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Abstract. It was recently shown that the detection perfor-
mance can be significantly improved if statistics of channel
estimation errors are available and properly used at the re-
ceiver. Although in pilot-only channel estimation it is usu-
ally straightforward to characterize the statistics of channel
estimation errors, this is not the case for the class of data-
aided (semi-blind) channel estimation techniques. In this
paper, we focus on the widely-used data-aided channel es-
timation techniques based on the expectation-maximization
(EM) algorithm. This is achieved by a modified formulation
of the EM algorithm which provides the receiver with the
statistics of the estimation errors and properly using this ad-
ditional information. Simulation results show that the pro-
posed data-aided estimator outperforms its classical coun-
terparts in terms of accuracy, without requiring additional
complexity at the receiver.
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1. Introduction
It is well known that reliable coherent data detection

is not possible unless an accurate estimate of the channel
is available at the receiver. If the channel changes slowly,
one can use pilot symbol assisted modulation (PSAM) [1]
for obtaining channel state information (CSI) at the receiver.
However, obtaining such an accurate estimate in highly mo-
bile environments only through the use of pilots, would re-
quire inserting multiple training symbols into the data frame,
which can result in a significant reduction of the spectral ef-
ficiency. Semi-blind channel estimation can enhance system
performance by exploiting the unknown data symbols in ad-
dition to few pilots (usually one or two used for algorithm
initialization) in the channel estimation process [2]. Recent
works have reported promising results on the combination of
channel estimation and data detection process. For instance,
the use of the expectation-maximization (EM) algorithm for

joint channel estimation and data detection is suggested in
[3], [4]. More recently, the variational Bayesian (VB) infer-
ence [5], [6], which is closely related to mean-field meth-
ods in statistical physics, has been proposed as an effective
method for tractable receiver design. However, regardless
of the deployed technique (pilot-only or data-aided), chan-
nel estimation is an imperfect process and the poor quality
of channel estimates degrades the detection performance at
the receiver.

Very recently, assuming pilot-only channel estimation,
the authors have shown that the a posteriori probability den-
sity function (pdf) of the channel conditioned on its estimate
(which characterizes the statistics of the estimation errors),
if exploited properly, has the potential to improve the re-
ceiver’s performance in different transmission system (or-
thogonal frequency division multiplexing in [8], multiple-
input-multiple-output in [9] and [11]), especially when the
channel is estimated by a low number of pilots. Note that
the key element for designing the improved receivers of [8],
[9] and [11] was the availability of the the estimation error
statistics, which is rather straightforward in pilot-only chan-
nel estimation. Our initial results provided in [10] indicated
that there is a great potential to improve iterative semi-blind
receivers if one efficiently derives and exploits the pdf of the
channel conditioned on its estimate at each iteration. The
main idea of [10] is generalized in this paper and related to
more elaborated data-aided receivers as explained below.

In this paper, we focus on data-aided joint channel esti-
mation and data detection where the derivation of the afore-
mentioned a posteriori probability is not that straightfor-
ward. More precisely, we address data-aided methods based
on the EM algorithm which is a widely adopted technique.
More precisely, we propose modifications in the formulation
of the EM estimator i) characterizing the estimation error
statistics, and ii) using properly these statistics for deriving
improved detection metrics robust to channel estimation er-
rors. In this way, we propose an improved EM-based esti-
mator that is capable of supplying the estimation error statis-
tics at each iteration and hence reducing the impact of chan-
nel estimation inaccuracies at their respective receivers. We
also formulate the VB estimation formalism adapted to our
model. Then, we extend our initial results in [10] by deriving
the relation that exists between the EM and the VBEM es-
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timators. We will see that the proposed receiver becomes
similar to the VBEM estimator for a particular choice of
its parameters, and this observation will be confirmed by
simulations. Results presented in this paper and the inves-
tigated similarity between the proposed EM algorithm and
the VBEM algorithm open the way for searching other im-
proved data-aided channel estimation techniques, that will
be investigated in our future research.

Notational conventions are as follows. Dx is a diago-
nal matrix with diagonal elements x = [x1, . . . ,xM]T , Ex[.] or
〈.〉p(x) refer to expectation with respect to the random vector
x, IM denotes an (M×M) identity matrix, ∝ denotes equal-
ity up to a normalization factor, CN

(
m,ΣΣΣ

)
denotes complex

Gaussian vector distribution with mean m and covariance
matrix ΣΣΣ; |.| and ‖.‖ denote absolute value and vector norm,
respectively, (.)T ,(.)† and (.)∗ denote vector transpose, Her-
mitian transpose and conjugation, respectively.

2. System Description and Channel
Model
We consider a coded OFDM system with M subcarriers

through a frequency-selective multipath fading channel1.

We assume a block-fading channel model where each
frame of size Mframe symbols corresponds to Mblock inde-
pendent fading blocks. Notice that Mblock = 1 returns to
the quasi-static channel model whereas Mblock = Mframe re-
turns to the fast-fading channel model. Since the chan-
nel is assumed to be block-fading, for estimating the k-
th complex channel frequency coefficient Hk, we receive
N = Mframe/Mblock independent observations (see Fig. 1).
At the receiver, after removing the cyclic prefix (CP), the
signal corresponding to the k-th subcarrier in a given fading
block writes

yk = Hk sk + zk for k = 1, . . . ,M (1)

where the (1×N) vector yk = [y1,k, . . . ,yN,k], the entries of
the noise vector zk are assumed to be zero-mean circularly
symmetric complex Gaussian (ZMCSCG), and the definition
of sk and zk follow that of yk. For the sake of notational sim-
plicity, we will not specify hereafter the subscript k in (1).

3. Improved EM-based Estimation
Considering the model (1), the problem is to estimate

H from y, where s is unknown. Thus, we have missing data
and the estimate of H has no closed form. In such situa-
tions, the EM algorithm [13] is often used to maximize the
expectation of the likelihood function over all possible miss-
ing and hidden variables. The ultimate aim in this Section
is to derive the estimation error statistics in addition to the
estimate of H. To this end, we propose to decompose the
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Fig. 1. The considered block-fading channel model with Mblock
independent fading blocks. In the above figure, we have
N = Mframe/Mblock = 3.

AWGN vector z in (1) into the sum of two independent Gaus-
sian terms as

z = sE+u (2)

where E = Dw with w = [w1, . . . ,wN ]
T and u = [u1, . . . ,uN ]

are noise vectors such that u ∼ CN
(
0,σ2

z IN−α2FF†) and
w ∼ CN

(
0,α2IN

)
with F = Ds. Note that α2 is the vari-

ance of each component in the noise vector w and denotes
the part of the noise power allocated to E inside the noise
decomposition model (2). More clearly, we define the posi-
tive design parameter ρ = α2/σ2

z as the proportion of noise
that is assigned to u.

The above noise decomposition allows us to write (1)
in an equivalent form as{

H̃ = H IN +E
y = sH̃+u

(3)

where H̃ = DR with R =
[
H̃1, . . . , H̃N

]T
.

This introduces the diagonal matrix H̃ which will let us
derive the pdf p(H|H(t)) in our subsequent developments,
even if the two-stage observation model (3) is equivalent to
(1).

Let X= {y,s,H̃} be the complete data set in the EM al-
gorithm terminology. We are searching for H that maximizes
log p(X|H). After initialization by a short pilot sequence
at the beginning of the frame, the EM algorithm alternates
between the expectation (E) step and the maximization (M)
step (until some stopping criterion) to produce a sequence
of estimates {H(t), t = 0,1, . . . , tmax}. When applied to (3),
each step can be written as follows.

3.1 E-step: Computation of the Q-function
In the E-step, the conditional expectation of the com-

plete log-likelihood given the observed vector and the cur-
rent estimate up to time instant t, i.e., H(t−1) is computed.

1Although here we have considered the widely-used OFDM signal model, it is important to mention that the proposed approach can be extended to any
transmission scenario.
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This quantity is called the auxiliary or Q-function and is
given by

Q
(
H,H(t−1))= Es,H̃

[
log p(y,s,H̃|H)

∣∣∣y,H(t−1)
]
. (4)

The complete-data likelihood required for the computation
of the Q-function is:

p(y,s,H̃|H) = p(y|s,H̃) p(H̃|H) p(s) (5)

where we have used the fact that conditioned on H̃ and s, y
is independent of H. Besides, s which results from coding
and interleaving of the bit sequence is independent of H̃ and
H. Thus the Q-function is simplified to

Q(H,H(t−1)) = Es,H̃

[
log p(H̃|H)|y,H(t−1)

]
+ cst. (6)

where cst. is a constant term gathering all terms that do not
depend on H and p(H̃|H) is given by

p(H̃|H) =
N

∏
i=1

p(H̃i|H) =
N

∏
i=1

1
πα2 exp

{
−|H̃i−H|2

α2

}
. (7)

It can be easily verified that the Q-function (6) is obtained as

Q(H,H(t−1)) =−
N

∑
i=1

|〈H̃i〉si,H̃i
−H|2

α2 + cst. (8)

where 〈H̃i〉si,H̃i
, Esi,H̃i

[H̃i|yi,H(t−1)]. It is obvious from (8)

that the E-step requires only the computation of 〈H̃i〉si,H̃i
as

follows.

〈H̃i〉si,H̃i
= ∑

si

µH̃i
(si) p(si|yi,H(t−1)) (9)

where the posterior mean µH̃i
(si) of H̃i is

µH̃i
(si) =

∫
H̃i

H̃i p(H̃i|yi,si,H(t−1))dH̃i. (10)

After some algebra provided in the appendix, µH̃i
(si) is

shown to be given by

µH̃i
(si) = H(t−1)+ρs∗i

(
yi− si H(t−1)

)
. (11)

We can now derive 〈H̃i〉si,H̃i
of equation (9), by evaluating

the expectation of (11) as

〈H̃i〉si,H̃i
=H(t−1)+ρyi〈s∗i 〉si|yi,H(t−1)−ρH(t−1)〈|si|2〉si|yi,H(t−1)

(12)

where
〈si〉si|yi,H(t−1) = ∑

si

si p(si|yi,H(t−1)). (13)

3.2 M-step: Maximization of the Q-function
In this step, the estimated parameter H is updated ac-

cording to:

H(t) = argmax
H

{
Q
(
H,H(t−1))}. (14)

By substituting (8) in (14) the channel update formula
is given by

H(t) =
∑

N
i=1 〈H̃i〉si,H̃i

N
(15)

= H(t−1)
(

1− ρ

N
〈‖s‖2〉s|y,H(t−1)

)
+

ρ

N
y〈s†〉s|y,H(t−1) .

(16)

3.3 Deriving the Estimation Error Statistics
From (8), we observe that 〈H̃i〉si,H̃i

is no more than the
maximum likelihood (ML) estimate of H from the observa-
tion model:

〈H̃i〉si,H̃i
= H +wi for i = 0, · · · ,N−1 (17)

where wi ∼ CN (0,α2). Looking at (15) and (17), it is obvi-
ous that:

H(t) = H +Z1 where Z1 ∼ CN (0,α2/N). (18)

Remember that the main motivation behind working with the
model (3) is to characterize the estimation error statistics.
This is achieved by using the equation (18) where the pdf
p(H(t)|H) is available and equal to CN (H,α2/N). Assum-
ing that the channel coefficient H is a priori distributed as
p(H) = CN (0,σ2

h), and using the Bayes formula, one can
derive at each iteration of the EM algorithm the posterior
distribution of the channel conditioned on its estimate as

p(H|H(t)) = CN (m(t)
H ,σ2

H) (19)

where m(t)
H = δH(t), σ2

H = δα2/N and δ =
σ2

h
σ2

h+α2/N
.

The availability of the pdf (19) constitutes an interest-
ing feature of the proposed EM estimator that will be
exploited to improve the receiver’s performance. Ob-
viously, this is a direct consequence of the equiva-
lent two-step modeling of equation (3). Details on
the manner the receiver exploits the pdf (19) for per-
formance improvement are provided in Section 5.

4. Relation Between the Improved
EM and Variational Bayesian
Estimation

4.1 Variational Bayesian Estimation
Formalism
The optimal estimate of the symbol vector s in (1) by

using the maximum a posteriori (MAP) rule is given by

ŝMAP = argmax
s

p(s|y). (20)

The objective function in (20) can be written as

p(s|y) =
∫

p(s,H|y)dH =
∫

p(s|H,y) p(H|y)dH (21)
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where H is regarded as a nuisance parameter. Here, we as-
sume that the channel is not known prior to data detection
and thus the optimal solution is infeasible to obtain. The cen-
tral idea of VB approximation [5] is to approximate the exact
but intractable joint distribution p(s,H|y) into a product of
marginal probabilities q(s) and q(H). These two marginal
probabilities are obtained as

{q?(s),q?(H)}= argmin
q(s),q(H)

KL [q(s)q(H)||p(s,H|y)] , (22)

subject to:

q(s,H) = q(s)q(H),∫
q(s)ds = 1,q(s)≥ 0 ∀s,∫
q(H)dH = 1,q(H)≥ 0 ∀H

where distributions {q?(s),q?(H)} are obtained as the result
of the minimization problem (22) and

KL [q(s)q(H)||p(s,H|y)],
∫

q(s)q(H) ln
q(s)q(H)

p(s,H|y)
dsdH

is the Kullback-Leibler divergence [14].

By using the Lagrangian formalism, it can be seen that
any solution of the optimization problem (22) is obtained
by alternating between the VBE-step and the VBM-step as
[7]

VBE : q(t)(s) ∝ exp{〈ln p(s,H,y)〉q(t−1)(H)}, (23)

VBM : q(t)(H) ∝ exp{〈ln p(s,H,y)〉q(t)(s)} (24)

where the superscript (t) denotes the iteration index, due to
the fact that the solution of (22) is not explicit since q(s) and
q(H) depend on each other.

After simplification, (23) becomes

q(t)(s) ∝ exp
{
〈ln p(s,H,y)〉q(H)(t−1)

}
∝ exp

{
〈ln[p(y|H,s)p(H)p(s)]〉q(t−1)(H)

}
∝ p(s) exp{〈ln p(y|H,s)〉}q(t−1)(H) (25)

where we have used the independence between s and H, and
omitted all terms that do not depend on s. Since the noise in
(1) has a Gaussian distribution, (25) writes

q(t) (s) ∝ p(s)exp

{
−
〈‖y−Hs‖2〉q(t−1)(H)

σ2
z

}
. (26)

Let us now calculate q(t) (H). Starting from (24) we have

q(t)(H) ∝ exp
{
〈ln p(s,H,y)〉q(t)(s)

}
∝ exp

{
〈ln[p(y|H,s)p(H)p(s)]〉q(t)(s)

}
∝ p(H)exp

{
〈ln p(y|s,H)〉q(t)(s)

}
∝ p(H)exp

{
−
〈‖y−Hs‖2〉q(t)(s)

σ2
z

}
(27)

where we have omitted all terms that do not depend on H.
Since p(H) = CN (0,σ2

h), after simple calculus, (27) can be
rewritten as

q(t)(H) ∝ exp

{
−
|H|2 〈‖s‖2〉q(t)(s)

σ2
z

− |H|
2

σ2
h

+2Re
[H∗y〈s†〉q(t)(s)

σ2
z

]}
. (28)

After some algebraic manipulations, we get

q(t)(H) =
1

πβ(t)
exp

−
∣∣∣H−µ(t)

∣∣∣2
β(t)

 (29)

with
β
(t) =

σ2
z σ2

h

σ2
z +σ2

h 〈‖s‖
2〉q(t)(s)

(30)

µ(t) = β
(t)

[
y〈s†〉q(t)(s)

σ2
z

]
. (31)

Then new VBEM steps are written as follows

VBE : q(t) (s) ∝ p(s)exp

{
−
〈‖y−Hs‖2〉q(t−1)(H)

σ2
z

}
(32)

VBM : q(t) (H) = CN
(

µ(t),β(t)
)

(33)

where

β
(t) =

σ2
z σ2

h

σ2
z +σ2

h〈‖s‖
2〉q(t)(s)

(34)

µ(t) = β
(t)

[
y〈s†〉q(t)(s)

σ2
z

]
. (35)

4.2 Improved EM and its Relation
to the VBEM Methodology

It is obvious that Equation (16) depends on the param-
eter ρ. Now if in (16), one substitutes ρ by N

〈‖s‖2〉
s|y,H(t−1)

, we

get

H(t) =
y〈s†〉s|y,H(t−1)

〈‖s‖2〉s|y,H(t−1)

. (36)
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By inserting (36) and the aforementioned ρ in (19) and not-
ing that α2 = ρσ2

z , we get

σ
2
H
(t)

=
σ2

z σ2
h

σ2
z +σ2

h〈‖s‖
2〉s|y,H(t−1)

, (37)

m(t)
H = σ

2
H
(t)
[

y〈s†〉s|y,H(t−1)

σ2
z

]
. (38)

Comparing (34) and (35) to (37) and (38), it is obvious that
when ρ = N

〈‖s‖2〉
s|y,H(t−1)

, the pdf p(H|H(t)) derived from the

improved EM algorithm is equal to the pdf q(t) (H) derived
from the VBEM algorithm. For more clarity, we mention
that the equivalent of p(H|H(t)) in the VBEM algorithm is
the distribution q(t) (H), with equality when ρ is adaptively
selected and is equal to ρ = N

〈‖s‖2〉
s|y,H(t−1)

.

5. Improved Iterative Detection and
Decoding
Here, we explain how by a proper use of (19), the de-

tection performance at the receiver can be improved. More
precisely, we propose to use the distribution p(H|H(t)) of
(19) (improved EM) for deriving a modified likelihood func-
tion that is used at the receiver for data detection. By using
the improved EM algorithm, we can evaluate, at each itera-
tion, an averaged likelihood function as:

p(yi|H(t),si) =
∫

p(yi|H,si) p(H|H(t)) dH

= EH|H(t)

[
p(yi|H,si)

∣∣H(t)
]

(39)

where p(H|H(t)) is the channel posterior distribution of (19).
Then by using a theorem derived in the appendix of [8], we
obtain

p(yi|H(t),si) =

1

π

(
σ2

z +σ2
H |si|2

) exp

−
∣∣∣yi−m(t)

H si

∣∣∣2
σ2

z +σ2
H |si|2

 . (40)

In this way, we can define:

DM (si,yi,H(t)),− log p(yi|H(t),si) (41)

which is referred to as the improved ML decision metric
that will be used under imperfect CSIR. Now, the receiver
uses the modified likelihood p(yi|H(t),si) to evaluate by
marginalization the bit metrics that are fed from the detec-
tor to the soft-input soft-output (SISO) decoder in our BICM
reception scheme.

Improved EM or
VBEM-based

channel estimator

Detector
&

SISO decoder
Data bit probabilities Decoded bits

Observation frame:

0Initialization:

Observation frame:

or

or
:For Conventional VBEM

:For Improved-EM

Fig. 2. EM and VBEM-based channel estimation combined with
the decoding process.

At the receiver, we perform MAP symbol detection and
channel decoding in an iterative manner. The block diagram
of the receiver is shown in Fig. 2. Besides the channel es-
timation part, the rest of the receiver principally consists of
the combination of two sub-blocks that exchange soft prob-
abilistic information with each other. The first sub-block,
referred to as soft demapper (also called detector), produces
bit metrics (probabilities) from the input symbols and the
second one is a SISO decoder. Using the modified likeli-
hood function (39) (or equivalently the improved ML metric
of (40)) has two main advantages for our robust receiver de-
sign, namely:

• in deriving improved bit metrics at the detector output,

• in deriving the a posteriori probability p(si|yi,H(t)) in-
volved in (13) by taking into account channel estima-
tion errors.

Each item is briefly explained in the following.

5.1 Derivation of Improved Bit Metrics
Let d j,m

k be the m-th (m = 1, ...,B) coded and inter-
leaved bit corresponding to the constellation symbol sk trans-
mitted at the j-th time slot over the k-th subcarrier. We de-
note by L(d j,m

k ) the coded log-likelihood ratio (LLR) of the
bit d j,m

k at the output of the detector. We partition the set C
that contains all possibly-transmitted symbol sk into two sets
C m

0 and C m
1 , for which the m-th bit of sk equals “0” or “1”,

respectively. We have:

L(d j,m
k ) = log

p(yk|d j,m
k = 1,H(t)

k )

p(yk|d j,m
k = 0,H(t)

k )

(42)

= log

∑
sk∈C m

1

e−DM (sk,yk,H
(t)
k )

B
∏
n=1

n6=m

P1
dec
(
d j,n

k

)
∑

sk∈C m
0

e−DM (sk,yk,H
(t)
k )

B
∏
n=1

n6=m

P0
dec

(
d j,n

k

) (43)

where P1
dec(d

j,n
k ) and P0

dec(d
j,n
k ) are prior probabilities com-

ing from the SISO decoder. By doing so, the LLRs are
adapted to the imperfect channel knowledge available at the
receiver and consequently the impact of channel uncertainty
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on the SISO decoder performance is reduced. We refer to
the latter approach as improved MAP detector.

5.2 Derivation of the a posteriori Probability
p(si|yi,H(t))

The modified likelihood of (40) can also be used for the
evaluation of p(si|yi,H(t)) which plays an important role in
the convergence of the EM algorithm. At the t-th iteration,
we have:

p(si|yi,H(t)) =
p(yi|H(t),si)p(si)

∑si p(yi|H(t),si)p(si)
. (44)

Here, we use the averaged likelihood (40) for the eval-
uation of (44). More precisely, by using (40), channel un-
certainties are taken into account for the evaluation of (44)
at each iteration of the EM algorithm leading to controlled
error propagation and faster convergence, as we will see in
next Section.

6. Simulation Results
In this Section, we provide simulation results to com-

pare the performance provided by the proposed improved
EM-based estimator. We consider a bit-interleaved coded
modulation (BICM) combined with OFDM where The pa-
rameters used throughout the simulations are as follows:
One OFDM symbol is composed of M = 40 subcarriers.
For channel coding, we consider the rate 1/3 recursive sys-
tematic convolutional (RSC) code of constraint length 3 de-
fined in octal form by [5,7,7]8. The interleaver is pseudo-
random and operates over the entire frame that contains
48 OFDM symbols. Data symbols belong to 16-QAM con-
stellation with set-partition (SP) labeling. Performance eval-
uation is performed over the block-fading channel with pa-
rameters Mblock = 16 (N=3) and Mblock = 3 (N=16). Chan-
nel coefficients corresponding to different OFDM subcarri-
ers are assumed uncorrelated and distributed according to the
Rayleigh distribution. One OFDM pilot symbol is dedicated
for initializing the channel in each fading block. The BICM
receiver is an iterative one composed of a demapper (detec-
tor) and a SISO decoder as the main blocks. Moreover, we
perform one SISO decoding iteration and 8 EM algorithm
iterations.

Fig. 3 shows the BER performance versus Eb/N0 (in
dB) in the case of a block-fading channel with parameter
N = 3. For comparison, we have also provided the BER
obtained with perfect CSI as well as the BER obtained
with pilot-only (obtained with one pilot symbol) and VBEM
channel estimation. It can be seen that the improved EM pro-
vides a gain of about 1 dB at a BER of 10−4 with respect to
the conventional EM. Moreover, the improved EM algorithm
outperforms the VBEM algorithm. Similar plots are pro-
vided in Fig. 4 for parameter N = 16. In this case, since the
number of observations for estimating each unknown param-
eter is increased, all investigated estimation schemes provide
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Fig. 3. BER performance versus Eb/N0 in dB over a block-
fading channel with N = 3.
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Fig. 4. BER performance versus Eb/N0 in dB over a block-
fading channel with N = 16.

lower BER performance. However, we observe that the pro-
posed improved EM estimator still outperforms conventional
EM and VBEM techniques.

Figs. 5 and 6 depict the BER versus the number of
SISO iterations, at a fixed Eb/N0 of 11 dB and 7.5 dB with
N = 3 and N = 16, respectively. This allows us to evalu-
ate the number of SISO iterations necessary to attain a target
BER. From Fig. 5 we observe that the improved-EM detec-
tor requires 4 iterations to achieve a BER of 3×10−4 while
the VBEM detector attains this BER after 6 iterations, and
even more iterations are necessary for the conventional EM
algorithm. A similar behavior is observed for the case with
N = 16 in Fig. 6. Noting that each iteration involves the
complicated forward-backward [15] decoding algorithm in
addition to EM computations, reveals that the proposed de-
tector is particularly useful for reducing the complexity at
the receiver.

Moreover, it is worth mentioning that the aforemen-
tioned improvement provided by the proposed improved de-
tector is obtained just by changing the metric of the EM al-
gorithm, i.e., without requiring additional complexity at the
receiver.
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Fig. 5. BER performance versus SISO decoding iterations over
a block-fading channel with N = 3, Eb/N0 = 11 dB.
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Fig. 6. BER performance versus SISO decoding iterations over
a block-fading channel with N = 16, Eb/N0 = 7.5 dB.

7. Conclusion
The problem of joint signal detection and data-aided

(semi-blind) channel estimation based on the EM algorithm
was investigated. We made some modifications in the formu-
lation of the EM-estimator in order to derive the pdf charac-
terizing the statistics of the estimation errors. This pdf was
used at the receiver and led to a modification of the met-
rics used in the conventional EM iterative detector. There-
fore, our approach does not increase the complexity at the re-
ceiver. We also formulated the VBEM estimator and then de-
rived the relation that exists between the proposed improved
EM algorithm and the more elaborated VBEM estimator.
Our numerical results confirmed the superiority of the pro-
posed detector in reducing the impact of channel estimation
errors on the BER performance. Moreover, our proposed
scheme reduces the number of decoding iterations necessary
to achieve a target BER, compared to conventional EM and
VBEM estimation techniques. Finally, we notice that the
main idea and methodology used in this paper for improv-
ing the detector part for the EM algorithm can be used for
improving the detection with the VBEM algorithm, that we
will investigate in a future work.

Appendix: Derivation of
the a Posteriori Mean (11)

In order to evaluate (11), we use the following theorem
which is proposed in [16].

Theorem 1: Let x ∼ CN
(
mx,Rx

)
and y ∼

CN
(
my,Ry

)
be two complex Gaussian random vectors with

the joint distribution[
x
y

]
∼ CN

([
mx
my

]
,

[
Rxx Rxy
Ryx Ryy

])
where Rxy , E[(x−mx)(y−my)

∗]. Then, the conditional
random vector x|y is distributed as CN

(
µµµ,ΣΣΣ
)

with mean
µµµ = mx +RxyR−1

yy (y−my) and covariance matrix ΣΣΣ = Rxx−
RxyR−1

yy Ryx.

It is clear from (10) that we have to evaluate the mean
of the posterior distribution p(H̃i|yi,si,H(t−1)) that we de-
note by µH̃i

(si). To this end, we consider the above theorem

and we set x = H̃i and y = yi. Note that H(t−1) and si are as-
sumed to be known in the following. From (3), it is clear that
H̃i ∼ CN (mH̃i

,RH̃i
) with mH̃i

= H and RH̃i
= α2. Equiva-

lently from (3), we have yi ∼ CN (myi ,Ryiyi) with myi = siH
and Ryiyi = σ2

z . We also calculate RH̃iyi
as

RH̃iyi
= E

[(
H̃i−mH̃i

)(
yi−myi

)∗]
= E

[
wi
(
siwi +ui

)∗]
= α

2 s∗i .

By using Theorem 1 we obtain

µH̃i
(si) = H(t−1)+

α2

σ2
z

s∗i
(

yi− si H(t−1)
)
. (45)

which is nothing but equation (11).
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