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Abstract. Recently, a new robust adaptive beamforming 
(RAB) algorithm has been proposed to reconstruct the 
interference-plus-noise covariance matrix (IPNCM) based 
on narrowing the interference angular domain and using 
an annular uncertainty set (NIAD-AUS). The method is 
robust against unknown arbitrary-type mismatches. How-
ever, its computational complexity will increase exponen-
tially with the number of array sensors. In this paper, 
a novel method is proposed to solve this problem. First,  
k-means clustering (KMC) algorithm is utilized to estimate 
the annulus uncertainty set with fewer clustering weight 
points rather than whole sampling. Second, the KMC 
Capon spectrum is used to reconstruct the IPNCM. Com-
pared with the previous reconstruction-based algorithms, 
the proposed approach can retain the high performance of 
the state-of-the-art NIAD-AUS algorithm. More important-
ly, it can also obtain the IPNCM more quickly. Lastly, 
simulation results demonstrate the effectiveness and 
robustness of the proposed algorithm. 
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1. Introduction 
The performances of traditional adaptive beamform-

ing algorithms may suffer from imprecise knowledge of the 
desired signal steering vector [1]. In order to obtain a more 
accurate steering vector, some robust Capon beamforming 
algorithms were presented based on a smaller uncertainty 
set and iterative theory [6–8]. The performance of afore-
mentioned algorithms is limited because they ignore the 
data-information excavation from the received data. In 
order to remove the desired signal components from the 
sample covariance matrix, a lot of RAB algorithms based 
on steering vector estimation and the IPNCM reconstruc-
tion have been proposed [9–14]. In [9], the IPNCM was 

reconstructed utilizing the Capon spectrum to the interfer-
ence angular domain. To further reduce the computational 
complexity of the RAB method in [9], low-complexity 
interference-plus-noise covariance matrix reconstruction 
method based on spatial power spectrum sampling (SPSS) 
was proposed in [10] and [11]. To solve the problem of 
performance degradation with one single snapshot, a sparse 
signal recovery model under the non-convex optimization 
framework was first established in [12]. In [13], the itera-
tive adaptive approach (IAA) algorithm is performed to 
acquire the true signal direction and the spatial spectrum 
simultaneously. To overcome the ineffectiveness in array 
calibration error, a more general algorithm [14] based on 
NIAD-AUS was proposed, and it can sufficiently collect 
more potential information using high-dimensional volume 
integral. In addition, it was proved that this algorithm [9] is 
a special category of the NIAD-AUS algorithm [14]. This 
method is robust against unknown arbitrary-type mis-
matches. However, a huge number of sample points for 
each angle are needed to obtain a more precise IPNCM, 
which results in the exponential increasing of CC. 

In this paper, based on the previous reconstruction 
method [14], a modified one based on the KMC is pro-
posed to reduce the CC efficiently. Different from the pre-
vious methods based on IPNCM reconstruction, our 
approach emphasizes the information excavation to sample 
points. The KMC approach can easily obtain clustering 
weight points to replace sample points in the annular 
uncertainty set, and it is essential to reduce the computa-
tional complexity of reconstructing the IPNCM. Subse-
quently, a more accurate steering vector of desired signal 
can be obtained by solving a quadratically constrained 
quadratic programming (QCQP) problem. The proposed 
beamformer can efficiently reduce the computation com-
plexity with the negligible performance loss.  

The rest of the paper is organized as follows. In 
Sec. 2, the problem formulation is given. Based on the 
IPNCM reconstruction and k-means clustering, a novel 
RAB algorithm is proposed in Sec. 3. In Sec. 4, the numer-
ical simulations are presented to verify the performance. 
Finally, conclusion is drawn in Sec. 5. 
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2. Problem Formulation 
The purpose of robust adaptive beamforming is to 

find a common method which can steer the desired signal 
to the right direction and reduce the impact of the interfer-
ences and noise. It also means maximizing the output sig-
nal to interference plus noise ratio (SINR). Assume that 
a narrowband desired signal impinges on an array of M 
sensors. The output of the beamformer is given by 

 H( ) ( )k ky w x   (1) 

where k is the time index, w  CM  1 is the complex beam-
forming weight vector, x(k) = [x1(k), …, xM(k)]T is the 
complex vector of array observation, ()T and ()H stand for 
the transpose and Hermitian transpose operators, respec-
tively. The observation vector is given by [2] 
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where s(k), i(k), and n(k) stand for the desired signal, inter-
ference, and noise components. The steering vector of the 
desired signal is given by 
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where λ is the wavelength, d denotes the distance between 
the arrays, θ0 denotes the real direction of the desired sig-
nal. Hence, the received power can be obtained as  

 H H H
s i nP   w Rw w R w w R w  (4) 

where R denotes the covariance matrix containing all com-
ponents, Rs and Ri + n denote the covariance matrix contain-
ing signal component and interference-plus-noise compo-
nents, respectively. The output signal-to-interference-plus-
noise ratio (SINR) can be formulated as  

 
H

s
H

i+n

SINR 
w R w

w R w
.   (5) 

Hence, the optimal weight vector can be obtained by 
maximizing the output SINR of the beamformer, namely, 
maximizing the power of the desired signal component and 
minimizing the power of interferences and noise compo-
nents. The Capon beamformer assumes that the power of 
the desired signal is set as a fixed value, and the problem 
can be reformulated as [2] 

  H H
0min s.t. ( ) 1i n  

w
w R w w a .  (6) 

From (6), the following optimal weight vector can be 
found 
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In practical application, the estimated IPNCM is used 
rather than the exact IPNCM which is usually unavailable. 
In the previous algorithms, the sample covariance matrix 
stands for ideal IPNCM, which is based on maximum 
power distortionless response (MPDR) instead of maxi-
mum variance distortionless response (MVDR). MPDR is 
equal to MVDR when the estimated steering vector is 
accurate [15]. However, the beamformer performance will 
degrade seriously if the steering vector estimation is not 
accurate enough. Thus, MVDR is  more suitable to be 
applied in RAB algorithms. According to the NIAD-AUS 
algorithm [14], the IPNCM R̂i + n can be reconstructed as 

 2
i+n i n i

ˆ ˆ ˆ ˆ I   R R R R   (8) 

where σ2 is the noise power that can be approximately 
estimated by the minimum eigenvalue of sample covari-
ance matrix R̂. We choose the Capon spectrum as an esti-
mate of the spatial power spectrum over all possible direc-
tion. 
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where a  is the normal steering vector of the possible 
direction of the interference,   is the interference angular 
domain. 

Thus, the interference covariance matrix can be 
calculated through 
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where I  is the number of sample points in  , L  is the 
number of sample points on the surface of the each annulus 
uncertainty set. 

3. The Proposed KMC Method 

3.1 Mismatch Model 

Considering that a proper mismatch model is crucial 
in improving the robustness of algorithm, the mismatch 
between the real steering vector a0 and the assumed steer-
ing vector a͞0 is analyzed at first. In fact, mismatch is 
caused by various errors, such as look direction error, array 
calibration error, and so on. Fortunately, they all can be 
modeled as 

  r r rexp j e  (11) 

where er stands for a certain mismatch, including all types 
of errors, γr denotes the amplitude factor, and φr is the 
phase vector, and those distribution functions are all 
unknown or indescribable.  

Hence, the whole mismatch can be modeled to satisfy 
the following certain norm constraint 
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  exp j ,  e φ e   (12) 

where e denotes the whole mismatch. Although the mis-
match model may be inaccurate for a specific error, its 
performance is well against various errors. Hence, the 
whole mismatch model is meaningful for RAB algorithm. 
The real steering vector of the desired signal can be written as 

 0 0 a a e . (13) 

Figure 1 shows the whole mismatch model based on 
uncertainty theory. We assume that each steering vector 
error of the interferences can be covered by the uncertainty 
spherical set with the same size and all of them can be 
synthesized into a big annular uncertainty set. The steering 
vector located at the surface of the annulus can be con-
structed as [14] 

 0 1 1q j j je ,e , ,e M

M
  

   e    (14) 

where εq denotes the norm of the random error vector, 
( 0,1 , 1)m m M    are phases of the mth coordinate of 

e  and are uniformly distributed at intervals. The random 
error matrix can be written as 

  1 2, , , LE e e e . (15) 

3.2 KMC Algorithm 

The computational complexity of the NIAD-AUS algo-
rithm is o(LIM2), which primarily comes from the IPNCM 
reconstruction. Thus, the number of sample points L  is 
essential in reducing computational complexity, while it 
increases exponentially with the number of the sensors. 

 0 0( 1, 2,3 )ML n n     (16) 

where n0 is a positive integer. Simulation results show that 
the performance barely improves when n0 ≥ 3. So in this 
paper, we only research the n0 = 2  case, which means that 
exp(jφ) is 0 or 1. 

According to the previous analysis, the computational 
complexity  of the  NIAD-AUS  is expressed  as  o(2MIM2). 

O X

Z

Y

 
Fig. 2. The whole mismatch model in the 3-D space . 

When the number of sensors grows, its computational 
complexity increases dramatically to reconstruct the 
IPNCM. As a result, it cannot meet the requirements of no 
or less time delay. Obviously, if the number of sample 
points decreases, the computational complexity will de-
crease while the performance will deteriorate. Thus, there 
is a contradiction between the low computational complex-
ity and the outstanding performance. 

Apparently, the uncertainty set is a convex hyper-
sphere and the sample points are evenly distributed on its 
surface. To save performance loss, we select some weight 
points to replace the sample points. 

Clustering can be considered as the most important 
unsupervised learning problem in data mining, which deals 
with finding a structure in the collection of unlabeled data. 
Thus, the clustering method can be used to obtain the 
weight points to resolve contradiction between the perfor-
mance and the computational complexity. In this paper, we 
choose the k-means clustering method [16] for its simple-
ness and high efficiency. KMC aims to partition n observa-
tions into k cluster based on minimizing the within-cluster 
sum of squares (WCSS). The WCSS is the Euclidean dis-
tance. Thus, the objective function can be formulated as 
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where k is the number of cluster, el denotes the lth sample 
point, ci denotes the ith cluster. Considering the structure 
of the sample points is obvious, one-iteration for KMC is 
enough to obtain the clustering points. 

In general, it is difficult to calculate the whole mis-
match model as a Capon spectrum integral over the uncer-
tainty set. To solve the problem more easily, a method of 
using less discrete sample points to replace the whole un-
certainty set is proposed in NIAD-AUS algorithm. Uncer-
tainty set is only a structure to formulate the whole mis-
match, and the sample points are chosen to describe the 
shape of structure. Figure 2 shows the whole mismatch 
model in the 3-D space. For the whole mismatch, those 
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points distribute on the spherical surface, which can be 
formulated with the 8 spots of the cube. As we all know, 
only 4 noncoplanar points are needed to construct a sphere 
in general. Hence, the number of sample points can be 
reduced in theory. KMC effetively achieves the purpose of 
describing the whole mismatch with less weight points. 
Furthermore, it guarantees that the structure can describe 
the shape accurately. 

3.3 Steering Vector Estimation 

Using the same idea of [9], we can obtain a more 
precise steering vector by solving the following QCQP 
problem 
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where e is the orthogonal component of the mismatch 
vector e. The objective function is the reciprocal of the 
outer power. The equality constraint is used to guarantee 
the orthogonality while the inequality constrain prevents 
the corrected steering vector from converging to any inter-
ference. 

3.4 Complexity Analysis 

In our algorithm, the main computational complexity 
lies in the IPNCM reconstruction, the KMC process, and 
the QCQP problem. The computational complexity of 
algorithms are listed in Tab. 1, where S denotes the number 
of sample points in the complement of the angular domain, 
t denotes the number of iterations, o(tkLM) is the computa-
tional complexity of the KMC. It is worth emphasizing that 
S >> M, LI >> M, are assumed to guarantee the perfor-
mance. Besides, the number of iteration is only once. The 
actual computational complexity can be obtained based on 
the above assumptions. The relationship between the com-
plexities of the NIAD-AUS and the KMC can be described 
as computational complexity ratio (CCR). 
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In general, k and M have the same order of magni-
tude. Thus, CCR  1/I, which means the proposed algo-
rithm can significantly reduce the computational complex-
ity compared with the NIAD-AUS. 
 

 
Algorithm 

Theorical computational complexity 
Actual 

computational 
complexity 

Algorithm 
[9] 

2 3.5max( ( ), ( ))SM M   2( )SM  

NIAD-
AUS 

2 3.5max( ( ), ( ))LIM M   2( )LIM  

Proposed 2 3.5max( ( ), ( ), ( ))LIM M tkLM    ( )tkLM  

Tab. 1. Complexity analysis of algorithms. 

4. Numerical Analysis and Discussion 
A uniform linear array with half interelement spacing 

is employed. The number of isotropic sensors is fixed at 16 
when considering the algorithm performance in terms of 
the input SNR. The true direction of the desired signal is 
θ0 = 5°, and the assumed one is ͞θ0 = 2°. Two interferences, 
which have the same interference-to-noise ratio (INR) of 
20 dB, are impinging on the array from θ1 = –20° and 
θ2 = –50° off broadside to the array, respectively. The 
estimated direction of interferences are 1 23°    and 

2 53    . The random error vector is drawn in each 
simulation run independently, εq is uniformly distributed in 

the interval 0, 0.3 
   and φm is uniformly distributed in the 

interval [0, 2π). The number of sample points in Θ, is 
assumed to be I = 40. The number of snapshots is fixed at 
K = 30. When comparing the performance in terms of the 
number of sensors, the signal-to-noise ratio (SNR) is set to 
be fixed at 0 dB. In our simulations, we assume that the 
angular sector of the interferences is set to be 

1 1 2 28, 8 8, 8              , which is the same as [10]. 

For each scenario in the simulations, 100 Monte Carlo runs 
are performed. 

The performance of the proposed algorithm is com-
pared with those of the robust Capon beamformer (RCB) 
[1], namely the iterative robust Capon beamformer (IRCB) 
[7], the reconstruction-based (RB) beamformer [9], and the 
NIAD-AUS beamformer [10]. We assume that the para-
meter ε = 9 for RCB, the parameter ε = 0.08 for IRCB, the 
 

M NIAD-AUS( 109) KMC( 107)  CCR 
10 0.004096000 0.0409600 10% 
11 0.009912320 0.0901120 9.09% 
12 0.023592960 0.1966080 8.33% 
13 0.055377920 0.4259840 7.69% 
14 0.128450560 0.9175040 7.14% 
15 0.294912000 1.9660800 6.67% 
16 0.671088640 4.1946040 6.25% 
17 1.515192320 8.9128960 5.88% 
18 3.397386240 18.8743680 5.56% 
19 7.570718720 39.8458880 5.26% 
20 16.77721600 83.8860800 5.00% 

Tab. 2. Complexities versus number of sensors. 
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Fig. 3. Output SINRs versus number of sensors. 
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Fig. 4. Output SINRs versus the input SNRs. 

parameter S = 1024 for RB, and the parameter 0.1   
for the NIAD-AUS algorithm and the proposed algorithm, 
the number of clumsers k = 40. Convex optimization tool-
box, CVX, is used to solve these optimization problems. 

In the first example, we set SNR = 0 dB and focus on 
studying the effect of the number of array sensors. Table 2 
shows the computational complexity of the beamformers 
and Figure 3 presents the performance of output SINR. In 
Tab. 2 the advantage in computational complexity is more 
prominent when the number of sensors increases. The 
computational complexity of the proposed algorithm can 
reduce to 5% of the previous NIAD-AUS. The significant 
reduction in computational complexity is a direct result of 
using the less clustering points to replace the whole sample 
points. From Fig. 3, it is easy to find out that the perfor-
mances of the RCB and the IRCB decrease in varying 
degrees. This is due to the direct adoption of sample covar-
iance matrix without information excavation. The other 
three reconstruction-based algorithms show outstanding 
performances even if M becomes larger, and the loss 
between the NIAD-AUS and the proposed algorithm is 
negligible. 

In the second example, let SNRs vary from –20 dB to 
20 dB, the number of sensors is fixed at 16. The SINRs are 
investigated in Fig. 4. According to the figures and tables, 
it is clearly drawn that the computational complexity of the 
proposed KMC algorithm is much less than that of the 
NIAD-AUS when their performance is very close. The 
maximum loss of SINR performance is approximately 
0.2 dB.  

Figure 5. shows the output SINRs versus the number 
of snapshots when SNR = 0 dB is set. As we can see from 
the figure, the RCB and the IRCB converge slowly and 
approximately need 100 snapshots to acquire the maximum 
of algorithms. The proposed algorithm converges quickly, 
and can keep high performance even if the number of snap-
shots is 10. Actually, the reconstruction-based algorithm 
can reduce the demand for snapshots because of full use of R̂. 

In order to further examine the performance of  
the algorithm, we also analyze the relationship between the 
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Fig. 5. Output SINRs versus number of snapshots. 
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Fig. 6. Output SINRs versus norm of errors εq. 

norm of errors εq and the output SINR. In Fig. 6, we 
change the errors distribution parameter from 0.05 to 0.50. 

It is notable that the uncertainty set parameter ε  is 0.1 , 
which is less than 0.50. It is obviously that the performance 
can maintain the outstanding performance in the whole 
field, even when the number of uncertainty set parameter is 
a little bit less than the real errors set parameter. Thus, the 
proposed algorithm has strong robustness for its insensitiv-
ity to parameter. 

We have verified the assumptions in the previous 
analysis of the number of iterations and weight sample 
points in the third example. Figure 7 shows the output 
SINRs versus the number of iterations. It is easy to find 
that one-iteration is enough to acquire the structure to de-
scribe the whole mismatch model. Figure 8 describes the 
output SINRs versus the number of weight sample points. 
The NIAD-AUS needs 2M sample points for reconstruction, 
approximately ranging 1024~1048576. However, 40 
weight points are enough to obtain the similar performance 
for the proposed algorithm. The KMC is used to describe 
the structure to formulate the whole mismatch. This struc-
ture is used to accurately describe all sampling points. 
However, it is still not possible to include all information. 
Thus, there's a loss of performance. Fortunately, the perfor-
mance loss is negligible.  
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Fig. 7. Output SINRs versus number of iterations. 
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Fig. 8. Output SINRs versus number of the weight sample 

points. 

5. Conclusions 
A new IPNCM reconstruction algorithm based on k-

means clustering for robust adaptive beamforming is pro-
posed. The proposed algorithm can easily obtain clustering 
weight points to reduce the high computational complexity 
of the IPNCM reconstruction. Compared with the previous 
NIAD-AUS algorithm, the computational complexity can 
be reduced by 1-2 orders of magnitude while the loss of 
performance is negligible. Simulation results have been 
presented to support the effectiveness and robustness of the 
proposed algorithm. 
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