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ON DIFFERENTIATION OF A LEBESGUE INTEGRAL
WITH RESPECT TO A PARAMETER

JIRI SREMR

Abstract. The aim of this paper is to discuss the absolute continuity of certain
composite functions and differentiation of a Lebesgue integral with respect to a pa-
rameter. The results obtained are useful when analyzing strong solutions of partial
differential equations with Carathéodory right-hand sides.

1. INTRODUCTION AND NOTATION

Differentiation under integral sign is one of the very old questions in calculus of
real functions. For example, conditions sufficient to ensure that Leibniz’s rule is

applicable, i.e., that
a [ v of(x,y)
= ’ 1.1
3y/a flay) da /a oy (L)

have been investigated already by Jordan, Harnack, de la Vallée-Poussin, Hardy,
Young, and others (see, e. g., survey given in [2]). This rule and its generalizations
play an important role in various parts of mathematics. In particular, we are
interested in Carathéodory solutions to the partial differential inequality
2

TED) it o, 2) + alt, ) (12)
with non-negative coefficients p and ¢ integrable on the rectangle [a,b] x [e,d]
(see, [3, Proof of Corollary 3.2(b)]). It is known that such a solution is, e.g., the
function

2t 7) = / /wzt,m@,n)q(s,n)dnds for (t,z) € [a,b] x [e.d],

where Z; , denotes the so-called Riemann function of the corresponding character-
istic initial value problem. However, Riemann functions can be explicitly written
only in several simple cases and thus we need to find another solution to (1.2) which
would be expressed effectively. By using a certain “two-dimensional analogy” of
the well-known Cauchy formula for ODEs we arrive at the function

t x ¢ e
v(t, x) :/ / q(s,m) ofs [y pen€)deder qpqs for (t,z) € [a,b] x [e,d]. (1.3)
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We need to show that this function is absolutely continuous in the sense of Cara-
théodory! and that satisfies inequality (1.2) almost everywhere in [a, b] X [c, d]. Let
us mention that if the coefficients p and ¢ are continuous, the problem indicated is
not difficult. If p and ¢ are discontinuous, the situation is much more complicated
and we have not found any results applicable to this particular problem in the
existing literature. In this paper, we adapt and extend known results in order
to solve our problem. More precisely, we establish Theorem 2.7 guaranteeing the
absolute continuity of the function

e (N)
A / flt,A)de

and giving a formula for its derivative. Then, in Theorem 2.9, we investigate the
question on the existence of partial derivatives of the function

(A 1) / Y Bt ) dt. (1.4)

The results obtained are applied to solve the above-mentioned problem (see Corol-
lary 2.13) concerning partial differential inequality (1.2), because the function ~y
defined by relation (1.3) is a particular case of mapping (1.4).

The following notation will be used throughout the paper: N, Q, and R denote
the sets of all natural, rational, and real numbers, respectively, R™ = [0, +o0],
and for any z € R we put [z]1 = (Jz| + z)/2 and [z]- = (Jz| —x)/2. f Q CR"
is a measurable set then meas (2 denotes the Lebesgue measure of Q and L(£2; R)
stands for the space of Lebesgue integrable functions p: 2 — R endowed with
the norm ||p||z = [, [p(x)| dz. Moreover, the partial derivatives of the function
u:  — R at the point x € Q) are denoted by

0 ey Ty
“fk](wla--wﬂﬁn):%k’x) for k € {1,...,n},

Pu(xy,...,x,)
uﬁhl](ajlv-'-vxn):W for k,£ € {1,...,n}.

At last, AC([o, B]; R) stands for the set of absolutely continuous functions on the
interval [a, §] C R.

2. MAIN RESULTS

It is well known that combination of absolutely continuous functions might not be
absolutely continuous. Therefore, before formulating of the main results (namely,
Theorems 2.7 and 2.9) we present the following rather simple statement which we
will need afterwards.

Proposition 2.1. Let ¢ € AC([a,b];R) and f € AC([c,d];R), where [c,d] =
o[ b]). Put
F(t):= f(p(t)) forté€ [a,b]. (2.1)
Then the following assertions are satisfied:

I This notion is defined in [1] (see also Lemma 3.1 below).
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(a) The relation

F'(t) = f'(¢®)¢'(t) forallt € o™ (E1) N Ey
holds, where E1 = {x € [c,d] : there exists f'(x)} and Ey = {t € [a,}] :
there exists ¢'(t)}.
(b) If the function ¢ is monotone (not strictly, in general) then the function
F' is absolutely continuous.
(¢) If the function ¢ is strictly monotone then

F'(t)=f'(e)¢'(t) for a.e. t€ [a,b].? (2.2)

Remark 2.2. Let the function ¢ in Proposition 2.1 be strictly monotone. Then
the set ¢~ (F;) in the part (a) is measurable (without any additional assumption)
and meas ¢ 1 (F;) = b — a if and only if the inverse function ¢! is absolutely
continuous (see, e.g., [4, Chapter IX, §3, Theorems 3 and 4]). Therefore, even in
this case, part (¢) does not follow, in general, from part (a), because the function
¢~ ! might not be absolutely continuous (see [5, Section 2]).

Corollary 2.3. Let ¢ € AC([a,b];R) be a strictly monotone function and
g € L([e,d];R), where [c,d] = ¢([a,b]). Put

@(t)
F(t) = / g(s)ds fort € [a,b]. (2.3)
Then the function F is absolutely continuous and
F'(t) = g(p)¢'(t) for a.e. t € [a,b].? (2.4)

Conditions guaranteeing that Leibniz’s rule (1.1) for the Lebesgue integral is
applicable at some particular point are well known. We mention here, for example,
the following statement.

Proposition 2.4 ([2, Chapter V, Section 247]). Let the function f: [c,d] X
[a,b] — R satisfy the relations

f(,z) € L([e, d]; R) for all x € [a,b], (2.5)
f(t,-) € AC([a,b];R) for a.e. t € [c,d],

and
fioy € L([e,d] x [a, b];R).* (2.7)
Moreover, let \g € [a,b] be such that

d
the function / flgg(t,-)dt: [a,b] = R is continuous at the point Xo.  (2.8)
(&

2In order to ensure that relation (2.2) is meaningful we put f’(z) := a(z) at those points
z € [c,d], where the derivative of the function f does not exist, a: [c,d] — R beeing an arbitrary
function. Observe that a choice of the function « has no influence on the value of the right-hand
side of equality (2.2) (see Lemma 3.2 below).

3In order to ensure that relation (2.4) is meaningful we put g(z) := w(z) at those points
z € [c, d], where the function g is not defined, w: [¢,d] — R being an arbitrary function. Observe
that a choice of the function w has no influence on the value of the right-hand side of equality
(2.4) (see Lemma 3.2 below).

43ee Remark 2.5.
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Put 4
F()) = / FtA) At for A€ [a,b]. (2.9)
Then the function F is differentiable at the point \g and

d
F'(X) = / flog(t: ho) dt.

Remark 2.5. It follows from assumption (2.6) that there exists f[’2] (t,x) for
all (t,z) € Q:={(s,n) : s € E, n € A(s)}, where E C [¢,d] with meas F = d — ¢
and, for any s € E, we have A(s) C [a,b] with meas A(s) = b — a. Note that,
in general, the set © might not be measurable. Clearly, in assumption (2.7) we
require that the function f[lz] is defined (i.e., the partial derivative exists) almost
everywhere in the rectangle [c,d] x [a,b]. It is worth mentioning here that this
assumption follows, e.g., from the existence of a function g € L([c,d] X [a,b]; R)
such that f[’Q] = g on § (see Lemma 3.5 below).

If we are not interested in differentiability of the function F at particular points,
continuity assumption (2.8) in Proposition 2.4 can be omitted and thus we obtain
the following result.

Proposition 2.6. Let f: [c,d] x [a,b] — R be a function satisfying relations
(2.5)~(2.7). Then the function F defined by formula (2.9) is absolutely continuous
on the interval [a,b] and

d
PO = / fly(t N dt for ae. N [a,b]. (2.10)

If we add a variable upper boundary of the integral in (2.9), we obtain

Theorem 2.7. Let the functions ¢ € AC([a,b);R) and f: [¢,d] x [a,b] — R be
such that relations (2.5)—(2.7) hold and ¢([a,b]) = [¢,d]. Put

PO\ = /w(k)f(t,)\)dt for A€ [a,b]. (2.11)

Then the following assertions are satisfied:
(a) There exist sets E1 C [c,d] and Ey C [a,b] such that meas 4 = d — ¢,
meas K, = b — a, and
#(A)
F'(N) = f(p(\), )¢’ () +/ Syt A)dt - for all X € ¢~ (E1) N Ea.

(b) If the function ¢ is monotone (not strictly, in general) then the function
F is absolutely continuous on the interval [a,b].
(c) If the function ¢ is strictly monotone then
o(A)
F'(N) = e\, A)¢'(N) +/ flgt,N)dt for ae Xe [a, b].5 (2.12)

C

5In order to ensure that relation (2.12) is meaningful we put f(¢,z) := w(t,z) at those points
(t,z) € [c,d] X [a,b], where the function f is not defined, w: [¢,d] X [a,b] — R being an arbitrary
function. Observe that a choice of the function w has no influence on the value of the right-hand
side of equality (2.12) (see Lemma 3.2 below).



ON DIFFERENTIATION UNDER INTEGRAL SIGN 95

Remark 2.8. Let the function ¢ in Theorem 2.7 is strictly monotone. Analo-
gously to Remark 2.2 we can mention that relation (2.12) follows from part (a) if
the inverse function ¢! is absolutely continuous. In particular, we have

d t t
&/a f(s,t)ds = f(t,t) +/a flg(s,t)ds  for a.e. t € [a,b]
whenever the function f satisfies relations (2.5)—(2.7) with a = ¢ and b = d.

As we have mentioned above, we need to show that the function v defined
by formula (1.3) is a Carathéodory solution to differential inequality (1.2). In
particular, we have to show that the function 7 is absolutely continuous on [a, b] x
[c, d] in the sense of Carathéodory which, in view of Lemma 3.1, requires to derive
formulas for partial derivatives of the function (1.4) with respect to each variable.
For this purpose we establish the following statement which will be applied to
prove Corollary 2.12 below.

Theorem 2.9. Let h: [a,b] X [a,b] X [¢,d] = R be a function such that the
relations

h(-,z,z) € L(la,b;R)  for all (z,2) € [a,b] X [¢c,d], (2.13)
h(t,-,z) € AC([a,b];R) for a.e. t € [a,b] and all z € [¢,d], (2.14)

and
h'[21(~, - 2) € L([a,b] x [a,b];R) for all z € [c,d]° (2.15)

are satisfied. Put

H(\ p) = /)\ h(t, A, w)dt  for all (A, ) € [a,b] X [e,d]. (2.16)

Then the following assertions are satisfied:
(a) For any p € [c,d] fized, we have H(-,u) € AC([a,b;R) and

A
Hjy (A 1) = h(M A, ) +/ hiy(t, A, p)dt  for a.e. X € [a,b]. (2.17)

a

(b) Let, in addition to (2.13)—(2.15), there exist a number k € {0,1} such that
(=1)*n(t,z,-): [c,d] = R is non-decreasing for all

x € |a,b] and a.e. t € [a,x], (2.18)
(—1)kh'[2] (t,z,): [e,d] = R is non-decreasing for a.e. (2.19)
(t,x) € [a,b] x [a,b], t <z,
and
h(z,z,-): [c,d] = R is continuous for a.e. x € [a,b], (2.20)
/x hfz] (t,z,-)dt: [e,d] = R is continuous for a.e. x € [a,b). (2.21)

6See Remark 2.10.
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Then there exists a set Ey C [a,b] such that meas By = b — a and
A
Hiyy (N 1) = h(M\ A, ) +/a hig(t, A, p)dt  for all X € By, p € [c,d].  (2.22)

(c) Let, in addition to (2.13)—(2.15) and (2.18)—(2.21), for any x € E; the
function h satisfy

h(z,z,-) € AC([e,d]; R), (2.23)
hig(t,z,-) € AC([e,d;R)  for a.e. t € [a,z], (2.24)

and
f’273](~,x, ) € L([a, x] x [e,d];R).” (2.25)

Then, for any A € Ey fived, we have H|; (X, ) € AC([c,d];R) and

A
Hij oA 1) = gy (A A, ) —|—/ gt A p)dt forall p € Ex(N), (2.26)
where Ea(\) C [¢,d] is such that meas Eo(\) =d — c.

(d) If, in addition to (2.13)—(2.15), (2.18)—(2.21), and (2.23)—(2.25), there is
a function g € L([a,b] X [c,d];R) such that

92, 2) = by (2,3, 2) + / W oy (1, 2)

(2.27)

for all x € By and z € Ex(x),

then there exists H{j ) almost everywhere on |a,b] x [c,d] and
H{j (A p) = g\, ) for a.e. (A, ) € [a,b] X [c, d]. (2.28)

Remark 2.10. It follows from assumption (2.14) that, for any z € [, d] fixed,
there exists th] (t,x, z) for all (t,x) € Q, :={(s,n) : s € E,, n € B,(s)}, where
E, C [a,b] with meas E, = b — a and, for any s € E,, we have B,(s) C [a, b] with
meas B, (s) = b — a. Note that, in general, the set 2, might not be measurable.
Clearly, in assumption (2.15) we require that, for every z € [c,d], the function
hig)(+;+, 2) is defined (i.e., the partial derivative exists) almost everywhere in the
square [a, b] X [a,b]. It is worth mentioning here that this assumption follows, e. g.,
from the existence of a function g. € L([a, b] x [a,b]; R) such that iy (-~ 2) = g-
on Q, (see Lemma 3.5 below with a = ¢, b=d, and f = h(-,-, 2)).

Remark 2.11. Inclusion (2.25) is understood in the sense, which is analogous
to that concerning inclusion (2.15) explained in Remark 2.10.

Now we apply Theorem 2.9 to the function v defined by relation (1.3).
Corollary 2.12. Let the function v: [a,b] X [c,d] = R be defined by formula
(1.3), where p,q € L([a,b] X [¢,d];RT). Then the following assertions are satisfied:

7See Remark 2.11.
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(i) v(-,z) € AC([a,b];R) for every x € [c,d]| and the relation

Yyt ) = / q(t,n)dn

t T T .
+/ / q(s,m) </ p(t, &) d§2) ofs iy p(61,€2) déed&y dnds
a (& n

holds for a.e. t € [a,b] and all x € [c,d].
(ii) v(t, ) € AC([c,d];R) for every t € [a,b] and the relation

t
’Yfz](t>$):/ q(s,r)ds
‘ T t t o
+/ /q(sm) (/ p(él,x)d&) els Jn pl&g2) deadés qoq,)

holds for all t € [a,b] and a.e. x € [c,d].
(ili) vy (t,-) € AC([e, d];R) for a.e. t € [a,b] and the relation

t x P
7[/1,2] (t,z) = q(t, ) +/ / q(s,m)f(s,m,t,x) ofs [y pl&1,62) dades dnds

holds for a.e. (t,z) € [a,b] X [c,d], where

st =)+ ([ otenaae) ([ ot ac
(iv) vy (- 2) € AC([a,b];R) for a.e. @ € [c,d] and the relation

x t .
Vot 7) = a(t,2) +/ / a(s,m)f(s,m,t,z)eln Js PELEI dadez qoqp

97

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

holds for a.e. (t,x) € [a,b] X [c,d], where the function f is defined by

formula (2.32).
() ¥ o2 foy € Ellasb]  [e,dJi ) and

V1,2t ) = Vo (tx)  for ae (t,2) € [a,b] X [c,d].

(2.34)

Corollary 2.13. Let p,q € L([a,b] x [¢,d];RT). Then the function v defined

by relation (1.3) is a Carathéodory solution to differential inequality (1.2).

3. AUXILIARY STATEMENTS

Lemma 3.1 ([6, Theorem 3.1]). Let u: [a,b] x [¢,d] — R be a function of two

variables. Then the following assertions are equivalent:

(1) The function u is absolutely continuous on the rectangle [a,b] X [c,d] in

the sense of Carathéodory.®
(2) The function u satisfies the relations:

(a) u(-,x) € AC([a,b];R) for every x € [c,d] and u(a,-) € AC([c,d];R),

(b) upy(t,-) € AC([e, d;R) for a.e. t € [a,b],
(c) ufy 9 € L([a,b] x [c, d];R).

(3) The function u satisfies the relations:

8This notion is defined in [1] (see also [6] and references therein).
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(A) u(t,) € AC([e,d];R) for every t € [a,b] and u(-,c) € AC([a,b];R),
(B) ujy(-;x) € AC([a,b;R) for a.e. x € [c,d],
(C) upyy € L(la, b] x [¢,d]; R).
Lemma 3.2 ([4, Chapter IX, §5, Lemma 2]|). Let ¢ € AC([a,b];R) be an
increasing function and E C [p(a), ¢(b)] be such that meas E = 0. Then

meas {¢ € [a,b] : ¢(t) € E and the relation ¢'(t) = 0 does not hold} = 0.

Lemma 3.3 ([4, Chapter IX, §5, Theorem|). Let ¢ € AC([a,b];R) be an in-
creasing function and h € L([¢(a), p(b)];R). Then

/
[
/
[

©(b) b
/ h(z)dz = / h(p(t))¢'(t) dt.? (3.1)
v(a) a
Lemma 3.4 ([6, Proposition 3.5]). Let g € L([¢,d] X [a,b];R) and
G(t,x) := /x g(t,n)dn forte E, x € [a,b], (3.2)

where E C [c,d] with meas E = d — ¢. Then
Gy (t, ) = g(t,x) for a.e. (t,x) € [c,d] x [a,D].
Lemma 3.5. Let the function f: [c,d] x [a,b] = R satisfy
ft,-) € AC([a,b];R) forallt € E Clc,d], meas E =d —c, (3.3)
and there exist a function g € L([c,d] X [a,b];R) such that
f[’Q] (t,x) =g(t,x) forallt € E and x € A(t), (3.4)

where A(t) C [a,b] with meas A(t) = b — a. Then the partial derivative f[/z] exits
almost everywhere in [c,d] X [a,b] and

flg(t,x) = g(t,x)  for a.e. (t,x) € [c,d] x [a,b]. (3.5)
Proof. Assumptions (3.3) and (3.4) yield that

fto) = f(ta)+ [ fytydn =1+ [ gty forallte B a € fa]
and thus desired relation (3.5) follows from Lemma 3.4. O

The next lemma is a direct generalisation of the result obtained by Tolstov in
[7, §7] (see also [6, Proof of Proposition 3.5(i)]).

Lemma 3.6. Let g: [c,d] X [a,b] — R be such that

g(t,") € L([a,b];RT)  for a.e. t € [c,d] (3.6)

and N
/ g(-,n)dn € L([e,d];RT)  for all x € [a, b]. (3.7)
9n order to ensure that relation (3.1) is meaningful we put h(z) := a(x) at those points

z € [¢(a), p(b)], where the function h is not defined, a: [p(a), ¢(b)] — R being an arbitrary
function. Observe that a choice of the function a has no influence on the value of the right-hand
side of equality (3.1) (see Lemma 3.2).
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" G(t,z) = /ct (/jg(s,n)dn) ds for (t,z) € [c,d] x [a, b]. (3.8)

Then there exists a set E C [e,d] such that meas E = d — ¢ and
n(tz) = / g(t,n)dn forallt € E and x € [a,b). (3.9)
a

The following lemma concerns the so-called Carathéodory functions and gives
a result which is well known (see, e. g., [1, §576]).

Lemma 3.7. Let f: [a,b] X [¢,d] x R? — R be such that
f, - a,B): [a,b] x [¢,d] — R is measurable for all (o, B) € R, (3.10)
f(z,2,-,-): R* = R is continuous for a.e. (x,z) € [a,b] x [c,d], (3.11)
and let u,v: [a,b] X [c,d] — R be measurable functions. Then the function h defined
by the relation
h(z,z) = f(x,z,u(z,z),v(x,z)) (3.12)
is measurable on the rectangle [a,b] X [c,d].

At last, we formulate a lemma which can be found in Carathéodory’s monograph
[1] (see also [6, Lemma 3.1]).

Lemma 3.8. Let g € L([a,b] X [¢,d];R). Then the function G defined by
formula (3.2) is measurable on the rectangle [a,b] X [c,d].

4. PROOFS OF MAIN RESULTS

Proof of Proposition 2.1. (a) The assertion follows immediately from the rule
for differentiation of composite functions.

(b) It can be proved easily by using the definition of absolutely continuous
functions.

(c) Assume that the function ¢ is increasing (if it is decreasing, the proof is
analogous). Then Lemma 3.3 yields that f'(¢(-))¢'(-) € L([a,b]; R) and

w(t)

F(t) = F(a) = f(e(t)) — f(2(a) :/ f'(z)dz :/ F'(e()¢'(s) ds
v(a) a
for all ¢ € [a,b], which gives desired relation (2.2). O

Proof of Corollary 2.3. At first we put g(z) := w(z) for those x € [¢, d] in which
the function g is not defined, where w is the function from footnote in our corollary.
Put

f(z) = /wg(s) ds for z € [c,d].

It is clear F(t) = f(¢(t)) for all ¢ € [a,b], the function f is absolutely continu-
ous, and f’'(z) = g(z) for all x € A, where A C [¢,d] with meas A = d — c.

On the other hand, by using Proposition 2.1, we get a set E C [a, b] such that
meas E = b —a and

F'(t) = f'(p)¢'(t) forallteE, (4.1)
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where we put f'(x) := g(x) at those points x € [c, d] in which the derivative of the
function f does not exist. Consequently, we have

F'(t)=g(p(t))¢'(t) forallt e ENng '(A). (4.2)
However, it follows from Lemma 3.2 that
meas {t € E:¢(t) ¢ A and the relation ¢'(t) = 0 does not hold} =0
and thus equalities (4.1) and (4.2) yield the validity of desired relation (2.4). O

Proof of Proposition 2.6. By using assumption (2.5)—(2.7) and Fubini’s theo-
rem, we get

/a/\ (/jf[%](hm)dt) dz = /Cd (/a)\f[’2](t,x)dx> dt

= /Cd [f(m) - f(t,a)] dt = F()\) — F(a)

for all A € [a,b]. Consequently, the function F' is absolutely continuous and desired
relation (2.10) holds because we have fj fig(@,-) dt € L([a, b]; R). O

Proof of Theorem 2.7. (a) Let
/ flE, ) dt  for (u, A) € [c,d] X [a,b].

Then F(X) = H(¢(A),A) for all A € [a,b] and, in view of assumptions (2.5)—(2.7),
we get

H\) :/C“ (/A fiy (t,2) da:) dt+/: f(ta)dt
= /a)\ (/C#f['Q](t,x) dt> dx—|—/cﬂ f(t,a)dt for all (u,\) € [e,d] x [a,b].

Therefore, Lemma 3.6 guarantees that there exists a set Ey C [c, d] with meas Fy =
d — ¢ such that

H[l] H’a / f[Q] H, T dl’-i-f(/l,, ) .f(:uv)‘) for a‘HIMEEh AE [a”b]7

and that there is a set Es C [a, b] such that meas Fy = b — a, there exists ¢’(\) for
every A € E5, and

m
Hiy (1, A) = /c flg(t,A)dt for all y € [c,d], A € Es.

Consequently, we obtain

F'(X) = Hyy ((\), \) @' (N) + Hiy ((A), A)
w(A)
= F(e(N), )@ (N) +/ Fy(t,A)dt for all X € o~ (By) N Ea.

C
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(b) Assume that the function ¢ is non-decreasing (if it is non-increasing, the
proof is analogous) and let £ > 0 be arbitrary. Then, in view of assumptions (2.5)
and (2.7), there exists w > 0 such that

// | fiyy (8, ) |dbd < % for all E C [e,d] x [a,b], meas E < w (4.3)
E

and
/\f(t,a)\ dt < % for all T C [¢,d], meas] < w. (4.4)
I

Moreover, there exist a number 0 < § < w/(d — ¢) such that, for an arbitrary
system {]ak,bk[};nzl of mutually disjoint subintervals of [a,b] satisfying relation
Yoy (by — ag) < J, we have

m

D lelor) = elar)| <

k=1

w

max{l,b—a} " (45)

Now let {]ak, bk[};":l be an arbitrary system of mutually disjoint subintervals
of [a,b] with property >°;" ;(by — ax) < 0. Then inequality (4.5) holds, {[c,d] x
[ak,bk]};ﬂ:l and {[p(ar), p(br)] x [a,b]};nzl form systems of non-overlapping rect-
angles contained in [¢,d] X [a,b], and {[go(ak),go(bk)]};nzl is a system of non-
overlapping subintervals of [¢,d]. According to assumptions (2.5)—(2.7), it is easy
to verify that, for any k = 1,...,m, we have

(bk) (ax)
F(bk)—F(ak)sz f(t,bk)dt—/qp F(t ap) dt

e(ar) by, #(bx)
z/ fig(t,x) dzx dt—!—/ f(t,bg)dt
c ag (ag)
e(ar) b
_ / fioy(t, ) da | at
c ak

Lp(bk) b ‘P(bk)
+/ flgg(t,z)de | dt +/ f(t,a)dt
p(ak) a wlak)

and thus, in view of relation (4.5), we get

g:l‘F(bk)—F(aM < //A1 |f[/2](t,:c)|dtd:zc—k//A2 J‘[’Q](t7x)|dtdx—x—/A3 |f(t,a)| dt,

where
meas A; = Z(d —o)(bp —ar) < (d—c)d <w,
k=1
meas As = i (¢(br) — p(ag))(b—a) < w(bi—aj < w,
= max{1l,b— a}

meas Az = ; (o(br) — p(ar)) < max{1,b—a} <w.
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Consequently, relations (4.3) and (4.4) yield that >;" | |F(bx) — F(a)| < € and
thus the function F' is absolutely continuous.

(c) Assume that the function ¢ is increasing (if it is decreasing, the proof is
analogous). It follows from the assumptions imposed on ¢ and f that there exist
¢'(t) and fpy(t,2) for ae. t € [a,b] and a.e. (t,x) € [c,d] X [a,b], respectively.
In order to ensure that all relations below are meaningful we put ¢'(t) := 0 and
f[’2] (t,z) := 0 at those points in which the derivatives indicated do not exist. In
such a way, the functions ¢’ and f[/z] are defined everywhere on [a,b] and [c,d] x
[a, b], respectively.

Let Ey C [a,b], meas By = b — a, be the set such that fi, (-,2) € L([c,d];R) for
every x € F;. Put

PN
h(A\ ) = / fig(t,z)dt for all X € [a,b] and z € Ej. (4.6)
Clearly, we have

h(X,+) € L([a,b];R) for all A € [a,b]. (4.7

Then, by using Fubini’s theorem, we get

() w(\) A
P = / F(t,a)dt + / ( / fhy (t,2) dx) at
™ ™)
= /@ ' f(tva)dt‘i‘/)\ (/@ ’ f[’Q](t,x)dt> dw (4.8)

p(N) A
:/ f(ha)dt—l—/ h(A,z)dz for all A € [a,b].

Moreover, Corollary 2.3 yields that
h(-,z) € AC([a,b];R) for all z € Fy, (4.9)
hiyy (N z) = fly (p(N),z)¢'(A) for all z € Ey and A € A(z), (4.10)
where A(x) C [a,b] with meas A(z) = b — a, and

®(N)
d/\/ f(t,a)dt = f(p(N),a)¢’'(N) for ae. X € [a,b]. (4.11)

Now we put f; := [ff21]+7 f2 = [f[lg]]_> and

hi(t, x) == fir(o(t),z)¢ (t) for all (t,z) € [a,b] X [a,b], k =1,2. (4.12)

Relations (4.9) and (4.10) yield that hy(-,z) € L([a,b]; RT) for all z € Ey. More-
over, in view of assumption (2.7), we have fi1, fa € L([c,d] x [a,b]; R). Therefore,
by virtue of Fubini’s theorem and Lemma 3.2 one can show that fj, (¢(t), )¢/ (t) =
hi(t,-) € L([a,b];RT) for almost every ¢ € [a,b]. Unfortunately, it may happen
that hy & L([a,b] x [a, b]; RT). However, we can show that on every rectangle con-
tained in [a, b] X [a, b] there exist both iterated integrals and their values are equal
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to each other. Indeed, let k € {1,2} be fixed and [ay,b1] X [az,b2] C [a,b] X [a,]]
be an arbitrary rectangle. Moreover, let

Q= {teled: filt.) € L(a, bR |, w( {f fillw)de fort €.

for ¢t € [c,d] \ Q.
Then we have measQ = d — ¢ and w € L([c,d];R) and thus, Lemma 3.3 yields

that fso((;l) (s)ds = f:ll w(p(t))¢'(t) dt. However, with respect to Lemma 3.2,

one can verify that

ba
w(p(t))e'(t) = / fe(p),2)¢' (t)dz  for ae. t € [a, b],

a2

which arrives at the equality

@(b1) by b by
/@(al) < . fk(s,x)dac) ds:/a1 (/GQ fk(@(t),x)w’(t)dx> it

On the other hand, by using Lemma 3.3 we get

/: </:(>:l:) fi(s, @) ds) doe = /: (/: fi(o(t), )¢ (t) dt) dz.

Now comparing the last two relations we obtain the equality

/ b < / b ha(t, ) dz) at= [ b ( / b ha(t, ) dt> de.  (413)

It means that the functions h; and hs satisfy all assumptions of Lemma 3.6 with
¢ =a and d = b and thus there exists a set Ey C [a, b] such that measFy = b —a

and
aay/ay </:hk(t,at)dx> dtz/:hk(y,w)dw (4.14)

for all y € E5 and z € [a,b], k=1,2,

7 ), ([ moaa)a= [“nesa (1.15)

for all y € [a,b] and z € Es, k=1,2.

Moreover, by virtue of assumption (2.7) and Lemma 3.6, we can assume without
loss of generality that Es is such that the relation

o Y 22 , 22 ,
87//(1 </1 i (s’x)|d8> = /zl iz (5,91 ds (4.16)

for all y € Fy and 21, 29 € [c, d]

holds as well.
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Let now Ao € E1 N E3 be arbitrary. Then, by using relations (4.7), (4.9), (4.10),
and (4.13), we get

/)\ h(A, z)dx — /:0 h(Xo, z) dz

A

/ (/ (t,z) dt) dz + N h(\ z)dz
/ (/ (t dt) da:+//\:< A:hm(t,x)dt) da
_bAO<LM m@aﬂ&)dw (4.17)
—/}\/\ (/I:\Ohl(t,x)dx> dt—/}\/\ (/a/\ohg(t,x)dx) dt
-KAA<AMhﬂuxﬁﬂ>¢p—AA(AMhﬂuxyﬁ>dm
A
+AO ( | Tyt )so’(t)dt> da

for all A € [a,b]. Observe that, in view of assumption (2.7) and Lemma 3.3, for
any \,y € [a, b] with the property 0 < (A — Xg)? < (y — Xo)(\ — Ag) the relation

1 A A
’A_AOA < A ffz](w(t)w)w'(t)dt)dx
([
= s,x)ds | dx
A =20 Sag \ o) ™
son(y — \ A »(y)
| (/ |ff2]<s,x>ds> e
0 Ao #»(Xo)

holds and thus, by using equality (4.16), we get

— AO/ (/ fia (¢ ()dt)dx

for all y € [a,b], y > Ao, and

- AO/ (/ fha (¢ ()dt)dsc

lim sup
A= Ao+

©(y)
< [ W 2o)lds
@

(Xo)

lim sup
)\*})\0 —

©(Xo) ,
< / |f[2](37>\0)|d5
©

(y)
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for all y € [a,b], y < A\g. Consequently, we have

. 1 A o ,
)\lgr;o P /}\0 ( N fi2 (o(t), )¢ (t)dt | do = 0. (4.18)

Therefore, by virtue of conditions (4.12), (4.14), (4.15), and Lemma 3.3, it follows
from relation (4.17) that

a4 A
—)\/a h()\,x)dx)\

= lim

1 A Ao
= /\.—>>\ R l/ h(\, z)dx — h(Xo, ) dx]
=Xo 0 - a a

)\[) )\O
:/ hl()\o,,r)dx—/ hg()\o,x)dl‘

)\0 >\0
+/ hl(t,)\o)dtf/ ha(t, Ao) dt

Ao Ao
=/ I (w(Ao)7w)w’(Ao)dx+/ fiog (), M) @' (1) At

Ao ©(Xo)
:/ f[’2](<p()\0),x)go’()\o)dx+/ Fla (5, A0) ds.

a

These equalities and relations (4.8), (4.11) yield that

F'(\) = F(p(N) / f (9 V), 2) (V) da
(4.19)

P(X)
+/ [t A)dt for all A € A,
where A C [a,b], meas A = b — a. It remains to show that the relation
A
FeNa)e )+ [ fy(e.2)e ) do = FE, NP 0) (120)
holds for a.e. A € A. Indeed, let

By ={teed: f(t,-) € AC([a,b;R)}.

Then, in view of assumption (2.6), we have meas E3 = d — ¢ and

f(t,a)+ /y flg(t,x)de = f(t,y) forally € [a,b] and t € E;. (4.21)
Put ’

By :={X€ A:p()) € Es},

By :={A€ A:p()) ¢ E3 and the relation ¢’(A) = 0 holds},
and

Bs:={A€ A:p()) ¢ E3 and the relation ¢’(\) = 0 does not hold}.

Then B; UBsU B3 = A and, by using Lemma 3.2, we get meas Bs = 0. Moreover,
it is clear that, in view of (4.21), the relation (4.20) is satisfied for every A €
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B; U By. Consequently, relation (4.20) holds almost everywhere on A and thus
(4.19) guarantees the validity of desired relation (2.12). O

Proof of Theorem 2.9. We first extend the function h outside of [a, b] x [a, b] X
[c, d] by setting h(t,x, z) :== 0.

(a) For any p € [c,d] fixed, the assumptions of Theorem 2.7 are satisfied with
a=c¢ b=d f(-,-) = h(,-,p), and ¢ = idj,p and thus the assertion follows
immediately from Theorem 2.7(b),(c).

(b) We can assume without loss of generality that & = 0. According to assump-
tions (2.20) and (2.21), we can find a set €y C Ja,b] of the measure b — a such
that

h(z,z,-): [¢,d] = R is continuous for all = € (4.22)

and
/a hiy(t,2,-)dt: [e,d] — R is continuous for all z € Q. (4.23)

It follows from the assertion (a) that, for any u € [c, d], there exists a set A(u) C
[a,b] such that meas A(u) = b — a and
A
HYy O i) = hOW A, 1) + / LA )t forall € [e,d), A€ A().  (4.24)
Put Q5 = NuepA(p), where B = ([, d]NQ) U{c,d}. Since the set B is countable,
the set 5 is measurable and meas Q5 = b—a. Clearly, condition (4.24) yields that

A
Hiyy(\ ) = h(X A, 1) +/ hig(t, A p)dt forall \€ Qo pe B, (4.25)

Now let Ao € Q1 Ny be arbitrary point and {/,,},;/2 be an arbitrary sequence
of non-zero real numbers such that

ngrfoo L, =0. (4.26)
Put
1 Ao+En Ao
gn(pt) == — / h(t, Ao + ln, 1t dt—/ h(t, Ao, ) dt
=g | [ hedat bt = [ b o o

for all p €[c,d], n € N.
According to relations (4.25)—(4.27), we obtain

Ao
lim g, (1) = h(Xo, Ao, 1) + hig(t, Ao, )t for all u € B. (4.28)

n—-+oo a

Observe that, in view of assumptions (2.13)—(2.15), for any u € [c, d] we have

1 Ao+4n Ao proten , )
gn(p) = o A h(t, Ao + £y, ) dt —&—/a //\ iy (t, 2, p) dzdt| if £, >0
9]

0
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and

1 Ao Xo—nl pro

gn(p) = — / h(t, Ao, p) dt —|—/ / iy (t, 2, p) dwdt| if £, < 0.
|€n| Xo—|ln] a Xo—€n]

Therefore, assumptions (2.18) and (2.19) yield that the functions g, (n € N) are

non-decreasing on [c, d].

We will show that relation (4.28) holds for every u € [c¢, d]. Indeed, let pg € [c, d]
and € > 0 be arbitrary. Then, in view of relations (4.22) and (4.23), there exist
1, o € B such that py < po < po and

Ao
‘h(Ao, Ao po) + hig)(t, Ao, po) dt

N (4.29)

— h(Xo, Ao, fbm) — hEQ](t, A0, ) dt‘ < g for m =1,2.

a
Moreover, by virtue of limit (4.28), there exists ng € N such that

Ao
G (pm) = h(Xo, Mo i) = [ o (t, Ao, )

a

€
<§ for n > ng, m=1,2.

(4.30)
Now, by using relations (4.29), (4.30), and the monotonicity of the functions gy,
we obtain

Ao
gn(NO) - h()\()a )\07 /'LO) - / hl[z] (t, )\07 Mo) dt

A

0
< gn(p2) = hOho, Mo iz) = [ Iyt o pz)
Ao ‘
+h()\0a)‘07u2) + h{2](t7 )\07/’(‘2)dt
Ao

- h(AOa)‘OMuO) - hEQ](ta A07/~‘L0) dt

€
< +§:5 for n > nyg

DO ™

and
Ao
h(Xo, Aos o) + | Ty (t; Mo, p10) At — gn (ko)

a
Ao

< h(Ao; Aoy 1) + hig) (t; Ao, 1) dt — g (p1)

a

Ao
_h(A07>\0a,u1) _/ hEQ](tv)\Oa,ul)dt

Ao
+h(>\07>\07/1'0) +/ h’EQ](ta)\OaIU'O) dt

< -+ =-=¢ forn>ng

| ™
| ™
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and thus

Ao
9n (ko) — h(Ao, Ao, o) — / hig (t, Ao, po) dt

a

<e formn>ng.

Consequently, in view of arbitrariness of pg and ¢, the relation

Ao
tim_gn () = hOho.Mawg) + [ Byt dau ) dt for all € [e.d

n—-+oo

holds. Since \g and {£,}, > were also arbitrary and meas{; N Qy = b — a, the
last relation guarantees the validity of desired equality (2.22) with E; = O N Qs.

(¢) For any A € F; fixed, the assumptions of Proposition 2.6 are satisfied with
f(,;9) =h(, A, -) on [a, A] X[c, d] and thus the assertion follows from Proposition 2.6.

(d) It follows immediately from Lemma 3.5 with f = H{,, on [a,b] X [¢,d]. [

Now we establish a technical lemma in order to simplify the proof of Corol-
lary 2.12.

Lemma 4.1. Let p,q € L([a,b] X [c,d];RT) and
h(t,z, z2) ::/ q(t,s) ol ST p(61,82) d2dés 4o

forallt € E and (z,z) € [a,b] X [¢,d],

(4.31)

where E C [a,b] with meas E = b — a. Then the function h satisfies relations
(2.14), (2.15), and there exists a set Q C [a,b] x [a,b] such that measQ = (b— a)?
and

bia(tiz,2) = [ alt.s) ( / p(x,@)dgz) oJi 11 per ) dsads g
(& S

for all (t,x) € Q, t <z, and all z € [¢,d].

(4.32)

Proof. Let t € E and z € [c, d] be arbitrary. We put
frz(s,x) :==q(t,s) el JTpEn8)dede for e s € [¢,d] and all z € [a, b].

Clearly, the function f; , satisfies conditions (2.5), (2.6), and

o (s,2) = q(t, s) (/ p(x, &) d&) of 7 S (e ) deades

for a.e. s € [¢,d] and all z € A(s),

(4.33)

where A(s) C [a,b] with meas A(s) = b — a. With the function f; , we associate
the function

f.(s,z) = q(t,s) (/ p(x,€2)d§2> eli” I p(rg2) deadty

Clearly, the function f?, is defined almost everywhere on the rectangle [¢, d] X [a, b].
According to the assumptions p,q € L([a,b] X [c,d];RT) and Lemma 3.8, we see
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that the function f;, is measurable on the rectangle [¢,d] X [a,b]. Moreover, we
have

d
|ft0,z(87x)| <q(t,s) (/ p(z,&2) d§2> elPle for a.e. (s,z) € [e,d] X [a,b]

and thus fP. € L([c,d] x [a,b];R). Hence, in view of equality (4.33), the func-
tion ft’zE2] satisfies condition (2.7) (see Lemma 3.5 with g = f{_). Consequently,
Proposition 2.6 yields the validity of relation (2.14) and

hig (t, x, 2) = / q(t,s) (/ p(z, &) d£2> el IS pE16) deadén g

forallt € E, z € [¢,d], = € B(t, z),

(4.34)

where B(t, z) C [a, b] with meas B(t,z) = b — a.

Now we will show that the function h satisfies condition (2.15). Indeed, for any
z € [e,d] fixed we put

p-(z,t,8) == q(t, s) (/ p(:c,ﬁz)déz) el ST e g2 deadéy

Clearly, the function ¢, is defined almost everywhere on the set [a, b] X [a, b] X [c, d].
By using the assumptions p, ¢ € L([a,b] x [¢,d]; RT) and Lemma 3.8, we easily get
the measurability of the function ¢, on the set [a,b] X [a,b] X [¢,d]. Moreover, it
is clear that

d
lo- (2,8, 8)] < qt, s) (/ p(x, &) dfg) ellPle for a.e. (z,t,8) € [a,b] x[a,b] X[, d]

and thus ¢, € L([a,b] X [a,b] X [c,d]; R). Hence, Fubini’s theorem yields that, for
any z € [c,d], the function fcz (-, 8)ds is integrable on [a,b] X [a,b] which, to-
gether with equality (4.34), ensures the validity of condition (2.15) (see Lemma 3.5
with a =¢, b=d, and g(-,-) = [7 ¢.(-,-,s) ds) and

hig (t, @, 2) = / q(t, s) </ p(z, &) d€2> el I P16 deadén g

for all z € [¢,d] and (t,z) € C(z),

(4.35)

where C(z) C E x [a,b] with measC(z) = (b — a)?. Put 2 = N,cpC(z), where
D = ([¢,d]NQ) U{c,d}. Since the set D is countable, the set  is measurable and
meas 2 = (b — a)?. Clearly, condition (4.35) yields that

hig (t, x, 2) = / q(t, s) (/ p(e, &) d«Ez) el JoP(6r82) dtadt g

for all (¢,2) € Q and z € D.

(4.36)
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Now let (tg,70) € Q, to < zg, be arbitrary point and {£,}>] be an arbitrary
sequence of non-zero real numbers such that relation (4.26) holds. Put

gn(2) := —

gl /Z q(t07 S) efszo JZ p(€1,82) d€2dér |:ef:(?+£" JZp(€1,82) dadéy 71} ds

for all z € [¢,d], n € N.
(4.37)
According to relations (4.26), (4.36), and (4.37), we obtain

lim gn(z) :/ q(to,S) (/ p(.’L'07§2) d£2) ef;go JZ p(€1,62) dE2dEy ds (438)

n—-+00

for all z € D. Note also that the functions g, (n € N) are non-decreasing on [c, d],
because the functions p and ¢ are non-negative and ty < xg.

We will show that relation (4.38) holds for every z € [c, d]. Indeed, let zg € [e, d]
and ¢ > 0 be arbitrary. By using the inequality

e¥? —e¥t <e¥?(ys —y1) forall y1,y2 € R, y1 < ypo, (4.39)

it can be easily verified that

20 20 —
‘/ q(to, s) </ p(xo,fz)d&) ofe J70 PG ) deadtn g g

N / q(to, s) </ (o, &2) d§2> el JIp€16) A2t g

d 20
S(/ p(xovfz)d&) ellplle / q(to,s)ds
d 20
# ([ attosras) el | [ pten g ae

z

+(f “gtto. 9 as)( [ pleo. ) ) el | [ b [ vler ) dsaae

for all z € [¢,d] and thus there exist 21,22 € D such that z; < 2y < 25 and

D) 20 [0 [20 p(€,,€2) déade
q(t()vs) p(x(hfZ) df2 eltg Js PS1:62 2d&1 46

- / q(to, s) (/ p(xo,&2) d§2> eli’ S p(E1.62) dé2dty ds' < %

for m = 1,2. Moreover, by virtue of limit (4.38), there exists ng € N such that

n(Zm) — / q(to, s) (/ p(:co,&)dfz) efia’ JI7 plén62) deadn g g

for n > ng, m=1,2.
(4.41)

(4.40)

N ™
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Now, by using inequalities (4.40), (4.41), and the monotonicity of g,, for every
n > ng we obtain

ZO - Jir® JZ0 p(&1,€2) d€adE
gn(20) — q(to, s) p(x0,E2) s | elto Jo " PIS1S2)G52651 g g
2 22 w0 s
< gul22) - / alto, 5) ( / plw0, ) d@) ofi! 1 (6 &) dgades g
zZ9 - .
/ pl0,£2) d§2> efie’ 127 pl&&) deades g

/ ” w0, 6) déz) elic’ J20 plenga) deadn g

and

? N J50 [70 p(€1,€2) d€2dés
q(to, s) p(w0,&2) dE ) elto /s ’ ds — gn(20)
C S

zZ1 Z1 . .
< q(t07 S) (/ p(x(], 52) d€2> effoo J21 p(€1,62) dE2dEy ds — gn(z1)

and thus we have
v * Jig J20 p(€1,€2) déade
gn(20) — [ qlto,s) p(xo, &) déa | elto Js " PIE152) 2051 (g

Consequently, in view of arbitrariness of zy and ¢, the relation (4.38) holds for all
z € [e,d]. Since the sequence {£,}7> was also arbitrary, we have proved that

hig(tos xo, 2) = / q(to, s) </ p($07§2)d§2> elio’ TP &) deads g
c S

for all z € [c,d]. Mention on arbitrariness of the point (¢9,xg) completes the
proof. O

< e for n > ng.

Proof of Corollary 2.12. Clearly

A
YO = / Bt A\ p)dt for all (A, ) € [a,b] x [e, ],

where the function h is defined by formula (4.31) with E C [a,b], meas E = b — a.

(i) We first mention that condition (2.13) holds. It follows from Lemma 4.1
that the function h also satisfies conditions (2.14), (2.15), and (4.32), where 2 C
[a,b] x [a,b] is such that measQ = (b — a)?. Consequently, the assumptions of
Theorem 2.9(a) are fulfilled and thus (-, u) € AC([a, b];R) for every p € [c,d].
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Now observe that conditions (2.18), (2.19) with £ = 0 and (2.20) are satisfied
because we assume p,q € L([a,b] x [c,d]; RT). Moreover, in view of condition
(4.32), there exists a set A C [a, b] such that meas A = b — a and

hig (t, @, 2) = / q(t, s) (/ p(z, &) d€2> efi" JTp(E1.82) ds2dty i
for all x € A, t € B(z), and z € [¢,d],

where B(z) C [a,z] is such that meas B(z) = © — a. Therefore, for any z € A
fixed we have

hiy(t, 2, 22) — hiy (t, 2, 21)

/ (/ (@, &) d£2) ofi [T P(E1.€2) deadty g

< p(z, ) dfz) ol 172 p(6r€2) deades g
( p(z,&2) dfz)
{ I 132 plerge) deadén _ o f7 [0 p(&@dfzdsl] ds

for a.e. t € [a,z] and all 21, 22 € [¢,d]. Therefore, by using inequality (4.39), for
every ¢ < z1 < 290 < d we get

’/ (t, o, 25)dt — /:hEQ](t,x,zl)dt‘
< < / e, d@) el ( / b / alt.s) dsdt)
e ([ oo dca)
+ llallz el (/cdp(x,§2)d§2> </b /:p(t, 5 dsdt) .

Consequently, relation (2.21) holds and thus, according to Theorem 2.9(b), there
exists a set 'y C A such that meas F; = b — a and

“w
V(A p) = / q(A, s)ds

A m m N
+/ / q(t,s) </ p(,\,gQ)d&) ol S p(61.62) dg2den qgqp

for all A € By and p € [c,d].

(ii) Since we can change the order of the integrations in relation (1.3), the
assertion follows immediately from the above-proved part (i) by changing the role
of the variables t and z.
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(iii) Let F; be the set appearing in the proof of part (i) and € F; be an
arbitrary point. Then we have

hz,z,z) = / q(z,s)ds for all z € [¢,d]
C

and

hig (t,2,2) = /z q(t, ) (/Z p(x, &) d§2> el JoP(rg2) deadty g
for all t € B(z) and z € [¢,d],
where B(x) C [a, z] with meas B(x) = « — a. Clearly, condition (2.23) holds.
Let t € B(x) be arbitrary. We put
Jrz(s,2) == q(t,s) </Z p(z, &) dfz) el S P(61:62) dadey
) for a.e. s € [¢,d] and all z € [c,d].

Then the function f; , satisfies conditions (2.5), (2.6) (in which a = ¢, b = d), and

Fraf(5:2) = a(t.5) .2

+ </S p(:z:,fg)dfg) (/t p(&1,2) d§1> } ol JI p(61,82) dé2dés

for a.e. s € [¢,d] and all z € C(s),
(4.42)
where C(s) C [c,d] with measC(s) = d — ¢. With the function f;, we associate
the function

£0.(5,2) = qlt,5) [pu, 2)

+ ( /S P(%&)dfz) ( /t p(&,z)dfl)]ef:ffp(ilafz)dfzd&.

Clearly, the function fg » is defined almost everywhere on the square [c, d] X [c, d].
According to the assumptions p,q € L([a,b] x [¢,d];RT) and Lemma 3.8, we see
that the function f?, is measurable on the square [c, d] X [¢, d]. Moreover, we have

d b
|fPa(s,2) < qlt,s) [p(x,z) + (/ p(m,&)d&) </ p(&1,2) d§1>] elpllz

for a.e. (s,2) € [e,d] X [e,d]

and thus f{, € L([¢,d] x [¢,d];R). Hence, in view of equality (4.42), the function
[t satisfies condition (2.7) (see Lemma 3.5 with a = ¢, b = d, and g = f,).
Consequently, Theorem 2.7 (with a = ¢, b = d, and ¢ = id|. ) yields the validity
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of relation (2.24) and

bt = | Calt,s) [p@c, )

+ </Z p(l‘7£2) d£2) (/L p(flvz) d§1> :| eftz JZ p(€1,€2) dE2dén ds
s t

for all t € B(z) and z € D(¢,z),
(4.43)
where D(t, z) C [c,d] with meas D(t,z) =d — c.
Now we will show that the function h satisfies condition (2.25). Indeed, we put

2= [t [pu, )

+ (/Z p(z,&2) d£2> (/l p(&1, 2) d§1) ] ol ST p(61,€2) d62dér g
s t

Clearly, the function g, is defined almost everywhere on the rectangle [a, z] X [¢, d].
Observe that

z
go(t, 2) = plx, 2) el JE p(fl,&)dszd&l/ qlt, s) e I o p(682) deadr g
c

+ </ p(:v,é“z)d£2> (/t p(&1,2) d§1> oJi I7 p(€1,62) dgadés

z
X/ q(t,8)e_ftszp(fh&)digdflds
C

([ pte 2y, el s
t

></ q(t, s) (/ P(x7§2)d§2) e JI I p(rge) deadt g

for a.e. (t,z) € [a,2] X [c,d] whence, by using the assumptions p,q € L([a,b] X
[c,d];RT) and Lemma 3.8, we get the measurability of the function g, on the
rectangle [a, z] X [¢,d]. Moreover, it is clear that

d b
|92(¢,2)| < [P(l’az) + </ P($7§2)d52> </ p(&1,2) d£1>‘|

d
X e”p”L/ q(t,s)ds for a.e. (t,2) € [a,z] x [¢,d]

and thus g, € L([a,z] X [¢,d];R). Hence, in view of equality (4.43), we see that
condition (2.25) holds (see Lemma 3.5 with b = z and f(-,-) = h/[2](" z,-)). Con-
sequently, Theorem 2.9(c) yields that +;(A,-) € AC([c,d];R) for every A € E;
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and
7[12()‘,“ =q(\ 1)

// (t,5) [ () + (/ pés, >da)(/fp<x,sg>d£z)] (1.44)

x el JIP(E8) 4648 qedt for all A € By, 1€ Ey()),
where E5(A) C [c,d] is such that meas Fy(\) = d — c.
Finally we put

o(t,s,x,2) == q(t, s) {p(x, 2)

+ < / bl ) dfl) ( / ) p(x,@)dggﬂ o I e ) dEades

Clearly, the function ¢ is defined almost everywhere on the set [a, b] X [¢, d] X [a, b] X
[c,d]. By using the assumptions p,q € L([a,b] X [¢,d];RT) and Lemma 3.8, it is
easy to verify that the function ¢ is measurable on the set [a, b] X [c, d] X [a, b] X [¢, d].
Moreover, we have

lo(t, s, xz,2)] < qlt,s) [p(:mz) + (/ p(aﬁ,fg)d€2> (/ p(€1, 2) d£1>] ellpllz

for a.e. (t,s,2,2) € [a,b] X [¢,d] X [a,b] X [c,d]

and thus ¢ € L([a,b] X [¢,d] X [a,b] X [¢,d];R). Now we extend the function ¢
outside of the set [a, b] X [¢,d] X [a, b] X [¢,d] by setting ¢(t, s, x, z) := 0 and we put

flz,z,a,0) : / / (t,s,x,z)dsdt

for a.e. (,2) € [a,b] x [¢,d] and all (o, B) € R2.
Then conditions (3.10) and (3.11) are satisfied and

d b
|f(:,C7Z,(E,Z)| < erHL HQHL [p(x,z) + </ p($7§2) d§2> (/ p(th) dgl)]

for a.e. (z,2) € [a,b] X [c,d]. Consequently, Lemma 3.7 yields the integrability of
the function

g(x,2) = q(x,2) + f(x,z,2,2) for ae. (x,2) € [a,b] X [e,d]. (4.45)
If we set g(x,z) := 7] 5 (2, 2) at those points (z,z) € {(t,s) : t € E1, s € E(t)}
in which g is not defined!'® then, in view of equality (4.44), the function g satisfies
condition (2.27). Therefore, Theorem 2.9(d) yields that the partial derivative ’Yﬁ,Z]

exists almost everywhere in the rectangle [a,b] x [c,d] and that desired relation
(2.31) holds for a.e. (t,z) € [a,b] x [¢,d].

10The set of such points has the measure equal to zero and thus the function g remains
integrable on [a, b] X [c, d].
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(iv) Since we can change the order of the integrations in relation (1.3), the
assertion follows immediately from the above-proved part (iii) by changing the
role of the variables ¢ and .

(v) Tt follows from the integrability of the function g defined by formula (4.45)
and the above-proved equalities (2.31) and (2.33). O

Proof of Corollary 2.13. According to Corollary 2.12, we get from Lemma 3.1
absolute continuity of the function - in the sense of Carathéodory. Since the
functions p and g are non-negative, it follows from equality (2.32) that the function
~ is a solution to differential inequality (1.2). O
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