting M go large is well known in the computational learning literature.
A discussion in the context of iid Gaussian distribution can be found e.g. in [82]. The asymptotic behavior of
P-norm and its convergence rates have been studied in [83].

The role of the distance term must be discussed especially in the case of uniform distribution of the germ
which is defined over a hypercube. It is known that Euclidean distances (a special case of Minkowski distance with
P = 2) of any pair of points inside a hypercube tend to concentrate around its mean value when the dimension is
high. It is known that the standard deviation of the Euclidean distance between any two randomly picked points
stays approximately constant with increasing dimension while the mean value keeps growing proportionally to
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Fig. 9. Results for the Shubert function in 10 (left), 15 (middle) and 20 (right) dimensions. The first row represents the accuracy of estimated
variance measured by ϵ and the second row shows the approximation accuracy measured by Q2.

√
M [84,85]. Therefore, the coefficient of variation of a random distance is asymptotically proportional to 1/

√
M .

In such a case the distance contrast decreases and it is said that the distances concentrate [86,87]. The same holds
also for the squared Euclidean distance l2 between points picked at random: the squared distance has Gaussian
distribution with the mean value of M/6 and variance 7M/180. In order to obtain the hypervolume of a region
in between a pair of points, the squared distance must be raised to M/2. We have found that the coefficient of
variation of such volume quickly increases as the problem dimension grows high. Therefore, there is no problem
with insufficient contrast as the proposed Θ criterion sufficiently varies even in domains of high dimension.

Although it will be necessary to perform extensive study with advanced sampling schemes in order to investigate
the efficiency of the proposed criterion in high dimensions, the general behavior of the Θ criterion is demonstrated
in the following simple example with input random vector X ∼ U[−1, 1]M — Shubert function No. 4 [88]:

Y =
M∑

i=1

5∑
j=1

j cos(( j + 1) X i + j).
[
σ 2

Y ≈ M · 45.266 621 664
]

(33)

This function can be easily utilized as a benchmark for an arbitrary number of input random variables; in our study
we use M = {10, 15, 20}. The maximum polynomial order p = 12 and hyperbolic truncation parameter q = 0.3
were used for construction of surrogate model, and the initial ED contains nsim = 10 realizations of X generated
by LHS. Since the hyperbolic truncation significantly reduces the P in high dimensions, we increased the pool size
to npool = 5P . Note that, this study is focused only on stability of the proposed Θ criterion in higher dimensions
and thus only the sequential and the non-sequential LHS were employed for direct comparison. From the obtained
results depicted in Fig. 9, it can be seen that the proposed criterion enabling one-by-one extension of ED achieves
higher accuracy in comparison to non-sequential approach independently of dimension M and thus the theoretical
discussion in the previous paragraph was presented also numerically. Naturally, the absolute value of accuracy is
highly dependent on the investigated function and on the particular sampling scheme coupled with Θ criterion,
however this study demonstrates the applicability of the proposed criterion in high dimensions.
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6.3. Further work

Since the DoE is usually not a bottleneck in probabilistic analysis and sequential sampling offers several
advantages in comparison to non-sequential sampling, it can be recommended to employ the proposed algorithm
for the construction of PCE despite higher computational requirements of repetitive DoE in each step. Although
the choice of the sampling technique coupled with the proposed criterion for the sequential selection of the best
candidate is arbitrary, it can be seen from the numerical examples, that LHS is efficient for low dimensional
mathematical models. On the other hand, coherence D-optimal sampling achieved significantly higher accuracy
in more complex examples. Therefore further work will be focused on an improvement of effectiveness by using
advanced optimized space-filling designs for the generating of a pool of candidates and a comparative study of
existing advanced sampling techniques coupled with the proposed criterion will be performed. Employment of
designs generated from the target distribution that additionally avoids clustering [17,81,89] or empty regions [60]
while maintaining true statistical homogeneity via periodic distance-based criteria has the potential to further
improve the effectiveness of the proposed method, especially in high-dimensional space. Moreover, it was shown
that fixed p represents a significant limitation for the proposed method and thus further work will be also focused
on adaptive basis strategies [75,90], which have the potential to dramatically improve the final accuracy of PCE
and solve the problem with LAR and with a large size of the pool of candidates.

7. Conclusion

A novel adaptive sequential sampling technique for accurate and efficient construction of a non-intrusive PCE
was proposed in this paper and its performance was validated on several numerical examples of increasing
complexity and dimensionality. The proposed technique selects the best candidate sample from a large pool
maintaining the balance between exploration of the design domain and exploitation of the current characteristics of
the PCE. The criterion driving the selection of the best candidate was successfully coupled with LHS and Coh-D
optimal sampling and both variants were used in numerical examples. From the obtained results, it can be concluded
that the proposed technique leads to higher accuracy of the constructed PCE in comparison to non-sequential
sampling. The difference in accuracy between sequential and non-sequential sampling is especially significant for
a low-size ED. However, it can be expected that the accuracy of sequential sampling converges to identical results as
a non-sequential sampling for a very large ED in which the PCE is saturated. Comparing both sequential sampling
techniques, superior performance was achieved by sequential adaptive Coh-D optimal sampling due to is adaptivity
of the candidate sample in each iteration.
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