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ON DIFFERENTIATION OF A LEBESGUE INTEGRAL

WITH RESPECT TO A PARAMETER

JIŘÍ ŠREMR

Abstract. The aim of this paper is to discuss the absolute continuity of certain

composite functions and differentiation of a Lebesgue integral with respect to a pa-
rameter. The results obtained are useful when analyzing strong solutions of partial

differential equations with Carathéodory right-hand sides.

1. Introduction and notation

Differentiation under integral sign is one of the very old questions in calculus of
real functions. For example, conditions sufficient to ensure that Leibniz’s rule is
applicable, i.e., that

∂

∂y

∫ b

a

f(x, y) dx =

∫ b

a

∂f(x, y)

∂y
dx, (1.1)

have been investigated already by Jordan, Harnack, de la Vallée-Poussin, Hardy,
Young, and others (see, e. g., survey given in [2]). This rule and its generalizations
play an important role in various parts of mathematics. In particular, we are
interested in Carathéodory solutions to the partial differential inequality

∂2γ(t, x)

∂t∂x
≥ p(t, x)γ(t, x) + q(t, x) (1.2)

with non-negative coefficients p and q integrable on the rectangle [a, b] × [c, d]
(see, [3, Proof of Corollary 3.2(b)]). It is known that such a solution is, e. g., the
function

γ(t, x) =

∫ t

a

∫ x

c

Zt,x(s, η)q(s, η) dηds for (t, x) ∈ [a, b]× [c, d],

where Zt,x denotes the so-called Riemann function of the corresponding character-
istic initial value problem. However, Riemann functions can be explicitly written
only in several simple cases and thus we need to find another solution to (1.2) which
would be expressed effectively. By using a certain “two-dimensional analogy” of
the well-known Cauchy formula for ODEs we arrive at the function

γ(t, x) =

∫ t

a

∫ x

c

q(s, η) e
∫ t
s

∫ x
η
p(ξ1,ξ2)dξ2dξ1 dηds for (t, x) ∈ [a, b]× [c, d]. (1.3)
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We need to show that this function is absolutely continuous in the sense of Cara-
théodory1 and that satisfies inequality (1.2) almost everywhere in [a, b]× [c, d]. Let
us mention that if the coefficients p and q are continuous, the problem indicated is
not difficult. If p and q are discontinuous, the situation is much more complicated
and we have not found any results applicable to this particular problem in the
existing literature. In this paper, we adapt and extend known results in order
to solve our problem. More precisely, we establish Theorem 2.7 guaranteeing the
absolute continuity of the function

λ 7→
∫ ϕ(λ)

c

f(t, λ) dt

and giving a formula for its derivative. Then, in Theorem 2.9, we investigate the
question on the existence of partial derivatives of the function

(λ, µ) 7→
∫ λ

a

h(t, λ, µ) dt. (1.4)

The results obtained are applied to solve the above-mentioned problem (see Corol-
lary 2.13) concerning partial differential inequality (1.2), because the function γ
defined by relation (1.3) is a particular case of mapping (1.4).

The following notation will be used throughout the paper: N, Q, and R denote
the sets of all natural, rational, and real numbers, respectively, R+ = [0,+∞[ ,
and for any x ∈ R we put [x]+ = (|x| + x)/2 and [x]− = (|x| − x)/2. If Ω ⊂ Rn
is a measurable set then meas Ω denotes the Lebesgue measure of Ω and L(Ω;R)
stands for the space of Lebesgue integrable functions p : Ω → R endowed with
the norm ‖p‖L =

∫
Ω
|p(x)|dx. Moreover, the partial derivatives of the function

u : Ω→ R at the point x ∈ Ω are denoted by

u′[k](x1, . . . , xn) =
∂u(x1, . . . , xn)

∂xk
for k ∈ {1, . . . , n},

u′′[k,`](x1, . . . , xn) =
∂2u(x1, . . . , xn)

∂xk∂x`
for k, ` ∈ {1, . . . , n}.

At last, AC ([α, β];R) stands for the set of absolutely continuous functions on the
interval [α, β] ⊂ R.

2. Main results

It is well known that combination of absolutely continuous functions might not be
absolutely continuous. Therefore, before formulating of the main results (namely,
Theorems 2.7 and 2.9) we present the following rather simple statement which we
will need afterwards.

Proposition 2.1. Let ϕ ∈ AC ([a, b];R) and f ∈ AC ([c, d];R), where [c, d] =
ϕ([a, b]). Put

F (t) := f
(
ϕ(t)

)
for t ∈ [a, b]. (2.1)

Then the following assertions are satisfied:

1This notion is defined in [1] (see also Lemma 3.1 below).
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(a) The relation

F ′(t) = f ′
(
ϕ(t)

)
ϕ′(t) for all t ∈ ϕ−1(E1) ∩ E2

holds, where E1 = {x ∈ [c, d] : there exists f ′(x)} and E2 = {t ∈ [a, b] :
there exists ϕ′(t)}.

(b) If the function ϕ is monotone (not strictly, in general) then the function
F is absolutely continuous.

(c) If the function ϕ is strictly monotone then

F ′(t) = f ′
(
ϕ(t)

)
ϕ′(t) for a.e. t ∈ [a, b].2 (2.2)

Remark 2.2. Let the function ϕ in Proposition 2.1 be strictly monotone. Then
the set ϕ−1(E1) in the part (a) is measurable (without any additional assumption)
and measϕ−1(E1) = b − a if and only if the inverse function ϕ−1 is absolutely
continuous (see, e. g., [4, Chapter IX, §3, Theorems 3 and 4]). Therefore, even in
this case, part (c) does not follow, in general, from part (a), because the function
ϕ−1 might not be absolutely continuous (see [5, Section 2]).

Corollary 2.3. Let ϕ ∈ AC ([a, b];R) be a strictly monotone function and
g ∈ L([c, d];R), where [c, d] = ϕ([a, b]). Put

F (t) =

∫ ϕ(t)

c

g(s) ds for t ∈ [a, b]. (2.3)

Then the function F is absolutely continuous and

F ′(t) = g
(
ϕ(t)

)
ϕ′(t) for a.e. t ∈ [a, b].3 (2.4)

Conditions guaranteeing that Leibniz’s rule (1.1) for the Lebesgue integral is
applicable at some particular point are well known. We mention here, for example,
the following statement.

Proposition 2.4 ([2, Chapter V, Section 247]). Let the function f : [c, d] ×
[a, b]→ R satisfy the relations

f(·, x) ∈ L([c, d];R) for all x ∈ [a, b], (2.5)

f(t, ·) ∈ AC ([a, b];R) for a.e. t ∈ [c, d], (2.6)

and
f ′[2] ∈ L([c, d]× [a, b];R).4 (2.7)

Moreover, let λ0 ∈ [a, b] be such that

the function

∫ d

c

f ′[2](t, ·) dt : [a, b]→ R is continuous at the point λ0. (2.8)

2In order to ensure that relation (2.2) is meaningful we put f ′(x) := α(x) at those points
x ∈ [c, d], where the derivative of the function f does not exist, α : [c, d]→ R beeing an arbitrary

function. Observe that a choice of the function α has no influence on the value of the right-hand

side of equality (2.2) (see Lemma 3.2 below).
3In order to ensure that relation (2.4) is meaningful we put g(x) := ω(x) at those points

x ∈ [c, d], where the function g is not defined, ω : [c, d]→ R being an arbitrary function. Observe
that a choice of the function ω has no influence on the value of the right-hand side of equality

(2.4) (see Lemma 3.2 below).
4See Remark 2.5.
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Put

F (λ) :=

∫ d

c

f(t, λ) dt for λ ∈ [a, b]. (2.9)

Then the function F is differentiable at the point λ0 and

F ′(λ0) =

∫ d

c

f ′[2](t, λ0) dt.

Remark 2.5. It follows from assumption (2.6) that there exists f ′[2](t, x) for

all (t, x) ∈ Ω := {(s, η) : s ∈ E, η ∈ A(s)}, where E ⊆ [c, d] with measE = d − c
and, for any s ∈ E, we have A(s) ⊆ [a, b] with measA(s) = b − a. Note that,
in general, the set Ω might not be measurable. Clearly, in assumption (2.7) we
require that the function f ′[2] is defined (i.e., the partial derivative exists) almost

everywhere in the rectangle [c, d] × [a, b]. It is worth mentioning here that this
assumption follows, e. g., from the existence of a function g ∈ L([c, d] × [a, b];R)
such that f ′[2] ≡ g on Ω (see Lemma 3.5 below).

If we are not interested in differentiability of the function F at particular points,
continuity assumption (2.8) in Proposition 2.4 can be omitted and thus we obtain
the following result.

Proposition 2.6. Let f : [c, d] × [a, b] → R be a function satisfying relations
(2.5)–(2.7). Then the function F defined by formula (2.9) is absolutely continuous
on the interval [a, b] and

F ′(λ) =

∫ d

c

f ′[2](t, λ) dt for a.e. λ ∈ [a, b]. (2.10)

If we add a variable upper boundary of the integral in (2.9), we obtain

Theorem 2.7. Let the functions ϕ ∈ AC ([a, b];R) and f : [c, d]× [a, b]→ R be
such that relations (2.5)–(2.7) hold and ϕ([a, b]) = [c, d]. Put

F (λ) :=

∫ ϕ(λ)

c

f(t, λ) dt for λ ∈ [a, b]. (2.11)

Then the following assertions are satisfied:

(a) There exist sets E1 ⊆ [c, d] and E2 ⊆ [a, b] such that measE1 = d − c,
measE2 = b− a, and

F ′(λ) = f
(
ϕ(λ), λ

)
ϕ′(λ) +

∫ ϕ(λ)

c

f ′[2](t, λ) dt for all λ ∈ ϕ−1(E1) ∩ E2.

(b) If the function ϕ is monotone (not strictly, in general) then the function
F is absolutely continuous on the interval [a, b].

(c) If the function ϕ is strictly monotone then

F ′(λ) = f
(
ϕ(λ), λ

)
ϕ′(λ) +

∫ ϕ(λ)

c

f ′[2](t, λ) dt for a.e. λ ∈ [a, b].5 (2.12)

5In order to ensure that relation (2.12) is meaningful we put f(t, x) := ω(t, x) at those points

(t, x) ∈ [c, d]× [a, b], where the function f is not defined, ω : [c, d]× [a, b]→ R being an arbitrary

function. Observe that a choice of the function ω has no influence on the value of the right-hand
side of equality (2.12) (see Lemma 3.2 below).
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Remark 2.8. Let the function ϕ in Theorem 2.7 is strictly monotone. Analo-
gously to Remark 2.2 we can mention that relation (2.12) follows from part (a) if
the inverse function ϕ−1 is absolutely continuous. In particular, we have

d

dt

∫ t

a

f(s, t) ds = f(t, t) +

∫ t

a

f ′[2](s, t) ds for a.e. t ∈ [a, b]

whenever the function f satisfies relations (2.5)–(2.7) with a = c and b = d.

As we have mentioned above, we need to show that the function γ defined
by formula (1.3) is a Carathéodory solution to differential inequality (1.2). In
particular, we have to show that the function γ is absolutely continuous on [a, b]×
[c, d] in the sense of Carathéodory which, in view of Lemma 3.1, requires to derive
formulas for partial derivatives of the function (1.4) with respect to each variable.
For this purpose we establish the following statement which will be applied to
prove Corollary 2.12 below.

Theorem 2.9. Let h : [a, b] × [a, b] × [c, d] → R be a function such that the
relations

h(·, x, z) ∈ L([a, b];R) for all (x, z) ∈ [a, b]× [c, d], (2.13)

h(t, ·, z) ∈ AC ([a, b];R) for a.e. t ∈ [a, b] and all z ∈ [c, d], (2.14)

and

h′[2](·, ·, z) ∈ L([a, b]× [a, b];R) for all z ∈ [c, d]6 (2.15)

are satisfied. Put

H(λ, µ) :=

∫ λ

a

h(t, λ, µ) dt for all (λ, µ) ∈ [a, b]× [c, d]. (2.16)

Then the following assertions are satisfied:

(a) For any µ ∈ [c, d] fixed, we have H(·, µ) ∈ AC ([a, b];R) and

H ′[1](λ, µ) = h(λ, λ, µ) +

∫ λ

a

h′[2](t, λ, µ) dt for a.e. λ ∈ [a, b]. (2.17)

(b) Let, in addition to (2.13)–(2.15), there exist a number k ∈ {0, 1} such that

(−1)kh(t, x, ·) : [c, d]→ R is non-decreasing for all

x ∈ [a, b] and a.e. t ∈ [a, x],
(2.18)

(−1)kh′[2](t, x, ·) : [c, d]→ R is non-decreasing for a.e.

(t, x) ∈ [a, b]× [a, b], t ≤ x,
(2.19)

and

h(x, x, ·) : [c, d]→ R is continuous for a.e. x ∈ [a, b], (2.20)∫ x

a

h′[2](t, x, ·) dt : [c, d]→ R is continuous for a.e. x ∈ [a, b]. (2.21)

6See Remark 2.10.
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Then there exists a set E1 ⊆ [a, b] such that measE1 = b− a and

H ′[1](λ, µ) = h(λ, λ, µ) +

∫ λ

a

h′[2](t, λ, µ) dt for all λ ∈ E1, µ ∈ [c, d]. (2.22)

(c) Let, in addition to (2.13)–(2.15) and (2.18)–(2.21), for any x ∈ E1 the
function h satisfy

h(x, x, ·) ∈ AC ([c, d];R), (2.23)

h′[2](t, x, ·) ∈ AC ([c, d];R) for a.e. t ∈ [a, x], (2.24)

and

h′′[2,3](·, x, ·) ∈ L([a, x]× [c, d];R).7 (2.25)

Then, for any λ ∈ E1 fixed, we have H ′[1](λ, ·) ∈ AC ([c, d];R) and

H ′′[1,2](λ, µ) = h′[3](λ, λ, µ) +

∫ λ

a

h′′[2,3](t, λ, µ) dt for all µ ∈ E2(λ), (2.26)

where E2(λ) ⊆ [c, d] is such that measE2(λ) = d− c.
(d) If, in addition to (2.13)–(2.15), (2.18)–(2.21), and (2.23)–(2.25), there is

a function g ∈ L([a, b]× [c, d];R) such that

g(x, z) = h′[3](x, x, z) +

∫ x

a

h′′[2,3](t, x, z) dt

for all x ∈ E1 and z ∈ E2(x),

(2.27)

then there exists H ′′[1,2] almost everywhere on [a, b]× [c, d] and

H ′′[1,2](λ, µ) = g(λ, µ) for a.e. (λ, µ) ∈ [a, b]× [c, d]. (2.28)

Remark 2.10. It follows from assumption (2.14) that, for any z ∈ [c, d] fixed,
there exists h′[2](t, x, z) for all (t, x) ∈ Ωz := {(s, η) : s ∈ Ez, η ∈ Bz(s)}, where

Ez ⊆ [a, b] with measEz = b− a and, for any s ∈ Ez, we have Bz(s) ⊆ [a, b] with
measBz(s) = b − a. Note that, in general, the set Ωz might not be measurable.
Clearly, in assumption (2.15) we require that, for every z ∈ [c, d], the function
h′[2](·, ·, z) is defined (i.e., the partial derivative exists) almost everywhere in the

square [a, b]× [a, b]. It is worth mentioning here that this assumption follows, e. g.,
from the existence of a function gz ∈ L([a, b]× [a, b];R) such that h′[2](·, ·, z) ≡ gz
on Ωz (see Lemma 3.5 below with a = c, b = d, and f ≡ h(·, ·, z)).

Remark 2.11. Inclusion (2.25) is understood in the sense, which is analogous
to that concerning inclusion (2.15) explained in Remark 2.10.

Now we apply Theorem 2.9 to the function γ defined by relation (1.3).

Corollary 2.12. Let the function γ : [a, b] × [c, d] → R be defined by formula
(1.3), where p, q ∈ L([a, b]× [c, d];R+). Then the following assertions are satisfied:

7See Remark 2.11.
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(i) γ(·, x) ∈ AC ([a, b];R) for every x ∈ [c, d] and the relation

γ′[1](t, x) =

∫ x

c

q(t, η) dη

+

∫ t

a

∫ x

c

q(s, η)

(∫ x

η

p(t, ξ2) dξ2

)
e
∫ t
s

∫ x
η
p(ξ1,ξ2) dξ2dξ1 dηds

(2.29)

holds for a.e. t ∈ [a, b] and all x ∈ [c, d].
(ii) γ(t, ·) ∈ AC ([c, d];R) for every t ∈ [a, b] and the relation

γ′[2](t, x) =

∫ t

a

q(s, x) ds

+

∫ x

c

∫ t

a

q(s, η)

(∫ t

s

p(ξ1, x) dξ1

)
e
∫ t
s

∫ x
η
p(ξ1,ξ2) dξ2dξ1 dsdη

(2.30)

holds for all t ∈ [a, b] and a.e. x ∈ [c, d].
(iii) γ′[1](t, ·) ∈ AC ([c, d];R) for a.e. t ∈ [a, b] and the relation

γ′′[1,2](t, x) = q(t, x) +

∫ t

a

∫ x

c

q(s, η)f(s, η, t, x) e
∫ t
s

∫ x
η
p(ξ1,ξ2) dξ2dξ1 dηds (2.31)

holds for a.e. (t, x) ∈ [a, b]× [c, d], where

f(s, η, t, x) := p(t, x) +

(∫ t

s

p(ξ1, x) dξ1

)(∫ x

η

p(t, ξ2) dξ2

)
. (2.32)

(iv) γ′[2](·, x) ∈ AC ([a, b];R) for a.e. x ∈ [c, d] and the relation

γ′′[2,1](t, x) = q(t, x) +

∫ x

c

∫ t

a

q(s, η)f(s, η, t, x) e
∫ x
η

∫ t
s
p(ξ1,ξ2) dξ1dξ2 dsdη (2.33)

holds for a.e. (t, x) ∈ [a, b] × [c, d], where the function f is defined by
formula (2.32).

(v) γ′′[1,2], γ
′′
[2,1] ∈ L([a, b]× [c, d];R) and

γ′′[1,2](t, x) = γ′′[2,1](t, x) for a.e. (t, x) ∈ [a, b]× [c, d]. (2.34)

Corollary 2.13. Let p, q ∈ L([a, b] × [c, d];R+). Then the function γ defined
by relation (1.3) is a Carathéodory solution to differential inequality (1.2).

3. Auxiliary statements

Lemma 3.1 ([6, Theorem 3.1]). Let u : [a, b]× [c, d]→ R be a function of two
variables. Then the following assertions are equivalent:

(1) The function u is absolutely continuous on the rectangle [a, b] × [c, d] in
the sense of Carathéodory.8

(2) The function u satisfies the relations:
(a) u(·, x) ∈ AC ([a, b];R) for every x ∈ [c, d] and u(a, ·) ∈ AC ([c, d];R),
(b) u′[1](t, ·) ∈ AC ([c, d];R) for a.e. t ∈ [a, b],

(c) u′′[1,2] ∈ L([a, b]× [c, d];R).

(3) The function u satisfies the relations:

8This notion is defined in [1] (see also [6] and references therein).
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(A) u(t, ·) ∈ AC ([c, d];R) for every t ∈ [a, b] and u(·, c) ∈ AC ([a, b];R),
(B) u′[2](·, x) ∈ AC ([a, b];R) for a.e. x ∈ [c, d],

(C) u′′[2,1] ∈ L([a, b]× [c, d];R).

Lemma 3.2 ([4, Chapter IX, §5, Lemma 2]). Let ϕ ∈ AC ([a, b];R) be an
increasing function and E ⊆ [ϕ(a), ϕ(b)] be such that measE = 0. Then

meas
{
t ∈ [a, b] : ϕ(t) ∈ E and the relation ϕ′(t) = 0 does not hold

}
= 0.

Lemma 3.3 ([4, Chapter IX, §5, Theorem]). Let ϕ ∈ AC ([a, b];R) be an in-
creasing function and h ∈ L([ϕ(a), ϕ(b)];R). Then∫ ϕ(b)

ϕ(a)

h(x) dx =

∫ b

a

h
(
ϕ(t)

)
ϕ′(t) dt.9 (3.1)

Lemma 3.4 ([6, Proposition 3.5]). Let g ∈ L([c, d]× [a, b];R) and

G(t, x) :=

∫ x

a

g(t, η) dη for t ∈ E, x ∈ [a, b], (3.2)

where E ⊆ [c, d] with measE = d− c. Then

G′[2](t, x) = g(t, x) for a.e. (t, x) ∈ [c, d]× [a, b].

Lemma 3.5. Let the function f : [c, d]× [a, b]→ R satisfy

f(t, ·) ∈ AC ([a, b];R) for all t ∈ E ⊆ [c, d], measE = d− c, (3.3)

and there exist a function g ∈ L([c, d]× [a, b];R) such that

f ′[2](t, x) = g(t, x) for all t ∈ E and x ∈ A(t), (3.4)

where A(t) ⊆ [a, b] with measA(t) = b − a. Then the partial derivative f ′[2] exits

almost everywhere in [c, d]× [a, b] and

f ′[2](t, x) = g(t, x) for a.e. (t, x) ∈ [c, d]× [a, b]. (3.5)

Proof. Assumptions (3.3) and (3.4) yield that

f(t, x) = f(t, a)+

∫ x

a

f ′[2](t, η) dη = f(t, a)+

∫ x

a

g(t, η) dη for all t ∈ E, x ∈ [a, b],

and thus desired relation (3.5) follows from Lemma 3.4. �

The next lemma is a direct generalisation of the result obtained by Tolstov in
[7, §7] (see also [6, Proof of Proposition 3.5(i)]).

Lemma 3.6. Let g : [c, d]× [a, b]→ R be such that

g(t, ·) ∈ L([a, b];R+) for a.e. t ∈ [c, d] (3.6)

and ∫ x

a

g(·, η) dη ∈ L([c, d];R+) for all x ∈ [a, b]. (3.7)

9In order to ensure that relation (3.1) is meaningful we put h(x) := α(x) at those points

x ∈ [ϕ(a), ϕ(b)], where the function h is not defined, α : [ϕ(a), ϕ(b)] → R being an arbitrary

function. Observe that a choice of the function α has no influence on the value of the right-hand
side of equality (3.1) (see Lemma 3.2).
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Put

G(t, x) :=

∫ t

c

(∫ x

a

g(s, η) dη

)
ds for (t, x) ∈ [c, d]× [a, b]. (3.8)

Then there exists a set E ⊆ [c, d] such that measE = d− c and

G′[1](t, x) =

∫ x

a

g(t, η) dη for all t ∈ E and x ∈ [a, b]. (3.9)

The following lemma concerns the so-called Carathéodory functions and gives
a result which is well known (see, e. g., [1, §576]).

Lemma 3.7. Let f : [a, b]× [c, d]× R2 → R be such that

f(·, ·, α, β) : [a, b]× [c, d]→ R is measurable for all (α, β) ∈ R2, (3.10)

f(x, z, ·, ·) : R2 → R is continuous for a.e. (x, z) ∈ [a, b]× [c, d], (3.11)

and let u, v : [a, b]×[c, d]→ R be measurable functions. Then the function h defined
by the relation

h(x, z) := f
(
x, z, u(x, z), v(x, z)

)
(3.12)

is measurable on the rectangle [a, b]× [c, d].

At last, we formulate a lemma which can be found in Carathéodory’s monograph
[1] (see also [6, Lemma 3.1]).

Lemma 3.8. Let g ∈ L([a, b] × [c, d];R). Then the function G defined by
formula (3.2) is measurable on the rectangle [a, b]× [c, d].

4. Proofs of main results

Proof of Proposition 2.1. (a) The assertion follows immediately from the rule
for differentiation of composite functions.

(b) It can be proved easily by using the definition of absolutely continuous
functions.

(c) Assume that the function ϕ is increasing (if it is decreasing, the proof is
analogous). Then Lemma 3.3 yields that f ′

(
ϕ(·)

)
ϕ′(·) ∈ L([a, b];R) and

F (t)− F (a) = f
(
ϕ(t)

)
− f

(
ϕ(a)

)
=

∫ ϕ(t)

ϕ(a)

f ′(x) dx =

∫ t

a

f ′
(
ϕ(s)

)
ϕ′(s) ds

for all t ∈ [a, b], which gives desired relation (2.2). �

Proof of Corollary 2.3. At first we put g(x) := ω(x) for those x ∈ [c, d] in which
the function g is not defined, where ω is the function from footnote in our corollary.
Put

f(x) :=

∫ x

c

g(s) ds for x ∈ [c, d].

It is clear F (t) = f
(
ϕ(t)

)
for all t ∈ [a, b], the function f is absolutely continu-

ous, and f ′(x) = g(x) for all x ∈ A, where A ⊆ [c, d] with measA = d− c.
On the other hand, by using Proposition 2.1, we get a set E ⊆ [a, b] such that

measE = b− a and

F ′(t) = f ′
(
ϕ(t)

)
ϕ′(t) for all t ∈ E, (4.1)
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where we put f ′(x) := g(x) at those points x ∈ [c, d] in which the derivative of the
function f does not exist. Consequently, we have

F ′(t) = g
(
ϕ(t)

)
ϕ′(t) for all t ∈ E ∩ ϕ−1(A). (4.2)

However, it follows from Lemma 3.2 that

meas
{
t ∈ E : ϕ(t) 6∈ A and the relation ϕ′(t) = 0 does not hold

}
= 0

and thus equalities (4.1) and (4.2) yield the validity of desired relation (2.4). �

Proof of Proposition 2.6. By using assumption (2.5)–(2.7) and Fubini’s theo-
rem, we get∫ λ

a

(∫ d

c

f ′[2](t, x) dt

)
dx =

∫ d

c

(∫ λ

a

f ′[2](t, x) dx

)
dt

=

∫ d

c

[
f(t, λ)− f(t, a)

]
dt = F (λ)− F (a)

for all λ ∈ [a, b]. Consequently, the function F is absolutely continuous and desired

relation (2.10) holds because we have
∫ d
c
f ′[2](t, ·) dt ∈ L([a, b];R). �

Proof of Theorem 2.7. (a) Let

H(µ, λ) :=

∫ µ

c

f(t, λ) dt for (µ, λ) ∈ [c, d]× [a, b].

Then F (λ) = H
(
ϕ(λ), λ

)
for all λ ∈ [a, b] and, in view of assumptions (2.5)–(2.7),

we get

H(µ, λ) =

∫ µ

c

(∫ λ

a

f ′[2](t, x) dx

)
dt+

∫ µ

c

f(t, a) dt

=

∫ λ

a

(∫ µ

c

f ′[2](t, x) dt

)
dx+

∫ µ

c

f(t, a) dt for all (µ, λ) ∈ [c, d]× [a, b].

Therefore, Lemma 3.6 guarantees that there exists a set E1 ⊆ [c, d] with measE1 =
d− c such that

H ′[1](µ, λ) =

∫ λ

a

f ′[2](µ, x) dx+ f(µ, a) = f(µ, λ) for all µ ∈ E1, λ ∈ [a, b],

and that there is a set E2 ⊆ [a, b] such that measE2 = b− a, there exists ϕ′(λ) for
every λ ∈ E2, and

H ′[2](µ, λ) =

∫ µ

c

f ′[2](t, λ) dt for all µ ∈ [c, d], λ ∈ E2.

Consequently, we obtain

F ′(λ) = H ′[1]

(
ϕ(λ), λ

)
ϕ′(λ) +H ′[2]

(
ϕ(λ), λ

)
= f

(
ϕ(λ), λ

)
ϕ′(λ) +

∫ ϕ(λ)

c

f ′[2](t, λ) dt for all λ ∈ ϕ−1(E1) ∩ E2.
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(b) Assume that the function ϕ is non-decreasing (if it is non-increasing, the
proof is analogous) and let ε > 0 be arbitrary. Then, in view of assumptions (2.5)
and (2.7), there exists ω > 0 such that∫∫

E

∣∣f ′[2](t, x)
∣∣dtdx < ε

3
for all E ⊆ [c, d]× [a, b], measE < ω (4.3)

and ∫
I

|f(t, a)|dt < ε

3
for all I ⊆ [c, d], meas I < ω. (4.4)

Moreover, there exist a number 0 < δ ≤ ω/(d − c) such that, for an arbitrary

system
{

]ak, bk[
}m
k=1

of mutually disjoint subintervals of [a, b] satisfying relation∑m
k=1(bk − ak) < δ, we have

m∑
k=1

∣∣ϕ(bk)− ϕ(ak)
∣∣ < ω

max{1, b− a}
. (4.5)

Now let
{

]ak, bk[
}m
k=1

be an arbitrary system of mutually disjoint subintervals

of [a, b] with property
∑m
k=1(bk − ak) < δ. Then inequality (4.5) holds,

{
[c, d] ×

[ak, bk]
}m
k=1

and
{

[ϕ(ak), ϕ(bk)]× [a, b]
}m
k=1

form systems of non-overlapping rect-

angles contained in [c, d] × [a, b], and
{

[ϕ(ak), ϕ(bk)]
}m
k=1

is a system of non-

overlapping subintervals of [c, d]. According to assumptions (2.5)–(2.7), it is easy
to verify that, for any k = 1, . . . ,m, we have

F (bk)− F (ak) =

∫ ϕ(bk)

c

f(t, bk) dt−
∫ ϕ(ak)

c

f(t, ak) dt

=

∫ ϕ(ak)

c

(∫ bk

ak

f ′[2](t, x) dx

)
dt+

∫ ϕ(bk)

ϕ(ak)

f(t, bk) dt

=

∫ ϕ(ak)

c

(∫ bk

ak

f ′[2](t, x) dx

)
dt

+

∫ ϕ(bk)

ϕ(ak)

(∫ bk

a

f ′[2](t, x) dx

)
dt+

∫ ϕ(bk)

ϕ(ak)

f(t, a) dt

and thus, in view of relation (4.5), we get
m∑
k=1

∣∣F (bk)−F (ak)
∣∣ ≤ ∫∫

A1

|f ′[2](t, x)|dtdx+

∫∫
A2

|f ′[2](t, x)|dtdx+

∫
A3

|f(t, a)|dt,

where

measA1 =

m∑
k=1

(d− c)(bk − ak) < (d− c)δ ≤ ω,

measA2 =

m∑
k=1

(
ϕ(bk)− ϕ(ak)

)
(b− a) <

ω(b− a)

max{1, b− a}
≤ ω,

measA3 =

m∑
k=1

(
ϕ(bk)− ϕ(ak)

)
<

ω

max{1, b− a}
≤ ω.
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Consequently, relations (4.3) and (4.4) yield that
∑m
k=1

∣∣F (bk) − F (ak)
∣∣ < ε and

thus the function F is absolutely continuous.

(c) Assume that the function ϕ is increasing (if it is decreasing, the proof is
analogous). It follows from the assumptions imposed on ϕ and f that there exist
ϕ′(t) and f ′[2](t, x) for a.e. t ∈ [a, b] and a.e. (t, x) ∈ [c, d] × [a, b], respectively.

In order to ensure that all relations below are meaningful we put ϕ′(t) := 0 and
f ′[2](t, x) := 0 at those points in which the derivatives indicated do not exist. In

such a way, the functions ϕ′ and f ′[2] are defined everywhere on [a, b] and [c, d] ×
[a, b], respectively.

Let E1 ⊆ [a, b], measE1 = b− a, be the set such that f ′[2](·, x) ∈ L([c, d];R) for

every x ∈ E1. Put

h(λ, x) :=

∫ ϕ(λ)

c

f ′[2](t, x) dt for all λ ∈ [a, b] and x ∈ E1. (4.6)

Clearly, we have

h(λ, ·) ∈ L([a, b];R) for all λ ∈ [a, b]. (4.7)

Then, by using Fubini’s theorem, we get

F (λ) =

∫ ϕ(λ)

c

f(t, a) dt+

∫ ϕ(λ)

c

(∫ λ

a

f ′[2](t, x) dx

)
dt

=

∫ ϕ(λ)

c

f(t, a) dt+

∫ λ

a

(∫ ϕ(λ)

c

f ′[2](t, x) dt

)
dx

=

∫ ϕ(λ)

c

f(t, a) dt+

∫ λ

a

h(λ, x) dx for all λ ∈ [a, b].

(4.8)

Moreover, Corollary 2.3 yields that

h(·, x) ∈ AC ([a, b];R) for all x ∈ E1, (4.9)

h′[1](λ, x) = f ′[2]

(
ϕ(λ), x

)
ϕ′(λ) for all x ∈ E1 and λ ∈ A(x), (4.10)

where A(x) ⊆ [a, b] with measA(x) = b− a, and

d

dλ

∫ ϕ(λ)

c

f(t, a) dt = f
(
ϕ(λ), a

)
ϕ′(λ) for a.e. λ ∈ [a, b]. (4.11)

Now we put f1 :≡
[
f ′[2]

]
+

, f2 :≡
[
f ′[2]

]
−, and

hk(t, x) := fk
(
ϕ(t), x

)
ϕ′(t) for all (t, x) ∈ [a, b]× [a, b], k = 1, 2. (4.12)

Relations (4.9) and (4.10) yield that hk(·, x) ∈ L([a, b];R+) for all x ∈ E1. More-
over, in view of assumption (2.7), we have f1, f2 ∈ L([c, d] × [a, b];R). Therefore,
by virtue of Fubini’s theorem and Lemma 3.2 one can show that fk

(
ϕ(t), ·

)
ϕ′(t) =

hk(t, ·) ∈ L([a, b];R+) for almost every t ∈ [a, b]. Unfortunately, it may happen
that hk 6∈ L([a, b]× [a, b];R+). However, we can show that on every rectangle con-
tained in [a, b]× [a, b] there exist both iterated integrals and their values are equal
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to each other. Indeed, let k ∈ {1, 2} be fixed and [a1, b1] × [a2, b2] ⊆ [a, b] × [a, b]
be an arbitrary rectangle. Moreover, let

Ω :=
{
t ∈ [c, d] : fk(t, ·) ∈ L([a, b];R)

}
, w(t) :=

{∫ b2
a2
fk(t, x) dx for t ∈ Ω,

0 for t ∈ [c, d] \ Ω.

Then we have meas Ω = d − c and w ∈ L([c, d];R) and thus, Lemma 3.3 yields

that
∫ ϕ(b1)

ϕ(a1)
w(s) ds =

∫ b1
a1
w
(
ϕ(t)

)
ϕ′(t) dt. However, with respect to Lemma 3.2,

one can verify that

w
(
ϕ(t)

)
ϕ′(t) =

∫ b2

a2

fk
(
ϕ(t), x

)
ϕ′(t) dx for a.e. t ∈ [a, b],

which arrives at the equality∫ ϕ(b1)

ϕ(a1)

(∫ b2

a2

fk(s, x) dx

)
ds =

∫ b1

a1

(∫ b2

a2

fk
(
ϕ(t), x

)
ϕ′(t) dx

)
dt.

On the other hand, by using Lemma 3.3 we get∫ b2

a2

(∫ ϕ(b1)

ϕ(a1)

fk(s, x) ds

)
dx =

∫ b2

a2

(∫ b1

a1

fk
(
ϕ(t), x

)
ϕ′(t) dt

)
dx.

Now comparing the last two relations we obtain the equality∫ b1

a1

(∫ b2

a2

hk(t, x) dx

)
dt =

∫ b2

a2

(∫ b1

a1

hk(t, x) dt

)
dx. (4.13)

It means that the functions h1 and h2 satisfy all assumptions of Lemma 3.6 with
c = a and d = b and thus there exists a set E2 ⊆ [a, b] such that measE2 = b− a
and

∂

∂y

∫ y

a

(∫ z

a

hk(t, x) dx

)
dt =

∫ z

a

hk(y, x) dx

for all y ∈ E2 and z ∈ [a, b], k = 1, 2,

(4.14)

∂

∂z

∫ z

a

(∫ y

a

hk(t, x) dt

)
dx =

∫ y

a

hk(t, z) dt

for all y ∈ [a, b] and z ∈ E2, k = 1, 2.

(4.15)

Moreover, by virtue of assumption (2.7) and Lemma 3.6, we can assume without
loss of generality that E2 is such that the relation

∂

∂y

∫ y

a

(∫ z2

z1

|f ′[2](s, x)|ds
)

dx =

∫ z2

z1

|f ′[2](s, y)|ds

for all y ∈ E2 and z1, z2 ∈ [c, d]

(4.16)

holds as well.
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Let now λ0 ∈ E1∩E2 be arbitrary. Then, by using relations (4.7), (4.9), (4.10),
and (4.13), we get∫ λ

a

h(λ, x) dx−
∫ λ0

a

h(λ0, x) dx

=

∫ λ0

a

(∫ λ

λ0

h′[1](t, x) dt

)
dx+

∫ λ

λ0

h(λ, x) dx

=

∫ λ0

a

(∫ λ

λ0

h′[1](t, x) dt

)
dx+

∫ λ

λ0

(∫ λ

λ0

h′[1](t, x) dt

)
dx

+

∫ λ

λ0

(∫ λ0

a

h′[1](t, x) dt

)
dx

=

∫ λ

λ0

(∫ λ0

a

h1(t, x) dx

)
dt−

∫ λ

λ0

(∫ λ0

a

h2(t, x) dx

)
dt

+

∫ λ

λ0

(∫ λ0

a

h1(t, x) dt

)
dx−

∫ λ

λ0

(∫ λ0

a

h2(t, x) dt

)
dx

+

∫ λ

λ0

(∫ λ

λ0

f ′[2]

(
ϕ(t), x

)
ϕ′(t) dt

)
dx

(4.17)

for all λ ∈ [a, b]. Observe that, in view of assumption (2.7) and Lemma 3.3, for
any λ, y ∈ [a, b] with the property 0 < (λ− λ0)2 ≤ (y − λ0)(λ− λ0) the relation∣∣∣∣ 1

λ− λ0

∫ λ

λ0

(∫ λ

λ0

f ′[2]

(
ϕ(t), x

)
ϕ′(t) dt

)
dx

∣∣∣∣
=

∣∣∣∣ 1

λ− λ0

∫ λ

λ0

(∫ ϕ(λ)

ϕ(λ0)

f ′[2](s, x) ds

)
dx

∣∣∣∣
≤ sgn(y − λ0)

λ− λ0

∫ λ

λ0

(∫ ϕ(y)

ϕ(λ0)

|f ′[2](s, x)|ds

)
dx

holds and thus, by using equality (4.16), we get

lim sup
λ→λ0+

∣∣∣∣∣ 1

λ− λ0

∫ λ

λ0

(∫ λ

λ0

f ′[2]

(
ϕ(t), x

)
ϕ′(t) dt

)
dx

∣∣∣∣∣ ≤
∫ ϕ(y)

ϕ(λ0)

|f ′[2](s, λ0)|ds

for all y ∈ [a, b], y > λ0, and

lim sup
λ→λ0−

∣∣∣∣∣ 1

λ− λ0

∫ λ

λ0

(∫ λ

λ0

f ′[2]

(
ϕ(t), x

)
ϕ′(t) dt

)
dx

∣∣∣∣∣ ≤
∫ ϕ(λ0)

ϕ(y)

|f ′[2](s, λ0)|ds
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for all y ∈ [a, b], y < λ0. Consequently, we have

lim
λ→λ0

1

λ− λ0

∫ λ

λ0

(∫ λ

λ0

f ′[2]

(
ϕ(t), x

)
ϕ′(t) dt

)
dx = 0. (4.18)

Therefore, by virtue of conditions (4.12), (4.14), (4.15), and Lemma 3.3, it follows
from relation (4.17) that

d

dλ

∫ λ

a

h(λ, x) dx

∣∣∣∣
λ=λ0

= lim
λ→λ0

1

λ− λ0

[∫ λ

a

h(λ, x) dx−
∫ λ0

a

h(λ0, x) dx

]

=

∫ λ0

a

h1(λ0, x) dx−
∫ λ0

a

h2(λ0, x) dx

+

∫ λ0

a

h1(t, λ0) dt−
∫ λ0

a

h2(t, λ0) dt

=

∫ λ0

a

f ′[2]

(
ϕ(λ0), x

)
ϕ′(λ0) dx+

∫ λ0

a

f ′[2]

(
ϕ(t), λ0

)
ϕ′(t) dt

=

∫ λ0

a

f ′[2]

(
ϕ(λ0), x

)
ϕ′(λ0) dx+

∫ ϕ(λ0)

c

f ′[2](s, λ0) ds.

These equalities and relations (4.8), (4.11) yield that

F ′(λ) = f
(
ϕ(λ), a

)
ϕ′(λ) +

∫ λ

a

f ′[2]

(
ϕ(λ), x

)
ϕ′(λ) dx

+

∫ ϕ(λ)

c

f ′[2](t, λ) dt for all λ ∈ A,

(4.19)

where A ⊆ [a, b], measA = b− a. It remains to show that the relation

f
(
ϕ(λ), a

)
ϕ′(λ) +

∫ λ

a

f ′[2]

(
ϕ(λ), x

)
ϕ′(λ) dx = f

(
ϕ(λ), λ

)
ϕ′(λ) (4.20)

holds for a.e. λ ∈ A. Indeed, let

E3 =
{
t ∈ [c, d] : f(t, ·) ∈ AC ([a, b];R)

}
.

Then, in view of assumption (2.6), we have measE3 = d− c and

f(t, a) +

∫ y

a

f ′[2](t, x) dx = f(t, y) for all y ∈ [a, b] and t ∈ E3. (4.21)

Put

B1 :=
{
λ ∈ A : ϕ(λ) ∈ E3

}
,

B2 :=
{
λ ∈ A : ϕ(λ) 6∈ E3 and the relation ϕ′(λ) = 0 holds

}
,

and

B3 :=
{
λ ∈ A : ϕ(λ) 6∈ E3 and the relation ϕ′(λ) = 0 does not hold

}
.

Then B1 ∪B2 ∪B3 = A and, by using Lemma 3.2, we get measB3 = 0. Moreover,
it is clear that, in view of (4.21), the relation (4.20) is satisfied for every λ ∈
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B1 ∪ B2. Consequently, relation (4.20) holds almost everywhere on A and thus
(4.19) guarantees the validity of desired relation (2.12). �

Proof of Theorem 2.9. We first extend the function h outside of [a, b]× [a, b]×
[c, d] by setting h(t, x, z) := 0.

(a) For any µ ∈ [c, d] fixed, the assumptions of Theorem 2.7 are satisfied with
a = c, b = d, f(·, ·) ≡ h(·, ·, µ), and ϕ = id[a,b] and thus the assertion follows
immediately from Theorem 2.7(b),(c).

(b) We can assume without loss of generality that k = 0. According to assump-
tions (2.20) and (2.21), we can find a set Ω1 ⊆ ]a, b[ of the measure b − a such
that

h(x, x, ·) : [c, d]→ R is continuous for all x ∈ Ω1 (4.22)

and ∫ x

a

h′[2](t, x, ·) dt : [c, d]→ R is continuous for all x ∈ Ω1. (4.23)

It follows from the assertion (a) that, for any µ ∈ [c, d], there exists a set A(µ) ⊆
[a, b] such that measA(µ) = b− a and

H ′[1](λ, µ) = h(λ, λ, µ) +

∫ λ

a

h′[2](t, λ, µ) dt for all µ ∈ [c, d], λ ∈ A(µ). (4.24)

Put Ω2 = ∩µ∈BA(µ), where B =
(
[c, d]∩Q

)
∪{c, d}. Since the set B is countable,

the set Ω2 is measurable and meas Ω2 = b−a. Clearly, condition (4.24) yields that

H ′[1](λ, µ) = h(λ, λ, µ) +

∫ λ

a

h′[2](t, λ, µ) dt for all λ ∈ Ω2, µ ∈ B. (4.25)

Now let λ0 ∈ Ω1 ∩Ω2 be arbitrary point and {`n}+∞n=1 be an arbitrary sequence
of non-zero real numbers such that

lim
n→+∞

`n = 0. (4.26)

Put

gn(µ) :=
1

`n

[∫ λ0+`n

a

h(t, λ0 + `n, µ) dt−
∫ λ0

a

h(t, λ0, µ) dt

]
for all µ ∈[c, d], n ∈ N.

(4.27)

According to relations (4.25)–(4.27), we obtain

lim
n→+∞

gn(µ) = h(λ0, λ0, µ) +

∫ λ0

a

h′[2](t, λ0, µ) dt for all µ ∈ B. (4.28)

Observe that, in view of assumptions (2.13)–(2.15), for any µ ∈ [c, d] we have

gn(µ) =
1

`n

[∫ λ0+`n

λ0

h(t, λ0 + `n, µ) dt+

∫ λ0

a

∫ λ0+`n

λ0

h′[2](t, x, µ) dxdt

]
if `n > 0
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and

gn(µ) =
1

|`n|

[∫ λ0

λ0−|`n|
h(t, λ0, µ) dt+

∫ λ0−|`n|

a

∫ λ0

λ0−|`n|
h′[2](t, x, µ) dxdt

]
if `n < 0.

Therefore, assumptions (2.18) and (2.19) yield that the functions gn (n ∈ N) are
non-decreasing on [c, d].

We will show that relation (4.28) holds for every µ ∈ [c, d]. Indeed, let µ0 ∈ [c, d]
and ε > 0 be arbitrary. Then, in view of relations (4.22) and (4.23), there exist
µ1, µ2 ∈ B such that µ1 ≤ µ0 ≤ µ2 and∣∣∣∣h(λ0, λ0, µ0) +

∫ λ0

a

h′[2](t, λ0, µ0) dt

− h(λ0, λ0, µm)−
∫ λ0

a

h′[2](t, λ0, µm) dt

∣∣∣∣ < ε

2
for m = 1, 2.

(4.29)

Moreover, by virtue of limit (4.28), there exists n0 ∈ N such that∣∣∣∣∣gn(µm)− h(λ0, λ0, µm)−
∫ λ0

a

h′[2](t, λ0, µm) dt

∣∣∣∣∣ < ε

2
for n ≥ n0, m = 1, 2.

(4.30)
Now, by using relations (4.29), (4.30), and the monotonicity of the functions gn,
we obtain

gn(µ0)− h(λ0, λ0, µ0)−
∫ λ0

a

h′[2](t, λ0, µ0) dt

≤ gn(µ2)− h(λ0, λ0, µ2)−
∫ λ0

a

h′[2](t, λ0, µ2) dt

+ h(λ0, λ0, µ2) +

∫ λ0

a

h′[2](t, λ0, µ2) dt

− h(λ0, λ0, µ0)−
∫ λ0

a

h′[2](t, λ0, µ0) dt

<
ε

2
+
ε

2
= ε for n ≥ n0

and

h(λ0, λ0, µ0) +

∫ λ0

a

h′[2](t, λ0, µ0) dt− gn(µ0)

≤ h(λ0, λ0, µ1) +

∫ λ0

a

h′[2](t, λ0, µ1) dt− gn(µ1)

− h(λ0, λ0, µ1)−
∫ λ0

a

h′[2](t, λ0, µ1) dt

+ h(λ0, λ0, µ0) +

∫ λ0

a

h′[2](t, λ0, µ0) dt

<
ε

2
+
ε

2
= ε for n ≥ n0
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and thus ∣∣∣∣∣gn(µ0)− h(λ0, λ0, µ0)−
∫ λ0

a

h′[2](t, λ0, µ0) dt

∣∣∣∣∣ < ε for n ≥ n0.

Consequently, in view of arbitrariness of µ0 and ε, the relation

lim
n→+∞

gn(µ) = h(λ0, λ0, µ) +

∫ λ0

a

h′[2](t, λ0, µ) dt for all µ ∈ [c, d]

holds. Since λ0 and {`n}+∞n=1 were also arbitrary and meas Ω1 ∩ Ω2 = b − a, the
last relation guarantees the validity of desired equality (2.22) with E1 = Ω1 ∩Ω2.

(c) For any λ ∈ E1 fixed, the assumptions of Proposition 2.6 are satisfied with
f(·, ·) ≡ h(·, λ, ·) on [a, λ]×[c, d] and thus the assertion follows from Proposition 2.6.

(d) It follows immediately from Lemma 3.5 with f ≡ H ′[1] on [a, b]× [c, d]. �

Now we establish a technical lemma in order to simplify the proof of Corol-
lary 2.12.

Lemma 4.1. Let p, q ∈ L([a, b]× [c, d];R+) and

h(t, x, z) :=

∫ z

c

q(t, s) e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1ds

for all t ∈ E and (x, z) ∈ [a, b]× [c, d],

(4.31)

where E ⊆ [a, b] with measE = b − a. Then the function h satisfies relations
(2.14), (2.15), and there exists a set Ω ⊆ [a, b]× [a, b] such that meas Ω = (b− a)2

and

h′[2](t, x, z) =

∫ z

c

q(t, s)

(∫ z

s

p(x, ξ2) dξ2

)
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1 ds

for all (t, x) ∈ Ω, t ≤ x, and all z ∈ [c, d].

(4.32)

Proof. Let t ∈ E and z ∈ [c, d] be arbitrary. We put

ft,z(s, x) := q(t, s) e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1 for a.e. s ∈ [c, d] and all x ∈ [a, b].

Clearly, the function ft,z satisfies conditions (2.5), (2.6), and

ft,z
′
[2](s, x) = q(t, s)

(∫ z

s

p(x, ξ2) dξ2

)
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1

for a.e. s ∈ [c, d] and all x ∈ A(s),

(4.33)

where A(s) ⊆ [a, b] with measA(s) = b − a. With the function ft,z we associate
the function

f0
t,z(s, x) := q(t, s)

(∫ z

s

p(x, ξ2) dξ2

)
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1 .

Clearly, the function f0
t,z is defined almost everywhere on the rectangle [c, d]×[a, b].

According to the assumptions p, q ∈ L([a, b] × [c, d];R+) and Lemma 3.8, we see
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that the function f0
t,z is measurable on the rectangle [c, d] × [a, b]. Moreover, we

have

|f0
t,z(s, x)| ≤ q(t, s)

(∫ d

c

p(x, ξ2) dξ2

)
e‖p‖L for a.e. (s, x) ∈ [c, d]× [a, b]

and thus f0
t,z ∈ L([c, d] × [a, b];R). Hence, in view of equality (4.33), the func-

tion ft,z
′
[2] satisfies condition (2.7) (see Lemma 3.5 with g ≡ f0

t,z). Consequently,

Proposition 2.6 yields the validity of relation (2.14) and

h′[2](t, x, z) =

∫ z

c

q(t, s)

(∫ z

s

p(x, ξ2) dξ2

)
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1 ds

for all t ∈ E, z ∈ [c, d], x ∈ B(t, z),

(4.34)

where B(t, z) ⊆ [a, b] with measB(t, z) = b− a.
Now we will show that the function h satisfies condition (2.15). Indeed, for any

z ∈ [c, d] fixed we put

ϕz(x, t, s) := q(t, s)

(∫ z

s

p(x, ξ2) dξ2

)
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1 .

Clearly, the function ϕz is defined almost everywhere on the set [a, b]×[a, b]×[c, d].
By using the assumptions p, q ∈ L([a, b]× [c, d];R+) and Lemma 3.8, we easily get
the measurability of the function ϕz on the set [a, b] × [a, b] × [c, d]. Moreover, it
is clear that

|ϕz(x, t, s)| ≤ q(t, s)

(∫ d

c

p(x, ξ2) dξ2

)
e‖p‖L for a.e. (x, t, s) ∈ [a, b]×[a, b]×[c, d]

and thus ϕz ∈ L([a, b]× [a, b]× [c, d];R). Hence, Fubini’s theorem yields that, for
any z ∈ [c, d], the function

∫ z
c
ϕz(·, ·, s) ds is integrable on [a, b]× [a, b] which, to-

gether with equality (4.34), ensures the validity of condition (2.15) (see Lemma 3.5
with a = c, b = d, and g(·, ·) ≡

∫ z
c
ϕz(·, ·, s) ds) and

h′[2](t, x, z) =

∫ z

c

q(t, s)

(∫ z

s

p(x, ξ2) dξ2

)
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1 ds

for all z ∈ [c, d] and (t, x) ∈ C(z),

(4.35)

where C(z) ⊆ E × [a, b] with measC(z) = (b − a)2. Put Ω = ∩z∈DC(z), where
D =

(
[c, d]∩Q

)
∪{c, d}. Since the set D is countable, the set Ω is measurable and

meas Ω = (b− a)2. Clearly, condition (4.35) yields that

h′[2](t, x, z) =

∫ z

c

q(t, s)

(∫ z

s

p(x, ξ2) dξ2

)
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1 ds

for all (t, x) ∈ Ω and z ∈ D.
(4.36)
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Now let (t0, x0) ∈ Ω, t0 ≤ x0, be arbitrary point and {`n}+∞n=1 be an arbitrary
sequence of non-zero real numbers such that relation (4.26) holds. Put

gn(z) :=
1

`n

∫ z

c

q(t0, s) e
∫ x0
t0

∫ z
s
p(ξ1,ξ2) dξ2dξ1

[
e
∫ x0+`n
x0

∫ z
s
p(ξ1,ξ2) dξ2dξ1 −1

]
ds

for all z ∈ [c, d], n ∈ N.
(4.37)

According to relations (4.26), (4.36), and (4.37), we obtain

lim
n→+∞

gn(z) =

∫ z

c

q(t0, s)

(∫ z

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ z
s
p(ξ1,ξ2) dξ2dξ1 ds (4.38)

for all z ∈ D. Note also that the functions gn (n ∈ N) are non-decreasing on [c, d],
because the functions p and q are non-negative and t0 ≤ x0.

We will show that relation (4.38) holds for every z ∈ [c, d]. Indeed, let z0 ∈ [c, d]
and ε > 0 be arbitrary. By using the inequality

ey2 − ey1 ≤ ey2(y2 − y1) for all y1, y2 ∈ R, y1 ≤ y2, (4.39)

it can be easily verified that∣∣∣∣ ∫ z0

c

q(t0, s)

(∫ z0

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ z0
s

p(ξ1,ξ2) dξ2dξ1 ds

−
∫ z

c

q(t0, s)

(∫ z

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ z
s
p(ξ1,ξ2) dξ2dξ1 ds

∣∣∣∣
≤
(∫ d

c

p(x0, ξ2) dξ2

)
e‖p‖L

∣∣∣∣ ∫ z0

z

q(t0, s) ds

∣∣∣∣
+

(∫ d

c

q(t0, s) ds

)
e‖p‖L

∣∣∣∣ ∫ z0

z

p(x0, ξ2) dξ2

∣∣∣∣
+

(∫ d

c

q(t0, s) ds

)(∫ d

c

p(x0, ξ2) dξ2

)
e‖p‖L

∣∣∣∣ ∫ b

a

∫ z0

z

p(ξ1, ξ2) dξ2dξ1

∣∣∣∣
for all z ∈ [c, d] and thus there exist z1, z2 ∈ D such that z1 ≤ z0 ≤ z2 and∣∣∣∣ ∫ z0

c

q(t0, s)

(∫ z0

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ z0
s

p(ξ1,ξ2) dξ2dξ1 ds

−
∫ zm

c

q(t0, s)

(∫ zm

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ zm
s

p(ξ1,ξ2) dξ2dξ1 ds

∣∣∣∣ < ε

2

(4.40)

for m = 1, 2. Moreover, by virtue of limit (4.38), there exists n0 ∈ N such that∣∣∣∣gn(zm)−
∫ zm

c

q(t0, s)

(∫ zm

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ zm
s

p(ξ1,ξ2) dξ2dξ1 ds

∣∣∣∣ < ε

2

for n ≥ n0, m = 1, 2.

(4.41)



ON DIFFERENTIATION UNDER INTEGRAL SIGN 111

Now, by using inequalities (4.40), (4.41), and the monotonicity of gn, for every
n ≥ n0 we obtain

gn(z0)−
∫ z0

c

q(t0, s)

(∫ z0

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ z0
s

p(ξ1,ξ2) dξ2dξ1 ds

≤ gn(z2)−
∫ z2

c

q(t0, s)

(∫ z2

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ z2
s

p(ξ1,ξ2) dξ2dξ1 ds

+

∫ z2

c

q(t0, s)

(∫ z2

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ z2
s

p(ξ1,ξ2) dξ2dξ1 ds

−
∫ z0

c

q(t0, s)

(∫ z0

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ z0
s

p(ξ1,ξ2) dξ2dξ1 ds

<
ε

2
+
ε

2
= ε

and∫ z0

c

q(t0, s)

(∫ z0

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ z0
s

p(ξ1,ξ2) dξ2dξ1 ds− gn(z0)

≤
∫ z1

c

q(t0, s)

(∫ z1

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ z1
s

p(ξ1,ξ2) dξ2dξ1 ds− gn(z1)

+

∫ z0

c

q(t0, s)

(∫ z0

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ z0
s

p(ξ1,ξ2) dξ2dξ1 ds

−
∫ z1

c

q(t0, s)

(∫ z1

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ z1
s

p(ξ1,ξ2) dξ2dξ1 ds

<
ε

2
+
ε

2
= ε,

and thus we have∣∣∣∣gn(z0)−
∫ z0

c

q(t0, s)

(∫ z0

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ z0
s

p(ξ1,ξ2) dξ2dξ1 ds

∣∣∣∣ < ε for n ≥ n0.

Consequently, in view of arbitrariness of z0 and ε, the relation (4.38) holds for all
z ∈ [c, d]. Since the sequence {`n}+∞n=1 was also arbitrary, we have proved that

h′[2](t0, x0, z) =

∫ z

c

q(t0, s)

(∫ z

s

p(x0, ξ2) dξ2

)
e
∫ x0
t0

∫ z
s
p(ξ1,ξ2) dξ2dξ1 ds

for all z ∈ [c, d]. Mention on arbitrariness of the point (t0, x0) completes the
proof. �

Proof of Corollary 2.12. Clearly

γ(λ, µ) =

∫ λ

a

h(t, λ, µ) dt for all (λ, µ) ∈ [a, b]× [c, d],

where the function h is defined by formula (4.31) with E ⊆ [a, b], measE = b− a.

(i) We first mention that condition (2.13) holds. It follows from Lemma 4.1
that the function h also satisfies conditions (2.14), (2.15), and (4.32), where Ω ⊆
[a, b] × [a, b] is such that meas Ω = (b − a)2. Consequently, the assumptions of
Theorem 2.9(a) are fulfilled and thus γ(·, µ) ∈ AC ([a, b];R) for every µ ∈ [c, d].
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Now observe that conditions (2.18), (2.19) with k = 0 and (2.20) are satisfied
because we assume p, q ∈ L([a, b] × [c, d];R+). Moreover, in view of condition
(4.32), there exists a set A ⊆ [a, b] such that measA = b− a and

h′[2](t, x, z) =

∫ z

c

q(t, s)

(∫ z

s

p(x, ξ2) dξ2

)
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1 ds

for all x ∈ A, t ∈ B(x), and z ∈ [c, d],

where B(x) ⊆ [a, x] is such that measB(x) = x − a. Therefore, for any x ∈ A
fixed we have

h′[2](t, x, z2)− h′[2](t, x, z1)

=

∫ z2

z1

q(t, s)

(∫ z2

s

p(x, ξ2) dξ2

)
e
∫ x
t

∫ z2
s

p(ξ1,ξ2) dξ2dξ1 ds

+

∫ z1

c

q(t, s)

(∫ z2

z1

p(x, ξ2) dξ2

)
e
∫ x
t

∫ z2
s

p(ξ1,ξ2) dξ2dξ1 ds

+

∫ z1

c

q(t, s)

(∫ z1

s

p(x, ξ2) dξ2

)
×
[
e
∫ x
t

∫ z2
s

p(ξ1,ξ2) dξ2dξ1 − e
∫ x
t

∫ z1
s

p(ξ1,ξ2) dξ2dξ1
]

ds

for a.e. t ∈ [a, x] and all z1, z2 ∈ [c, d]. Therefore, by using inequality (4.39), for
every c ≤ z1 ≤ z2 ≤ d we get∣∣∣∣ ∫ x

a

h′[2](t, x, z2) dt−
∫ x

a

h′[2](t, x, z1) dt

∣∣∣∣
≤

(∫ d

c

p(x, ξ2) dξ2

)
e‖p‖L

(∫ b

a

∫ z2

z1

q(t, s) dsdt

)

+ ‖q‖L e‖p‖L
(∫ z2

z1

p(x, ξ2) dξ2

)
+ ‖q‖L e‖p‖L

(∫ d

c

p(x, ξ2) dξ2

)(∫ b

a

∫ z2

z1

p(t, s) dsdt

)
.

Consequently, relation (2.21) holds and thus, according to Theorem 2.9(b), there
exists a set E1 ⊆ A such that measE1 = b− a and

γ′[1](λ, µ) =

∫ µ

c

q(λ, s) ds

+

∫ λ

a

∫ µ

c

q(t, s)

(∫ µ

s

p(λ, ξ2) dξ2

)
e
∫ λ
t

∫ µ
s
p(ξ1,ξ2) dξ2dξ1 dsdt

for all λ ∈ E1 and µ ∈ [c, d].

(ii) Since we can change the order of the integrations in relation (1.3), the
assertion follows immediately from the above-proved part (i) by changing the role
of the variables t and x.
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(iii) Let E1 be the set appearing in the proof of part (i) and x ∈ E1 be an
arbitrary point. Then we have

h(x, x, z) =

∫ z

c

q(x, s) ds for all z ∈ [c, d]

and

h′[2](t, x, z) =

∫ z

c

q(t, s)

(∫ z

s

p(x, ξ2) dξ2

)
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1 ds

for all t ∈ B(x) and z ∈ [c, d],

where B(x) ⊆ [a, x] with measB(x) = x− a. Clearly, condition (2.23) holds.
Let t ∈ B(x) be arbitrary. We put

ft,x(s, z) := q(t, s)

(∫ z

s

p(x, ξ2) dξ2

)
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1

for a.e. s ∈ [c, d] and all z ∈ [c, d].

Then the function ft,x satisfies conditions (2.5), (2.6) (in which a = c, b = d), and

ft,x
′
[2](s, z) = q(t, s)

[
p(x, z)

+

(∫ z

s

p(x, ξ2) dξ2

)(∫ x

t

p(ξ1, z) dξ1

)]
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1

for a.e. s ∈ [c, d] and all x ∈ C(s),

(4.42)
where C(s) ⊆ [c, d] with measC(s) = d − c. With the function ft,x we associate
the function

f0
t,x(s, z) := q(t, s)

[
p(x, z)

+

(∫ z

s

p(x, ξ2) dξ2

)(∫ x

t

p(ξ1, z) dξ1

)]
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1 .

Clearly, the function f0
t,x is defined almost everywhere on the square [c, d]× [c, d].

According to the assumptions p, q ∈ L([a, b] × [c, d];R+) and Lemma 3.8, we see
that the function f0

t,x is measurable on the square [c, d]× [c, d]. Moreover, we have

|f0
t,x(s, z)| ≤ q(t, s)

[
p(x, z) +

(∫ d

c

p(x, ξ2) dξ2

)(∫ b

a

p(ξ1, z) dξ1

)]
e‖p‖L

for a.e. (s, z) ∈ [c, d]× [c, d]

and thus f0
t,x ∈ L([c, d]× [c, d];R). Hence, in view of equality (4.42), the function

ft,x satisfies condition (2.7) (see Lemma 3.5 with a = c, b = d, and g ≡ f0
t,x).

Consequently, Theorem 2.7 (with a = c, b = d, and ϕ = id[c,d]) yields the validity
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of relation (2.24) and

h′′[2,3](t, x, z) =

∫ z

c

q(t, s)

[
p(x, z)

+

(∫ z

s

p(x, ξ2) dξ2

)(∫ x

t

p(ξ1, z) dξ1

)]
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1 ds

for all t ∈ B(x) and z ∈ D(t, x),

(4.43)
where D(t, x) ⊆ [c, d] with measD(t, x) = d− c.

Now we will show that the function h satisfies condition (2.25). Indeed, we put

gx(t, z) :=

∫ z

c

q(t, s)

[
p(x, z)

+

(∫ z

s

p(x, ξ2) dξ2

)(∫ x

t

p(ξ1, z) dξ1

)]
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1 ds.

Clearly, the function gx is defined almost everywhere on the rectangle [a, x]× [c, d].
Observe that

gx(t, z) = p(x, z) e
∫ x
t

∫ z
c
p(ξ1,ξ2) dξ2dξ1

∫ z

c

q(t, s) e−
∫ x
t

∫ s
c
p(ξ1,ξ2) dξ2dξ1 ds

+

(∫ z

c

p(x, ξ2) dξ2

)(∫ x

t

p(ξ1, z) dξ1

)
e
∫ x
t

∫ z
c
p(ξ1,ξ2) dξ2dξ1

×
∫ z

c

q(t, s) e−
∫ x
t

∫ s
c
p(ξ1,ξ2) dξ2dξ1ds

−
(∫ x

t

p(ξ1, z) dξ1

)
e
∫ x
t

∫ z
c
p(ξ1,ξ2) dξ2dξ1

×
∫ z

c

q(t, s)

(∫ s

c

p(x, ξ2) dξ2

)
e−

∫ x
t

∫ s
c
p(ξ1,ξ2) dξ2dξ1 ds

for a.e. (t, z) ∈ [a, x] × [c, d] whence, by using the assumptions p, q ∈ L([a, b] ×
[c, d];R+) and Lemma 3.8, we get the measurability of the function gx on the
rectangle [a, x]× [c, d]. Moreover, it is clear that

|gx(t, z)| ≤

[
p(x, z) +

(∫ d

c

p(x, ξ2) dξ2

)(∫ b

a

p(ξ1, z) dξ1

)]

× e‖p‖L
∫ d

c

q(t, s) ds for a.e. (t, z) ∈ [a, x]× [c, d]

and thus gx ∈ L([a, x] × [c, d];R). Hence, in view of equality (4.43), we see that
condition (2.25) holds (see Lemma 3.5 with b = x and f(·, ·) ≡ h′[2](·, x, ·)). Con-

sequently, Theorem 2.9(c) yields that γ′[1](λ, ·) ∈ AC ([c, d];R) for every λ ∈ E1
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and

γ′′[1,2](λ, µ) = q(λ, µ)

+

∫ λ

a

∫ µ

c

q(t, s)

[
p(λ, µ) +

(∫ λ

t

p(ξ1, µ) dξ1

)(∫ µ

s

p(λ, ξ2) dξ2

)]

× e
∫ λ
t

∫ µ
s
p(ξ1,ξ2) dξ2dξ1 dsdt for all λ ∈ E1, µ ∈ E2(λ),

(4.44)

where E2(λ) ⊆ [c, d] is such that measE2(λ) = d− c.
Finally we put

ϕ(t, s, x, z) := q(t, s)

[
p(x, z)

+

(∫ x

t

p(ξ1, z) dξ1

)(∫ z

s

p(x, ξ2) dξ2

)]
e
∫ x
t

∫ z
s
p(ξ1,ξ2) dξ2dξ1 .

Clearly, the function ϕ is defined almost everywhere on the set [a, b]×[c, d]×[a, b]×
[c, d]. By using the assumptions p, q ∈ L([a, b] × [c, d];R+) and Lemma 3.8, it is
easy to verify that the function ϕ is measurable on the set [a, b]×[c, d]×[a, b]×[c, d].
Moreover, we have

|ϕ(t, s, x, z)| ≤ q(t, s)

[
p(x, z) +

(∫ d

c

p(x, ξ2) dξ2

)(∫ b

a

p(ξ1, z) dξ1

)]
e‖p‖L

for a.e. (t, s, x, z) ∈ [a, b]× [c, d]× [a, b]× [c, d]

and thus ϕ ∈ L([a, b] × [c, d] × [a, b] × [c, d];R). Now we extend the function ϕ
outside of the set [a, b]× [c, d]× [a, b]× [c, d] by setting ϕ(t, s, x, z) := 0 and we put

f(x, z, α, β) :=

∫ α

a

∫ β

c

ϕ(t, s, x, z) dsdt

for a.e. (x, z) ∈ [a, b]× [c, d] and all (α, β) ∈ R2.

Then conditions (3.10) and (3.11) are satisfied and

|f(x, z, x, z)| ≤ e‖p‖L ‖q‖L

[
p(x, z) +

(∫ d

c

p(x, ξ2) dξ2

)(∫ b

a

p(ξ1, z) dξ1

)]
for a.e. (x, z) ∈ [a, b]× [c, d]. Consequently, Lemma 3.7 yields the integrability of
the function

g(x, z) := q(x, z) + f(x, z, x, z) for a.e. (x, z) ∈ [a, b]× [c, d]. (4.45)

If we set g(x, z) := γ′′[1,2](x, z) at those points (x, z) ∈ {(t, s) : t ∈ E1, s ∈ E2(t)}
in which g is not defined10 then, in view of equality (4.44), the function g satisfies
condition (2.27). Therefore, Theorem 2.9(d) yields that the partial derivative γ′′[1,2]

exists almost everywhere in the rectangle [a, b] × [c, d] and that desired relation
(2.31) holds for a.e. (t, x) ∈ [a, b]× [c, d].

10The set of such points has the measure equal to zero and thus the function g remains
integrable on [a, b]× [c, d].
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(iv) Since we can change the order of the integrations in relation (1.3), the
assertion follows immediately from the above-proved part (iii) by changing the
role of the variables t and x.

(v) It follows from the integrability of the function g defined by formula (4.45)
and the above-proved equalities (2.31) and (2.33). �

Proof of Corollary 2.13. According to Corollary 2.12, we get from Lemma 3.1
absolute continuity of the function γ in the sense of Carathéodory. Since the
functions p and q are non-negative, it follows from equality (2.32) that the function
γ is a solution to differential inequality (1.2). �
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