PŘÍLOHA

A Vliv tvaru profilu periodických struktur na rozložení difrakční účinnosti

Obr. A1 Závislost účinnosti 1. reflexního difrakčního řádu na hloubce struktury. Variace profilu binární periodické mřížky ($\Lambda = 1 \ \mu m$), binární zaoblený (poloměr zaoblení ostrých rohů 0,1 Λ). Materiál Al, $\lambda = 532 \ nm$.

Obr. A2 Závislost účinnosti 1. reflexního difrakčního řádu na hloubce struktury. Variace profilu pilovité periodické mřížky ($\Lambda = 5 \ \mu m$), pila zaoblená (poloměr zaoblení ostrých rohů 0,1 Λ). Materiál AI, $\lambda = 532 \ nm$.

Obr. A3 Závislost účinnosti 1. reflexního difrakčního řádu na hloubce struktury. Variace profilu blejzované periodické mřížky ($\Lambda = 5 \ \mu m$), blejzovaný zaoblený (poloměr zaoblení ostrých rohů 0,1 Λ , kolmá hrana zkosená o 0,05 Λ). Materiál AI, $\lambda = 532 \ nm$.

B Snímky motivu připraveného pomocí kombinované reliéfní elektronové litografie.

Obr. B1 Srovnání odlišností motivů exponovaných systémem s energií elektronů v primárním svazku 15 keV (v motivu vpravo) a 100 keV (v motivu vlevo). Metoda sekvenčního vyvolání.

Obr. B2 Srovnání odlišností motivů exponovaných systémem s energií elektronů v primárním svazku 15 keV (v motivu vpravo) a 100 keV (v motivu vlevo). Metoda simultánního vyvolání.

C Výsledek optimalizace vybraných vstupních bitmap s různým rozlišením pro různé hodnoty *LST*.

Obr. C1 Výsledek optimalizace vybraných vstupních bitmap s rozlišením 1 px = 100 nm pro různé hodnoty *LST*. Motiv *CGH-60*°.

Obr. C1 Výsledek optimalizace vybraných vstupních bitmap s rozlišením 1 px = 200 nm pro různé hodnoty *LST*. Motiv *CGH-60*°.

D Expoziční data po aplikaci různé míry optimalizace na vstupní bitmapu s různým rozlišením.

Obr. D1 Vnitřní struktura expozičních dat po aplikaci různé míry optimalizace na vstupní bitmapu s rozlišením 1 px = 100 nm. Motiv *CGH-60*°.

Obr. D2 Vnitřní struktura expozičních dat po aplikaci různé míry optimalizace na vstupní bitmapu s rozlišením 1 px = 200 nm. Motiv *CGH-60*°.

E Srovnání doby přípravy expozičních dat pro různé typy motivů s různým rozlišením vstupních bitmap a různou mírou optimalizace.

Obr. E1 Srovnání doby přípravy expozičních dat pro různá vstupní rozlišení a různou míru optimalizace. Motiv *BS-6*.

Obr. E2 Srovnání doby přípravy expozičních dat pro různá vstupní rozlišení a různou míru optimalizace. Motiv *BS-2*.

Obr. E3 Srovnání doby přípravy expozičních dat pro různá vstupní rozlišení a různou míru optimalizace. Motiv *CGH-40*°.

Obr. E4 Srovnání doby přípravy expozičních dat pro různá vstupní rozlišení a různou míru optimalizace. Motiv *CGH-60*°.

Obr. E5 Srovnání doby přípravy expozičních dat pro různá vstupní rozlišení a různou míru optimalizace. Motiv *frakt*.

F Srovnání expoziční doby pro různé typy motivů s různým rozlišením vstupních bitmap a různou mírou optimalizace.

Obr. F1 Srovnání expoziční doby motivu s různým rozlišením vstupních bitmap a různou mírou optimalizace. Motiv *BS-6*.

Obr. F2 Srovnání expoziční doby motivu s různým rozlišením vstupních bitmap a různou mírou optimalizace. Motiv *BS-2*.

Obr. F3 Srovnání expoziční doby motivu s různým rozlišením vstupních bitmap a různou mírou optimalizace. Motiv *CGH-40*°.

Obr. F4 Srovnání expoziční doby motivu s různým rozlišením vstupních bitmap a různou mírou optimalizace. Motiv *CGH-60*°.

Obr. F5 Srovnání expoziční doby motivu s různým rozlišením vstupních bitmap a různou mírou optimalizace. Motiv *frakt*.

G Snímky ze SEM motivu *CGH-60*• s různým rozlišením vstupních bitmap a různou mírou optimalizace.

Obr. G1 Snímek ze SEM motivu *CGH-60°* s rozlišením vstupních bitmap 1 px = 50 nm s různou mírou optimalizace.

Obr. G2 Snímek ze SEM motivu *CGH-60*° s rozlišením vstupních bitmap 1 px = 100 nm s různou mírou optimalizace.

Obr. G3 Snímek ze SEM motivu *CGH-60*° s rozlišením vstupních bitmap 1 px = 200 nm s různou mírou optimalizace.

H Srovnání teoretických hodnot optických parametrů různých typů DOE

H (%) η_0 (%) η_{s} (%) Motiv LST (nm) η_{ef} (%) η_{s-ef} (%) 0 80,03 100,0 0 4,0 10,0 BS-2 100 79,17 100,0 0 3,6 9,2 150 0,985 77,97 100,0 8,0 3,1 0 63,65 76,7 0 1,9 15,9 2,2 19,9 90 63,15 89,4 0,149 BS-6 100 72,1 3,0 25,9 61,81 0,045 150 60,75 61,3 0,027 3,0 23,8 0 66,86 31,8 0,001 0 14,2 90 66,08 28,2 0,020 0 14,7 $CGH-40^{\circ}$ 100 66,30 25,8 0,035 0 15,0 150 66,55 15,4 0,068 0 17,4 0 66,00 20,6 0 0 14,2 90 64,67 11,6 0,032 0 20,7 $CGH-60^{\circ}$ 100 64,91 14,2 0,063 0 20,4 150 64,37 8,0 0,130 0 25,2

Tab. H1 Srovnání teoretických hodnot parametrů η_{ef} , H, η_0 , η_s a η_{s-ef} pro různé motivy a různou míru

optimalizace	nro ro	zlišení	vstupn	ích h	oitman	1	px =	100	nm
		21130111	volupi		Junap		$p_{\Lambda} =$	100	

Tab. H2 Srovnání teoretických hodnot parametrů η_{ef} , H, η_0 , η_s a η_{s-ef} pro různé motivy a různou míru

Motiv	LST (nm)	$\eta_{ m ef}$ (%)	H (%)	η_0 (%)	η_{s} (%)	$\eta_{\text{s-ef}}$ (%)
	0	76,03	100,0	0	2,4	6,4
BS-2	200	74,92	100,0	0,104	2,1	5,7
	300	71,62	100,0	3,309	2,6	7,3
	0	56,28	79,2	0	1,7	16,7
DC 6	180	56,55	79,0	0,728	1,4	13,6
82-0	200	47,13	52,2	2,978	1,7	15,4
	300	43,76	27,7	6,693	1,4	10,5
	0	63,31	27,7	0	0	16,2
CCH 40°	180	62,85	13,3	0,040	0	26,9
CGH-40	200	63,15	11,7	0,084	0	24,9
	300	61,61	2,7	0,171	0	30,0
	0	58,76	10,4	0	0	26,0
CGH-60°	180	58,42	2,4	0,096	0	23,6
	200	58,37	0,7	0,194	0	34,5
	300	54,69	0,03	0,447	0	38,9

optimalizace pro rozlišení vstupních bitmap 1 px = 200 nm.

Motiv LST (nm) *η*-ш (%) *η*-п (%) η-I (%) $\eta_{\rm I}$ (%) $\eta_{\rm II}$ (%) ηш (%) 40,01 40,01 0 39,59 BS-2 100 39,59 38,98 38,98 150 0 9,24 12,05 10,53 10,53 12,05 9,24 90 11,18 10,39 10,00 10,00 10,39 11,18 BS-6 100 11,56 11,00 8,34 8,34 11,00 11,56 150 10,34 12,42 7,61 7,61 12,42 10,34

Tab. H3 Teoretické hodnoty účinností užitečných difrakčních řádů pro motivy *BS-2* a *BS-6* pro různou míru optimalizace a rozlišení vstupních bitmap 1 px = 100 nm.

Tab.	H4	Teoretické	hodnoty	účinností	užitečných	difrakčních	řádů pro	motivy	<i>BS-2</i> a	BS-6 pro I	různou

Motiv	LST (nm)	η -ш (%)	η- _{II} (%)	η_{-1} (%)	$\eta_{\mathrm{I}}(\%)$	η_{Π} (%)	η_{III} (%)
BS-2	0			38,01	38,01		
	200			37,46	37,46		
	300			35,81	35,81		
	0	8,05	9,92	10,17	10,17	9,92	8,05
DC 6	180	9,90	10,27	8,11	8,11	10,27	9,90
82-0	200	6,28	11,35	5,93	5,93	11,35	6,28
	300	4,82	13,37	3,71	3,71	13,37	4,82

míru optimalizace a rozlišení vstupních bitmap 1 px = 200 nm.

I Srovnání naměřených hodnot optických parametrů různých typů DOE

Tab. I1 Srovnání naměřených hodnot parametrů η_{ef} , H, η_0 , η_s a η_{s-ef} pro motivy BS-2 a BS-6 pro

Motiv	LST (nm)	$\eta_{ m ef}$ (%)	H(%)	η_0 (%)	η_{s} (%)	$\eta_{ ext{s-ef}}(\%)$
BS-2	0	78,2	97,6	14,1	4,9	12,4
	100	78,0	98,7	13,5	4,0	10,4
	150	81,4	97,7	10,3	5,1	12,7
	0	75,1	41,5	12,2	1,7	9,7
DC 6	90	74,4	65,1	10,9	2,2	13,9
БЗ-0	100	73,0	70,4	8,3	4,2	29,3
	150	66,8	65,6	7,5	4,8	38,0

různou míru optimalizace pro rozlišení vstupních bitmap 1 px = 100 nm.

Tab. l2 Srovnání naměřených hodnot parametrů η_{ef} , H, η_0 , η_s a η_{s-ef} pro motivy BS-2 a BS-6 pro

Motiv	LST (nm)	$\eta_{ m ef}$ (%)	H(%)	η_0 (%)	η_{s} (%)	η_{s-ef} (%)
BS-2	0	72,7	99,1	17,6	5,3	14,6
	200	75,6	97,5	12,8	6,1	16,3
	300	78,0	95,9	10,3	5,3	13,8
	0	69,7	51,3	12,2	2,3	14,3
RS 6	180	64,0	85,6	9,8	3,1	28,1
БЗ-0	200	59,9	46,3	7,6	3,6	24,2
	300	52,6	11,3	8,1	3,7	21,8

různou míru optimalizace pro rozlišení vstupních bitmap 1 px = 200 nm.

Tab. I3 Naměřené hodnoty účinností užitečných difrakčních řádů pro motivy BS-2 a BS-6 pro různou

Motiv	LST (nm)	η -ш (%)	η -п (%)	η-I (%)	η_{I} (%)	η Π (%)	η ш (%)
BS-2	0			39,6	38,6		
	100			38,7	39,2		
	150			40,2	41,2		
	0	9,1	13,8	17,5	13,9	13,5	7,3
DC 6	90	12,0	11,5	15,8	14,4	10,5	10,3
БЗ-0	100	11,3	14,5	11,2	10,2	13,0	12,9
	150	11,9	12,6	8,2	10,5	11,1	12,4

Tab. I4 Naměřené hodnoty účinností užitečných difrakčních řádů pro motivy BS-2 a BS-6 pro různou

míru optimalizace a rozlišení vstupních bitmap 1 px = 200 nm.

Motiv	LST (nm)	η -ш (%)	η -п (%)	η-I (%)	η_{I} (%)	η п (%)	η ш (%)
BS-2	0			36,2	36,5		
	200			37,3	38,3		
	300			38,2	39,8		
	0	10,0	8,8	15,2	15,8	11,7	8,1
DC 6	180	9,5	11,1	10,8	10,7	10,9	10,8
B2-0	200	7,7	14,2	6,9	8,3	14,9	7,9
	300	6,4	16,8	3,4	1,9	17,1	7,0

J Srovnání teoretických signálů se snímky skutečných rekonstruovaných signálů pro různé typy motivů s různou mírou optimalizace a různým rozlišením vstupních bitmap.

Obr. J1 Srovnání teoretických intenzitních map - signálu (nahoře) se snímky rekonstruovaných signálů skutečně exponovaných struktur (dole) pro motiv *CGH-40*° pro rozlišení 1 px = 100 nm s různou mírou optimalizace.

Obr. J2 Srovnání teoretických intenzitních map - signálu (nahoře) se snímky rekonstruovaných signálů skutečně exponovaných struktur (dole) pro motiv *CGH-40*° pro rozlišení 1 px = 200 nm s různou mírou optimalizace.

Obr. J3 Srovnání teoretických intenzitních map - signálu (nahoře) se snímky rekonstruovaných signálů skutečně exponovaných struktur (dole) pro motiv *CGH-60°* pro rozlišení 1 px = 50 nm s různou mírou optimalizace.

Obr. J4 Srovnání teoretických intenzitních map - signálu (nahoře) se snímky rekonstruovaných signálů skutečně exponovaných struktur (dole) pro motiv *CGH-60*° pro rozlišení 1 px = 100 nm s různou mírou optimalizace.

Obr. J5 Srovnání teoretických intenzitních map - signálu (nahoře) se snímky rekonstruovaných signálů skutečně exponovaných struktur (dole) pro motiv *CGH-60°* pro rozlišení 1 px = 200 nm s různou mírou optimalizace.

K Snímky motivu *frakt* pro různá rozlišení vstupních bitmap a pro různou míru optimalizace.

Obr. K1 Snímky motivu *frakt* pod stejným úhlem nasvícení pro rozlišení vstupních bitmap 1 px = 100 nm pro různou míru optimalizace.

Obr. K2 Snímky motivu *frakt* pod stejným úhlem nasvícení pro rozlišení vstupních bitmap 1 px = 200 nm pro různou míru optimalizace.

L Přesnost sesazení expozic pro různý počet přeběhů

Obr. L1 Přesnost standardního způsobu zápisu (expozice v jedné vrstvě) pro mřížky s různou velikostí periody, orientací a pozicí na substrátu. Snímek ze SEM.

Obr. L2 Přesnost sesazení jednotlivých vrstev (dvě vrstvy) pro metodu frézovaného zápisu s kvazinepravidelně umístěnými expozičními poli pro mřížky s různou velikostí periody, orientací a pozicí na substrátu. Snímek ze SEM.

Obr. L3 Přesnost sesazení jednotlivých vrstev (tři vrstvy) pro metodu frézovaného zápisu s kvazinepravidelně umístěnými expozičními poli pro mřížky s různou velikostí periody, orientací a pozicí na substrátu. Snímek ze SEM.

Obr. L4 Přesnost soukrytu jednotlivých vrstev jako závislost změny exponované části mřížky s nejmenší rozlišitelnou periodou vůči standardnímu způsobu expozice na počtu exponovaných vrstev (Lcount) a pozici motivu na substrátu (P), vertikální směr linek mřížky.

M Srovnání homogenity achromatického motivu pro různé způsoby zápisu

Obr. M1 Srovnání homogenity achromatického motivu pro různé způsoby zápisu. Snímky z optického mikroskopu.

N Expoziční dávky pro mikrostruktury s různým tvarem profilu a různou topologií

Тур	Víceúrovňová	Víceúrovňová	Víceúrovňová	Víceúrovňová	CGH
struktury	lineární mřížka	lineární mřížka	lineární mřížka	lineární mřížka	
Perioda	15	15	15	5	~10
(µm)	15	15	15	5	10
Počet					
výškových	4	8	16	16	16
úrovní					
Výšková		Expozičn	í dávka (uC.am ⁻²)		
úroveň		Expozicii	i uavka (µC·ciii)		
1	84,4	82,7	81,9	81,9	81,9
2	181,6	132,1	108,2	108,2	108,2
3	244,7	169,4	128,2	128,2	128,2
4	287,0	202,6	147,3	148,8	148,8
5		226,0	164,4	164,4	166,0
6		249,6	179,8	179,8	182,6
7		267,6	196,6	196,6	196,6
8		287,0	206,6	208,7	208,7
9			219,4	219,4	219,4
10			230,5	230,5	230,5
11			242,3	242,3	242,3
12			249,6	249,6	249,6
13			259,8	259,8	259,8
14			267,6	267,6	267,6
15			275,8	275,8	278,5
16			284.1	284.1	287.0

Tab. N1 Expoziční dávky pro mikrostruktury s různým tvarem profilu, periodou, topologií, různýmpočtem výškových úrovní a identickou maximální hloubkou 800 nm.

Obr. N1 Závislost expoziční dávky na hloubce výškových úrovní pro mikrostruktury s různým tvarem profilu, periodou, topologií, různým počtem výškových úrovní a identickou maximální hloubkou 800 nm dle tabulky L1.

O Expoziční dávky potřebné pro stanovení korekce expoziční dávky pro různé hloubky mikrostruktury pro metodu výpočtu PEC

Tab. O1 Expoziční dávky pro strukturu lineární mřížky s periodou 15 μm a hloubkou struktury 200 nm, 16 výškových úrovní, získané z aproximačních funkcí pro hloubky mikrostruktury 500 nm a 1400 nm.

Véčková	Hloubka	500	nm	1400 nm
v yskova úrovož	úrovně	Dlev	D _{lev-dev}	$D_{ m lev}$
uroven	(nm)	(µC·	cm ⁻²)	$(\mu C \cdot cm^{-2})$
1	200	97,2	34,35	62,9
2	233	112,7	34,98	77,8
3	267	127,1	35,38	91,7
4	300	140,5	35,59	104,9
5	333	152,9	35,62	117,2
6	367	164,4	35,49	128,9
7	400	175,0	35,24	139,8
8	433	185,0	34,89	150,1
9	467	194,3	34,46	159,8
10	500	203,0	34,00	169,0
11	533	211,1	33,53	177,6
12	567	218,9	33,10	185,8
13	600	226,2	32,73	193,5
14	633	233,3	32,47	200,8
15	667	240,1	32,35	207,8
16	700	246,9	32,43	214,4
Dlev-dev-avg	$(\mu C \cdot cm^{-2})$		34,16	

Tab. O2 Expoziční dávky pro strukturu lineární mřížky s periodou 15 μm a hloubkou struktury 200 nm, 16 výškových úrovní, získané z aproximačních funkcí pro hloubky mikrostruktury 800 nm a 1400 nm.

Vášlasaná	Hloubka	800) nm	1400 nm
v yskova	úrovně	Dlev	Dlev-dev	Dlev
uroven	(nm)	(µC·	-cm ⁻²)	$(\mu C \cdot cm^{-2})$
1	200	83,0	20,13	62,9
2	253	106,7	20,49	86,3
3	307	128,2	20,82	107,4
4	360	147,7	21,09	126,6
5	413	165,3	21,23	144,0
6	467	181,1	21,32	159,8
7	520	195,5	21,27	174,2
8	573	208,5	21,11	187,3
9	627	220,3	20,86	199,4
10	680	231,0	20,55	210,5
11	733	241,0	20,23	220,8
12	787	250,3	19,95	230,3
13	840	259,1	19,79	239,3
14	893	267,6	19,81	247,7
15	947	275,9	20,12	255,8
16	1000	284,2	20,81	263,4
Dlev-dev-avg	$(\mu C \cdot cm^{-2})$		20,60	

Tab. O3 Expoziční dávky pro strukturu lineární mřížky s periodou 15 µm a hloubkou struktury 200 nm
16 výškových úrovní, získané z aproximačních funkcí pro hloubky mikrostruktury 1100 nm a 1400 nm

Výšková	Hloubka	1100 nm		1400 nm
	úrovně	Dlev	D _{lev-dev}	Dlev
uroven	(nm)	(µC·cm ⁻²)		$(\mu C \cdot cm^{-2})$
1	200	72,0	9,10	62,9
2	273	107,0	9,60	94,4
3	347	131,8	9,81	122,0
4	420	155,9	9,84	146,1
5	493	176,9	9,76	167,2
6	567	195,4	9,65	185,8
7	640	211,8	9,55	202,3
8	713	226,5	9,50	217,0
9	787	239,8	9,51	230,3
10	860	252,1	9,57	242,5
11	933	263,5	9,65	253,8
12	1007	274,4	9,72	264,4
13	1080	284,1	9,71	274,4
14	1153	293,5	9,53	283,9
15	1227	302,2	9,10	293,1
16	1300	310,1	8,30	301,8
$D_{\text{lev-dev-avg}}$ ($\mu C \cdot cm^{-2}$)			9.49	

P Srovnání přesnosti výpočtu expozičních dávek pomocí aproximační metody pro výpočet expozičních dávek s referenčním modelem pro výpočet PEC

Obr. P1 Relativní rozdíl expozičních dávek výškových úrovní získaných pomocí aproximační metody pro výpočet expozičních dávek vůči referenčnímu modelu pro výpočet PEC pro různé tvary profilů a hloubek mikrostruktur a různý počet výškových úrovní. Model pro lité plexisklo a vývojku nAAc.