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Abstract
The subject of the thesis is to design new hardware verification techniques optimized for
a process of HW/SW co-design in which hardware and software are developed in parallel to
speed up the development of new embedded systems. Currently, microprocessor co-design
tools typically allow to verify designs by simulation and/or functional verification. However,
even extensive functional verification can miss some non-trivial bugs. Therefore, formal ver-
ification has become more and more desirable in recent years. As opposed to testing and
bug-hunting techniques that only aim at detecting flaws, the goal of formal verification
is to rigorously prove that the system is indeed correct. Formal verification is, however,
a very demanding task, and even though a lot of progress has been achieved in this area,
formal verification is far from being able to fully automatically check all relevant properties
of complex designs without a significant and costly human involvement in the verification
process. The thesis deals with these challenges by focusing on verification techniques based
on formal approaches, but possibly relaxing or limiting their precision and generality to
achieve full automation. Further, the thesis also focuses on the efficiency of the proposed
techniques and their ability to deliver continuous feedback about the verification process.
Special attention is devoted to the development of formal methods for checking the equiv-
alence of microprocessor designs on various levels of abstraction. Although these designs
cannot be behaviorally equivalent, they are required to give mutually corresponding results
when executing the same input program, which is a property difficult to achieve. As another
considered topic, the thesis proposes methods for checking correctness of mechanisms pre-
venting data and control hazards in single-pipelined implementations of microprocessors.
The approaches described in this thesis has been implemented in the form of several tools
which, after examining designs of multiple pipelined microprocessors, were able to deliver
promising experimental results.

Abstrakt
Předmětem dizertační práce je návrh nových technik pro verifikaci hardwaru, které jsou
optimalizovány pro použití v procesu souběžného vývoje hardwaru a softwaru. V rámci
tohoto typu vývoje je hardware spolu se software vyvíjen paralelně s cílem urychlit vývoj
nových systémů. Současné nástroje pro tvorbu mikroprocesorů stavějící na tomto stylu
vývoje obvykle umožňují vývojářům ověřit jejich návrh využitím různých simulačních tech-
nik a/nebo za pomoci tzv. funkční verifikace. Společnou nevýhodou těchto přístupů je, že
se zaměřují pouze na hledání chyb. Výsledný produkt tedy může stále obsahovat nenalezené
netriviální defekty. Z tohoto důvodu se v posledních letech stává stále více žádané nasazení
formálních metod. Na rozdíl od výše uvedených přístupů založených na hledání chyb,
se formální verifikace zaměřuje na dodání rigorózního důkazu, že daný systém skutečně
splňuje požadované vlastnosti. I když bylo v uplynulých letech v této oblasti dosaženo
značného pokroku, tak aktuální formální přístupy nemají zdaleka schopnost plně automat-
icky prověřit všechny relevantní vlastnosti verifikovaného návrhu bez výrazného a často
nákladného zapojení lidí v rámci verifikačního procesu. Tato práce se snaží řešit problém
s automatizací verifikačního procesu jejím zaměřením na verifikační techniky, ve kterých
je ale záměrně kladen menší důraz na jejich přesnost a obecnost za cenu dosažení plné
automatizace (např. vyloučením potřeby ručně vytvářet modely prostředí). Dále se práce
také zaměřuje na efektivitu navrhovaných technik a jejich schopnost poskytovat nepřetrži-
tou zpětnou vazbu o verifikačním procesu (např. v podobě podaní informace o aktuálních



stavu pokrytí). Zvláštní pozornost je pak věnována vývoji formálních metod ověřujících
ekvivalenci návrhů mikroprocesorů na různých úrovních abstrakce. Tyto návrhy se mohou
lišit ve způsobu, jakým jsou vnitřně zpracovány programové instrukce, nicméně z vnějšího
pohledu (daného např. obsahem registrů viditelných z pozice programátora) musí být jejich
chování při provádění stejného vstupního programu shodné. Jako další téma se práce dále
věnuje návrhu metod pro verifikaci správnosti mechanismů zabraňujících výskytu datových
a řídících hazardů v rámci linky zřetězeného zpracování instrukcí. Veškeré metody popsané
v této práci byly implementovány ve formě několika nástrojů. Aplikací těchto nástrojů pro
verifikaci návrhů netriviálních procesorů bylo dosaženo slibných experimentálních výsledků.
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Chapter 1

Prologue

Embedded systems are massively deployed in almost every electronic device that we now use
in our everyday life. For embedded systems, customized application-specific instruction-set
processors (ASIPs) are often designed. These processors have specific functions of hardware
available through special instructions in order to achieve required performance criteria and
low power consumption. A significant part of embedded system costs includes prices that are
required for (i) design of hardware architecture, (ii) its physical realization, and (iii) design
of software.

If we consider costs of the physical realization as fixed, the only way for further lowering
of the price of an embedded system is to reduce the time that is needed for the design of
hardware and software. In order to achieve that, the trend is to develop both hardware and
software in parallel in a process of the so-called hardware/software co-design. The automa-
tion of common tasks that are a part of the co-design process is another crucial factor for
successful and fast development. To facilitate automation, specialized architecture descrip-
tion languages (ADLs) are frequently utilized during the microprocessor design process.
Specifically, in the case of microprocessor design, various integrated frameworks [125, 28, 1]
take advantage of the availability of the high- and low-level ADL descriptions and pro-
vide automatic generation of hardware description language (HDL) designs and tool-chains
including, e.g., simulators, assemblers, disassemblers, and compilers.

In the current microprocessor design frameworks, an initial understanding about the de-
sign (e.g., to see whether an instruction set contains enough instructions, to check the per-
formance of the design) is done by simulation. After this step, verification of the designs
is typically performed. Currently, simulation-based approaches such as testing and func-
tional verification are very popular. Testing is based on the observation of the behavior
of the verified system in a limited number of situations (e.g., for cases considered as cru-
cial by the designer) and, therefore, it provides only a partial guarantee of the system’s
correctness. Functional verification automates the testing process by generating a set of
constrained/random test vectors and by comparing the behavior of the system for these
vectors with the behavior specified by a reference model, the so-called golden specification,
which must be provided manually by the developers. However, even extensive functional
verification, like any other bug-hunting technique, can still miss non-trivial bugs. There-
fore, the use of formal verification is very desirable. Its goal is to rigorously prove that the
system is indeed correct. That is, if no issue is found by a formal method, the system is
guaranteed to conform to the given specification. Unfortunately, formal verification is not
a common part of the current microprocessor design frameworks.
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Formal methods can be categorized into three basic categories (with not completely
sharp boundaries): theorem proving, static analysis, and model checking. Theorem prov-
ing, also called deductive verification, is based on deducing properties of a verified system
from various logical axioms and assumptions about the system. The process often requires
a significant manual intervention. Static analysis attempts to avoid execution of the system
being examined, and instead analyses and gathers approximate (and often conservative)
information about the system from the source code, and thus it may produce many false
alarms. Model checking systematically explores the state space of the examined system.
Unlike in static analysis, if some abstraction is used, it typically comes with an automated
refinement technique that allows the approach to automatically exclude spurious counterex-
amples to the verified properties.

An ideal formal approach should be sound and complete, so an error is reported if and
only if there is a real error in a system, otherwise the system is said to be correct. Moreover,
the approach should be fully automated and terminating. Satisfying these ideal properties
is, however, very costly (or impossible if a source of unboundness such as parametriza-
tion is involved) due to the state explosion problem that is usually hit (or due to the
implied undecidability for the case of unbounded state spaces). To provide efficiency and
high automation, completeness or even soundness are sometimes sacrificed leading to error
detection methods built on formal roots. Such a method may be still quite useful as it
can discover flaws that would stay hidden otherwise, which is most often caused due to
a different way of state space traversal.

Aim of The Thesis. In accordance with the above, the thesis aims at developing new
verification techniques with formal roots with an emphasis on full automation (without
a need to manually create models of the environment of the verified system), efficiency, and
ability to deliver continuous feedback, e.g., actual coverage about the verification process.
Within the thesis, special attention is devoted to the development of formal methods that
check the equivalence of designs on various levels of abstraction. These designs cannot
be behaviorally equivalent (due to their different abstraction level), but they are required
to give mutually corresponding results when executing the same input program, which
is a property difficult to achieve. Another considered topic is development of methods
for checking correctness of mechanisms preventing data and control hazards in pipelined
implementations of microprocessors. The above-described techniques should, in particular,
be optimized for the class of ASIPs broadly used in light-weight embedded devices.

As the first step towards the aim, we focused on automatic checking of correspondence
of instruction-set-architecture (ISA) and register-transfer-level (RTL) descriptions of a mi-
croprocessor. The correspondence means that after starting in the same initial states of
resources (such as registers, memories, and devices connected to the microprocessor) and
executing the same program, both models will always end up in states in which the resources
have equivalent contents. The ISA (instruction-accurate, high-level) description captures
the behavior of an instruction without consideration of complex parts (such as pipelines,
buses, etc.) that are part of the RTL (cycle-accurate, low-level) specification. The existence
of ISA description in early phases of processor development is critical because it allows one
to generate the previously mentioned tool-chains that are necessary to create software when
its RTL description is still being designed. Because the software is created over a model
that is different from the one delivered with the final product, conformance of these two
models must be guaranteed. The correspondence checking can be also useful if the RTL

4



specification is automatically generated from the ISA description to verify the correctness
of such a generator.

Regarding the correspondence checking topic, in [31, 32], we proposed a novel technique
that copes with this problem, although not taking the influence of complex parts of the
processor (pipelines, buses, etc.) into account. Even with this simplification, one has to deal
with the large bit-width of registers and size of memories and register files. The proposed
approach deals with this problem by using abstraction and reduction techniques that are
described later in this thesis. The approach has been experimentally implemented within
Codasip IDE [1] and successfully tested in several case studies. The experiments include
a non-trivial single-pipelined processor in which the approach revealed three previously
unknown bugs. The experiments also show that instructions of single-pipelined processors
can be verified within seconds.

Further, we have extended the above-proposed correspondence checking by another
verification phase devoted to the verification of the so-called pipeline hazards. Hazards
in the instruction pipeline are problems caused by inadequate synchronisation of earlier
and later instructions running concurrently through the pipeline that may cause potential
corruption of the data used by the instructions. Three common types of pipeline hazards are
data, control, and structural hazards. In the thesis, we focus on the first two of them. An
example of such a hazard is the so-called read-after-write (RAW) data hazard. Here, a later-
started instruction uses data supposed to be produced by an earlier-started instruction, but
the earlier instruction has not yet managed to proceed far enough in the pipeline to write
the data into the storage used by the later instruction. The later instruction then stores
a potentially wrong result of its execution, obtained by dealing with the obsolete data.

To address these issues, in [34, 35, 36, 37], we propose a novel, highly-automated ap-
proach for discovering the above-listed kinds of hazards within in-order pipelined instruc-
tion execution. The approach combines (i) static analysis of data paths to detect anomalies
and possible hazards, followed by (ii) a transformation of detected problematic paths to
a parametric system, and (iii) a subsequent formal verification using techniques for formal
verification of the parametric systems. The approach has been implemented in a tool called
Hades [37] and, in this thesis, we present promising experimental results applying the tool
to multiple pipelined microprocessors.

Outline. The rest of the thesis is organized as follows. Chapter 2 gives an overview of
microprocessor architectures together with an introduction to the former and contempo-
rary techniques used during the design of embedded systems. Chapter 3 briefly describes
the most common architecture description languages and frameworks for processor design.
Chapter 4 is an introduction to selected topics of formal verification. Chapter 5 provides
an overview of related work in the field of microprocessor verification. Chapter 6 presents
the main goals of the thesis. Chapter 7 describes our newly proposed technique for au-
tomatic generation of abstract models of memories that can be used for efficient formal
verification of hardware designs. Next, Chapter 8 presents a new automated approach built
on a formal basis that we use for checking correspondence between an RTL implementa-
tion of a microprocessor and its ISA description. Further, Chapter 9 describes our novel
technique utilizing static analysis of data paths and formal verification of parameterized
systems in order to discover flaws caused by improperly handled pipeline hazards. Finally,
Chapter 10 concludes the thesis.
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Chapter 2

Embedded System Design

Since the last decades of the 20th century, one can observe the ever-increasing popularity
of built-in systems such as (smart) TVs, cell phones, entertainment systems, or network-
connected devices. This caused a significant increase in demand for embedded systems. By
the embedded system, we typically mean a combination of hardware and software together
with other mechanical components intended to perform a dedicated function (often) in real-
time computing constraints. Embedded systems often reside in machines that are expected
to run continuously for years without errors and (in certain cases) recover autonomously
if an error occurs. Today, it is very common that a final product consists of several co-
operating but individually designed embedded systems [107, 91].

As the capabilities of the embedded systems are still growing, they are now widely
deployed across multiple fields. For instance, the use of embedded systems in the auto-
motive industry allowed the implementation of complex algorithms (e.g., in fuel injection)
which resulted in lower emissions and higher fuel efficiency. The higher computing power
of embedded devices also helps in airplane tracking and navigation systems which now
allow for safe landing even in adverse weather conditions. Another example comes from
the automated household control industry. Here, the recent development of the so-called
Internet of Things (IoT) enabled smart control of home temperature control systems via
connected thermostats. Besides the fact that such a thermostat can be controlled remotely
via a mobile application, it can also learn the owner’s typical day-to-day behavior (e.g.,
working hours, weekend routines) and perform heating/cooling optimization in order to
lower household running costs.

The above-mentioned rapid evolution of the embedded systems has been largely sus-
tained by research and innovation in the field of system design methodologies. The co-
operated design of both hardware and software, the so-called hardware/software co-design,
is one of them. Even though it is not a new discipline (as since the era of the first comput-
ers, designers have always considered mutual dependence between hardware and software),
the growing complexity of the embedded systems, increasing time-to-market pressure, and
system costs bring new challenges for the co-design methodology [91]. A significant part
of these challenges can be overcome by design automation. This translates to an increased
demand for development of new co-design tools that would speed up the implementation
and verification tasks.

To provide necessary background, the following sections of this chapter describe some of
microprocessor and hardware architectures that are typically used in the embedded devices.
The last section then discusses how the HW/SW co-design methodology can help to find
the most suitable microprocessor for the given task within a short time and at a low cost.
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2.1 General-Purpose Microprocessors
The first embedded systems based on microprocessors started to appear in the 1960s.
A well-known example of such a system is Apollo Guidance Computer [55]. In early stages,
the embedded systems were produced in series counting only limited number of units. An
early example of a mass-produced system is the D-17 guidance computer used for naviga-
tion of Minuteman I intercontinental ballistic missiles [88]. Due to the mass production,
the price of microprocessors had fallen which led to their spread across a wide spectrum of
industry sectors. Now, microprocessors can be found in almost any electronic device.

From the component point of view, a very basic microprocessor consists of the follow-
ing main parts: (i) internal memory (register files, cell memory), (ii) an arithmetic logical
unit (ALU), and (iii) the control unit [108]. The microprocessor registers can be typically
split into one of the following categories: general-purpose registers (GPRs), index registers
(IRs), and the program counter (PC). The GPRs are used to store temporary data within
the microprocessor. The IRs modify operand addresses during the run of a program, typ-
ically for doing vector and/or array operations. In the case of the Von Neumann memory
organization, program and computational data are commonly stored in a single memory
whereas, in the case of the Harvard architecture, the program code is kept separate from
the program data. The PC is an index register that contains the address (location) of the
instruction being executed at the current time. The purpose of the ALU is then to perform
arithmetic and logical operations on source data. The data sourcing and their transfer to
the ALU inputs are performed by the control unit which controls flow inside the proces-
sor. Besides the data flow, the control unit also contains components built around the PC
register which are responsible for loading (i.e., fetch logic) and decoding instructions (i.e.,
instruction decoder).

Each microprocessor can execute a set of instructions. The instruction set typically
reflects the structural, functional, and operative principles of the processor. The most
influential factors that have an impact on the microprocessor instruction set are the follow-
ing: (i) processor registers, (ii) size of memory units (data types), (iii) addressing modes,
(iv) memory architecture (e.g., Von Neumann vs Harvard), (v) interruption and exception
handling [107, 91].

In the pioneer era of microprocessor development, almost every processor has its own in-
struction set. Therefore, programs written for a particular microprocessor were only hardly
portable to another processor. Over the last decades several standardized instruction sets
emerged, for instance, i386 [68], amd64 [7], armv7 [8], or riscv [115]. The contemporary
general-purpose microprocessors use the same set of instructions, even if their inner design
is often entirely different. While still maintaining the same instruction set, modern micro-
processors build on additional concepts, such as instruction pipelines, branch prediction,
and/or microinstruction architecture to better fulfill performance expectations.

The processor pipelining means splitting the overall execution of the instruction into
smaller parts named execution stages. This is particularly useful, for example, in a situation
when one clock pulse latches a value into a register or begins a calculation and it takes too
much time for the value to be stable at the outputs of the register or for the calculation to
complete. As the number of pipeline stages grows, a given stage can be implemented with
simpler circuitry, which may let the processor clock run faster [121].

Almost all pipelined processors do (at least simple) branch prediction because they have
to speculatively fetch the next instruction before the current instruction is finished [107].
The prediction is typically handled by a circuit known as a branch predictor. This part
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Figure 2.1: A typical organization of a simple microprocessor with a single pipeline.

of a processor determines whether a conditional branch (jump) in the instruction flow of
a program is likely to be taken or not. Therefore, branch predictors are important in today’s
modern processors to achieve high performance.

The microprogram architecture is a type of microprocessor architecture where high-level
instructions are performed by executing several lower-level instructions (microinstructions).
The microprogram architecture firstly appeared in [138, 139]. Soon after, the instructions
had become so complex that the use of the so-called microprogram controller became in-
evitable. Later, the opposite concept of a reduced instruction set computer (RISC) ap-
peared. It used simple instructions and avoided the need for the microprogrammed con-
troller. However, it subsequently merged with a complete instruction set computer (CISC)
paradigm and microprogrammed controllers started to be used more frequently again. The
main advantages of the microprogrammed architectures are that new (high-level) instruc-
tions may be added quickly and that developers can fix certain design errors in the instruc-
tion processing just by changing the underlying microinstructions [108, 91]. In the thesis,
we will further assume that all presented models/examples are on the microinstruction level
if not stated otherwise.

Taken all together, the typical organization of a simple microprocessor with a single
pipeline is shown in Fig. 2.1. In such a microprocessor, instructions are processed in the
next described steps. First, the instruction is loaded from the program memory. Then it is
decoded to an operation code (opcode) and an address section. The opcode identifies the
operation to be performed (e.g., addition, multiplication) while the address part contains
the operand specification or immediate value. These operands can be registers, memory
addresses, input ports, etc. In the third stage, which is often called the execution stage,
result values and memory access addresses are calculated according to the opcode. Next, in
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the memory access stage, the data memory is read and/or written. Finally, in the write-back
stage, the registers are written.

From the point of view of embedded systems, the use of general-purpose microprocessors
is advantageous for several reasons. Most of the benefits come from the fact that the micro-
processor itself represents a universal calculation unit. This allows the same microprocessor
to be used for various computation required in different embedded systems. Moreover, ex-
tending design with additional connections to other parts of the system can be quickly made
using existing solutions which greatly reduces the time required for system design. Finally,
one of the biggest benefits is a variety of available well-documented and tested software
tools that support program development (such as compilers and debuggers) [91]. Thus,
especially in the case of lower production volumes, the use of a general-purpose micropro-
cessor is typically less costly than designing an application-specific integrated circuit or an
application-specific instruction-set processor (that are described more in the next sections).

The universal nature of the general-purpose microprocessors could be, however, also
their main disadvantage. In specialized applications (e.g., video filtering), the general-
purpose microprocessors typically have lower performance and higher energy consumption
when compared to specifically crafted circuits or processors.

2.2 Application-Specific Integrated Circuits
The so-called application-specific integrated circuits (ASICs) are the opposite of the univer-
sal architectures. They are made for a particular purpose to meet the challenging design
constraints typically given in terms of performance, energy consumption, and chip size. The
downside is the high cost and time consumption required for their design. Thus, the use
of ASIC is especially viable for mass production where development costs are distributed
among a large number of manufactured units [91].

In the 1980s, much effort was invested to find a technology which would be easy and
reliable enough to be practically used in application-specific systems. One of the first tech-
nologies of this type was Uncommitted Logic Array (ULA) [113] which is a chip consisting of
basic building blocks (i.e., standard logic cells or gateways) that can perform basic calcula-
tions. Customization of the chip is done by modification of a metal mask which connects the
individual parts that can be achieved, for instance, by breaking certain connections. As the
technology evolved, the number of gates on the chip rapidly rose to allow the development
of very complex circuits on a single chip.

The ASIC design process is rather complex. It can be roughly divided into the following
steps. The first step consists of a specification of the system requirements. Then, a model of
the system is created. It is usually described by the language appropriate for system design,
the so-called hardware description language (HDL) such as VHDL [66] or Verilog [65]. The
model is verified whether it meets the original requirements (typically using simulation). If
the verification is successful, one can process with a synthesis of the ASIC logic. The design
is converted into a set of basic building blocks (standard cells or gateways) of the logic array.
These building blocks are then mapped on the logic array. After that, interconnections are
created to form the final design. Next, the ASIC is analyzed whether the final system
works like expected (i.e., whether the specification criteria are still met). Finally, masks
are fabricated and the manufacturing of the circuit can begin [91].

Although ASICs typically dominate in the terms of speed and power efficiency, their
building costs are becoming more and more prohibitive mostly because the design cost and
longer time-to-market period cannot be amortized over multiple applications.
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Figure 2.2: Trade-off between flexibility and performance among various components used
in embedded systems. Source: [119].

2.3 Application-Specific Instruction-Set Processors
The instruction set of an application-specific instruction-set processor (ASIP) is built in
a way so it benefits a specific application by the ability to perform specific operations
through special instructions. In general, components of an ASIP can be divided into two
parts: (i) logic which is able to execute some well-known instruction set and (ii) specific
logic, which can be configurable per application, that is accessed via newly introduced
instructions [52]. The specific logic can be then placed in a dedicated component (e.g.,
ASIC) or in the programmable field (such as FPGA). As can be seen in Fig. 2.2, the
splitting of the microprocessor components into these two parts provides a good trade-off
between the flexibility of a general-purpose microprocessor and the ASIC’s performance
and low power consumption.

Because of the above-mentioned properties, ASIPs provide an attractive approach in
a growing number areas of embedded systems, for example, as an alternative to hardware
accelerators for video coding [59] or signal processing [120].

2.4 Modern Hardware/Software Co-Design
As was discussed in the previous sections, the current microprocessor design cycle strives
to find the most suitable microprocessor (often in the form of an ASIP) for the target
application within a short time and at a low cost. Due to this time-to-market pressure and
short product life-cycle, a rapid exploration and evaluation of candidate architectures is
an essential need. Hardware description languages (HDLs), such as VHDL or Verilog, are
commonly used for hardware design, modeling, and simulation. However, a microprocessor
specified only in HDL does not include all necessary information about assembler syntax,
binary encoding of instructions, etc. This is the reason why specially crafted architecture
description languages ADLs were introduced [92].
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Figure 2.3: A generic hardware/software co-design methodology. Source: [140].

An ADL together with a microprocessor integrated development environment (IDE) and
an appropriate tool-set helps the designer to quickly find a microprocessor that optimally
splits computation tasks between hardware and software. ADLs are used to specify proces-
sor and memory architectures and to automatically generate a software toolkit including
compiler, simulator, assembler, profiler, and debugger. Moreover, there are ADLs that can
describe microprocessors on several levels of abstraction. With such an ADL, it is then
possible to start writing the target (application) programs even before the low-level (RTL)
description of the processor exists, because much simpler high-level (ISA) description often
suffices to generate compilers, debuggers and simulators.

Fig. 2.3 shows a common exploration co-design flow [140]. Tasks computed by the
system are partitioned between hardware and software. The application programs are
compiled and simulated, and the feedback is used to modify the ADL specification with
the goal of finding the best possible architecture for the given set of application programs
under various design constraints such as area, power, and performance. Because of the
short time that is typically allowed for design and implementation, bugs can be introduced
in the microprocessor, and thus the candidate designs have to be verified whether they still
comply with the original specification. The required time savings are then accomplished
by automation of these tasks that would otherwise have to be done manually (such as the
tool-chain and/or the HDL representation generation).

Since ADLs play a key role in the modern hardware/software co-design, the next chapter
describes and classifies them in a more detail together with their accompanying tools.
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Chapter 3

Architecture Description
Languages

This chapter describes the expressive power of the contemporary ADLs together with micro-
processor development frameworks that are based on them. Further, the chapter also points
out possible verification options offered by the frameworks. Please note that the following
list intentionally does not represent an exhausting overview of the ADLs and frameworks,
but it should give the reader an idea about the environment in which the proposed verifi-
cation methods are supposed to be integrated. Moreover, since the verification techniques
proposed in the thesis aim to be automated as much as possible, it is also important to
observe which information is usually part of the microprocessor descriptions and what kind
of information would have to be provided externally.

As it is discussed in [92, 67, 93], hardware ADLs can be divided into three categories:
(i) structure-oriented, (ii) instruction-set-oriented, and (iii) mixed. The level of abstraction
in structure-oriented ADLs is close to the RTL. Such a description typically misses high-level
information. Therefore, extraction of, e.g., an assembly language is a quite hard task. On
the opposite side, instruction-set-oriented ADLs are close to the ISA level. They lack cycle-
accurate information, and thus they usually cannot be used for hardware synthesis. They
are mainly manufactured for use in retargetable compilers which are compilers/decompilers
that are designed to be relatively easy to modify and to generate/decompile code for various
instruction-set architectures. Mixed ADLs try to overlap the gap between the two former
approaches by adding the missing pieces of information.

3.1 Structure-Oriented ADLs
The structural ADLs capture the structure in terms of architectural components and their
connectivity. Structural ADLs enable flexible and precise architecture descriptions. The
same description can be used for hardware synthesis, test generation, simulation, and compi-
lation. However, it is difficult to extract the instruction set without restrictions on a descrip-
tion style. Therefore, the structural ADLs traditionally find their use more for hardware
generation than in compilers [92]. In this Section, MIMOLA [80] ADL is briefly described.

3.1.1 MIMOLA

The machine-independent microprogramming language (MIMOLA) is one of the first lan-
guages specifically designed for synthesis and not just for the hardware simulation. This
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Figure 3.1 A MIMOLA example showing the description of a multifunctional ALU module.
Source: [80].

MODULE ALU(IN operation: (1:0);
IN a: (31:0);
IN b: (31:0);
OUT result: (31:0);)

CONBEGIN
result <- CASE operation OF

0: a + b;
1: a - b;
2: a AND b;
3: b;

END;
CONEND;

approach avoided time-consuming considerations caused by differences between synthesis
and simulation semantics (i.e., checking whether the simulated design is within a synthe-
sizable subset). The ADL-driven synthesis used in MIMOLA Software System (MSS) was
among the first approaches of its kind.

The major advantage of MIMOLA is that the same description can be used for synthesis,
simulation, test generation, and compilation. A toolchain including a hardware synthesizer,
a code generator, a self-test program compiler, a functional simulator, and an RTL sim-
ulator were all developed based on the MIMOLA language [80]. The description of the
microprocessor in MIMOLA ADL consists of the following three parts: (i) the algorithm to
be compiled (application program), (ii) the target processor model, and (iii) the additional
linkage and transformation rules.

The algorithmic part of a processor description in MIMOLA is an extension of PAS-
CAL. Unlike other high-level languages (e.g., C or PASCAL), it allows references to physical
registers and memories. It also allows usage of hardware components in the form of pro-
cedure calls. For example, if the processor description contains a component named ALU
(arithmetical-logical unit), programmers can write segments like result := ALU(op, a,
b) to get the result of the mathematical operation given by the operation op which is
performed by the multifunctional ALU component.

The target processor model is then described using modules and connections. Modules
describe the behavior of hardware components. In MIMOLA, each module is specified
by its port interface and its behavior. Similarly to VHDL, several predefined, primitive
operators exist. Example 3.1 shows the description of a multifunctional ALU module.
In the example, the CONBEGIN/CONEND construct denotes a set of concurrent assignments.
Within the assignment block, a conditional assignment to output port result is specified,
which depends on the two-bit control input operation. The microprocessor structure is
then formed by connecting ports of module instances. For example, a MIMOLA description
shown in Fig. 3.2 connects two modules: (i) the arithmetic-logic unit ALU and (ii) the
accumulator ACC.

Finally, the linkage information is used by the compiler to locate important modules
such as program counter and instruction memory. The code segment which is shown in
Fig. 3.3 specifies the program counter and instruction memory locations.
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Figure 3.2 MIMOLA description connecting two modules. Source: [80].

CONNECTIONS ALU.result -> ACC.input
ACC.output -> ALU.a

Figure 3.3 MIMOLA linkage segment specifies the program counter and instruction mem-
ory locations. Source: [80].

LOCATION_FOR_PROGRAM_COUNTER PC;
LOCATION_FOR_INSTRUCTIONS INSTR_MEMORY[0..1023];

From the verification point of view, the MSS tools rely solely on functional verification
techniques based on simulation which are more deeply described in Chapter 5.

3.2 Instruction-Set-Oriented ADLs
The problem of the structure-oriented ADLS with the extraction of the instruction set
can be avoided by abstracting behavioral information away from the structural details.
Instruction-set-oriented (sometimes also named behavioral) ADLs explicitly specify the
instruction semantics and ignore detailed hardware structures. This typically leads to
a situation when there is a correspondence between instruction-set-oriented ADLs and the
instruction set reference manual.

Typically, the instruction-set-oriented languages describe the microprocessor’s instruc-
tion set in a hierarchical way using, for instance, attribute grammars [106]. This property
simplifies the instruction set description by sharing the common components between op-
erations. However, the capabilities of these models are limited due to the lack of detailed
pipeline and timing information. Thus, it is not possible to generate cycle-accurate simula-
tors without certain assumptions regarding control behavior. Due to the lack of structural
details in instruction-set-oriented ADLS, it is also not possible to perform any resource-
based scheduling [92, 67]. Furthermore, without the ability to capture the low-level infor-
mation, it is also very difficult to deploy verification techniques that are based on a gradual
refinement of microprocessor description.

In this section, we will describe two instruction-set-oriented ADLs: ISDL [54] and
TIE [117].

3.2.1 ISDL

The Instruction Set Description Language (ISDL) [54] was designed to be an ADL for
compiler retargetability, specially focused on microprocessors with very large instruction
words (VLIWs). ISDL is a purely instruction-set-oriented language based on an attributed
grammar which is primarily used to describe the instruction set of processor architectures.
Thus, without additional assumptions, the ISDL tools (such as GenSim simulator generator)
are not capable of extracting the correct behavior for pipelined architectures with complex
execution schemes that include, for instance, cancellation of partially executed instructions
(pipeline clearing), or multi-cycle instructions of variable length [53].
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Figure 3.4 Example of an instruction set description in ISDL.

Section Format
Main = OPCODE[8];

Section Global_Definitions
// Assembly Token Type Value
Token X[0..1] XR ival { yylval.ival = yytext[1] - ’0’; };
Token Y[0..1] YR ival { yylval.ival = yytext[1] - ’0’; };
Token ACC AR ival { };

// Type Assembly Action
Non_Terminal ival XYSRC: XR { $$ = 2 * XR; } |

YR { $$ = 2 * YR + 1; };
Non_Terminal ival ACC: AR { $$ = 1; }

Section Storage
Register X0 = 0x8; Register X1 = 0x8; Register Y0 = 0x8;
Register Y1 = 0x8; Register ACC = 0x8

Section Assembly
Field Main:

// Assembly // Binary
ADD XYSRC, ACC { Main.OPCODE = 0x01 | (ACC<<3) | (XYSRC<<4); }

{ ACC <- ACC + XYSRC; } // RTL Operation
{ cycle = 2; size = 1; } // Costs
{ latency = 1; } // Timing

Section Constraints
~(REP *) & ([1] ADD *, *)

ISDL description of the microprocessor consists of mainly five sections: (i) instruc-
tion word format, (ii) global definitions, (iii) storage resources, (iv) assembly syntax and
constraints, and (v) an optimization information section.

The instruction word is separated into multiple fields each containing one or more sub-
fields. The bitwidth of each sub-field is also provided. The instruction word is assembled
by concatenating all the sub-fields in the order specified in this section. Fig. 3.4 shows an
example of the format section for a simple instruction with just one field Main with a single
sub-field OPCODE. The total length of the instruction word in the example is 8 bits.

Next, Fig. 3.4 also demonstrates ISDL’s global definition section. Here, primitive and
complex operands of the microprocessor’s assembly language are defined. Each operand
definition consists of the keyword Token, the syntax of the token as it appears in assembly,
a symbolic name for the token, the type of value returned by the token, and a piece of
Lex [20] dependent code that returns the appropriate token value [54]. For instance, in
Fig. 3.4, the first token has a symbolic name XR whose value is an integer. The assembly
syntax allowed is either X0, or X1, and the values returned are 0 or 1 respectively.
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The complex operands are then defined via non-terminals which have several purposes.
First, syntactically unrelated tokens can be grouped together into a non-terminal for con-
venience. For instance, if there is a large number of possible alternatives in an instruction
(e.g., several addressing modes), they can be factored out to a non-terminal. Next, non-
terminals can also define new grammar rules, not necessarily related to any instruction.
Finally, the action portion of non-terminals allows the inclusion of arbitrary C code to
be executed along with every rule. The non-terminal definitions consist of the keyword
Non_Terminal, the type of the returned value, a symbolic name as it appears in the as-
sembly, and an action that describes the possible token or non-terminal combinations and
the return value associated with each. For example, in Fig. 3.4, the non-terminal with the
symbolic name XYSRC returns value 1 and 3 for registers Y0 and Y1, respectively.

The storage section lists all storage resources visible to the programmer. It lists the
names and sizes of the memory, the register files, and the special registers. This section is
used by the compiler to determine the available resources and how they should be used.

The assembly syntax section is then split into subsections (per each field defined in
format section) corresponding to the separate operations that can be performed in parallel
within a single instruction. An instance of the assembly section shown in Fig. 3.4 as well.
One can see, that each operation consists of assembly mnemonic, a binary representation
of instruction, the effect of the operation on storages, operations costs (such as execution
time and code size), and timing information (e.g., because of pipelining).

The assembly syntax section describes a number of fields that can be generally exe-
cuted in parallel. However, there are certain combinations of operations that may not be
executable by the hardware. The constraints section is used to make these combinations
visible to the compiler so that the compiler can avoid generating such illegal operation
combinations. The constraints are described as a set of Boolean rules, all of which must
be satisfied for an instruction to be valid. Fig. 3.4 contains an example that shows how
to describe the constraint that the instruction ADD cannot directly follow instruction REP.
The [1] indicates a time shift of one instruction fetch for the REP instruction. The “~” is
a symbol for NOT and “&” is for logical AND.

3.2.2 TIE

The Tensilica Instruction Extension (TIE) [117] is an ADL language aimed at customization
of the functionality of RISC Xtensa processors [30] within Tensilica Software Development
Toolkit (SDK) [28]. The customization is given by defining custom execution units, register
files, I/O interfaces, load/store instructions, and multi-issue instructions which are synthe-
sized into configurable hardware components. The TIE language syntax is a mixture of the
Verilog hardware description and the C programming language. A designer does need to
worry about pipelining, control/bypass logic, and interfacing to other processor modules as
the instruction extensions are integrated directly into the processor pipeline by the SDK. In
other words, the TIE language is used only for adding instruction extensions and datapaths
to a processor pipeline as it is not a general-purpose hardware design language.

The TIE language optimizes computational strength of the processor in the following
ways. One can (i) create new instructions to increase processor performance and efficiency.
This is achieved by defining the exact data width needed for the application instead of
using an implicit standard size transfer bandwidth, or by merging serial operations into
a single instruction that can be issued back-to-back to achieve single cycle throughput.
Further, one may also (ii) utilize data-level parallelism by creating single instruction mul-

16



Figure 3.5 Definition of the TIE instruction addshift. Source: [29].

operation addshift {out AR avg, in AR A, in AR B} {}
{

assign avg = (A + B) >> 1;
}

Figure 3.6 Optimization of computation using a custom instruction. Source: [29].

// For-loop in the C language
for (unsigned int i = 0; i < N; i++) {

c[i] = (a[i] + b[i]) / 2; // <<< target to optimize
}

// Compiled assembly:
// * without optimizations * with optimization
... ...
add.n a9,a11,a10 addshift a12,a10,a8
srli a9,a9,1 ...
...

tiple data (SIMD) operations, and perform the same operation across multiple elements.
Next, (iii) instruction-level parallelism can be used as well by creating multi-operation
VLIW instructions with variable slot widths. Finally, (iv) data bandwidth connecting RTL
blocks, memories, or other processors can be increased without going through the system
bus, reducing I/O bottlenecks and improving data throughput.

In order to demonstrate the use of the TIE language, assume the code shown in Fig. 3.5
that describes a new instruction named addshift. Fig. 3.6 then shows the practical use
of the first of the above-mentioned optimization approaches, that is, the merge of several
instructions increases performance by combining multiple operations into a single instruc-
tion. The C code in Fig. 3.6 contains a for-loop with an inner-loop code of c[i] = (a[i] +
b[i]) / 2. Compiling this code on the Xtensa processor without any custom instructions
results in two sequentially executed instructions. The first operation, add.n, calculates the
two’s complement 32-bit sum. The second operation, srli, shifts the contents by a con-
stant amount encoded in the instruction word right (inserting zeros on the left). Each
iteration of the for-loop executes in two cycles. With the TIE language, we can merge the
two operations into a single new operation called addshift that performs both the add and
shift operations at the same time. Now, compiling the for-loop using the new fused opera-
tion, the assembly code shows the fusion operation addshift that executes only in a single
cycle. The TIE compiler automatically generates an opcode for the addshift operation,
and all software tools are automatically updated to understand the function and timing of
the newly added addshift operation.

As we have seen, the TIE language allows the designer to perform limited microprocessor
customizations by utilizing configurable hardware components. In such a way, for instance,
a new instruction with special semantics can be defined. However, the TIE language is not
capable to perform any general structural changes as the processor architecture is implicitly
bound to the one used in Xtensa processor families.
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Figure 3.7 Example of instruction description in the nML language.

op alu_instruction(operation:alu_operation, src:src_t, dst:dst_t)
{

action {
op_src = src;
op_dst = dst;
operation.action;
dst = op_dst;

}
syntax : operation" "dst","src;
image : operation::dst::src;

}
op alu_operation = add | sub;
op add()
{

action {
op_dst = op_dst + op_src;

}
syntax : "add";
image : 0xA;

}

3.3 Mixed ADLs
The mixed ADLs capture both, the structure and behavior of the architecture. This section
further focuses on two examples of the mixed ADLs: nML and CodAL.

3.3.1 nML

The nML language [46, 79, 99, 109] is a high-level definition language originally designed
for instruction set descriptions. Thus, it offers the abstraction level comparable to the
programmer’s manual of a given processor. The main idea behind the design of the nML
language builds on the fact that several instructions may share common properties. Ideal
nML descriptions are compact and simple if the shared properties are properly re-used.
A hierarchical scheme is used to describe instruction sets. The instructions are the topmost
elements in the hierarchy. The intermediate elements of the hierarchy are the so-called par-
tial instructions (PIs). The relationship between elements can be established using AND and
OR composition rules. The AND-rule groups several PIs into a larger PI while the OR-rule
enumerates a set of alternatives for one PI. Therefore, instruction definitions in nML can
be in the form of an and/or tree where each possible derivation of the tree corresponds
to an actual instruction. In Fig. 3.7, the definition of alu_instruction joins three PIs
with the AND-rule: alu_operation, src_t, and dst_t. The first PI, alu_operation, uses
the OR-rule to describe the valid options for ALU actions, that is, add or sub. The num-
ber of all possible derivations of alu_instruction is given by the product of the size of
alu_operation, src_t, and dst_t. The shared behavior of all these options is defined in
the action attribute of alu_instruction. Each option for alu_operation should have its
action attribute defined as its specific behavior, which is referred by the operation.action
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Figure 3.8: An overview of an ASIP Designer tool flow. Source: [125].

command. In the example, the action description is given for add operation. Binary and
assembly syntax can also be specified in the same hierarchical manner using image and
syntax attributes.

The nML language is also capable of capturing the structural information of the mi-
croprocessor. The nML language supports three types of storages: (i) RAM, (ii) register,
and (iii) transitory storage. While the RAM and register storages are visible directly to the
instruction set, the transitory storage refers to machine states that are retained only for the
limited number of cycles, for instance, values on buses and latches. Computations have no
delay in the nML timing model — only storage units have one. Instruction delay slots are
modeled by introducing storage units as pipeline registers. The results of the computation
are then propagated through the registers according to the description in the behavioral
specification.

The nML models constraints between operations by enumerating all the valid instruction
combinations, and thus such an enumeration may render nML descriptions which are very
long. More complicated constraints, which often appear in DSPs associated with irregular
instruction-level parallelism, or in VLIW processors with multiple issue slots, are hard to
model with nML. For example, nML cannot model the constraint that instruction 𝐼1 cannot
directly follow instruction 𝐼0 [92, 58].

The nML language has been used by several HDL code generators such as CBC [46],
Structural Sim-HS [11], and Chess [79]. An example of the instruction set simulators that
build on the nML language are then Sigh/Sim [47], Behavioral Sim-HS [11], and Check-
ers [51, 125]. The Behavioral and Structural Sim-HS are together provided within Sim-HS
framework allowing the transformation of microprocessor description to the corresponding
Verilog models that are suitable for simulation and synthesis, respectively. However, be-
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Figure 3.9 Example of resource description in the CodAL language.

// Program Counter
program_counter bit[8] pc;
// General Purpose 4b Registers - r0..r3
arch register bit[8] regs[4] { .dataport = {2, 1} };
// Program Memory
memory bit[8] prog_mem {

.dataport = {1, 0}, .lau = 8, .endianess = big,

.size = 256, .flags = {r, x}, .latency = {0, 1}
};
// Memory Mapping for Program Memory
memorymapping defaultmap { 0..255 = prog_mem[7..0]; };
// Wires
signal bit[1] jmp_en;
signal bit[2] opcode, srcA, srcB, dst, alu_op;
signal bit[4] imm, addr;
signal bit[8] mem, regA, regB;

cause of the lack of low-level information, a more optimized (e.g., deeply pipelined) synthe-
sizable output cannot be generated. The problem with the lack of the low-level information
in the nML language was addressed by several language vendor-specific extensions allowing
more precise modeling of pipelines and VLIW instructions. These extensions push the nML
language more towards the group of mixed ADLs.

One of the significantly extended variants of the nML language is now adopted by
ASIP Designer [125] which builds on an updated version of the previously mentioned
Chess/Checkers [79, 51] environments. The nML version used in ASIP Designer provides
options to expose the exact processor’s resource and pipeline utilization. This accurate
structural and timing description stands at the basis of the simulation and hardware gener-
ation techniques used in the ASIP Designer tool suite (schematically visualized in Fig. 3.8).
The nML hazard rules provide efficient solutions for pipeline conflicts, either by stalling or
forwarding, and their compact notation gives the designer full control over handling of the
pipeline hazards. The generated pipeline control logic that avoids the hazards is supposed
to be correct by construction. The designer can then tweak the hardware-software trade-off
while being relieved from the detailed hardware implementation of pipeline interlocking and
forwarding paths. The ASIP Designer can also co-operate with functional verification tools,
for instance, VCS [126], static analyzers, e.g., SpyGlass Lint [127], and formal verifiers such
as VC Formal [128].

3.3.2 CodAL

CodAL is a language used by Codasip [1] which is an environment aiming at rapid
processor development. In Codasip, each processor is described by two CodAL models,
the instruction-accurate (IA) model, and the cycle-accurate (CA) model. The IA model
describes the syntax and semantics of the instructions and their functional behavior without
any micro-architectural details. On the other hand, the CA model then describes micro-
architectural details such as pipelines, decoding, timing, etc.
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Figure 3.11: Processor design flow in Codasip.

The CodAL descriptions are composed of two main types of definitions: (i) resources, (ii)
instructions and events. The resource description captures hardware elements of a given pro-
cessor. These may involve the definition of registers, memories, and system buses together
with their mappings. Further, the resource description can also include other elements such
as signals (wires) or pipelines. Fig. 3.9 demonstrates resources commonly present in almost
every processor. The example contains a program counter pc (8bit), a memory resource
prog_mem to store the program code (256 x 8bit), and default mapping of the program
memory to the processor address space. Further, it also contains a definition of architec-
turally visible register file regs (4 x 8bit) and definition of globally accessible signals (i.e.,
equivalents of wires in HDLs).

Next, Fig. 3.10 shows an example of an instruction and event description at the IA
level. This part contains a definition of the instruction set instr_set accompanied by the
description of operand r which represent access to the previously defined regs resource.
Similarly, as in the case of nML, the binary and assembly syntax, as well as semantic actions,
can also be specified in a hierarchical manner using assembler, binary, semantics sections.
The example also includes special events that must be involved in each processor description
— namely, (i) the reset event that describes start up state of the processor, (ii) the halt
event describing shutdown actions of the processor, and (iii) the main event describing an
assembly grammar entry point and actions that the processor should do at every clock cycle.
The main event defines the top-level element of the processor’s instruction set in start
section. Moreover, the decoders section holds information about decoding instructions
using the instruction decoder. Finally, the semantics section describes computation done
in each clock cycle. As can be seen in this IA example, the whole processing of each
instruction is done in just one cycle. However, for CA models, the main event would
typically contain activations of pipeline stages, interrupt checking, etc.

From the IA and CA CodAL models, Codasip tools can automatically generate SDK
tools (assembler, disassembler, linker, C-compiler, simulators, profilers, debuggers) [64, 130,
111, 110, 112]. Fig. 3.11 depicts the common processor design flow in Codasip. Typically,
the IA model is available significantly sooner than the CA one. This model allows the com-
piler tool-chain and the IA simulator to be generated. These tools then give programmers
an opportunity to start early with writing programs for the instruction set given by the
IA model. When the development of the CA model is finished and ready for hardware
synthesis, the IA model can serve as the so-called golden specification for processor verifica-
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Figure 3.10 Example of instruction-accurate description of instructions and events in the
CodAL architecture description language.

element r represents regs {
assembler { "r" ~ idx=unsigned };
binary { idx=0b[2] };
return { idx; };

}

element instr_add {
use r as dst, srcA, srcB;
assembler { "ADD" dst "," srcA "," srcB };
binary { 0x1:2 dst srcA srcB };
semantics {

alu_op = ALU_ADD;
jmp_en = FALSE;

};
}

set instr_set = instr_add /* ... */;

event main {
use instructions;
start { { instr_set; } };
decoders (pc) { { instr_set(opcode); } };
semantics {

// Fetch instruction
mem = prog_mem[pc];
// Split instruction into opcode and operand parts
opcode = (mem >> 6) & 0x3;
srcA = (mem >> 4) & 0x3;
srcB = (mem >> 2) & 0x3;
dst = (mem) & 0x3;
// ...
// Get data from registers
regA = regs[srcA];
regB = regs[srcB];
// Perform write-back
switch (alu_op) {

case ALU_ADD: regs[dst] = regA + regB; break;
// ...

}
};

}

event reset { semantics { pc = 0x00; }; }

event halt { }
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tion. As it is discussed in [142], to assure mutual equivalency between IA and CA models,
Codasip uses an UVM-based functional verification.
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Chapter 4

Introduction to Selected Areas of
Formal Verification

In this chapter, we will introduce basic notions of formal verification methods and concepts
used later in the thesis. We recall that verification is a process that checks whether a system
is correct with respect to a provided specification. As opposed to testing and bug-hunting
techniques which aim at detection of flaws against the specification, the goal of formal
verification is to formally (mathematically) prove that the system is indeed correct. That
is, if no issue is found by a formal method, it is guaranteed that the system conforms to
the given specification. Ideally, a formal approach should be sound and complete which
means that an error is reported if and only if there is a real error in a system, otherwise
the system is said to be correct. However, meeting these properties can be costly (or
impossible to achieve) and, therefore, to provide efficiency and automation, completeness
and/or soundness are sometimes compromised which leads to error detection methods with
formal roots.

In the rest of this chapter, we will formally introduce concepts that will be used through-
out the thesis, in particular, model checking, static analysis, and SAT/SMT solvers.

4.1 Preliminaries
Throughout this thesis, the standard notion of formal languages is used according to their
definition as it is given in [77, 60, 89].

Definition 1. An alphabet is defined as a non-empty finite set of symbols.

Definition 2. A word over an alphabet Σ is recursively defined as follows:

∙ the empty word 𝜀 is a word over the alphabet Σ,

∙ if 𝑥 is a word over Σ and 𝑎 ∈ Σ, then 𝑥𝑎 is also a word over Σ.

We denote the set of all words over an alphabet Σ as Σ*. By concatenation one can always
combine two words 𝑥, 𝑦 over Σ to form a new word 𝑥𝑦.

Definition 3. A formal language 𝐿 is defined as any subset of Σ*. Next, given formal
languages 𝐿1 and 𝐿2 over Σ, we define concatenation 𝐿1 ·𝐿2 of formal languages as the set
{𝑥𝑦 | 𝑥 ∈ 𝐿1 ∧ 𝑦 ∈ 𝐿2}. Moreover, given a formal language 𝐿, we define the iteration 𝐿*,
resp. the positive iteration 𝐿+, of the language 𝐿 as follows:
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∙ 𝐿0 := {𝜀},

∙ 𝐿𝑛 := 𝐿 · 𝐿𝑛−1 for 𝑛 ≥ 1,

∙ 𝐿* :=
⋃︀
𝑛≥0

𝐿𝑛,

∙ 𝐿+ :=
⋃︀
𝑛≥1

𝐿𝑛.

Further, let us define a significant class of the formal languages known for its many practical
applications.

Definition 4. A regular set over an alphabet Σ is recursively defined as follows:

∙ ∅ is a regular set over Σ,

∙ {𝜀} is a regular set over Σ,

∙ for all 𝑎 ∈ Σ, {𝑎} is a regular set over Σ,

∙ if 𝑃 and 𝑄 are regular sets over Σ, then 𝑃 ∪𝑄, 𝑃 ·𝑄, 𝑃 * are also regular sets over Σ.

The class of regular sets is thus the smallest language class that contains ∅, {𝜀}, {𝑎} for all
symbols 𝑎 ∈ Σ, and it is closed with respect to union, concatenation, and iteration.

4.2 Model Checking
Model checking [9] is an algorithmic approach of checking whether a given system satis-
fies a given property through a systematic exploration of the state space of the system.
Compared to other formal approaches (such as static analysis or theorem proving), model
checkers are (usually) highly automated (for a closed system), fairly general, and capable
of providing counter-examples. Often, a CEGAR loop [39] is supported allowing for auto-
mated refinement of the used abstraction in order to exclude spurious counter-examples.
One of the major disadvantages of model checkers is the so-called space-explosion problem
which needs to be typically mitigated by efficient storage techniques (such as BDDs [26, 22]),
automata (as in [17, 16]), state-space reductions (for example, the so-called partial order
reduction [40]), or (more recently) the integration of SAT solvers in model checking engines
as in, for instance, IC3/PDR [18, 45]. Another significant disadvantage is that a closed
system is required, i.e., the verified system must be joined with a model of its environment
which may require a lot of non-trivial labour.

The following sections briefly describe relevant model checking concepts that are later
used in this thesis.

4.2.1 Transition Systems

In this section, a notion of transition systems is defined in the same way as it described
in [9]. A transition system is a mathematical structure consisting of two parts, (i) a set of
configurations and (ii) a binary relation on this set.

Definition 5. A transition system 𝑇 is a pair of the form 𝑇 = (𝐶, →˓) where 𝐶 is a set of
configurations and →˓ ⊆ 𝐶 × 𝐶 is a binary transition relation.
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The purpose of transition systems is to describe behaviors which we define as certain se-
quences of configurations.

Definition 6. A transition system 𝑇 = (𝐶, →˓) generates a set 𝑆(𝑇 ) of sequences defined
as follows: (i) the finite sequence 𝑐0, . . . , 𝑐𝑛 (for 𝑛 ≥ 0) belongs to 𝑆(𝑇 ) if 𝑐0 ∈ 𝐶 and
𝑐𝑖 →˓ 𝑐𝑖+1 for all 0 ≤ 𝑖 < 𝑛, (ii) the infinite sequence 𝑐0, . . . , 𝑐𝑛, . . . belongs to 𝑆(𝑇 ) if 𝑐0 ∈ 𝐶
and 𝑐𝑖 →˓ 𝑐𝑖+1 for all 0 ≤ 𝑖.

In most applications of transition systems, we are only interested in configurations of the
transition system that are reachable from given initial configurations.

Definition 7. Given a transition system 𝑇 = (𝐶, →˓) and a set 𝐼 ⊆ 𝐶 of initial configu-
rations, we say that a configuration 𝑐𝑛 ∈ 𝐶, 𝑛 ≥ 0, is reachable if there exists a sequence
𝑐0, . . . , 𝑐𝑛 ∈ 𝑆(𝑇 ) such that 𝑐0 ∈ 𝐼.

4.2.2 Parameterized Systems

In this thesis, we will work with a common notion (used, e.g., in [41, 102, 3]) of a parame-
terized system operating on a linear topology where processes may perform local transitions
or universally/existentially guarded transitions.

Definition 8. A parameterized system is a pair 𝑃 = (Q ,Δ) where Q is a finite set of local
states of a process and Δ is a set of transition rules over Q . A transition rule is either
local or global. A local transition rule is of the form 𝑞 → 𝑞′ ∈ Δ, 𝑞, 𝑞′ ∈ Q . A global
transition rule is then of the form Q∘ : 𝐺 |= 𝑞 → 𝑞′ ∈ Δ where Q ∈ {∀,∃}, ∘ ∈ {←,→,↔},
𝐺 ⊆ Q , and 𝑞, 𝑞′ ∈ Q with a part “Q∘ : 𝐺” being referred as transition guard. The global
rule can be applied only if its transition guard is satisfied. For example, the meaning of
the guard ∃↔ : 𝐺 is “for each state 𝑔 ∈ Q from the set 𝐺, there should be at least one
process in the linear topology including the current one so that the process is in the state
𝑔”. Formally, the guard ∃↔ : 𝐺 is satisfied in the configuration 𝑞1 . . . 𝑞𝑖 . . . 𝑞𝑛 by the 𝑖-th
process iff ∀𝑞 ∈ 𝐺 ∃1 ≤ 𝑗 ≤ 𝑛 : 𝑞𝑗 = 𝑞. Similarly, the meaning of the guard ∃← : 𝐺 is “for
each state 𝑞 from the set 𝐺, there should be at least one process to the left of the current
one so that the process is in the state 𝑞”. Formally, the guard ∃← : 𝐺 is satisfied in the
configuration 𝑞1 . . . 𝑞𝑖 . . . 𝑞𝑛 by the 𝑖-th process iff ∀𝑞 ∈ 𝐺 ∃1 ≤ 𝑗 < 𝑖 : 𝑞𝑗 = 𝑞. The meaning
of the other guards is defined analogically.

A parameterized system 𝑃 = (Q ,Δ) induces an infinite transition system 𝑇 = (C , →˓)
whose configurations C are finite non-empty words over Q , i.e., elements from the set 𝑄+.
If we use 𝑐[𝑖] to denote the state of the 𝑖th process within the configuration 𝑐 ∈ C , the
transition relation →˓ then contains a transition 𝑐 →˓ 𝑐′ with 𝑐[𝑖] = 𝑠, 𝑐′[𝑖] = 𝑠′, 𝑐[𝑗] = 𝑐′[𝑗]
for all 𝑗 : 𝑗 ̸= 𝑖 iff either (i) Δ contains a local rule 𝑠 → 𝑠′, or (ii) Δ contains a global rule
Q∘ : 𝐺 |= 𝑠→ 𝑠′, and one of the following conditions is satisfied:

∙ Q = ∃ ∧ ∘ = ↔ and ∀𝑞 ∈ 𝐺 : ∃1 ≤ 𝑗 ≤ |𝑐| : 𝑐[𝑗] = 𝑞,

∙ Q = ∃ ∧ ∘ = ← and ∀𝑞 ∈ 𝐺 : ∃1 ≤ 𝑗 < 𝑖 : 𝑐[𝑗] = 𝑞,

∙ Q = ∃ ∧ ∘ = → and ∀𝑞 ∈ 𝐺 : ∃𝑖 < 𝑗 ≤ |𝑐| : 𝑐[𝑗] = 𝑞,

∙ Q = ∀ ∧ ∘ = ↔ and ∀1 ≤ 𝑗 ≤ |𝑐| : 𝑐[𝑗] ∈ 𝐺,

∙ Q = ∀ ∧ ∘ = ← and ∀1 ≤ 𝑗 < 𝑖 : 𝑐[𝑗] ∈ 𝐺,
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∙ Q = ∀ ∧ ∘ = → and ∀𝑖 < 𝑗 ≤ |𝑐| : 𝑐[𝑗] ∈ 𝐺.

An instance of the reachability problem is defined by a parameterized system 𝑃 = (Q ,Δ),
a regular set 𝐼 ⊆ Q+ of initial configurations, and a set Bad ⊆ Q+ of bad configurations. In
particular, we will define Bad as the upward closure of a finite set 𝐵 ⊆ Q+ of minimal bad
configurations. This is, Bad = {𝑐 ∈ Q+ | ∃𝑏 ∈ 𝐵 : 𝑏 ⊑ 𝑐} where ⊑ is the usual sub-word
relation (i.e., 𝑢 ⊑ 𝑠1...𝑠𝑛 ⇔ 𝑢 = 𝑠𝑖1 ...𝑠𝑖𝑘 for some 1 ≤ 𝑖1 ≤ ... ≤ 𝑖𝑘 ≤ 𝑛, 0 ≤ 𝑘 ≤ 𝑛).
Now, let 𝑅 ⊆ Q+ denote the set of all reachable configurations of the transition system
𝑇 = (C , →˓). We say that the system 𝑃 is safe wrt 𝐼 and Bad iff no bad configuration is
reachable, i.e., 𝑅 ∩ Bad = ∅.

4.2.3 Regular Model Checking

Regular model checking (RMC), firstly described in [71] and [141], is a uniform framework
for analyzing various classes of parameterized and infinite-state systems. The regular model
checking framework [4] represents a transition system as follows:

∙ A configuration (state) of the system is a word over an alphabet Σ.

∙ The set of initial configurations is a regular set over Σ.

∙ The transition relation is a regularity-preserving relation1 on Σ, often (but not always)
required to be regular and length-preserving. It is typically represented by a finite-
state transducer over (Σ × Σ), which accepts all words (𝑎1, 𝑏1) · · · (𝑎𝑛, 𝑏𝑛) such that
(𝑎1 · · · 𝑎𝑛, 𝑏1 · · · 𝑏𝑛) is in the transition relation.2

More formally, a length-preserving finite-state transducer 𝑇 over Σ is a tuple (𝑄, 𝑠, 𝛿, 𝐹 )
where 𝑄 is the set of states, 𝑠 ∈ 𝑄 is the initial state, 𝛿 : (𝑄× Σ× Σ×𝑄 is the transition
function, and 𝐹 ⊆ 𝑄 is the set of accepting states. A transducer configuration is a pair
(𝑞, 𝑤) where 𝑞 ∈ 𝑄, 𝑤 ∈ (Σ × Σ)*. Given transducer configurations (𝑞1, 𝑎𝑤) and (𝑞2, 𝑤),
𝑎 ∈ Σ× Σ, we say that the transducer makes a transition from (𝑞1, 𝑎𝑤) to (𝑞2, 𝑤) denoted
(𝑞1, 𝑎𝑤) ⊢ (𝑞2, 𝑤), iff 𝑞2 ∈ 𝛿(𝑞1, 𝑎). The language of 𝑇 is the language {𝑤 ∈ (Σ × Σ)* |
(𝑠, 𝑤) ⊢* (𝑓, 𝜀) ∧ 𝑓 ∈ 𝐹} where ⊢* is the transitive closure of the relation ⊢ defined in the
standard way. We use 𝐿(𝑇 ) to denote the language of 𝑇 . The transducer 𝑇 induces a regular
relation 𝑅 on words over Σ. More precisely, for words 𝑥 = 𝑎1 · · · 𝑎𝑛 and 𝑦 = 𝑏1 · · · 𝑏𝑛 ∈ Σ*,
we have (𝑥, 𝑦) ∈ 𝑅 if (𝑎1, 𝑏1) · · · (𝑎𝑛, 𝑏𝑛) ∈ 𝐿(𝑇 ). The idea is that 𝑅 is used to represent the
transition relation on the configurations of the system (each of which is a word in Σ).

When using RMC, a safety verification task is formulated as follows: Given a regular set
𝐼 of initial configurations, a regularity-preserving relation 𝑅 ⊆ Σ* × Σ*, and a regular set
of bad configurations 𝐵 ⊆ Σ*, is it the case that 𝑅*(𝐼)∩𝐵 = ∅? Due to the undecidability
issues, the question may not be solvable in general. It is solvable for length-preserving
systems, but even there one may hit a problem in the form of state explosion. Moreover,
note that even in length-preservation case, 𝑅*(𝐼) cannot be computed by simple iterative
computation of 𝑅𝑛(𝐼) where 𝑛 ≥ 0. Therefore, an accelerated computation of 𝑅*(𝐼) is
required. Here, an application of abstraction on the involved automata, leading to abstract
RMC [17] (ARMC), has shown as particularly successful.

1A relation 𝜚 ⊆ Σ* × Σ* is regularity preserving iff 𝜚(𝐿) ∈ ℒ3 for every 𝐿 ∈ ℒ3.
2 Sometimes, the transition relation is given as a union of a finite number of relations, each of which is

called an action.
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As it is shown, for instance, in [4], one of typical applications of RMC is verification
of parameterized systems with linear or ring-formed topologies (where each component
is finite-state). Within this thesis, namely in Chapter 9, ARMC method of [17] is used
for showing that potential pipeline hazards may indeed occur in certain interleavings of
instructions.

4.3 Static Analysis
Static analysis tries to avoid direct execution of the system being examined and, instead, it
analyses and gathers approximate (often conservative) information about the system from
its source code. Therefore, it may produce many false alarms. From the point of view of
this thesis, the most important form of static analysis is the so-called data-flow analysis
that is described in the next section.

4.3.1 Data-Flow Analysis

Data-flow analysis (DFA) is a technique for gathering information about the possible set of
values calculated at various points in a computer program or circuit. The information gath-
ered is often used by compilers when optimizing the given program or circuit. An example
of a DFA is the computation of reaching definitions in compilers.

As an input, the DFA typically expects a flow graph 𝐺 describing a given program (then
𝐺 typically has the form of the so-called control flow graph) or a circuit (where 𝐺 can have
the form of a block schema). The flow graph can be often represented by a tuple (𝐵,𝐸,𝐿)
where 𝐵 is a finite set of blocks, 𝐸 ⊆ 𝐵 × 𝐵 is a finite set of oriented edges, and 𝐿 is
a labeling function3. A simple way to perform DFA is to deploy the so-called monotonic
DFA framework which, for each block of the flow graph, sets up data-flow equations over
data-flow domains having the form of a complete lattice. The equations are then solved
by repetitive local calculation of output from inputs at each node until the whole system
stabilizes, i.e., it reaches a fixpoint. This general DFA framework-based approach was firstly
introduced in [73].

Given a flow graph (𝐵,𝐸,𝐿), an instance of the DFA framework can be more formally
described using a quintuple (𝑉,⊓, 𝐹, 𝑏0, 𝑣0) where 𝑉 is a set describing possible flow values,
⊓ : 𝑉 × 𝑉 → 𝑉 is a meet operator (describing how are values originating from multiple
locations joined together), 𝐹 is a set of block monotone transfer functions 𝑓𝑏 : 𝑉 → 𝑉 for
each block 𝑏 ∈ 𝐵 (describing the effect of passing through a block), 𝑏0 ∈ 𝐵 is a bound-
ary block, and 𝑣0 ∈ 𝑉 is a boundary value. Moreover, it is expected that a pair (𝑉,⊓)
forms a complete lattice, and thus 𝑉 contains the bottom element ⊥ and the top element
⊤. Finally, 𝐹 must include the identity function, it must be closed under the function
composition, and the used lattice should not contain infinite descending chains.

The most common (naive) solution for solving a DFA framework instance is given in
Alg. 1. Here, the output states Out(𝑏) for each block 𝑏 are computed by applying the
transfer functions on the input states In(𝑏). From these, the input states are updated by
applying the meet operation. The latter two steps are repeated until we reach the fixpoint,
that is, the situation in which the output states do not change anymore. After reaching the
fixpoint, the output and input states of the blocks can be used to derive properties of the
program or circuit at the block boundaries.

3A concrete form of the labeling function usually depends on the purpose of data-flow analysis.
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Algorithm 1 Round-robin iterative DFA algorithm.
1: Out(𝑏0) := 𝑣0
2: for 𝑏 ∈ 𝐵 ∖ {𝑏0} do
3: Out(𝑏) := ⊤
4: end for
5: while Out(𝑏) has changed for some 𝑏 ∈ 𝐵 do
6: for 𝑏 ∈ 𝐵 do
7: Pred := {𝑏′ ∈ 𝐵 | (𝑏′, 𝑏) ∈ 𝐸}
8: 𝐼𝑛(𝑏) := ⊓𝑝∈PredOut(𝑝)
9: 𝑂𝑢𝑡(𝑏) := 𝑓𝑏(In(𝑏))

10: end for
11: end while

In Chapter 9 of the thesis, data-flow analysis of this type is utilized to detect potential
hazards in a microprocessor’s pipeline control logic.

4.4 SAT and SMT Solvers
The Boolean satisfiability (SAT) problem is the problem of determining whether there exists
an interpretation that satisfies a given Boolean formula. In other words, we ask whether
the variables of a given Boolean formula can be consistently replaced by the values True or
False in such a way that the formula evaluates to True. Similarly, the satisfiability modulo
theories (SMT) problem is a decision problem for first-order logical formulas with respect
to combinations of background theories expressed in the classical first-order logic with
equality. Examples of such theories are the theory of real numbers, the theory of integers,
and the theories of various data structures such as lists, arrays, bit vectors, etc. SAT and
SMT solving has found many applications in verification (e.g., within predicate abstraction
or invariant checking), test generation, hardware synthesis, error trace minimization, and
artificial intelligence [18, 45].

In this thesis, SAT and SMT solvers are utilized in several cases. For instance, in
Chapters 7 and 8, the GlueMinisat [101] SAT solver is used as an external SAT solver for
the Cadence SMV [87] tool. In another case (in Chapter 9), the Z3 [100] SMT solver is
utilized for validation of the consistency of a processor pipeline.

4.4.1 SAT Solvers

The SAT problem, which asks whether a given propositional formula is satisfiable, is the first
problem which has been proven to be NP-complete. Normally, we consider a propositional
formula to be given in the conjunctive normal form (CNF), i.e., as a conjunction of clauses
where a clause is a disjunction of literals, and a literal is a (possibly negated) propositional
symbol. Stated formally, let 𝑃 be a finite set of propositional symbols. If 𝑝 ∈ 𝑃 , then
𝑝 is an atom, and 𝑝 and ¬𝑝 are literals of 𝑃 . A clause is a disjunction of literals ℓ1 ∨
. . . ∨ ℓ𝑛. A CNF formula is a conjunction of one or more clauses 𝐶1 ∧ . . . ∧ 𝐶𝑛. Most
contemporary SAT-solvers build on variants of the classical Davis-Putnam-Longemann-
Loveland (DPLL) procedure [44] extended to the so-called conflict-driven clause-learning
approach (CDCL) [85, 12], which we will describe in terms of an abstract CDCL system.
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Abstract CDCL Algorithm

An abstract CDCL system is a pair (𝑆,→) where 𝑆 is a set of states of the system and
→ ⊆ 𝑆 × 𝑆 is its set of transitions modeling progress of the algorithm. Most states are of
the form 𝑀 ‖ 𝐹 where:

∙ 𝑀 is a sequence of annotated literals denoting a partial truth assignment, and

∙ 𝐹 is the CNF formula being checked, represented as a set of clauses.

The initial state is ∅ ‖ 𝐹 , where 𝐹 is to be checked for satisfiability. The final state is
either:

∙ the special fail state fail if 𝐹 is unsatisfiable, or

∙ 𝑀 ‖ 𝐺 where 𝐺 is a CNF formula equisatisfiable with the original formula 𝐹 and 𝑀
satisfies 𝐺.

We further write 𝐹 |= 𝐶 to mean that, for every truth assignment 𝑣, 𝑣(𝐹 ) = True (i.e., 𝐹
holds in valuation 𝑣) implies 𝑣(𝐶) = True.

In what follows, we will describe transitions between states of the abstract system CDCL
system (𝑆,→).

∙ Pure Literal

𝑀 ‖ 𝐹 →𝑀ℓ ‖ 𝐹 if

⎧⎪⎨⎪⎩
ℓ occurs in some clause of 𝐹,
¬ℓ occurs in no clause of 𝐹, and
ℓ is undefined in 𝑀.

∙ Decide

𝑀 ‖ 𝐹 →𝑀ℓ𝑑 ‖ 𝐹 if

{︃
ℓ or ¬ℓ occurs in a clause of 𝐹, and
ℓ is undefined in 𝑀.

∙ Unit Propagate

𝑀 ‖ 𝐹,𝐶 ∨ ℓ→𝑀ℓ ‖ 𝐹,𝐶 ∨ ℓ if

{︃
𝑀 |= ¬𝐶, and
ℓ is undefined in 𝑀.

∙ Fail

𝑀 ‖ 𝐹,𝐶 → fail if

{︃
𝑀 |= ¬𝐶, and
𝑀 contains no decision literals.

∙ Back Jump

𝑀ℓ𝑑𝑁 ‖ 𝐹,𝐶 →𝑀ℓ′ ‖ 𝐹,𝐶 if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑀ℓ𝑑𝑁 |= ¬𝐶 and there is some
clause 𝐶 ′ ∨ ℓ′ such that:
𝐹,𝐶 |= 𝐶 ′ ∨ ℓ′,
𝑀 |= ¬𝐶 ′,
ℓ′ is undefined in 𝑀, and
ℓ′ or ¬ℓ′ occurs in 𝐹 or in 𝑀ℓ𝑑𝑁.

∙ Learn

𝑀 ‖ 𝐹 →𝑀 ‖ 𝐹,𝐶 if

{︃
all atoms in 𝐶 occur in 𝐹, and
𝐹 |= 𝐶.
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∙ Forget
𝑀 ‖ 𝐹,𝐶 →𝑀ℓ ‖ 𝐹 if 𝑀 |= 𝐶

∙ Restart
𝑀 ‖ 𝐹 → ∅ ‖ 𝐹

The given formula is satisfiable if neither Pure Literal, Unit Propagate, Back Jump, nor De-
cide is applicable and the system is not in the fail state. In particular, the truth assignment
𝑀 in the final state is an example of a satisfying assignment for the input formula. More-
over, the rules are not applied in a completely random order. The priorities for applying the
rules are as follows: (i) If Fail or Back Jump are applicable, they are applied. Otherwise,
(ii) Unit Propagate and Pure Literal are applied if possible. (iii) Only if no other rule can
be applied, Decide, Learn, Forget, or Restart is used. The main motivation is quite straight-
forward — reducing the amount of guessing as much as possible. The use of Decide, Learn,
Forget, and Restart rules is then subject to heuristics. These heuristics may vary solver to
solver and are one of the main subjects of the on-going research (e.g., [82, 72]). Modern
SAT solvers are able to deal with real-life SAT problem instances containing millions of
variables and clauses.

4.4.2 SMT Solvers

The satisfiability modulo theories (SMT) problem is a decision problem for first-order logi-
cal formulas with respect to combinations of background theories expressed in the classical
first-order logic with equality. An SMT instance is a formula in first-order logic where some
function and predicate symbols have additional interpretations and SMT is the problem
of determining whether such a formula is satisfiable. Example predicates involve linear in-
equalities (e.g., 4𝑥+2𝑦 ≥ 𝑧), equalities involving uninterpreted terms and function symbols
(e.g., 𝑓(𝑓(𝑥, 𝑦), 𝑧) = 𝑓(𝑥, 𝑧) where 𝑓 is some unspecified binary function), or bit-vector
arithmetic with equalities (e.g., 𝑢⊕ (CAFE )16 = 𝑤 ≪ 𝑥 where ⊕ and ≪ denote the “xor”
and “left shift” bit operations, respectively). Formulae with atoms from a specific theory are
decided using their respective decision procedures. Then, approaches for combining such
procedures (e.g., the Nelson-Oppen procedure [103]) are used for mixed formulae (where
some variables are used in atoms of several different theories).

Early attempts to solve SMT instances involved translating SMT instances to Boolean
SAT instances. For example, a 32-bit integer variable would be encoded by 32 variables,
each representing one bit with the appropriate ordering, and word-level operations would
be replaced by lower-level logic operations on the bits. However, this loss of the high-level
semantics of the underlying theories means that the Boolean SAT solver has to work much
harder than necessary as it must (re-)discover trivial theory facts (such as commutativity for
the bit-vector ⊕ operation). This observation led to the development of the so-called lazy
SMT approaches where SMT solvers tightly integrate the Boolean reasoning of a CDCL-
style search with theory-specific solvers that handle conjunctions of predicates from a given
theory [10].
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Chapter 5

Hardware Verification Techniques

This chapter discusses contemporary hardware verification techniques with a specific focus
on the ones used during the development of pipelined microprocessors. The chapter is
organized as follows. The first two sections describe some of the state-of-the-art approaches
for automatic verification of hardware using functional verification and formal methods
which are related to the aim of the thesis. The last section is then dedicated to various
ways of large memory modeling that represents another important research topic as it can
boost the performance of the two former approaches.

Lots of work has been invested in the area of formal and functional verification of
hardware. Unfortunately, according to financial reports of major hardware developers,
functional verification was preferred to formal approaches in the previous decades.1 This
can be explained by the fact that formal methods were usually time-consuming and more
difficult to deploy. Yet, in the last years, with the great advances in computational power
of modern processors and advances in research, formal methods are becoming more popular
as well.2

5.1 Functional Verification of Hardware
Although this topic is not the focus of the thesis, functional verification is one of the most
popular techniques for verification of hardware. Therefore, it should be mentioned, at
least briefly, so a more complete view of topics related to the thesis is provided to the
reader. The functional verification typically generates a set of constrained and/or random
test vectors and compares the behavior of the system for these vectors with the behavior
specified by a reference model. In order to get a high level of coverage of the system’s
state space, it is required to (i) discover a way to generate input vectors that cover critical
parts of the state space, and/or (ii) increase the number of tested vectors. Coverage (e.g.,
code coverage, functional coverage, path coverage) dynamically measures the completeness
of state-space exploration and allows the verification engineer to improve quality of input
test vectors, usually by adding constraints, to achieve an even higher level of coverage.
Full automation of the process can be achieved, for example, by an intelligent program
that controls coverage results and chooses parameters of a new test vector to reach better
coverage. Such an approach is called a coverage-driven verification.

1Source: Gary Smith EDA, Oct 2010.
2Source: Gary Smith EDA, Oct 2017.
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The VCS [126] tool for functional verification is used by many major corporations in
a commercial sphere. VCS speeds up the verification process by running several tasks in
parallel on machines with multiple cores. A special proprietary technology for generating
expressions named Echo [126] is used for automatic creation of stimuli to efficiently cover
the state space specified by the user who typically adds constraining formulae to the code.
The expressions are generated by constraint solvers that find an appropriate solution to the
supplied constraints while minimizing conflicts between them. The VCS tool uses a uniform
coverage database for storing coverage statistics which can eliminate redundant execution of
certain test vectors for designs that were only partially modified (e.g., by finding identical
parts of the designs).

In [142], authors describe a functional verification approach applied when checking the
implementation of RISC-V processor [115] designed in Codasip framework [1]. The verifi-
cation is based on the RTL simulation (running in Veloce emulator [90]) and the universal
verification methodology (UVM) [5] which is a standardized methodology for verifying in-
tegrated circuit designs. The approach leverages the fact that, in Codasip, models of the
processor can be described at various level of detail, that is, typically instruction- and cycle-
accurate as we have shown in Section 3.3.2. To keep up the pace with the RTL emulation,
a fast software simulator generated from the instruction-accurate level description is taken
as a golden model for the verification task. The UVM is then used for orchestration of
loading and execution of the test bench stimuli into both runtime environments as well as
for asserting the equality of the obtained results (e.g., contents of register files).

The ArchC [114, 6] framework provides a co-simulation tool allowing a designer to verify
conformance of two different models of the architecture. The ArchC verification approach is
based on a transaction verification methodology which tracks down every update to storage
devices of both models, marking them with timestamps to show when they happened. By
comparing the sequence of transactions generated throughout the execution, the ArchC
verifier can tell whether both models are consistent. A deficiency of the method is the
maximum frequency of the simulation which is claimed to be in the order of units of
megahertz for a MIPS processor. Such a frequency may not be sufficient for applications
that need to communicate using high-speed interfaces.

In HAVEN [123], the issue with the slow speed of simulation is resolved by utilizing the
inherent parallelism of a hardware system to accelerate its functional verification. The ver-
ified system together with several necessary components of the verification environment is
moved to a field-programmable gate array (FPGA). The frequency achieved by the accelera-
tion is approx. 125 MHz which is significantly higher than the frequency of emulation-based
solutions available at a comparable price. The current disadvantage of the technique may
be a lack of ability to automatically drive the generation of test vectors to target coverage
holes given by continuously measured coverage.

Another tool for functional verification is ZamiaCAD [129]. It is a modular and exten-
sible platform with IDE for hardware design. The main advantage of this platform is its
ability to automatically locate design flaws in microprocessor designs at RTL. As an input,
the user has to provide a set of independent tests where both failing and passing tests are
present. The error localization is done by statistical simulation [83] which is refined using
dynamic and static slicing [76, 137]. Besides this feature, ZamiaCAD also offers the ability
to highlight results computed by static analysis directly in HDL representation including
the cone of influence, dead code, etc.
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5.2 Formal Verification of Pipelined Microprocessors
In this section, we would like to describe formal verification techniques with a high degree
of automation used during microprocessor design. When concentrating on verification of
microprocessors, the approach of theorem proving (cf., e.g., [70, 118, 61]) is often considered.
There are multiple successful industrial applications of theorem proving, including, e.g.,
a proof of correctness of the floating-point arithmetic of the Intel Itanium processor [57]
or the fully verified design of the VAMP microprocessor, which was verified using the PVS
theorem prover [13]. However, theorem proving typically requires a significant level of
expertise and user intervention. A typical microprocessor verification cost using theorem
proving is counted in person-years.

Because this thesis aims at the maximal automation of the proposed techniques, we will
concentrate more on automated techniques. An approach inspired by theorem proving is the
approach of automatic generation of properties satisfied by a given design (cf., e.g., [48, 116,
94, 43, 38]). This approach is based on automatic learning of dependencies or properties
from simulation traces or data-flow graphs. Unfortunately, the approach is primarily suited
for an initial understanding of the design since it lacks the ability to completely verify
the whole microprocessor design. More automation is also offered by the approach of
model checking based on a systematic exploration of the state space of the verified system.
The approach of bounded model checking (BMC) [14], exploring the state space of a verified
system up to certain depth only, and related approaches such as IPC [105] have become
very popular in practice, leveraging the recent advances in automatic decision procedures,
especially, SAT and/or SMT solvers [134, 132, 133, 45].

Majority of the work on automated formal verification of pipelined microprocessors
can be separated into two main branches: (i) correspondence checking between various ab-
straction levels of implementation and (ii) verification of the microprocessor with respect to
generic properties of pipelined microprocessors. These two branches are often supplemented
by (iii) methods looking for undesirable patterns in the microprocessor implementations.
Each of these topics is more discussed in the following subsections.

5.2.1 Correspondence Checking

Despite the formal methods of correspondence checking have a history dating back over
decades [62], one of the key ideas used in correspondence checking among the ISA and RTL
implementations is described in [27]. Typically, the most challenging part of the ISA-RTL
correspondence checking is to find an abstraction function 𝛼ISA that maps states of the
RTL-level states to ISA level such that the 𝛼ISA mapping is maintained in each cycle of the
RTL level operation. The key contribution of [27] is showing that the abstraction function
𝛼ISA could be computed automatically by symbolically simulating the microprocessor as it
clears out instructions out of the pipeline (typically, by inserting NOP instructions into the
pipeline). Indeed, most pipelined processor designs already have a mechanism for clearing
instructions, because this is required to bring the pipeline to an idle state when dealing
with exceptional conditions, such as halting or interrupt handling.

For a single-pipelined microprocessor, the following verification task, schematically de-
picted in Fig. 5.1, can be used for checking the ISA-RTL equivalence. Given the function
𝛼ISA the task consists of:

1. choosing an arbitrary legal starting RTL state 𝑠RTL,
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Figure 5.1: Correspondence checking approach between ISA and RTL processor descriptions
as it is proposed in [27].

2. symbolically computing the corresponding ISA state 𝑠ISA by finishing partially exe-
cuted instructions in the pipeline, i.e., 𝑠ISA := 𝛼ISA(𝑠RTL),

3. obtaining an ISA state 𝑓ISA by executing the instruction in the ISA model, i.e.,
𝑓ISA := stepISA(𝑠ISA),

4. getting an RTL state 𝑓RTL by running the instruction for a normal pipeline cycle in
the RTL model, that is, 𝑓RTL := stepRTL(𝑠RTL),

5. computing the corresponding ISA state 𝑓 ′ISA after making the normal cycle in the
RTL model, i.e., 𝑓 ′ISA := 𝛼ISA(𝑓RTL),

6. comparing the programmer-visible parts of the designs, that is, checking whether
𝑓ISA = 𝑓 ′ISA.

The original approach [27] utilizes the logic of equality with uninterpreted functions and
memories (EUFM) which allows for an abstraction of functional units and memories while
completely modeling the control of a processor. In [24], EUFM is extended by positive
equality of uninterpreted functions (PEUF) which greatly reduces the time needed for
verification. The works [136, 135, 56] further extend the approach by using positive equal-
ity of uninterpreted functions for modeling functional units, superscalar processors with
multicycle execution units, exceptions, and branch prediction. Since the approach uses un-
interpreted functions for operators unsupported by EUFM and/or PEUF, the verification
may fail (or take too much time) on RTL designs with optimized operations. Moreover,
specifying an arbitrary legal starting RTL state is a hard problem and requires significant
user intervention, e.g., by writing assertions related to each microprocessor signal. The
difficulty of identifying such assertions can be seen, for instance, in a recent work [23] aim-
ing at verification of microprocessors using the above-described technique where non-trivial
invariants related to pipeline control signals had to be added explicitly.

A correspondence checking method is also proposed in [75]. The main idea of the
approach is based on proving equivalence of data-flow graphs (DFGs) that are extracted
from instruction-accurate and cycle-accurate models by unrolling the transition relation for
the needed number of time frames. The method benefits from reducing sizes of DFGs by
finding potentially equivalent pairs (PEPs) and proving their equivalence. Therefore, the
size of a DFG to be analyzed is much smaller. The method can be divided into the following
steps:
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1. Detection of PEPs by computing values of each node in both instruction- and cycle-
accurate DFGs for some random test pattern placed to the graph inputs. Any pair
of nodes that have the same simulation values are considered to be a PEP.

2. Prove the PEP equivalence using model checking. The model checking is invoked for
each of the PEPs.

3. Merge equivalent PEPs and continue with Step 1 until graph outputs are proven
equivalent. If the PEP nodes are shown to be not equivalent, then a counter-example
trace is used to prune the set of PEPs.

To achieve a better performance, additional techniques such as constant propagation over
the DFGs or graph rewriting rules are used.

Another, yet similar approach to correspondence checking of the control of a micropro-
cessor is described in [78]. The work proposes a method of automatic formal verification
of a pipelined implementation against its ISA specification by using IPC [105] that all
assertions of all instructions are satisfied and to prove the validity of assumptions and
consequents of instructions in every possible chain of instructions. For this purpose, a map-
ping of high-level ISA to RTL has to be provided which, however, requires manual user
intervention.

Checking of the pipeline control of a microprocessor is also addressed in [81]. The pa-
per presents a formal verification technique called unpipelining. At first, the unpipelining
technique analyzes the pipeline structure of a design. The analysis works with a graph
of the structure of the pipeline control where it identifies and classifies (by using pattern-
matching) all the control logic into three classes that deal with the basic pipeline hazards,
i.e., stalling, clearing, and bypassing. Using the results of this analysis, the method au-
tomatically reverse-engineers a pipeline through a series of transformations called pipeline
deconstruction. Each application of the pipeline deconstruction shortens the pipeline by
merging its last two stages into a single stage. If all the deconstruction transformations are
successful, the model is transformed into a functionally equivalent unpipelined design. This
equivalent design of the RTL specification can then be checked for correspondence with the
ISA description. The main deficiency of the method is that it cannot be used for designs
that implement, for instance, delayed branches or branch prediction.

Compared to the above approaches, the approach of correspondence checking presented
in Chapter 8 aims at no user intervention and thus minimal expertise of the user even when
applying the approach on an optimized design. Although the approach does not provide
fully formal verification, it can find bugs not found by functional verification.

5.2.2 Checking of Generic Properties of Pipelined Microprocessor

Instead of concentrating on proving the full ISA-RTL correspondence which, as we have
seen, could be a rather complicated task, the approaches listed in this section aim at
automated verification wrt one or more specific properties that any correct pipelined mi-
croprocessor should satisfy.

The approach proposed in [69] introduces the so-called self-consistency check that com-
pares results of executions of an instruction in two scenarios wrt a property given by the
user. For example, for a property concerning data hazards, the approach works with (i) ex-
ecutions of an instruction enclosed by the finite number of random instructions within the
pipeline and (ii) executions of the same instruction surrounded by NOP instructions only.
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The main drawback of this approach is that a user has to list all valid instructions and
their possible combinations. Further, the conformance established by the approach is valid
only up to the given number of instructions.

In [2], a formal model based on a notion of stages, parcels (instructions), and hazards
has been introduced. Once the user defines predicates needed for describing the pipeline,
the design can be automatically formally proven correct under a correctness criterion given
in the work. Another, a bit similar approach has been proposed in [78]. The approach
introduces an abstract formal model whose components are to be linked by the user with
the concrete cycle-accurate implementation through a number of mappings. Afterwards,
IPC [105] is used to check several properties implying correctness of the pipeline behavior.
Again, both of the above methods require significant manual user intervention.

The works [98, 95, 96] propose general properties of the correct behavior of a typical
single-pipelined implementation of a microprocessor. For instance, the work [98] includes
definition of a rule that prevents an undesirable duplication of an instruction within the
pipeline. These properties together with an ADL description of a processor are then con-
verted to a BMC problem to find possible counterexamples [97].

In contrast with the above approaches, the approach for showing an absence of problems
caused by pipeline hazards proposed in Chapter 9 is almost fully automated—the only
step required from the user is to identify the architectural resources (such as registers and
memory ports) and the program counter.

5.2.3 Looking for Undesirable Design Patterns

Searching for specific design patterns that could cause unwanted behavior of the designed
system (e.g., proper dealing with high impedance values in HDL languages) could be
a rather simple but very efficient way to find some types of bugs. Spyglass Lint [127]
is a pattern-based static RTL checker delivered with the ASIP Designer framework [125].
It contains a set of customizable rules which are aimed to help with revealing flaws in early
phases of the microprocessor development. Certainly, such rules only approximate reality
and can produce many false alarms. However, this information can be used to improve
the performance of other (more sophisticated) tools (e.g., [126, 75]) by providing useful
information about the verified system. A somewhat similar approach is also offered by the
Sigasi framework. In [122], the authors state that the framework is, for example, capable of
detecting signals and variables that are never read/written, dead states in state machines,
or case statements that do not cover all choices.

As one can see, static analysis of a hardware system can be used as an entry point for
more advanced techniques by providing hints that can, for instance, narrow the state space
explored by a model checker used for subsequent detailed analysis of the given system.

5.3 Large Memory Abstraction
Numerous works have focused on memory abstraction, notably within the area of formal
verification. Designs with large embedded memories are quite common and have many
applications. However, these embedded memories add further complexity to formal verifi-
cation tasks due to an exponential increase in the state space with each additional memory
bit. With explicit modeling of large embedded memories, the search space frequently be-
comes prohibitively large to analyze. Therefore, it is important to use abstract models of
such memories.
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Theories for reasoning about arrays [86, 104] are often used as a formal basis in current
approaches for memory abstraction, especially the work on an extensional theory of ar-
rays [124]. Intuitively, this theory formalizes the idea that two arrays are equivalent if they
have the same value at each index. An example of such an approach has been presented
in [50]. This work specializes in reasoning about safety properties of systems with arrays.
In the work, an automatic algorithm for constructing abstractions of memories is presented.
The algorithm computes the smallest sound and complete abstraction of the given memory.

In [19], the authors introduce a theory of arrays with quantifiers which is an extension
of [124]. Moreover, they define the so-called array property fragment for which the authors
supplement a decision procedure for satisfiability. A modification of the decision procedure
for purposes of correspondence checking is proposed in [74] and implemented in [75].

Another method for large memory modeling is described in [131]. The memory state
is represented by an ordered set containing triplets composed of (i) an expression denoting
the set of conditions for which the triplet is defined, (ii) an address expression denoting
a memory location, and (iii) a data expression denoting the contents of this location. For
this set, a special implementation of write and read operations wrt the above-described
representation of the memory is defined. The abstracted memory interacts with the rest
of the circuit using standard enable, address, and data signals. The size of the set is
proportional to the number of memory accesses. Further, in [25], the same author extends
the approach in a way that it can be used for correspondence checking by applying the so-
called shadowing technique for read operations. The technique is used on all read operations
when the second of the two verified models is symbolically executed. In contrast with the
original read operation, the modified one delegates computation of the return value to the
memory used in the first model if a requested address has no record in the above-defined
set. Such an approach ensures (otherwise missing) consistency of read operations of both
verified models.

The work [63] formally specifies and verifies a model of a large memory that supports
efficient simulation. The model is tailored for Intel x86 implementations only in order
to offer a good trade-off between the speed of simulation and the needed computational
resources.

A common disadvantage of [50, 74, 131, 25] is the fact that they omit support for
addressing different sizes of data which is considered, e.g., in [63]. On the other hand, in [63],
the authors assume starting from the nullified state of the memory, not from a random state.

Some of the other proposed works describe a smarter encoding of formulas including
memories into CNF [84, 49]. In the thesis, the problems linked to CNF transformation are
not discussed, however, the ideas in [84, 49] can be potentially applied to it. An example
of a tool based on the method coupled with CNF is the Bit Analysis Tool [84] (BAT)
which automatically builds abstraction for memories over bounded time intervals. As an
input, the BAT uses custom LISP-based language. The version of the verified system with
abstracted memories is created in the following steps:

1. The design to be verified is simplified through pre-defined rewrite rules applied on
the level of terms of the BAT language.

2. An equality test relation that relates memories that are directly compared for equality
is built over the set of memory variables.

3. The transitive closure of the test relation is computed. Such a closure is an equivalence
relation.
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4. An address set is computed for each of the equivalence classes. The address set
contains only addresses that are relevant for a given class.

5. For all addresses in address set, a shorter bit vector for addressing the abstract mem-
ories is created. The size of the vector is proportional to the number of memory
accesses.

6. The behavior of memories is changed to be compatible with the new addressing style.

7. Original memories and addresses are replaced with their abstract counterparts.

A description of a system together with the checked properties is then efficiently transformed
into a CNF formula. Similarly to previous approaches, there is no support for addressing
different sizes of data.

In Chapter 7, we propose another approach to generate abstractions of memories which
support addressing of arbitrary addressable units, such as bytes and words (unlike [50, 74,
131, 25]), with multiple read and write ports (in contrast with [50, 74]), and it allows the
memory to start from a random initial state (not available in [63]). Our algorithm is also
not bound to any specific verification technique (unlike [84, 49]).
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Chapter 6

Goals of the Thesis

The general idea of the thesis is to design new hardware verification techniques optimized
for use in the process of hardware/software co-design. The key idea is to improve and/or
develop verification techniques with an emphasis on (i) maximal amount of automation,
(ii) efficiency, and (iii) ability to deliver continuous feedback about the verification process.
The proposed techniques should be in particular applicable to the class of ASIPs that are
broadly used in light-weight embedded devices with the following properties:

∙ 32bit architecture,

∙ in-order execution of instructions,

∙ memories with multiple read/write ports,

∙ I/O communication through buses, and

∙ ability to handle interrupts.

The first goal of the thesis is to develop formal methods for checking correspondence of
designs on various levels of abstraction. This goal can be narrowed down as follows:

∙ The proposed formal technique should be able to verify correspondence between RTL
and ISA specifications of a processor.

∙ The technique should be scalable for use in parallel processing.

∙ The method should deliver (at least partial) results in the order of minutes.

∙ The approach should be able to cope with the complex issues brought by the presence
of large memories in designs.

The above-specified first goal is addressed in Chapter 8 which introduces a new algorithm
for verifying correspondence between the RTL and ISA microprocessor specifications with
a high degree of automation together with a new method for modeling large memories and
register files described in Chapter 7.

The second goal of the thesis is to develop new methods for checking correctness of
various functional parts of a microprocessor, especially those associated with the pipeline
control. This goal can be more expanded as follows:

∙ The proposed formal technique should be able to work on a low-level RTL specification
of microprocessors with a single pipeline.
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∙ The technique should be able to benefit from parallel processing.

∙ The method should be able to split the verification task into smaller parts that can
be processed separately and thus deliver results in a reasonable time (in the order of
minutes).

∙ The efficiency of the proposed method should not downgrade significantly for micro-
processors with wide data-paths.

Concerning this topic, in Chapter 9, we propose an approach for detection of problems
caused by data and control hazards in pipelined microprocessor designs.
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Chapter 7

Large Memory Abstraction

This chapter describes a technique for automatic generation of abstract models of memories
that can be used for efficient formal verification of hardware designs. Our approach is able
to handle addressing of different sizes of data, such as quad words, double words, words, or
bytes, at the same time. The technique is also applicable to memories with multiple read
and write ports, memories with read and write operations with zero- or single-clock delay,
and it allows the memory to start with a random initial state allowing one to formally
verify the given design for all initial contents of the memory. Our abstraction allows large
register-files and memories to be represented in a way that dramatically reduces the state
space to be explored during formal verification of microprocessor designs as witnessed by
our experiments.

7.1 Introduction
As we have already said, the complexity of the verification process of microprocessor designs
is usually significantly influenced by the presence and size of the memories used in the design
because of an exponential increase in the size of the state space of the given system with
each additional memory bit. Therefore the so-called efficient memory modeling (EMM)
techniques that try to avoid explicit modeling of the memories are being developed.

In this chapter, we present an approach to automatic generation of abstract memory
models whose basic idea comes from the fact that formal verification often suffices with
exploring a limited number of accesses to the available memory, and it is thus possible to
reduce the number of values that are to be recorded to those that are actually stored in
the memory (abstracting away the random contents stored at unused memory locations).
Expanding the basic idea, we propose an approach that allows one to represent memories
with various advanced features, such as different kinds of endianness (big or little), read
and write delays, multiple read and write ports, and different sizes of addressable units
(e.g., bytes, words, double words). As far as we know, the ability to handle all of the above
mentioned features differentiates our approach from the currently used ones. Moreover,
our technique is applicable in environments requiring a very high level of automation (e.g.,
processor development frameworks), and it is suitable for formal verification approaches that
aim at verifying a given design for an arbitrary initial contents of the memory. Further,
our abstract memory models can be used within formal verification in a quite efficient way
as proved by our experiments.
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Figure 7.1: Memory interface.

The following sections provide a description of our technique of automated memory
abstraction that was originally published in [32]. As we have already said, its basic idea
is to record only those values in the memory that are actually used (abstracting away the
random contents stored at unused memory locations).

7.2 Memories To Be Abstracted
In our approach, we view a memory as an item of the verified design with the interface
depicted in Fig. 7.1. The interface consists of (possibly multiple) read and write ports.
Each port is equipped with Enable, Address, Data, and Unit signals. When the Enable
signal is down, the value of the Data signal of a read port is undefined. When dealing
with a write port, no value is stored into the memory through this port. On the other
hand, when the Enable signal is up, the memory returns/stores data from/into the cell
associated with the value of the Address signal. In the special case when multiple ports are
enabled for writing into the same memory cell, the result depends on the implementation
of the memory. We support two variants: (i) either a prioritized port is selected or (ii) an
undefined (random) value is stored to the multiply addressed memory cell.

The size of the addressed unit can be modified by the Unit signal. When the size of the
accessed unit is smaller than the size of the greatest addressable unit, the most significant
bits of the Data signal are filled up with zeros. It is also assumed that the size of any
addressable unit is divisible by the size of the least addressable unit, and thus for the Data
signal it is sufficient to transfer the size of the addressed unit expressed as a multiple of
the least addressable unit only (instead of the actual number of bits of the unit). Finally,
if the memory allows addressing of a single kind of units only, then the Unit signal can be
omitted.

7.3 Abstraction of the Considered Memories
Our abstraction preserves the memory interface, and hence concrete memories can be easily
substituted with their abstract counterparts. We will first describe the basic principle of our
abstraction on memories with a single addressable unit only. An extension of the approach
for multiple addressable units will be discussed later. Moreover, we assume reading with no
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Figure 7.2: Memory mapping.

delay and writing with a delay of one cycle. An extension to other timings will be described
in Section 7.5.

The abstract memory effectively remembers only the memory cells which have been
accessed. Internally, the memory is implemented as a table consisting of some number
𝑑 of couples of variables storing corresponding pairs of addresses and values (𝑎, 𝑣). When
using bounded model checking (BMC) as the verification technique, the needed number 𝑑 of
address-value pairs can be easily determined from the depth 𝑘 of BMC as the following holds
𝑑 = 𝑘*(𝑚+𝑛) where 𝑚 and 𝑛 denote the number of read and write ports, respectively. For
unbounded verification, the number 𝑑 can be iteratively incremented until it is sufficient.
The incrementation is finite since the number of memory cells is finite. The memory also
remembers which of the pairs are in use by tracking the number 𝑟 ∈ {0, . . ., 𝑑} of couples
that were accessed (and hence the number of the rows of the table used so far).

When the memory is accessed for reading, the remembered address-value pairs (𝑎1, 𝑣1),
. . ., (𝑎𝑟, 𝑣𝑟) that are in use are searched first. If a location 𝑎𝑟𝑑 that is being read has
been accessed earlier, then the value 𝑣𝑖 associated with the appropriate address 𝑎𝑖 = 𝑎𝑟𝑑
is simply returned. On the other hand, if a location that has never been accessed is being
read, a corresponding pair is not found in the table, and a new couple (𝑎𝑟𝑑, 𝑣𝑟𝑑) is allocated.
Its address part 𝑎𝑟𝑑 will store the particular address that is accessed while the value 𝑣𝑟𝑑
is initialized as unconstrained. However, the variable representing the value 𝑣𝑟𝑑 associated
with the accessed location 𝑎𝑟𝑑 is kept constant in the future (unless there occurs a write
operation to the 𝑎𝑟𝑑 address). This ensures that subsequent reads from 𝑎𝑟𝑑 return the same
value. In the case of writing, the address 𝑎𝑤𝑟 and value 𝑣𝑤𝑟 are both known. When writing
to a location that has not been accessed yet, a new address-value pair (𝑎𝑤𝑟, 𝑣𝑤𝑟) is allocated
in order to memoize the given memory access. Otherwise, a value 𝑣𝑖 associated with the
given address 𝑎𝑤𝑟 = 𝑎𝑖 is replaced by 𝑣𝑤𝑟.

7.4 Dealing with Differently Sized Data
To support different sizes of addressable data (including reading/writing data smaller than
the contents of a single memory cell of the modeled memory), we split our abstract memory
into a low-level memory model and a set of functions mapping accesses to ports of the
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modeled memory to ports of the low-level memory. The idea of this approach is shown in
Fig. 7.2 and further discussed below.

The low-level memory consists of cells whose size equals the size of the least addressable
unit of the modeled memory, and therefore, for low-level memory, the Unit signal can be
omitted. In the low-level memory, values of units that are larger than the least addressable
unit are stored on succeeding addresses. In order to allow reading/writing the allowed
addressable units (including the greatest one) in one cycle, the number of read and write
ports of the low-level memory is appropriately increased. The resulting number of ports of
the low-level memory is equal to 𝑚 * 𝑛 where 𝑚 is the number of interface ports and 𝑛 is
the number of distinct addressable units. The latter can be expressed as the quotient of
bit-widths of the greatest (𝑤𝑔𝑎𝑢) and the least (𝑤𝑙𝑎𝑢) addressable unit. In other words, for
each port of the memory interface there are 𝑛 corresponding ports of the low-level memory
model. Therefore, we use double indices for the low-level memory ports in our further
description.

In particular, let 𝑒𝑛𝑎𝑏𝑙𝑒𝑖, 𝑑𝑎𝑡𝑎𝑖, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑖, and 𝑢𝑛𝑖𝑡𝑖 be values of signals of the port
𝑖 of the memory interface, and let 𝑒𝑛𝑎𝑏𝑙𝑒𝑖,𝑗 , 𝑑𝑎𝑡𝑎𝑖,𝑗 , and 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑖,𝑗 have the analogical
meaning for the low-level memory port 𝑖, 𝑗. Then, the value of the 𝑒𝑛𝑎𝑏𝑙𝑒𝑖,𝑗 ∈ B signal
can be computed as 𝑒𝑛𝑎𝑏𝑙𝑒𝑖 ∧ 𝑢𝑛𝑖𝑡𝑖 ≥ 𝑗 where 𝑒𝑛𝑎𝑏𝑙𝑒𝑖 ∈ B and 1 ≤ 𝑢𝑛𝑖𝑡𝑖 ≤ 𝑛. This
means that the required number of low-level memory ports are activated only. Next, the
value of 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑖,𝑗 can be expressed as 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑖 + 𝑗 − 1 for the little endian version of the
memory and 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑖+𝑢𝑛𝑖𝑡𝑖−𝑗 for the big endian version, respectively. These expressions
follow from the fact that larger units of the original memory are stored as multiple smallest
addressable units stored at succeeding addresses in the low-level memory.

Further, for transfers of data, separate mappings for read ports and write ports must
defined. In the case of a write port, the data flow into the low-level memory, and the value
of the 𝑑𝑎𝑡𝑎𝑖,𝑗 signal can be computed as 𝑠𝑙𝑖𝑐𝑒(𝑑𝑎𝑡𝑎𝑖, 𝑢𝑛𝑖𝑡𝑖 *𝑤𝑙𝑎𝑢−1, (𝑢𝑛𝑖𝑡𝑖−1)*𝑤𝑙𝑎𝑢) where
𝑠𝑙𝑖𝑐𝑒 is a function extracting the part of the first argument (on the bit level) that lies within
the range given by the second and third arguments (with the bit indices being zero-based).
Finally, for a read port, for which data flow from the low-level memory, the value of the 𝑑𝑎𝑡𝑎𝑖
signal can be expressed as 𝑐𝑜𝑛𝑐𝑎𝑡(𝑖𝑡𝑒(𝑒𝑛𝑎𝑏𝑙𝑒𝑖,𝑛 ∨ ¬𝑒𝑛𝑎𝑏𝑙𝑒𝑖,1, 𝑑𝑎𝑡𝑎𝑖,𝑛, 0), ..., 𝑖𝑡𝑒(𝑒𝑛𝑎𝑏𝑙𝑒𝑖,2 ∨
¬𝑒𝑛𝑎𝑏𝑙𝑒𝑖,1, 𝑑𝑎𝑡𝑎𝑖,2, 0), 𝑑𝑎𝑡𝑎𝑖,1) where 𝑐𝑜𝑛𝑐𝑎𝑡 is a bit concatenation and 𝑖𝑡𝑒 (“if-then-else”) is
the selection operator. Thus, the data value is composed from several ports of the low-level
memory, and the most significant bits are zero-filled when the read unit is smaller than
the greatest one. Note that according to the semantics of the Enable and Data signals
(described in Section 7.2), in the case when 𝑒𝑛𝑎𝑏𝑙𝑒𝑖,1 is false (i.e., no unit is read), the value
of the 𝑑𝑎𝑡𝑎𝑖 signal is undefined.

7.5 Further Extensions of the Abstract Memory Model
To broaden the range of memories that we can abstract, we further added support for
more memory timing options, in particular for the one-cycle-delay reading and the zero-
delay writing. The former can be achieved by simply connecting a unit buffer to the data
signal of the memory interface. For the latter case, a special attention must be paid to the
situation when both read and write operations over the same address are zero-delayed. In
such a situation, it is required to append an additional logic that ensures that written data
are propagated with zero delay to a given read port.

Moreover, for a practical deployment in correspondence checking, our model has also
been extended by applying the shadowing technique described in [25]. In particular, during
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correspondence checking, both models are executed in a sequence. The shadowing technique
deals with potential inconsistencies that can arise when both models read from the same
uninitialized memory cell—indeed, in this case, a random value is to be returned, but the
same one in both models. To ensure this when the shadowing is used, the return value of
the read operation is obtained from the memory in the design executed first whenever the
value is not available in the second design.

7.6 Implementation and Experiments
The memory abstraction that we generate in the above described way can be encoded in any
language for which the user can provide templates specifying (i) how to express declarations
of state and nonstate variables, (ii) how to encode propositional logic expressions over state
and nonstate variables, (iii) and how to define initial and next states of state variables. We
currently developed these templates for the Cadence SMV language [87].

In order to prove usefulness of the described abstraction technique, we used our abstract
memory generator within the approach proposed in [31] (further described in Chapter 8) for
checking correspondence between the ISA and RTL level descriptions of microprocessors,
which we applied to several embedded microprocessors. Briefly, in the approach of [31], the
ISA specification and VHDL model of a processor are automatically translated into behav-
ioral models described in the language of a model checker (the Cadence SMV language in
our case). These models are then equipped with an environment model, including archi-
tectural registers and memories, which can be abstracted using the technique proposed in
this chapter. All these models are composed together, and BMC is used to check whether
both of the processor models start with the same state of their environment (including the
same instruction to be executed), their environments equal after the execution too. An
experimental version of the described approach was integrated into the Codasip IDE [1]
processor development framework.

Our approach was tested on the following processors: TinyCPU is a small 8-bit test
processor with 4 general-purpose registers and 3 instructions that we developed mainly
for testing new verification approaches. SPP8 is an 8-bit ipcore with 16 general-purpose
registers and a RISC instruction set consisting of 9 instructions. SPP16 is a 16-bit variant of
the previous processor with a more complex memory model allowing one, e.g., to load/store
both bytes and words from/to the memory. Codea2 is a 16-bit processor with 4 pipeline
stages partially based on the MSP430 microcontroller developed by Texas Instruments [42].
The processor is dedicated for signal processing applications. It is equipped with 16 general-
purpose registers, 15 special registers, a flag register, and an instruction set consisting of
41 instructions, where each may use up to 4 available addressing modes. Our experiments
were evaluated for two modifications of the processor—using memory with and without
multiple addressable units.

Our experiments were run on a PC with Intel Core i7-3770K @3.50GHz and 32 GB
RAM using Cadence SMV (the build from 05-25-11) and GlueMinisat (version 2.2.5) [101]
as an external SAT solver. The results can be seen in Table 7.1. The first three columns
give a name of verified processor, a size of its register file, and a size of the memory. The
next columns give the results obtained from the verification—in particular, the average time
needed for verification of a single instruction with the abstraction applied or not-applied
in different combinations on the register file and the memory. In the first case, both the
register file and the memory were modeled explicitly which, for larger designs such as
Codea2, led to out-of-memory errors (“o.o.m.”). Next, the abstraction was only used for
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Table 7.1: Verification results.

Processor Reg. File Memory Explicit Abs. Abs. All

Size Size Memory Reg. File Memory Abs.

TinyCPU 4 x 8bit - 0.151 s 0.41 s - -

SPP8 16 x 8bit 256 x 8bit 5.06 s 1.11 s 3.66 s 0.452 s

SPP16 16 x 16bit 2048 x 8bit 266 s 92.2 s 1.23 s 0.822 s

Codea2_single 32 x 16bit 32768 x 16bit o.o.m. o.o.m. 4.30 s 4.44 s

Codea2_mult 32 x 16bit 65536 x 8bit o.o.m. o.o.m. 4.75 s 4.89 s

single Single addressable unit used o.o.m. Out of memory error occurred
mult Multiple addressable units used

register files. Even though better results were obtained this way for the SPP8 and SPP16
processor designs, the verification still ran out of system resources for Codea2 because of
the explicitly modeled memory. In the last two cases when either only memories or both
memories and register files of the verified processors were abstracted, verification was able
to finish even for larger designs. We explain the 10 % deterioration between verification
times for the Codea2 processor with and without presence of multiple addressable units by
the complexity of the additional logic.

Finally, we note that for very small memories and memories with many possible accesses
(caused by, e.g., a higher verification depth during BMC), the overhead brought by the ab-
straction can result in worse verification times as can be seen in the case of the register file
of the TinyCPU and Codea2 processors. Moreover, for SPP8, where only a few instruc-
tions directly access the memory, and thus only a few instructions influence the average
verification times, the overhead caused by the abstraction introduces worse than expected
average verification time when abstracting the memory only. In practice, we deal with this
problem by defining heuristics that computes whether or not it is better to use the explicit
or the abstract description of a given memory.

7.7 Conclusion
We have presented an approach of memory abstraction that utilizes the fact that formal
verification often suffices with exploring a limited number of accesses to the available mem-
ory, and it is thus possible to reduce the number of values that are to be recorded to those
that are actually stored in the memory. Our approach allows one to abstract memories
with various advanced features, such as different kinds of endianness, read and write de-
lays, multiple read and write ports, and different sizes of addressable units. The technique
is fully automated and suitable for usage within processor development frameworks where
it can bring a significant improvement in verification times.
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Chapter 8

RTL-ISA Correspondence
Checking

In [31], we proposed an automated approach built on a formal basis and intended to be
used within an automated microprocessor design framework for checking correspondence
between an RTL implementation of a microprocessor and a description of its instruction
set architecture (ISA).

Our approach is original in its very high level of automation: the only user inputs are
an RTL implementation, an ISA description (possibly complemented by a specification of
assumed restrictions on the possible values of instruction operands), and a time limit for
the verification.

The main idea behind our approach is to use bounded model checking (BMC) to compare
the outputs produced by automatically derived RTL and ISA models of a given processor
for all possible instructions and their inputs. In order to guarantee that some useful result
is obtained in the given time limit, each instruction is checked in parallel for several bit-
widths of its input, and the maximum bit-width for which a result is obtained in the given
time limit is used.

Compared to the techniques proposed, e.g., in [27, 69], the approach presented in this
chapter does not provide full formal verification since (i) it uses BMC, (ii) it does not
consider any mutual influence among the instructions, and (iii) it may limit the bit-width
of input data in some cases. Hence, it may under-approximate the behavior of the verified
designs. However, our experience shows that the approach is complementary to functional
verification, and due to a different way of exploring the state space of the verified design,
it can find bugs not found by functional verification.

An experimental version of the approach has been implemented within the Codasip
IDE [1] and successfully tested in several case studies. The experiments included a non-
trivial single-pipelined processor in which, during its development, our approach revealed
three previously unknown bugs confirmed by the developers. The experiments have shown
that almost every instruction of a single-pipelined processor (of a form commonly used in
light-weight embedded devices) is verified within seconds. Shortened input data were used
only in a few cases, typically for instructions such as multiplication (and even in such cases,
one can argue that most typical bugs would anyway manifest even for shortened input).

Section 8.1 of this chapter provides a background on the expected design flow for which
our approach is optimized. The main idea of the proposed method is then described in
Section 8.2. Sections 8.3, 8.4, 8.5, and 8.6 provide more details about the way we model
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processors and about the actual verification process. Potential parallelization options of
the proposed method are given in Section 8.7. Experiments are discussed in Section 8.8.
Section 8.9 concludes the chapter.

8.1 Background: Expected Design Flow
Our work was originally motivated by a request to provide some support for verification on
a formal basis for the Codasip IDE [1] described in Section 3.3.2, but the proposed method
can be used within other microprocessor development tool chains too if they are able to
provide all needed information about the processor (as discussed below).

Our method uses both the IA and CA descriptions given in CodAL ADL to automat-
ically perform conformance checking between them. From the instruction-accurate model,
we use: (i) the set of all instructions, (ii) the binary representation of each instruction
and its format (i.e., information about which bits represent the operator, operands, and
immediate data), and (iii) the semantics of the instructions. The above can be obtained by
automatically generated extractor of instruction semantics for the target compiler [64, 130].
From the low-level, cycle-accurate model, we use: (iv) the types of memories and register
files together with the number of read and write ports and (v) the identification of the
write-back pipeline stage. Furthermore, in the case of processors with multicycle instruc-
tions, we need to know the maximum number of cycles each instruction needs to complete
its execution.

For our approach, as stated above, it is crucial to know the set of instructions to be
checked as well as their semantics. However, there is no notion of instructions in the CodAL
language as can be seen in Fig. 8.1. Nevertheless, the assembly syntax description can be
used instead. This syntax is based on a context-free grammar generating a finite language
(ensured by the CodAL compiler). Hence, if all words of the language are systematically
generated, a list of instructions is obtained. This extraction is supported by Codasip as
a part of its automatic generator of a C compiler, which needs to know every instruction
included in the instruction set of the modeled processor. Codasip also extracts a C-language
description of the behavior of each instruction and converts it to a static single assignment
(SSA) format with a few simple optimizations.

8.2 The Main Idea of the Proposed RTL-ISA Correspon-
dence Checking

We concentrate on checking a correspondence between the behavior of an RTL design
of a microprocessor and its ISA description on the level of an independent execution of
each instruction. By the independent execution, we mean the execution of an instruction
surrounded by no-operation instructions (NOP). Hence, our approach does not aim at finding
errors related to the use of pipelines, branch prediction, caches, etc. We, however, believe
that such an approach is still useful, especially when combined with other techniques (such
as the one discussed in Chapter 9).

The proposed method uses the bounded model checking as an automated reasoning
engine. A typical approach to use the (bounded) model checking is to encode the spec-
ification (ISA in our case) as a temporal formula using the specification language of the
chosen model checker. Unfortunately, for complex instructions, this is a rather complicated
task. Therefore, we use a more straightforward translation of the ISA specification into
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Figure 8.1 A description of the add instruction in CodAL.
1 element reg represents regs {
2 use imm4 as num;
3 assembler { "r" ~ num };
4 binary { num };
5 return { num; };
6 }
7 element add {
8 assembler { "ADD" };
9 binary { OP_ADD:4 };
10 return { OP_ADD; };
11 }
12 set opc = add, /* ... */;
13 element instr_alu {
14 use reg as { dst, sA, sB };
15 use opc;
16 assembler { opc dst "," sA "," sB };
17 binary { opc dst sA sB };
18 semantics {
19 switch (opc) {
20 case OP_ADD:
21 regs[dst] = regs[sA] + regs[sB];
22 cf = func_add_carry(regs[sA], regs[sB]);
23 break;
24 /* ... */
25 }
26 };
27 }

a behavioral model described in the modeling (not specification) language of the model
checker. We thus generate two behavioral models: namely, an RTL and ISA model of the
given processor. These models are then equipped with an environment model, including
architectural registers, memories, the program counter, and I/O ports. All these models are
composed together, and BMC is used to check whether both of the processor models start
with the same state of their environment (including the same instruction to be executed),
their environments equal after the execution too. For this purpose, we have implemented
an automated generator of models from ISA descriptions and translator of VHDL to RTL
models, created abstract models of memories and register files, and a top-level model con-
trolling the ISA, RTL, and environment models as well as comparing their execution.

Our approach uses similar principles as [27], but since we are interested in verification
of a single instruction only, we can consider the reset state of the RTL model as a starting
point. This also eliminates the need to make the symbolic execution reach in a potentially
costly way the corresponding starting ISA state. The top-level control of verifying a single
instruction can be summarized as follows:

1. Initialize the environment of the given RTL and ISA model.

2. Symbolically execute one cycle of the ISA model (covering all possible cases that may
arise).

3. Stall the ISA model and reset the RTL model to ensure that it is in a stable state.
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4. Symbolically execute the RTL model for the needed number of cycles (depending on
the write-back pipeline stage or on the number of cycles of a multicycle instruction).

5. Stall the RTL model to ensure that no more changes in architectural resources are
made.

6. Finally, check whether the environments of the RTL and ISA model are equal.

In the first step of the initialization of the environment, the program memory is filled with
an instruction to be verified, other architectural resources are left random to simulate all
possible inputs for the instruction. If the environments of the RTL and ISA models are
found different in Step 6, an error in the implementation of the instruction initially set in
the program memory was found. In the next section, all these steps are described in more
details.

8.3 Generation of the ISA Model
To derive the ISA model of a processor, we use the output of the Codasip semantics extrac-
tor, which consists of the instruction syntax and the semantics generated for each possible
combination of operands of the instruction. The way these combinations are encoded within
an instruction word is called the instruction format. The description of the syntax includes
the name of the instruction and its unique assembler and binary representation. The binary
representation divides the instruction word into constant and operand parts. The constant
parts are usually used to express the opcode and addressing mode, while the operand parts
mark the position of the code of operands within an instruction word. The semantics
description uses an SSA-based representation.

In Fig. 8.2, the information extracted for the add instruction is shown. This instruction
works with three 16-bit register operands: it adds the last two (reg1, reg2) and stores the
result into the first one (reg0). Based on the result of the addition, the carry flag (cf)
is set. The regop(rf, idx) operation used on lines 4, 5, 7 represents reading/writing of
a value stored at the index idx within the register file rf. The reg(r, 0) operation used on
line 9 means reading/writing from/to the register r (not in a register file). The iN operator
where N stands for a positive integer is a bit-width specifier. The operation add represents
the addition itself, while carry_add computes the value of the carry after the addition.
Auxiliary variables introduced due to usage the SSA-form can be recognized by their %
prefix. When generating the ISA model, we translate the output described above into the
Cadence SMV language [87]. This formal modeling language is used mainly because of its
wide support in various model checking tools.

The ISA model is obtained by translating the semantics of each format of each instruc-
tion separately. The obtained translations are used as different branches of the ISA model.
The branch to be executed is chosen according to the contents of the so-called fetch vector
that is added to the ISA model since a description of the fetch stage is not included in the
output of the semantics extractor. The value of this vector is initialized according to the
instruction format (line 12 in Fig. 8.2) by the top-level model discussed below.

The translation of the particular instruction formats relies on the interface of the chosen
model of architectural resources. We, in particular, represent single registers as binary
vectors with signals 𝑤𝑒, 𝑑, and 𝑞 in their interface. These signals have the same meaning
as those used in a D-latch. Similarly, memories and register files with 𝑚 read and 𝑛 write

51



Figure 8.2 The output from the Codasip semantics extractor for the add instruction.

1 /* Name */
2 instr instr__add__reg__reg__reg__,
3 /* Semantics */
4 %tmp0 = i16 regop(regs, reg1);
5 %tmp1 = i16 regop(regs, reg2);
6 %tmp2 = add(%tmp0, %tmp1);
7 regop(regs, reg0) = %tmp2;
8 %tmp3 = carry_add(%tmp0, %tmp1);
9 reg(cf, 0) = %tmp3;,

10 /* Syntax */
11 "ADD" reg0 "," reg1 "," reg2,
12 0b0101 reg0[3,0] reg1[3,0] reg2[3,0]

ports are mapped to binary matrices having an interface with signals 𝑤𝑒0, . . ., 𝑤𝑒𝑚, 𝑤𝑎0,
. . ., 𝑤𝑎𝑚, 𝑑0, . . ., 𝑑𝑚, 𝑟𝑒0, . . ., 𝑟𝑒𝑛, 𝑟𝑎0, . . ., 𝑟𝑎𝑛, 𝑞0, . . ., 𝑞𝑛.

The actual translation of the semantics of the particular instruction formats is then
based on rewriting each operation in the semantics description into its SMV implementation.
For that, we built a library of SMV implementations of all the operations that may appear
in the output of the Codasip semantics extractor. Some of them are natively supported by
SMV (i.e., they map to the certain SMV operation), some are replaced by multiple SMV
operations. For an illustration of the translation, see Fig. 8.3 which shows the result of
translating the add instruction. Note, e.g., the extraction of operands from the fetch vector
(lines 12-14 in Fig. 8.3) and the translation of the carry_add operation (line 8 in Fig. 8.2)
using the operations plus and bit extraction (lines 25, 26 in Fig. 8.3).

8.4 The Top-Level Model
The top-level model controls initialization, symbolic execution, and stalling of the ISA and
RTL models and their environment. For that, three special variables are used: a clock
counter and two halt signals. The clock counter increments its value with every cycle of
the symbolic execution of ISA and RTL models. It is used for detecting the end of the
verification process. The ISA and RTL halt signals are connected to every resource of the
ISA and RTL models, respectively, and are used to signal them to keep their values, hence
to stall the whole ISA and RTL models.

In the first step of the verification of one of the instruction formats (to verify all formats,
the verification is run for each format separately), the program memory of the RTL model
is initialized such that upon the first read access, the same fetch vector that was assigned to
the ISA model and that describes the instruction format chosen to be verified is read from
the program memory. Further read accesses, even from the same address, will produce the
fetch vector representing the NOP instruction. This behavior ensures that the processor will
execute the verified instruction only. The fetch vector is defined bit per bit according to
the binary coding of the instruction (cf. line 12 in Fig. 8.2) in the following way: each bit
corresponding to a constant (operation code or addressing mode) is set to the value of that
constant, other bits are left random to simulate all possible inputs. Other architectural
resources such as data memories and register files are initialized to random values which,
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Figure 8.3 Instruction semantics translated to SMV.

1 -- Variant instr__add__reg__reg__reg__
2 -- Definitions
3 reg0 : array 3..0 of boolean;
4 reg1 : array 3..0 of boolean;
5 reg2 : array 3..0 of boolean;
6 _tmp0 : array 15..0 of boolean;
7 _tmp1 : array 15..0 of boolean;
8 _tmp2 : array 15..0 of boolean;
9 _tmp3 : boolean;

10 _tr_tmp0 : array 16..0 of boolean;
11 -- Transitions
12 reg0[3..0] := fetch[11..8];
13 reg1[3..0] := fetch[7..4];
14 reg2[3..0] := fetch[3..0];
15 regs_re0 := 1;
16 regs_ra0 := reg1;
17 _tmp0 := regs_q0;
18 regs_re1 := 1;
19 regs_ra1 := reg2;
20 _tmp1 := regs_q1;
21 _tmp2 := (_tmp0 + _tmp1);
22 regs_we0 := 1;
23 regs_wa0 := reg0;
24 regs_d0 := _tmp2;
25 _tr_tmp0 := (_tmp0 + _tmp1);
26 _tmp3 := _tr_tmp0[16];
27 cf_we := 1;
28 cf_d := _tmp3;
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in the initial state only, are shared by the ISA and RTL models to ensure that both models
have the same inputs.

In the next step, the ISA model is symbolically executed for a single clock cycle. Since
the ISA model of an instruction semantics is encoded as a function of instruction inputs,
which are known after the initialization step, a single clock cycle is needed for architectural
resources of the ISA model to store new values. The ISA model and its architectural
resources are then stalled using the ISA halt signal, and the RTL model is reset to its
initial stable state.

Next, the RTL model is symbolically executed for 𝑡𝑤𝑏+1 cycles where 𝑡𝑤𝑏 represents the
write-back stage of the pipeline (or the number of cycles of a multi-cycle instruction to get
to the write-back stage), and the additional clock cycle is used for architectural resources
to store new values. The RTL model with its architectural resources are then stalled using
the RTL halt signal to ensure that no more changes happen on the RTL level.

Finally, the results of the symbolic executions of the ISA and RTL models are checked
for correspondence. Since the behavior of some instructions is defined only for a specific
range of values of the operands, the correspondence is not just identity. In particular, the
developers must explicitly specify which restrictions of the possible operand values they
assume in a form of assertions (e.g., by some pragma in the IA model). The property
expressing the required correspondence is then an invariant of the following form:

(𝑐𝑙𝑘 = 𝑡𝑤𝑏 + 2)⇒ (
⋀︁
𝑎∈𝐴

𝑎⇒
⋀︁
𝑟∈𝑅

(𝑟𝐼𝑆𝐴 = 𝑟𝑅𝑇𝐿))

where 𝑐𝑙𝑘 is the clock counter, 𝐴 denotes the set of restrictions on operands, 𝑅 is a set of
architectural resources, and 𝑟𝐼𝑆𝐴 (𝑟𝑅𝑇𝐿) represents a value of architectural resource 𝑟 of
the ISA model (the RTL model), respectively. The time 𝑡𝑤𝑏 +2 represents the overall time
for symbolic executions of ISA and RTL models.

8.5 Modeling Large Architectural Resources
While single architectural registers or small memories can be modeled directly as binary
vectors or matrices, modeling large memories or register files in such a way could lead to
a state space explosion during the verification. Therefore, we use an abstraction technique
described in Chapter 7. The technique exploits the fact that the number of values stored
in memory cells that must be remembered is limited wrt the depth of the analyzed BMC
problem. The interface of the abstracted memory is left the same, but internally, an access
table is used. Every access, i.e., a write/read to/from the memory, is recorded in the form
of an address-value pair1. If the memory is accessed again, its access table is searched first.
If there exists a record with the given address, a value that corresponds to the address
is returned/modified. Otherwise, a new record is created. As it is shown in Chapter 7,
the abstraction could sometimes use more bits than the actual implementation. Hence,
a decision whether or not to use the abstraction is done based on the knowledge of the
number of state variables that are to be used in each of the cases.

1A similar approach is applied when the processor uses I/O ports and buses.
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8.6 Data-Domain Reduction
Another technique that we use to cope with the state space explosion problem is data-
domain reduction, which we apply to reduce the influence of the many different random
values stored in data memories, register files, and immediate operands of the fetch vector
on a rapid increase in the size of the state space. The technique sacrifices soundness in
favor of speed in which a potential flaw is discovered. It under-approximates the bit-width
of the architectural resources by setting selected bits permanently to zero or one.

We use two types of data-domain reductions each of which comes from stressing different
aspects of the operations over bit-vectors: The first one concentrates on flaws in incorrectly
implemented basic effects of operations (including, e.g., situations when the implementation
performs a completely different operation than intended, it incorrectly loads operands from
a fetch vector, and the like). The second one then concentrates on flaws in instruction
side effects (e.g., in setting the carry-flag after a successful completion of an arithmetic
operation). We implement the data-domain reductions by preserving high and low values of
operands only—we call these reductions as high and low reductions, respectively. The high
reduction transforms all bit-vectors being used as operands such that the least significant
bits are set to one, while the low reduction sets the most significant bits to zero. The idea
behind this is that a flaw in the implementation of the basic effect of an operation will be
revealed even for small values of operands, and a flaw in the implementation of side effects
will be revealed by high values of operands. The ratio of the number of random bits (i.e.,
those whose randomness is preserved) and reduced bits (set to zero or one) is defined by
a reduction factor. For example, the factor of 1/4 of the low reduction means that every
bit-vector which is used as an input of an instruction is transformed such that 3/4 of most
significant bits of the bit-vector are set to zero and 1/4 of the least significant bits are left
random.

We apply our data-domain reduction on output data from data memories, data from
register files, as well as immediate operands of the fetch vector. We do not consider addresses
because the bit-width of addresses has an insignificant influence on the size of the state space
since we cope with it using abstracted memories. We implement the reduction technique
such that all outputs of data memories and register files are masked with a predefined bit-
vector representing the required data-domain reduction. When using the low reduction,
the output from a memory or a register file is AND-masked with a bit-vector with zero’s
in the most significant bits. On the other hand, when using the high reduction, the output
is OR-masked with a bit-vector with ones in the least significant bits. Similarly, the same
masking is performed on each immediate operand of the fetch vector resulting in the so-
called reduced fetch vector.

8.7 Use of BMC and its Parallelization
For the actual verification of the correspondence property, we use the ability of the SMV
model checker to convert a given verification problem to a BMC problem of a specified depth.
In particular, in our case, the depth of the problem is 𝑡𝑤𝑏 + 2 which is sufficient because
no further changes are made to the architectural resources after that time. The problem
is represented in CNF using the DIMACS format and exported to be solved using a SAT
solver. It is possible to map the CNF terms back to variables of the ISA and RTL models,
thus in the case of a flawed RTL design, the encountered problem can be presented to the
developers in terms of the original variables.
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In fact, we do not generate a single BMC problem for each format of each instruction,
but seven of them to be solved in parallel. These seven problems differ in the data-domain
reduction used, in particular: no reduction, 1/2 low and high reductions, 1/4 low and high
reductions, and 1/8 low and high reductions. A time limit is then applied for solving each
of these problems, and the result of the lowest reduction for which the appropriate problem
is solved in time is used. The time limit is derived from the overall time limit for the
verification of the whole processor (given by the user) divided by the number of all formats
of all instructions. This limitation ensures that the whole verification process will terminate
within the specified time.

8.8 Experiments
We have implemented the above described method in a prototype tool and tested it on
the processors which we have described in Section 7.6 of Chapter 7. Our experiments were
run on a PC with Intel Core i7-3770K @3.50GHz and 16 GB RAM using Cadence SMV
(build from 05-25-11) and GlueMinisat (version 2.2.5) [101] as an external SAT solver.
The results can be seen in Table 8.1. The first three columns give the processor being
verified, the number of instructions in its instruction set, and the number of formats of
all instructions (IFs), which gives the number of the (parallelized) BMC problems to be
solved. The next columns give the results obtained from the verification: the number of IFs
which have been successfully verified with no data-reduction, the number of IFs which have
been successfully verified with at least some data-reduction, and numbers of IFs successfully
verified for the different concrete data-reductions. Finally, the column “Avg. time” denotes
the average time needed for verification of a single instruction format.

The time limit for verification was set to 10 s for SPP8 and SPP16. For SPP16, the limit
is close to the time that is needed for generation of the BMC problems to be solved (i.e.,
the time needed for the semantics extraction together with the translation to SMV and the
subsequent derivation of the BMC problems in DIMACS), which took on average 0.7 s per
instruction format. The average time needed for SAT solving was 0.19 s per instruction
format. Pushing the time limit below this bound would lead to unusable results.

To illustrate the use of the verification time limit in our approach, we provide exper-
iments with Codea2 for two different time limits: 850 s and 2400 s. The former is close
to the bound described above (most of the time is taken by the semantics extraction, and
the SMV and DIMACS translations: 2.21 s per instruction format on average). The latter
limit leaves more time for SAT solving (0.87 s in contrast of 0.29 s per instruction format on
average). As can be observed, with more time dedicated to SAT solving, more instruction
formats get verified with a less aggressive reduction factor. Further, one can notice that
within the smaller time limit of 850 s, every instruction format was proved at least for the
reduction factor of 1/8 (for a 16-bit processor, this means that 2 bits of the register file
and memory were left random). Within the time limit of 1000 s (not listed in the table),
each instruction format was verified at least for the 1/4 reduction. Finally, multiplication
instructions (42 instruction formats) were the only ones that were too complex to be proved
fully even within the extended time limit of 2400 s.

Next, to demonstrate an ability of the proposed data-domain reductions to rapidly
detect errors, we also ran a series of experiments on some flawed designs of the Codea2
microprocessor. The results are shown in Table 8.2. The first column denotes the type of
flaw, while the next columns provide the average time (in seconds) per instruction format
needed to detect a flaw of the given type with a particular level of reduction.
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Table 8.2: Detection of flaws using data-domain reductions.

Flaw type 1/2 1/4 1/8

none high low high low high low

add. cf 2.89 2.73 2.67 2.66 2.62 2.62 2.59

mult. high 3.36 3.15 - 3.03 - 2.97 -

load byte 2.91 - 2.74 - 2.30 - 2.25

The first type of flaws (named “add. cf”) represents errors that we actually found during
verification of a development version of Codea2. All of them were confirmed as real errors
by the processor development team and subsequently corrected. The errors were discovered
in three instructions. Each of them was related to setting the carry flag during arithmetic
instructions. Although one could expect that flaws related to the carry flag should be
detected only when no reduction or the high reduction is used, in our case, they were
detected even with the low reduction. This is due to the different ways how the verified
ISA and RTL models initialize the value of the carry flag—in the RTL model, it is always
nullified, while the ISA model leaves it in the previous state.

The further two types of flaws (“mult. high” and “load byte”) were artificially injected
into the design. However, we tried to inject errors that are likely to appear during processor
development. In the first case (“mult. high”), the most significant bits of the result of
multiplication are wrongly propagated (some are set to zero). In this case, the error can be
detected with the high or no reduction only. Using the high reduction is by approximately
10 % faster than in the case with no reduction. In the last case (“load byte”), a wrong AND-
mask (0xF instead of 0xFF) is applied on the value fetched from a data memory. Since the
bit-mask affects the least significant bits only, the error is detected only when the low version
of the data-domain reduction is used. The speed-up is comparable to the case described
above. Moreover, the described speed-up can, in fact, be also seen during verification of
flawless instruction formats. This produces an improvement in the overall verification time
in the order of minutes for microprocessors of size comparable to Codea2, and therefore we
can conclude that verification with data-domain reductions can be advantageously used to
quickly scan a design for presence of errors.

8.9 Conclusion
In this chapter, we have proposed a method of checking correspondence between the ISA and
RTL description of a microprocessor through BMC. Despite its formal roots, the approach
does not provide full formal verification since it checks each instruction in isolation and also
possibly limits the bit-width of the data being manipulated. However, as confirmed by our
experimental results, the approach can be still quite useful in that it can find real errors not
found by functional verification (due to the different ways these approaches exercise the state
space of the verified systems). Moreover, the approach is almost fully automated, hence not
requiring any additional efforts from the developers (apart from possibly describing their
assumptions about limited values of instruction arguments). Furthermore, the approach
allows for an easy control of the verification time and for utilizing parallelization in order
to increase usefulness of the results that can be obtained in the given time.
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A potential future work may include adding support for designs with multiple pipelines.
Another considerable topic is also an experimental evaluation of suitability of another back-
end verification procedures (e.g., SMT solving instead of SAT) and representations with
which these procedures work (e.g., and-inverter graph format [15] vs. DIMACS). Finally,
one can also utilize recent advances in model-checking techniques that are not based on
BMC, such as IC3/PDR [18, 45], and use them for adding better support for multi-cycle
instructions.
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Chapter 9

Analysis of Pipeline Hazards

In this chapter, we present an automated approach that combines static analysis of data
paths, SMT solving, and formal verification of parametric systems in order to discover flaws
caused by improperly handled data and control hazards. The chapter unifies and better
formalizes our previous works on read-after-write [34, 35], write-after-read, and write-after-
write hazards [36, 37] and also adds support to handle control hazards. The approach
has been implemented in a tool called Hades using which we have obtained promising
experimental results. The contents of the chapter is currently under submission to a journal.

Plan of the Chapter Section 9.1 defines the needed notions. In Section 9.2, we sketch
the main idea of the proposed approach. Sections 9.3 and 9.4 discuss pre-processing tasks
that are needed before the core steps of our verification approach are applied. These core
steps are then described in Section 9.5. Section 9.6 presents an experimental evaluation of
the proposed approach. Finally, Section 9.7 concludes the chapter.

9.1 Preliminaries
We now introduce various basic notions that we will build on in the rest of the chapter.

9.1.1 Processor Structure Graphs

In what follows, we expect a processor to be described in the form of a so-called processor
structure graph (PSG) which can be represented by a tuple 𝐺 = (𝑉,E , 𝑠, 𝑡, 𝜔). Here, 𝑉 is
a finite set that is the union 𝑉𝑠 ∪𝑉𝑓 of a set 𝑉𝑠 of storages and a set 𝑉𝑓 of Boolean circuits,
𝑉𝑠 ∩ 𝑉𝑓 = ∅. We distinguish two types of storages: namely, architectural storages 𝑉𝑎 and
pipeline registers 𝑉𝑝 such that 𝑉𝑠 = 𝑉𝑎 ∪ 𝑉𝑝 and 𝑉𝑎 ∩ 𝑉𝑝 = ∅. We expect all storages to
have a unit write and zero read delay. Longer access times (e.g., for memory ports) can
be modeled by introducing sequentially connected registers emulating the required delay.
Boolean circuits represent common combinational logic circuits. For the rest of the chapter,
it is sufficient to distinguish these circuits into multiplexers 𝑉𝑚𝑥 and all other circuits 𝑉𝑔,
referred to as generic circuits further on. Hence, we let 𝑉𝑓 = 𝑉𝑚𝑥 ∪ 𝑉𝑔 while requiring
𝑉𝑚𝑥 ∩ 𝑉𝑔 = ∅.

For registers, we use a well-known notation to characterize their connections: namely,
we use d to denote the data-in, q data-out, rst reset, and en write-enable connections. For
multiplexers, we denote by sel the inbound connection that is the selector which selects
one of the input cases c𝑖 to be transferred from the input to the output of the multiplexer,
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which is again denoted as q. We denote input connections of generic Boolean circuits as
generic inputs a𝑖. Let T = {d, q, rst, en, sel} ∪ {a𝑖, c𝑖 | 𝑖 ∈ N} be the set of all connection
types.

Next, we use 𝐸 to denote a finite set of transfer edges. Note that we do not define the
set of edges as 𝐸 ⊆ 𝑉 ×𝑉 since we sometimes need more edges between two nodes. Instead,
we simply require that 𝐸 is a finite set of some abstract edges, and we assign each edge
with its source, target, and type. Namely, we use 𝑠 : 𝐸 → 𝑉 × T to assign to each edge its
source vertex and its connection type, and 𝑡 : 𝐸 → 𝑉 × T to assign to each edge its target
vertex and its type of connection.

The sets 𝑉 and 𝐸 and the functions 𝑠 and 𝑡 must fulfil the following criteria:

∙ For each storage 𝑣𝑠 ∈ 𝑉𝑠, there is exactly one inbound data-in edge 𝑒𝑑 ∈ 𝐸 such that
𝑡(𝑒𝑑) = (𝑣𝑠, d).

∙ For each storage 𝑣𝑠 ∈ 𝑉𝑠, there are arbitrarily many outbound data-out edges 𝑒𝑖𝑞 ∈ 𝐸
such that 𝑠(𝑒𝑖𝑞) = (𝑣𝑠, q) where 0 ≤ 𝑖 < 𝑛 for some 𝑛 ∈ N.

∙ For each storage 𝑣𝑠 ∈ 𝑉𝑠, there is exactly one inbound clear edge 𝑒𝑟𝑠𝑡 ∈ 𝐸, also
denoted as the synchronous reset edge, such that 𝑡(𝑒𝑟𝑠𝑡) = (𝑣𝑠, rst).

∙ For each storage 𝑣𝑠 ∈ 𝑉𝑠, there is exactly one inbound enable edge 𝑒𝑒𝑛 ∈ 𝐸 such that
𝑡(𝑒𝑒𝑛) = (𝑣𝑠, en).

∙ For each circuit 𝑣𝑔 ∈ 𝑉𝑔 implementing a Boolean function 𝑔(𝑎0, . . . , 𝑎𝑛−1), there is
exactly one inbound edge for each argument of 𝑔 such that 𝑡(𝑒𝑎𝑖) = (𝑣𝑔, a𝑖) for all
0 ≤ 𝑖 < 𝑛 where 𝑛 ∈ N. (For 𝑛 = 0, we get a constant function without parameters.)

∙ Every multiplexer 𝑣𝑚𝑥 ∈ 𝑉𝑚𝑥 that implements a case selection function 𝑠𝑤𝑖𝑡𝑐ℎ(𝑠𝑒𝑙,
𝑐𝑎𝑠𝑒0, . . . , 𝑐𝑎𝑠𝑒𝑛−1) has exactly one inbound edge for each of its arguments such that
𝑡(𝑒𝑠𝑒𝑙) = (𝑣𝑚𝑥, sel) and 𝑡(𝑒𝑐𝑎𝑠𝑒𝑖) = (𝑣𝑚𝑥, c𝑖) for all 0 ≤ 𝑖 < 𝑛 where 𝑛 ≥ 2.

∙ For each circuit 𝑣𝑓 ∈ 𝑉𝑓 , there are arbitrarily many outbound result edges 𝑒𝑖𝑞 ∈ 𝐸
such that 𝑠(𝑒𝑖𝑞) = (𝑣𝑓 , q) where 0 ≤ 𝑖 < 𝑛 for some 𝑛 ∈ N+.

∙ There are no other types of edges other than the ones described above.

∙ There is no cycle in the graph consisting of vertices representing Boolean circuits only.

Due to the above restriction to at most one inbound edge for a single connection type, one
can use a simpler notation to uniquely describe the edges. In particular, an edge 𝑒 ∈ 𝐸 that
satisfies 𝑡(𝑒) = (𝑣, c), 𝑣 ∈ 𝑉 , c ∈ T, can be encoded using the expression 𝑣.c. Finally, the
function 𝜔 : E → N+ represents a mapping that assigns some bit-width to all edges of the
PSG. The mapping can be naturally expanded to be defined over storages too—namely, we
let 𝜔(𝑣𝑠) = 𝜔(𝑣𝑠.d) for all 𝑣𝑠 ∈ 𝑉𝑠. Additionally, it must also hold that 𝜔(𝑒out) = 𝜔(𝑣𝑠.d)
for any (𝑣𝑠, 𝑒out) ∈ 𝑉𝑠 × {𝑒 ∈ E | 𝑠(𝑒) = (𝑣𝑠, q)}.

Since we propose the notion of PSGs to be as simple as possible, it does not take into
account memories and memory ports. Instead, it contains architectural registers, which can
be used to represent particular memory cells. In the chapter, we assume that a memory is
modeled using a finite number of architectural storages representing the cells of the memory.
Memory ports are then modeled using additional logic circuits that select the appropriate
memory cell using its address. In particular, for a memory with 𝑛 addressable units, there
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Figure 9.1: A schematic of a write and a read memory port.

are architectural registers 𝑚0, . . . ,𝑚𝑛−1 ∈ 𝑉𝑎. A read memory port of such a memory is
modeled using a single multiplexer circuit 𝑣𝑟𝑒𝑎𝑑 ∈ 𝑉𝑚𝑥 connected to each of the registers
representing memory units—for each 𝑚𝑖, 0 ≤ 𝑖 < 𝑛, there is an edge 𝑒 = 𝑣𝑟𝑒𝑎𝑑.c𝑖 connecting
a multiplexer case with the corresponding memory unit 𝑠(𝑒) = (𝑚𝑖, q). The selector edge
𝑣𝑟𝑒𝑎𝑑.sel then represents a memory address and 𝑣𝑟𝑒𝑎𝑑.q represents the data-out connection
of the memory port. A write memory port is modeled by 𝑛 circuits used to enable writing
to a given memory-cell 𝑚𝑖, 0 ≤ 𝑖 < 𝑛. Each of these circuits implements a Boolean function
(𝑠𝑒𝑙 = 𝑖) ∧ 𝑒𝑛, 0 ≤ 𝑖 < 𝑛, where 𝑠𝑒𝑙 represents a memory port address and 𝑒𝑛 enables
writing to the memory. A schematic of a write and a read memory port is depicted in
Fig. 9.1.

9.1.2 Transition Systems Induced by PSGs

Let B = {0, 1} be the set of Boolean values, and let B𝑛 denote the set of bit-vectors of
size 𝑛 ≥ 1. A PSG 𝐺 = (𝑉,E , 𝑠, 𝑡, 𝜔) induces a (finite) transition system (C , →˓) where
C =

⨂︀
𝑣∈𝑉𝑠

B𝜔(𝑣) is the set of configurations of 𝐺 and →˓ ⊆ C ×C is its transition relation
(defined later in this section). We use 𝑐[𝑣𝑠] to denote the bit-vector value of the register
𝑣𝑠 ∈ 𝑉𝑠 in a configuration 𝑐 ∈ C . We abuse the notation and write 𝑐[𝑒] to denote the value
transferred over an edge 𝑒 ∈ E in the configuration 𝑐 as well. Given an edge 𝑒 ∈ E such
that 𝑠(𝑒) = (𝑣𝑓 , q) where 𝑣𝑓 ∈ 𝑉𝑓 is a circuit computing a function fn(𝑎0, . . . , 𝑎𝑛−1), 𝑛 ∈ N,
the value of 𝑐[𝑒] can be recursively expressed as 𝑐[𝑒] = fn(𝑐[𝑒𝑎0 ], . . . , 𝑐[𝑒𝑎𝑛−1 ]) where 𝑒𝑎𝑖 ∈ E ,
0 ≤ 𝑖 < 𝑛, corresponds to the edge of the 𝑖-th parameter of the function fn. In the case
that an edge 𝑒 ∈ E is an outbound edge of a storage 𝑣𝑠 ∈ 𝑉𝑠, i.e., 𝑠(𝑒) = (𝑣𝑠, q), we let
𝑐[𝑒] = 𝑐[𝑣𝑠].

For each storage 𝑣𝑠 ∈ 𝑉𝑠 of a bit-width 𝑚, 𝑚 ≥ 1, we assume the standard next-state
function 𝑓next𝑣𝑠 : B(2·𝑚+2) → B𝑚 where the storage 𝑣𝑠 is written a value transferred over the
𝑣𝑠.d edge iff the 𝑣𝑠.rst edge transfers “0” and 𝑣𝑠.en transfers “1” in the given configuration.
Next, the value of the storage 𝑣𝑠 is nullified if the 𝑣𝑠.rst edge transfers “1”. In the following,
we will refer to such a transition as storage clearing. Finally, the storage 𝑣𝑠 keeps the same
value if both 𝑣𝑠.en and 𝑣𝑠.rst transfer the value of “0”. This will be referred as storage
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stalling in the following explanation. When put together, the next state function 𝑓𝑛𝑒𝑥𝑡𝑣𝑠 can
be formally defined as follows:

𝑓next𝑣𝑠 (curr ,new , en, rst) :=

⎧⎪⎨⎪⎩
curr en = 0 ∧ rst = 0,

new en = 1 ∧ rst = 0,

0 otherwise.

Then, the relation →˓ contains a transition 𝑐 →˓ 𝑐′ iff 𝑐′[𝑣𝑠] = 𝑓𝑛𝑒𝑥𝑡𝑣𝑠 (𝑐[𝑣𝑠], 𝑐[𝑣𝑠.d], 𝑐[𝑣𝑠.en],
𝑐[𝑣𝑠.rst]) for all 𝑣𝑠 ∈ 𝑉𝑠.

Given 𝑘 > 1 and vertices 𝑣1, 𝑣𝑘 ∈ 𝑉 of a PSG, a walk from 𝑣1 to 𝑣𝑘 is an alternating
sequence of vertices and edges ⟨𝑣1, 𝑒1, 𝑣2, . . . , 𝑒𝑘−1, 𝑣𝑘⟩ where 𝑣2, ..., 𝑣𝑘−1 ∈ 𝑉 , 𝑒1, ..., 𝑒𝑘−1 ∈
𝐸, and every two subsequent vertices are incident with the edge listed between them, i.e.,
𝑠(𝑒𝑖) = (𝑣𝑖, ci), 𝑡(𝑒𝑖) = (𝑣𝑖+1, ci+1) for each 1 ≤ 𝑖 < 𝑘 and c1, ..., ck ∈ T. A path from 𝑣1 to
𝑣𝑘 is a walk where no vertex appears twice, i.e., 𝑖 ̸= 𝑗 ⇒ 𝑣𝑖 ̸= 𝑣𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑘.

Since our approach builds on analysing conditions that hold in certain stages of the
execution of a given instruction, we now introduce a notion of edge and path conditions.
An edge condition is a pair (𝑒, 𝑏), denoted 𝑒 𝑏, meaning that the edge 𝑒 ∈ E transfers some
value 𝑏 ∈ B𝜔(𝑒). By E, we denote the set of all such edge conditions. For each multiplexer
𝑣𝑚𝑥 ∈ 𝑉𝑚𝑥, we define a mapping 𝜎𝑣𝑚𝑥 : 𝐸 → E that captures the edge condition that must
hold over the multiplexer’s selector edge 𝑣𝑚𝑥.sel for the data on the 𝑖-th inbound-case edge
𝑣𝑚𝑥.c𝑖 to be propagated to the multiplexer’s outbound edge 𝑣𝑚𝑥.q. In particular,

𝜎𝑣𝑚𝑥(𝑣𝑚𝑥.c𝑖) := 𝑣𝑚𝑥.sel bin𝜔(𝑣𝑚𝑥.sel)(𝑖)

where bin𝑛 : Z → B𝑛 is the standard two’s complement encoding of a decimal value on
𝑛 bits. Further, we define a mapping 𝛾 : E → 2𝐶 that assigns each edge condition (𝑒  
𝑏) ∈ E the set of configurations from 𝐶 in which the edge 𝑒 transfers the value 𝑏, i.e.,
𝛾(𝑒  𝑏) := {𝑐 ∈ C | 𝑐[𝑒] = 𝑏}. Given a set 𝐾 ⊆ E, we also use the point-wise extension
𝛾(𝐾) :=

⋂︀
𝑘∈𝐾 𝛾(𝑘) of 𝛾.

9.1.3 Data and Control Hazards

Hazards in the instruction pipeline of central processing units (CPUs) are problems caused
by inadequate synchronisation of earlier and later instructions running concurrently through
the pipeline that may cause potential corruption of the data used by the instructions,
with some result of the computation that referred to such data eventually propagated to
a programmer-visible storage [108]. Three common types of hazards are data hazards,
control hazards, and structural hazards. In this thesis, we will further focus on the first two
types of the hazards and on CPU designs that do not use out-of-order execution. We will
now give informal definitions of each of the considered hazard types, which we will later
formalize in Section 9.4.

Definition 9. A read-after-write (RAW) data hazard is a scenario in which a later-started
instruction uses data supposed to be produced by an earlier-started instruction, but the
earlier instruction has not yet managed to proceed far enough in the pipeline to write
the data into the storage used by the later instruction. The later instruction then stores
a potentially wrong result of its execution, obtained by dealing with obsolete data, into
some programmer-visible storage.
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Definition 10. A write-after-read (WAR) data hazard is a scenario in which some data that
should be used by an earlier-started instruction are overwritten by a later-started instruction
before the earlier instruction manages to read the data. The earlier instruction then stores
a potentially wrong result of its execution, obtained by dealing with data seemingly coming
from the future, into some programmer-visible storage.

Definition 11. A write-after-write (WAW) data hazard is a scenario in which an earlier-
started instruction overwrites the result of a later-started instruction that is stored in some
programmer-visible storage, which then ends up containing obsolete data.

Definition 12. A control (CTL) hazard is a scenario where an earlier-started control-flow
instruction changes the flow of the control, but some later, speculatively-started instruction
manages to store some data into a programmer-visible storage.

In in-order execution designs, the above specified hazards are eliminated by pipeline
stalling and/or operand forwarding. For pipeline stalling, it is necessary for a processor to
be equipped with a control logic that determines whether a hazard could/will occur. If such
a situation is detected, the control logic inserts no-operation (NOP) instruction, sometimes
called bubble, into the pipeline. Therefore, before the later instruction from the pair of
instructions which would cause the hazard executes, the earlier one will have sufficient time
to proceed far enough in the pipeline so that the hazard does not happen.

In the case of operand forwarding, additional (redundant) data-paths are introduced
into a processor design. These data-paths are aimed to provide an option to propagate
partially computed data1 from an earlier instruction to a later one in order to minimize
the number of NOP instructions that would otherwise have to be inserted using the above
mentioned stalling technique.

9.2 The Proposed Approach to Hazard Detection
Our approach for verifying that the pipeline logic prevents hazards consists of the follow-
ing steps: (i) a simple data-flow analysis intended to distinguish particular stages of the
pipeline, (ii) a consistency check to make sure that the flow logic guarantees an in-order
execution of instructions through the identified pipeline stages, (iii) a static analysis deriv-
ing constraints over data-paths of instructions that can potentially cause a pipeline hazard,
(iv) generation of a parametric system modelling mutual interactions between potentially
conflicting instructions allowed by the derived constraints, and (v) an analysis of the con-
structed parametric system to see whether the identified interactions may lead to a hazard.

We assume the processor under verification to be represented using a PSG, which can
be easily obtained from a description of the processor on the register transfer level (RTL)
written in common hardware description languages, such as VHDL or Verilog.

Example 1. Throughout the following sections, we will be illustrating the different steps
of our approach on a running example depicted in Fig. 9.2. The figure shows a PSG
describing a part of a simple microprocessor with an accumulator architecture with the
following architectural storages: 𝑋 (a memory index register), 𝐴 (an accumulator), PC
(the program counter), Prog 𝑖 (program memory cells), and Mem𝑗 (data memory cells)
where 0 ≤ 𝑖 ≤ ℓ, 0 ≤ 𝑗 ≤ 𝑘 and 𝑘, resp. ℓ, are the sizes of the memories. The depicted
part of the CPU is used when executing arithmetic and load/store instructions. In order

1The data that have not been written to its final storage.
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to keep the PSG easily readable, types of connections are shown for architectural storages
and case-c edges of multiplexers only. Also, since enable (i.e., “en”) and clear (i.e., “rst”)
connections for pipeline registers2 are common for each stage, they are left out up to the
ones that are required in the further explanation.

In the CPU, the computation starts in Stage 1 by using the content of the program
counter PC to address the 𝑖th cell of the program memory Prog 𝑖. An instruction fetched
from the program memory cell is stored into the storage IdIr that represents the so-called
fetch register. The fetched instruction word in IdIr is then decoded by an instruction de-
coder in Stage 2. Boolean circuits that belong to the decoder are shown in yellow. Next,
an address stored in the index register is used to fetch data from the 𝑗th cell of the data
memory Mem𝑗 in Stage 3. Optionally, the index register can be auto-incremented. The
auto-incrementation logic is a feature allowing for an early incrementation of the value of
a register for memory addressing just before or right after it is read. We then speak about
the so-called pre-/post-increment, respectively. The auto-incrementation feature usually
brings a more efficient execution of sequences of instructions accessing the processor’s mem-
ory (for instance, when computing over long arrays or other juxtaposed data). This speed
up results from removing a need of otherwise required pipeline stalls, but it also introduces
potential WAW and WAR hazards that must be handled properly. Finally, in Stage 4, the
decoded opcode part of the instruction is used to determine the type of an ALU operation
(with the ALU itself colored in purple) and to select destination storages by setting their
enable connection “en” to logical “1”.

The Boolean circuit Flow in Fig. 9.2 represents the flow logic of the second pipeline
stage. This logic is responsible for dealing with WAR hazards on the index register 𝑋. The
flow logic implements the function

Flow(IncX ,OfWrMem) := ¬IncX ∨ ¬OfWrMem.

In case a later instruction wants to perform an auto-increment of the index register 𝑋 while
an earlier instruction is going to use the content of 𝑋 for a memory write, the flow logic
uses the enable “en” and clear “rst” signals of pipeline registers to insert a pipeline bubble
between the instructions into Stage 3. ▷

9.3 Preprocessing a Processor Structure Graph
This section describes the first two steps of the proposed approach: namely, the data-flow
analysis identifying pipeline stages and the pipeline consistency check ensuring a proper
in-order execution of instructions within the pipeline.

9.3.1 Data-Flow Analysis Discovering Pipeline Stages

The input of the proposed verification method consists of a PSG and a list of its architectural
registers, including the program counter. On this input, the method starts by a simple data
flow analysis whose goal is to compute the number of pipeline stages. We then map storages,
logic functions, and edges of the PSG into the pipeline stages. We define a pipeline stage
as the sub-graph of the PSG that is responsible for executing a single-cycle step of an
instruction. The pipeline stage that an edge or a vertex (representing a storage or circuit)
of a PSG belongs to is given by the minimum number of cycles needed to propagate data

2For a full list of pipeline registers, see Table 9.1 in Section 9.3.1.
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Table 9.1: Storages of the CPU from Fig. 9.2 and the corresponding pipeline stages.

Storage Stage Write stages Read stages Pivot
𝜙 𝜙wr 𝜙rd

PC 1 {1, 2, 3, 4} {1, 2} –
Prog 𝑖 1 ∅ {2} –
𝑋 3 {2, 3, 4} {3, 4, 5} –
𝐴 5 {4} {1, 2, 3, 4, 5} –
Mem𝑗 5 {4} {4} –

IdIr 2 {1, 2, 3, 4} {1, 2, 3} X

OfJmp 3 {2, 3, 4} {1, 2, 3, 4} X

OfWrA 3 {2, 3, 4} {4} ×
OfWrX 3 {2, 3, 4} {1, 2, 3, 4} X

OfAlu 3 {2, 3, 4} {1, 2, 3, 4} X

OfOp 3 {2, 3, 4} {1, 2, 3, 4} X

OfWrMem 3 {2, 3, 4} {1, 2, 3, 4} X

ExJmp 4 {3, 4} {1, 2, 3, 4} X

ExWrA 4 {3, 4} {5} ×
ExWrX 4 {3, 4} {1, 2, 3} X

ExAlu 4 {3, 4} {1, 2, 3, 5} X

ExOp 4 {3, 4} {1, 2, 3, 5} X

ExMem 4 {3, 4} {3, 5} X

ExWrMem 4 {3, 4} {1, 2, 3, 5} X

from the input of the program counter to the edge or the output of the given vertex,
respectively. Hence, as a particular case, the program counter itself belongs to Stage 1.

The data-flow analysis that we use starts from the program counter and its Stage 1 and
propagates the so-far computed stages forward through the PSG. If several stage values
are propagated to a single vertex or edge, the minimum is taken. Whenever a propagated
stage value passes a storage, it is incremented by one. This analysis gives us a mapping
𝜙 : 𝑉 ∪ 𝐸 → S, S = {1, . . . , 𝑛}, 𝑛 ≥ 1, which maps graph’s vertices and edges to pipeline
stages.

Subsequently, we derive the so-called write stage mapping 𝜙wr : 𝑉 ∪𝐸 → 2S that maps
each vertex or edge to the set of stages that directly influence its value. Namely, we include
into 𝜙wr(𝑥) the stage of every pipeline storage 𝑣𝑝 ∈ 𝑉𝑝 from which there is a path to 𝑥
that does not pass through any further storage from 𝑉𝑝. Likewise, we derive the read stage
mapping 𝜙rd : 𝑉 ∪ 𝐸 → 2S for each vertex or edge that describes which stages are directly
influenced by its value. In particular, we include into 𝜙rd(𝑥) the stage of every pipeline
storage 𝑣𝑝 ∈ 𝑉𝑝 to which there is a path from 𝑥 that does not pass through any other
storage from 𝑉𝑝.
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Pipeline stages of the storages from the PSG of Fig. 9.2 and the corresponding read and
write stages, computed as described above, are shown in Table 9.1. (The notion of pivots
will be introduced later on.)

9.3.2 Pipeline Consistency Checking

The second step of our approach is consistency checking which checks whether the flow logic
assures a correct in-order execution of all instructions through all the identified pipeline
stages. This means that all instructions which are fetched from the program memory
should flow from the first stage to the last stage while maintaining their execution order
with no loss or duplication of an instruction. To check the above, we verify whether the flow
logic obeys a set of rules which express how the control connections (en, rst) of storages
in adjacent pipeline stages should be set. In particular, we use a strengthened variant of
the rules proposed in [98]. The rules have been strengthened since (as we will see later
on) our approach builds on an assumption that, if some pipeline stage is stalled, then all
predecessor stages have to be stalled as well. This means that our approach rules out some
extreme ways of pipeline implementation allowed by the original rules. An example of such
a situation is an optimization of the execution during stage stalling when an instruction
preceded by a series of NOP instructions is allowed to proceed to the next stage in order to
increase the throughput.

For the following, assume a transition system (C , →˓) induced by the PSG being verified.
We introduce mappings st , rst : 𝑉𝑝 → 2𝐶 defined as

st(𝑣𝑝) := 𝛾({𝑣𝑝.en 0, 𝑣𝑝.rst 0}),
rst(𝑣𝑝) := 𝛾(𝑣𝑝.rst 1).

Intuitively, for any storage 𝑣𝑝 ∈ 𝑉𝑝, st(𝑣𝑝) and rst(𝑣𝑝) are the sets of configurations in which
𝑣𝑝 is stalled or cleared, respectively. The pipeline consistency rules that we check are then
the following:

∙ Rule 1 : If some pipeline register of a stage 𝑠 ∈ S is stalled, then all pipeline storages
of the Stage 𝑠 have to be stalled, i.e., for all 𝑣𝑝, 𝑣′𝑝 ∈ 𝑉𝑝:

𝜙(𝑣𝑝) = 𝜙(𝑣′𝑝)⇒ st(𝑣𝑝) ⊆ st(𝑣′𝑝).

The rule follows the idea that an instruction carried by a pipeline stage cannot be
fragmented. The rule also reflects one of the fundamental assumptions about pipe-
lined execution from [98]: namely, at any given time, an instruction is always in
a single pipeline stage only. As a corollary, by simply swapping 𝑣𝑝 and 𝑣′𝑝, one can
derive a stronger statement 𝜙(𝑣𝑝) = 𝜙(𝑣′𝑝)⇒ st(𝑣𝑝) = st(𝑣′𝑝).

∙ Rule 2 : If some pipeline register in a Stage 𝑠 ∈ S∖{max(S)} is stalled, then all pipeline
storages of the Stage 𝑠+ 1 have to be stalled or cleared, i.e., for all 𝑣𝑝, 𝑣′𝑝 ∈ 𝑉𝑝:

𝜙(𝑣𝑝) = 𝜙(𝑣′𝑝)− 1⇒ st(𝑣𝑝) ⊆ st(𝑣′𝑝) ∪ rst(𝑣′𝑝).

This rule is a rephrased version of Equation (15) from [98] and prevents duplication
of an instruction.

∙ Rule 3 : If some pipeline register in a Stage 𝑠 ∈ S ∖ {1} is stalled, then all pipeline
storages of the Stage 𝑠− 1 have to be stalled, i.e., for all 𝑣𝑝, 𝑣′𝑝 ∈ 𝑉𝑝:

𝜙(𝑣𝑝) = 𝜙(𝑣′𝑝) + 1⇒ st(𝑣𝑝) ⊆ st(𝑣′𝑝).
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This rule is a rephrased version of Equation 16 from [98] and prevents an instruction
to be lost.

∙ Rule 4 : If some pipeline register in a Stage 𝑠 ∈ S is cleared, then all pipeline storages
of the Stage 𝑠 have to be cleared, i.e., for all 𝑣𝑝, 𝑣′𝑝 ∈ 𝑉𝑝:

𝜙(𝑣𝑝) = 𝜙(𝑣′𝑝)⇒ rst(𝑣𝑝) ⊆ rst(𝑣′𝑝).

Similarly to Rule 1, this rule prevents fragmentation of an instruction and it is a part
of the basic assumptions about pipelined execution mentioned in [98].

We check the above rules using an SMT solver [21, 100] for the bit-vector logic. To
convert the rules into the bit-vector logic, we first define an operator ⋆ that maps edges of
a PSG to variables of the bit-vector logic (BVL) such that 𝑒⋆1 = 𝑒⋆2 ⇔ 𝑠(𝑒1) = 𝑠(𝑒2) for each
𝑒1, 𝑒2 ∈ 𝐸. Intuitively, edges with the same source must have the same value. Then, for
any 𝑒 ∈ 𝐸, we define a BVL formula 𝜓(𝑒) that encodes how the value transmitted over 𝑒 is
computed from values stored in storages. The formula 𝜓(𝑒) is recursively defined as

𝜓(𝑒) :=

⎧⎨⎩𝑒⋆ = 𝑔(𝑒⋆1, ..., 𝑒
⋆
𝑚) ∧

𝑚⋀︀
𝑖=1

𝜓(𝑒𝑖) 𝑠(𝑒) = (𝑣, q) ∧ 𝑣 ∈ 𝑉𝑓 ,

true otherwise

where 𝑔 denotes the Boolean function computed by the circuit 𝑣 ∈ 𝑉𝑓 .
Now, the inclusion test st(𝑣𝑝) ⊆ st(𝑣′𝑝) from Rule 1 can be reduced to checking validity

of the following formula:

Φ(𝑣𝑝) := ( (𝜓(𝑣𝑝.en) ∧ 𝜓(𝑣𝑝.rst) ∧ 𝜓(𝑣′𝑝.en) ∧ 𝜓(𝑣′𝑝.rst))
⇒ ( (𝑣𝑝.en

⋆ = 0 ∧ 𝑣𝑝.rst⋆ = 0)⇒
(𝑣′𝑝.en

⋆ = 0 ∧ 𝑣′𝑝.rst⋆ = 0) ) ).

Intuitively, Φ(𝑣𝑝) says that if the values of 𝑣𝑝.en, 𝑣𝑝.rst, 𝑣′𝑝.en, and 𝑣′𝑝.rst are computed
according to the given flow logic, then if 𝑣𝑝 is stalled, 𝑣′𝑝 is stalled too. Instead of check-
ing validity of Φ(𝑣𝑝), one can check unsatisfiability of the negation of the formula, i.e.,
¬𝑠𝑎𝑡(¬Φ(𝑣𝑝)). Moreover, as ¬Φ(𝑣𝑝) = 𝜓(𝑣𝑝.en)∧𝜓(𝑣𝑝.rst)∧𝜓(𝑣′𝑝.en)∧𝜓(𝑣′𝑝.rst)∧𝑣𝑝.en⋆ =
0 ∧ 𝑣𝑝.rst⋆ = 0 ∧ (𝑣′𝑝.en

⋆ = 1 ∨ 𝑣′𝑝.rst⋆ = 1), the check ¬𝑠𝑎𝑡(¬Φ(𝑣𝑝)) can be replaced by
the following two simpler checks:3

¬sat

⎛⎜⎜⎝
𝜓(𝑣𝑝.en) ∧ 𝑣𝑝.en

⋆ = 0 ∧

𝜓(𝑣𝑝.rst) ∧ 𝑣𝑝.rst
⋆ = 0 ∧

𝜓(𝑣′𝑝.en) ∧ 𝑣′𝑝.en
⋆ = 1

⎞⎟⎟⎠ (9.1)

¬sat

⎛⎜⎜⎝
𝜓(𝑣𝑝.en) ∧ 𝑣𝑝.en

⋆ = 0 ∧

𝜓(𝑣𝑝.rst) ∧ 𝑣𝑝.rst
⋆ = 0 ∧

𝜓(𝑣′𝑝.rst) ∧ 𝑣′𝑝.rst
⋆ = 1

⎞⎟⎟⎠ (9.2)

Hence, Rule 1 can be checked by applying the checks from Equations 9.1 and 9.2 to all
𝑣𝑝, 𝑣

′
𝑝 ∈ 𝑉𝑝 such that 𝜙(𝑣𝑝) = 𝜙(𝑣′𝑝).

Rules 2–4 can be checked in a very similar way as Rule 1.
3Note that, in Equation 9.1, we may remove the 𝜓(𝑣′𝑝.rst) conjunct since the constraint 𝑣′𝑝.rst⋆ = 1 is

not present, and likewise with 𝜓(𝑣′𝑝.en) in Equation 9.2.
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9.4 Static Detection of Potential Pipeline Hazards
According to Definitions 9–12, a pipeline hazard (of any of the discussed kinds) occurs when
two instructions access the same architectural storage and at least one of the accesses is
a write. We will further use the term spoiler whenever referring to the writing instruction
causing the hazard. The other involved instruction will then be called a victim instruction.
Finally, we will speak about a hazard case when referring to the pair formed by a spoiler
and a victim instruction.

In this section, we will first focus on identifying a finite set of hazard cases potentially
causing hazards in a given processor. For that, we will use a static hazard analysis examining
the PSG and pipeline stage mappings 𝜙, 𝜙wr, 𝜙rd determined by the data-flow analysis from
Section 9.3.1. In order to be able to describe a spoiler-victim pair forming a hazard case,
we will introduce several auxiliary concepts with the so-called minimal transfer execution
and maximal store execution being the most important ones.

We begin by introducing a notion representing a generic concept of a data transfer
between two vertices within a given PSG. Naturally, each such transfer must conform to
the 𝜙wr and 𝜙rd mappings. We first formalize the notion of data transfers in a broader form
in Definition 13, which is narrowed later on in Definition 14. In particular, Definition 13
is broader in the sense that it may describe data transfers that can only be achieved when
multiple instructions are involved and some of the instructions pass the data back to lower
stages of the pipeline where they are processed by instruction(s) that entered the pipeline
later. This would mean that a spoiler itself (and likewise a victim) could consist of multiple
instructions. Dealing with such situations is, of course, interesting, but we will restrict
ourselves to the case of the spoiler and victim being single instructions each, generating the
so-called forward executions (Definition 14).

Definition 13. Given a walk 𝜋 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑘⟩ for some 𝑘 ≥ 3 in a PSG 𝐺, 𝑝1,
𝑝3, . . . , 𝑝𝑘 ∈ 𝑉 , 𝑝2, 𝑝4, . . . , 𝑝𝑘−1 ∈ 𝐸, an execution plan is any valuation 𝜏 : {1, . . ., 𝑘} → S
s.t. 𝑝𝑖 ∈ 𝑉𝑠 ⇒ 𝜏(𝑖)− 1 ∈ 𝜙wr(𝑝𝑖) for all 1 < 𝑖 ≤ 𝑘.

Intuitively, an execution plan gives a sequence of stages in which particular vertices are
written during a data transfer. Hence, taking into account the unit delay of writing, the
value written to a vertex 𝑝𝑖 is obtained from a value computed in the stage 𝜏(𝑖)− 1 (with
the first element of the walk being, of course, special and excluded from this requirement).
An execution walk is then any walk in 𝐺 with an execution plan. We define an execution as
a pair (𝜋, 𝜏) consisting of an execution walk 𝜋 and an execution plan 𝜏 . We denote the set
of all such pairs as X. In the following explanation, we will also use shortcuts 𝜏 fst and 𝜏 lst

in order to refer to the valuation of the first and last element of the walk 𝜋, respectively,
i.e., 𝜏 fst = 𝜏(1) and 𝜏 lst = 𝜏(𝑘).

Example 2. Consider the PSG 𝐺 depicted in Fig. 9.2. A pair (𝜋1, 𝜏1) s.t. 𝜋1 = ⟨X ,
MxMem.sel, MxMem, ExMem.d, ExMem, MxOp.c0, MxOp, Eq .a0, Eq , MxAlu.c0, MxAlu,
A.d, A⟩ and 𝜏1 = {1X ↦→ 3, 2MxMem.sel ↦→ 3, 3MxMem ↦→ 3, 4ExMem.d ↦→ 3, 5ExMem ↦→ 4,
6MxOp.c0 ↦→ 4, 7MxOp ↦→ 4, 8Eq.a0 ↦→ 4, 9Eq ↦→ 4, 10MxAlu.c0 ↦→ 4, 11MxAlu ↦→ 4, 12A.d ↦→ 4,
13A ↦→ 5} is an execution in 𝐺 describing one of the possible data transfers from the
storage X to the storage A. Note that we indexed the left-hand sides of the mappings by
the corresponding storages to make the mappings more readable.

Another example of an execution is a pair (𝜋2, 𝜏2) where 𝜋2 = ⟨ExJmp, MxJmp.sel,
MxJmp, MxPC .sel, MxPC , PC .d, PC , MxProg .sel, MxProg , IdIr .d, IdIr⟩ and 𝜏2 =
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{1ExJmp ↦→ 4, 2MxJmp.sel ↦→ 4, 3MxJmp ↦→ 4, 4MxPC .sel ↦→ 4, 5MxPC ↦→ 4, 6PC .d ↦→ 4,
7PC ↦→ 5, 8MxProg.sel ↦→ 1, 9MxProg ↦→ 1, 10IdIr .d ↦→ 1, 11IdIr ↦→ 2}. ▷

To narrow our selection only to executions that are feasible by a single instruction,
one needs to only think of executions tied with execution plans where stages form a non-
decreasing sequence. Intuitively, a single instruction in the pipeline can only move forward
or stay in the same stage. This leads us to the definition given next.

Definition 14. A forward execution is a special type of execution (⟨𝑝1, 𝑝2, . . . , 𝑝𝑘⟩, 𝜏) ∈ X,
𝑘 ≥ 3, where the following restrictions hold: (i) 𝑝𝑖 ∈ 𝑉𝑠 ⇒ 𝜏(𝑝𝑖) = 𝜏(𝑝𝑖−1) + 1 and
(ii) 𝑝𝑖 ∈ 𝑉𝑓 ∪ 𝐸 ⇒ 𝜏(𝑝𝑖) = 𝜏(𝑝𝑖−1) for all 1 < 𝑖 ≤ 𝑘.

Clearly, if any of the conditions (i) or (ii) is not met, there could not be any single instruction
capable of a data transfer described by the execution.

Example 3. Consider the executions from Example 2. The execution (𝜋1, 𝜏1) is a forward
execution while (𝜋2, 𝜏2) is not since 𝜏2(8MxProg.sel) ̸= 𝜏2(7

PC ). ▷

For further explanation, it is important to be able to identify a storage from which the
transferred data can be passed to another (later) instruction. Such an action occurs only
if there exists a path leading from a storage in a higher stage to a storage that belongs to
a lower one. This is formalized in the next definition.

Definition 15. A pipeline storage 𝑣 ∈ 𝑉𝑝 is a pivot if there exist a stage 𝑠𝑟 ∈ 𝜙rd(𝑣) s.t.
𝑠𝑟 ≤ 𝜙(𝑣).

We also need to establish a notion of a stage that can be cleared without the previous
stage being stalled. Such a stage can be used to nullify the state of a partially executed
instruction.

Definition 16. A stage 𝑠 ∈ S is independently clearable if there exist pipeline storages
𝑣𝑝, 𝑣

′
𝑝 ∈ 𝑉𝑝 s.t. 𝜙(𝑣𝑝) = 𝑠 = 𝜙(𝑣′𝑝) + 1 and rst(𝑣𝑝) ∩ st(𝑣′𝑝) ̸= ∅ where st and rst are the

mappings defined in Section 9.3.2.

We decide whether a stage satisfies the above given constrains for being independently
clearable in a similar way to Rules 1–4. More precisely, an SMT solver performs the
following check in this case:

sat

⎛⎝ 𝜓(𝑣𝑝.rst) ∧ 𝜓(𝑣′𝑝.en) ∧ 𝜓(𝑣′𝑝.rst)

𝑣𝑝.rst
⋆ = 1 ∧ (𝑣′𝑝.en

⋆ = 1 ∨ 𝑣′𝑝.rst
⋆ = 1)

⎞⎠ (9.3)

The above check can be further decomposed into two simpler checks while it suffices that
at least one is satisfiable:

sat

⎛⎝ 𝜓(𝑣𝑝.rst) ∧ 𝑣𝑝.rst
⋆ = 1

𝜓(𝑣′𝑝.en) ∧ 𝑣′𝑝.en
⋆ = 1

⎞⎠ (9.4)

sat

⎛⎝ 𝜓(𝑣𝑝.rst) ∧ 𝑣𝑝.rst
⋆ = 1

𝜓(𝑣′𝑝.rst) ∧ 𝑣′𝑝.rst
⋆ = 1

⎞⎠ (9.5)

In the next step, we define an execution that can be performed by a single instruction
and which may influence the value stored in some storage.
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Definition 17. A store execution is a forward execution (⟨𝑣1, 𝑒1, . . . , 𝑒𝑘−1, 𝑣𝑘⟩, 𝜏) for some
𝑘 > 0, 𝑣𝑘 ∈ 𝑉𝑠 so that 𝑣2, . . . , 𝑣𝑘−1 ̸∈ 𝑉𝑠. We also define a maximal store execution as
a store execution that is not a suffix of any other store execution.

As a final step, we define an execution that can be performed by a single instruction and
which may influence the data stored in an architectural storage 𝑣𝑎 ∈ 𝑉𝑎 by reading some
data from a (potentially different) storage 𝑣 ∈ 𝑉𝑠 and transferring them to the storage 𝑣𝑎.

Definition 18. A transfer execution is a forward execution (⟨𝑣1, 𝑒1, . . . , 𝑒𝑘−1, 𝑣𝑘⟩, 𝜏) for
some 𝑘 > 0, 𝑣𝑘 ∈ 𝑉𝑠 that satisfies the following two properties: (i) The storage 𝑣𝑘 satisfies
one of the following: (a) it is an architectural storage 𝑣𝑘 ∈ 𝑉𝑎, (b) it is a pipeline storage
𝑣𝑘 ∈ 𝑉𝑝 s.t. 𝑡(𝑒𝑘−1) = (𝑣𝑘, rst) and 𝜙(𝑣𝑘) is an independently clearable stage, or (c) the
storage 𝑣𝑘 ∈ 𝑉𝑝 is a pivot s.t. 𝑡(𝑒𝑘−1) = (𝑣𝑘, d). (ii) Moreover, 𝑡(𝑒𝑖) ̸∈ 𝑉𝑝 × {en, rst} for all
1 ≤ 𝑖 < 𝑘. We also define a minimal transfer execution as a transfer execution that does
not contain any prefix that is a transfer execution.

Condition (i-a) is straightforward as the execution affects the architectural storage di-
rectly in this case. Clearing the target pipeline register 𝑣𝑘 ∈ 𝑉𝑝 in an independently
clearable stage as described in Condition (i-b) causes cancellation of any partially executed
instruction in Stage 𝜙(𝑣𝑘). Such an event may indirectly influence any architectural storage
𝑣𝑎 ∈ 𝑉𝑎 that belongs to a stage 𝑠 ≥ 𝜙(𝑣𝑘). Similarly, concerning Condition (i-c), if the tar-
get pipeline register 𝑣𝑘 ∈ 𝑉𝑝 is a pivot, the value read from it—by a later instruction—may
also indirectly influence any architectural storage that the later instruction writes to. Next,
as described by Condition (ii), the transfer execution must not traverse through enable
connections of pipeline registers. Such executions cannot influence the value of any archi-
tectural storage. Their only impact can be that they stall a stage. This also holds for reset
connections of pipeline storages in a stage that is not independently clearable—in this case,
an instruction cannot be lost since the previous stage is always stalled. In such a case, the
pipeline consistency given by Rules 1–4 from Section 9.3.2 assures correct preservation of
all partially executed instructions.

An incorrectly handled pipeline hazard manifests upon the first write of improper data
into some architectural storage of the design. Therefore, it suffices to further deal with
the minimal transfer executions only. We can now formalize the notion of hazard cases in
a unified way for all the different kinds of hazards (restricted to the case when the spoiler
and victim consist of single instructions) as follows. In particular, we represent a hazard case
as a tuple (𝜒sp , 𝜒vi) ∈ X2 where 𝜒sp and 𝜒vi are spoiler and victim executions appropriate
for the concerned kind of hazard. More rigorous descriptions of each considered type of
hazard cases are given in the following definitions.

Definition 19. A RAW hazard case is a tuple (𝜒sp , 𝜒vi) ∈ X2 consisting of a maximal
store execution 𝜒sp = (⟨𝑣sp1 , 𝑒sp1 , . . ., 𝑒𝑘−1 = 𝑣sp𝑘−1.d, 𝑣sp𝑘 = 𝑣⟩, 𝜏sp), 𝑣sp1 ∈ 𝑉𝑠, of a spoiler
instruction and a minimal transfer execution 𝜒vi = (⟨𝑣vi1 = 𝑣, 𝑒vi1 , . . . , 𝑣viℓ ⟩, 𝜏vi) of a victim
instruction where 𝑣 ∈ 𝑉𝑎 ∖ {𝑣𝑝𝑐}, 𝑘, ℓ > 1, and data in the architectural storage 𝑣 can be
read by the victim instruction before they are written by the spoiler, i.e., 𝜏 fst

vi < 𝜏 lst
sp .

Definition 20. A WAR hazard case is a tuple (𝜒sp , 𝜒vi) ∈ X2 consisting of a maximal
store execution 𝜒sp = (⟨𝑣sp1 , 𝑒sp1 , . . ., 𝑒𝑘−1 = 𝑣sp𝑘−1.d, 𝑣sp𝑘 = 𝑣⟩, 𝜏sp), 𝑣sp1 ∈ 𝑉𝑠, of a spoiler
instruction and a minimal transfer execution 𝜒vi = (⟨𝑣vi1 = 𝑣, 𝑒vi1 , . . . , 𝑣viℓ ⟩, 𝜏vi) of a victim
instruction where 𝑣 ∈ 𝑉𝑎 ∖ {𝑣𝑝𝑐}, 𝑘, ℓ > 1, and data in the architectural storage 𝑣 can be
written by the spoiler before they are read by the victim, i.e., 𝜏 lst

sp < 𝜏 fst
vi .
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Definition 21. A WAW hazard case is a tuple (𝜒sp , 𝜒vi) ∈ X2 consisting of a maximal store
execution 𝜒sp = (⟨𝑣sp1 , 𝑒sp1 , . . ., 𝑒

sp
𝑘−1 = 𝑣.d, 𝑣sp𝑘 = 𝑣⟩, 𝜏sp), 𝑣sp1 ∈ 𝑉𝑠, of a spoiler instruction

and a maximal store execution 𝜒vi = (⟨𝑣vi1 , 𝑒vi1 , . . . , 𝑒viℓ−1 = 𝑣.d, 𝑣viℓ = 𝑣⟩, 𝜏vi), 𝑣vi1 ∈ 𝑉𝑠, of
a victim instruction where 𝑣 ∈ 𝑉𝑎 ∖ {𝑣𝑝𝑐}, 𝑘, ℓ > 1, and data into the architectural storage
𝑣 can be written from two different stages. In the following, without a loss of generality
(since the conflicting instructions can always be swapped), we will assume the spoiler to
perform a write operation in an earlier stage, i.e., 𝜏 lst

sp < 𝜏 lst
vi .

One can observe that there is no need to include any minimal transfer execution in the
case of WAW hazard since an error that is caused by the hazard is manifested instantly by
writing an incorrect value to the storage 𝑣.

Definition 22. A CTL hazard case is a tuple (𝜒sp , 𝜒vi) ∈ X2 consisting of a maximal
store execution 𝜒sp = (⟨𝑣sp1 , 𝑒sp1 , . . ., 𝑒𝑘−1 = 𝑣sp𝑘−1.d, 𝑣sp𝑘 = 𝑣𝑝𝑐⟩, 𝜏sp), 𝑣sp1 ∈ 𝑉𝑠, of a spoiler
instruction and a minimal transfer execution 𝜒vi = (⟨𝑣vi1 = 𝑣𝑝𝑐, 𝑒vi1 , . . . , 𝑣viℓ ⟩, 𝜏vi) of a victim
instruction where 𝑘, ℓ > 1, 𝑣pc ̸= 𝑣viℓ and the program counter 𝑣𝑝𝑐 ∈ 𝑉𝑎 is written with data
originating from a source other than auto-increment logic, which we consider to appear in
Stage 1. Therefore, the spoiler must always write from a stage other than the first one, i.e.,
𝜏 lst
sp > 2.

Note that, since the definition of a particular hazard case speaks about storages, their
access stages, and the path along which the problematic data are transferred, it is not
defined for a single concrete instruction only but for an entire class of instructions that
conform to the criteria given by the hazard case. Further, note that the cases when 𝜏 lst

sp =

𝜏 fst
vi for RAW, WAR, and CTL hazards as well as the cases when 𝜏 lst

sp = 𝜏 lst
vi for WAW

hazards are not covered by the above definitions. This is because our approach assumes
correct execution of isolated instructions, which rules such cases out. Such correctness can
be checked separately using, e.g., methods described in [27, 31].

In order to generate the set H of hazard cases, we proceed as follows. First, using results
of the data-flow analysis from Section 9.3.1, we find all storages 𝑣𝑎 ∈ 𝑉𝑎 for which there is
a risk that some hazard situation may be initiated between stages 𝑠1, 𝑠2 ∈ S. The conditions
that must hold for 𝑠1, 𝑠2 differ for different hazard cases. For instance, for RAW hazards,
we need the following conditions to hold: 𝑠1 − 1 ∈ 𝜙wr(𝑣𝑎), 𝑠2 + 1 ∈ 𝜙rd(𝑣𝑎), and 𝑠2 < 𝑠1.
The condition 𝑠2 < 𝑠1 reflects the fact that the needed data are read from 𝑣𝑎 before they
are written into 𝑣𝑎. The rest of the condition reflects that it must be possible to write to 𝑣𝑎
in stage 𝑠1 and read in stage 𝑠2, i.e., it must have a predecessor storage in stage 𝑠1− 1 and
a successor storage in stage 𝑠2+1. The subtraction/addition of 1 is applied due to the unit
write delay that happens between the data are read from the previous storage and written
to 𝑣𝑎 and then between reading the data from 𝑣𝑎 and writing them to the successor storage.
For other kinds of hazards, the conditions are derived from the kind of hazard analogously
as for RAW hazards as shown later on. Second, we find all maximal store executions that
terminate in the storage 𝑣𝑎. Finally, we generate all minimal transfer executions originating
from the 𝑣𝑎 vertex of the given PSG 𝐺.4

The procedure for generating the set H is shown in Alg. 2. The procedure first con-
structs auxiliary sets 𝐴RAW , 𝐴WAR, and 𝐴CTL strictly following the constraints given by
RAW, WAR, and CTL hazard cases (see Definitions 19, 20, and 22). The sets 𝐴RAW ,
𝐴WAR, and 𝐴CTL consist of quintuples characterising suspected hazards. They include the
architectural storage 𝑣𝑎 on which the hazard happens, the target storage 𝑣𝑡 through which

4This step is not necessary in the case of WAW hazard as the error caused by the hazard is immediate.
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the hazard manifests, and three stages: namely, stages 𝑠1 and 𝑠2 in which the conflicting
read/write operations on 𝑣𝑎 happen, and stage 𝑠3 in which the hazard gets manifested. For
WAW hazards, the procedure later on proceeds similarly, but there is no 𝑣𝑡 and 𝑠3 needed
since the hazard manifests immediately upon the second write operation (Definition 21).
The auxiliary sets are then used for finding maximal store and minimal transfer executions
in the PSG. A standard breadth-first search algorithm during which constraints from Defi-
nitions 13–18 are checked on-the-fly can be used to obtain the minimal transfer executions
in 𝐺 for the suspected hazards. Similarly, the procedure may deploy the depth-first search
algorithm while checking constraints from Definitions 13, 14, and 17 in order to find the
maximal store executions.

Algorithm 2 Procedure computing a set of hazard cases H.
Require: A PSG 𝐺 = (𝑉,𝐸, 𝑠, 𝑡, 𝜔), a set 𝑉𝑎 ⊆ 𝑉 of architectural storages, a program

counter 𝑣pc ∈ 𝑉𝑎, a set 𝑉𝑝 ⊆ 𝑉 of pipeline registers, 𝑉𝑎 ∩ 𝑉𝑝 = ∅, a set 𝑉pivot ⊆ 𝑉𝑝 of
pivots, and a set 𝑆ic ⊆ S of independently clearable stages.

Ensure: A set H ⊆ X× X of hazard cases in the CPU encoded by 𝐺.
1: 𝑉𝑡 := 𝑉𝑎 ∪ 𝑉pivot ∪ {𝑣 ∈ 𝑉𝑝 | 𝜙(𝑣) ∈ 𝑆ic}
2: Let A denote 𝑉𝑎 × N× N× 𝑉𝑡 × N
3: 𝐴RAW := {(𝑣𝑎, 𝑠1, 𝑠2, 𝑣𝑡, 𝑠3) ∈ A | 𝑠1−1 ∈ 𝜙wr(𝑣𝑎) ∧ 𝑠2+1 ∈ 𝜙rd(𝑣𝑎)∧s2 < s1∧𝑠3−1 ∈
𝜙wr(𝑣𝑡) ∧ 𝑠2 ≤ 𝑠3}

4: 𝐴WAR := {(𝑣𝑎, 𝑠1, 𝑠2, 𝑣𝑡, 𝑠3) ∈ A | 𝑠1−1 ∈ 𝜙wr(𝑣𝑎) ∧ 𝑠2+1 ∈ 𝜙rd(𝑣𝑎)∧s1 < s2∧𝑠3−1 ∈
𝜙wr(𝑣𝑡) ∧ 𝑠2 ≤ 𝑠3}

5: 𝐴CTL := {(𝑣pc , 𝑠1, 1, 𝑣𝑡, 𝑠3) ∈ A | 𝑠1 − 1 ∈ 𝜙wr(𝑣𝑎) ∧ 2 ∈ 𝜙rd(𝑣pc) ∧ s1 > 2 ∧ 𝑠3 − 1 ∈
𝜙wr(𝑣𝑡) ∧ 𝑣pc ̸= 𝑣𝑡 ∧ 𝑠3 > 1}

6: 𝐴 := 𝐴RAW ∪𝐴WAR ∪𝐴CTL

7: H := ∅
8: for (𝑣𝑎, 𝑠1, 𝑠2, 𝑣𝑡, 𝑠3) ∈ 𝐴 do
9: 𝑋mse := { (𝜋, 𝜏) ∈ X | 𝜋 = ⟨𝑣1, 𝑒1, . . . , 𝑒𝑘−1, 𝑣𝑘⟩ ∧ ({𝑣𝑘} × N × N × 𝑉𝑡 ×

N) ∩ 𝐴 ̸= ∅ ∧ 𝑡(𝑒𝑘−1) = (𝑣𝑘, d) ∧ 𝑣2, . . . , 𝑣𝑘−1 ̸∈ (𝑉𝑎 ∪ 𝑉𝑝) ∧ 𝜏 lst = 𝑠1 ∧
(𝜋, 𝜏) is a maximal store execution }

10: 𝑋mte := { (𝜋, 𝜏) ∈ X | 𝜋 = ⟨𝑣1, 𝑒1, . . . , 𝑒𝑘−1, 𝑣𝑘⟩ ∧ ({𝑣1} × N × N × {𝑣𝑘} × N) ∩ 𝐴 ̸=
∅ ∧ 𝜏 fst = 𝑠2 ∧ 𝜏 lst = 𝑠3 ∧ (𝜋, 𝜏) is a minimal transfer execution }

11: H := H ∪ (𝑋mse ×𝑋mte)
12: end for
13: Let A′ denote 𝑉𝑎 × N× N
14: 𝐴WAW := {(𝑣𝑎, 𝑠1, 𝑠2) ∈ A′ | 𝑠1 − 1, 𝑠2 − 1 ∈ 𝜙wr(𝑣𝑎) ∧ s2 < s1}
15: for (𝑣𝑎, 𝑠1, 𝑠2) ∈ 𝐴WAW do
16: 𝑋1

mse := { (𝜋, 𝜏) ∈ X | 𝜋 = ⟨𝑣1, 𝑒1, . . . , 𝑒𝑘−1, 𝑣𝑘⟩ ∧ ({𝑣𝑘} × N × N) ∩
𝐴WAW ̸= ∅ ∧ 𝑡(𝑒𝑘−1) = (𝑣𝑘, d) ∧ 𝑣2, . . . , 𝑣𝑘−1 ̸∈ (𝑉𝑎 ∪ 𝑉𝑝) ∧ 𝜏 lst = 𝑠2 ∧
(𝜋, 𝜏) is a maximal store execution }

17: 𝑋2
mse := { (𝜋, 𝜏) ∈ X | 𝜋 = ⟨𝑣1, 𝑒1, . . . , 𝑒𝑘−1, 𝑣𝑘⟩ ∧ ({𝑣𝑘} × N × N) ∩

𝐴WAW ̸= ∅ ∧ 𝑡(𝑒𝑘−1) = (𝑣𝑘, d) ∧ 𝑣2, . . . , 𝑣𝑘−1 ̸∈ (𝑉𝑎 ∪ 𝑉𝑝) ∧ 𝜏 lst = 𝑠1 ∧
(𝜋, 𝜏) is a maximal store execution }

18: H := H ∪ (𝑋1
mse ×𝑋2

mse)
19: end for
20: return H
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Example 4. Consider the PSG from Fig. 9.2 and the mappings shown in Table 9.1. One
can see that there is a potential WAR hazard on the index register 𝑋 ∈ 𝑉𝑎 because, for
example, it can be written in Stage 3 (𝜙wr(𝑋) = {2, 3, 4}) and read by Stage 5 (𝜙rd(𝑋) =
{3, 4, 5}). By Definition 20, to form a WAR hazard, the PSG must contain (i) a maximal
store execution of a spoiler instruction (𝜋sp , 𝜏sp) ∈ X ending in 𝑋 and (ii) a minimal
transfer execution (𝜋vi , 𝜏vi) ∈ X leading from 𝑋 to some target storage. There are multiple
executions of spoiler and victim instructions that satisfy the above criteria. Each of them
must be considered in order to verify that the design is free of WAR hazards. For instance,
one may consider a spoiler execution (𝜋sp , 𝜏sp) with 𝜋sp = ⟨𝑋, Inc.a1, Inc, MxInc.c0, MxInc,
𝑋.d, 𝑋⟩ and 𝜏sp = {1𝑋 ↦→ 2, 2Inc.a1 ↦→ 2, 3Inc ↦→ 2, 4MxInc.c0 ↦→ 2, 4MxInc ↦→ 2, 5𝑋.d ↦→ 2,
6𝑋 ↦→ 3}. Further, we can consider a victim execution (𝜋vi , 𝜏vi) with the target memory cell
Mem𝑗 written in Stage 5 where 𝜋vi = ⟨𝑋, Cmp𝑗 .a0, Cmp𝑗 , MxSel 𝑗 .c1, MxSel 𝑗 , Mem𝑗 .en,
Mem𝑗⟩. An instance of an execution plan 𝜏vi for the walk 𝜋vi is {1𝑋 ↦→ 4, 2Cmp𝑗 .a0 ↦→ 4,
3Cmp𝑗 ↦→ 4, 4MxSel𝑗 .c1 ↦→ 4, 5MxSel𝑗 ↦→ 4, 6Mem𝑗 .en ↦→ 4, 7Mem𝑗 ↦→ 5}. The given pair of
a spoiler and victim is clearly a candidate for a WAR hazard since the needed data are
overwritten before they are read (unless some control logic over the involved executions
prevents the hazard, which will be the subject of further checking). ▷

Example 5. Further, as an example of a control hazard, one can consider a spoiler execu-
tion (𝜋sp , 𝜏sp) with 𝜋sp = ⟨ExAlu, MxAlu.sel, MxAlu, MxPC .c1, MxPC , PC .d, PC ⟩ and
𝜏sp = {1ExAlu ↦→ 4, 2MxAlu.sel ↦→ 4, 3MxAlu ↦→ 4, 4MxPC .c1 ↦→ 4, 5MxPC ↦→ 4, 6PC .d ↦→ 4,
7PC ↦→ 5}. As an instance of a victim execution (𝜋vi , 𝜏vi), we can consider an execution walk
𝜋vi = ⟨PC , MxProg .sel, MxProg , IdIr .d, IdIr⟩ with an execution plan 𝜏vi = {1PC ↦→ 1,
2MxProg.sel ↦→ 1, 3MxProg ↦→ 1, 4IdIr .d ↦→ 1, 5IdIr ↦→ 2}. Note that, in this case, IdIr ̸∈ 𝑉𝑎,
but we know from Table 9.1 that the pipeline register IdIr is a pivot, and so it is still a valid
terminating element for a transfer execution. ▷

9.5 Parametric Systems for Potential Hazards
We will now describe how the potentially hazardous behavior of a spoiler and a victim
instruction described by a hazard case can be modeled and checked for feasibility using
a parametric system 𝑃 : if the behavior is not feasible, the hazard case does not describe
a real hazard (the suspected hazard gets prevented by the pipeline flow logic). In the system
𝑃 , we map 𝑛 ≥ 2 instructions in the pipeline to 𝑛 processes in a linear array (with the
earliest instruction on the left). Note that the value of 𝑛 is not constrained from above.
Indeed, while there is a single spoiler and victim, we do not know how many “padding”
instructions should appear between the spoiler and the victim for the hazard to manifest.
That is why, we model the system as parametric, with 𝑛 being the parameter, and verify
it for any value of 𝑛.

Initially, the instructions are in a state saying that their execution has not started. Then,
they proceed through individual stages of the pipeline during which they may interact with
each other by means of the pipeline flow logic, e.g., an earlier instruction may force a later
instruction to be stalled or cleared. Finally, the instructions end up in a state denoting
that they left the pipeline.

In the following explanation, we start by constructing the set of states of the system 𝑃 .
Then, we proceed to capturing the above mentioned influence of the pipeline flow logic and
reflect it in the transition relation of the system 𝑃 . Finally, we define the set of minimal bad
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configurations of the system 𝑃 that describes the prohibited interleavings of instructions
causing the hazard.

9.5.1 States and Edge Conditions of the Parametric System

Given a hazard case of the form (𝜒sp , 𝜒vi) ∈ X2, 𝜒sp = (𝜋sp , 𝜏sp), 𝜒vi = (𝜋vi , 𝜏vi), the para-
metric system 𝑃 will model interactions among four classes of processes, resp. instructions,
K := {sp “spoiler”, vi “victim”, sf “stall-flow”, nf “normal-flow”}. This follows the fact
that each type of the considered pipeline hazard is caused by some pair of instructions.
The sp class represents the spoiler part of the hazard case, i.e., an instruction that writes
to a storage 𝑣 ∈ 𝑉𝑎 in a stage 𝜏sp(𝑣). The vi class then represents an instruction corre-
sponding to the victim part of the hazard case, reading or writing from/to 𝑣 in a stage
𝜏vi(𝑣). Further, the sf and nf classes both denote any other instructions than the spoiler
and victim—we just differentiate two operating modes of these instructions. As we will
discuss later in Section 9.5.2, the difference between the stall- and normal-flow operation
modes is that an sf -class instruction in a stage 𝑠0 ∈ S causes that all pipeline stages 𝑠 ∈ S
s.t. 𝑠 < 𝑠0 get stalled. Both the sf and nf classes serve as a pipeline filler and a sink for
cleared (flushed) instructions.

To facilitate the construction of a parametric system allowing us to verify whether
a given hazard case corresponds to a real hazard or not, we need to introduce an extended
set of stages. Let S̄ := S ∪ {⊥,⊤} be the set of stages extended with auxiliary initial “⊥”
and final “⊤” stages. We will then represent the behavior of instructions given by a hazard
case h = (𝜒sp , 𝜒vi) in the form of a labelled parametric system, called a hazard system
(HS), Ph = (Qh , Δh , 𝛼h) where Qh := K× S̄, Δh will be introduced in Section 9.5.2, and
𝛼h : Qh → 2E is a state labelling function. The labelling function 𝛼h associates each state
with a set of edge conditions that should hold in this state for the hazard to be executable.
We will show the construction of the labelling below. Note that each state 𝑞 ∈ Qh represents
a unique instruction class and a stage in which an instruction of this class is supposed to
be. Finally, for a proper understanding of the rest of the section, we once again stress that
the particular states in Qh are states of individual instructions, not of the entire system.
A configuration of the system Ph is a sequence of such states.

Next, we define the mapping 𝛼h describing which edge conditions must hold in a state
𝑞 = ⟨𝜅, 𝑠⟩ ∈ Qh , which is a state of an instruction of the class 𝜅 ∈ K in the stage 𝑠 ∈ S̄,
for that instruction to execute in accordance with the hazard case h. First, for instructions
of the classes 𝜅 = sf and 𝜅 = nf , we define 𝛼h(⟨𝜅, 𝑠⟩) := ∅ for every 𝑠 ∈ S̄ since we do
not expect any special behavior from instructions of these classes, and, on every realistic
processor, we can always find instructions that do not interfere with the spoiler and victim
instructions and may serve as the needed pipeline filler. Likewise, we define 𝛼h(⟨𝜅, 𝑠⟩) := ∅
for any 𝜅 ∈ K and 𝑠 ∈ {⊥,⊤}, i.e., for instructions that have not yet started or that have
already ended.

For the spoiler and victim instructions, the idea is to extract the edge conditions by
looking for the necessary settings of selector, enable, and clear edges so that the data
involved in the potential hazard are carried over the walks 𝜋𝜅 for 𝜅 ∈ {sp, vi} that are
a part of the concerned spoiler and victim executions 𝜒𝜅 = (𝜋𝜅, 𝜏𝜅). The mapping 𝛼h can
be constructed from three auxiliary mappings 𝛼h

sel, 𝛼h
en, and 𝛼h

rst : X → 2E×S where 𝛼h
sel

will be examining all edges but the last one (hence covering all edges that route the data
through multiplexers) and the last edge will be covered by exactly one of the two remaining
mappings (related to enabling a write of the data to the target storage or clearing the
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storage). In particular, the 𝛼h
sel mapping is defined as

𝛼h
sel(𝜒) := {(𝜎𝑣𝑖(𝑒𝑖−1), 𝜏(2𝑖− 1)) | 1 < 𝑖 < 𝑘 ∧
𝑣𝑖 ∈ 𝑉𝑚𝑥 ∧ 𝜒 = (⟨𝑣1, 𝑒1, . . . , 𝑒𝑖−1, 𝑣𝑖, . . . , 𝑣𝑘⟩, 𝜏)}.

(9.6)

Intuitively, the 𝛼h
sel mapping produces a set of pairs consisting of a condition 𝜎𝑣𝑖(𝑒𝑖−1) ∈ E

over selector edges that is required by the multiplexer 𝑣𝑖 ∈ 𝑉𝑚𝑥 to propagate the data along
the execution walk 𝜋 and the stage 𝜏(𝑣𝑖) in which the particular condition must be satisfied.
Similarly, the 𝛼h

en and 𝛼h
rst mappings establish the necessary condition for the final edge of

the execution’s target storage, making sure that either writing of the data into the storage
is enabled or the storage is cleared:

𝛼h
en(𝜒) := {(𝑣𝑘.en 1, 𝜏(2𝑘 − 1)) |

𝜒 = (⟨𝑣1, 𝑒1, . . . , 𝑒𝑘−1 = 𝑣𝑘.d, 𝑣𝑘⟩, 𝜏)},
(9.7)

𝛼h
rst(𝜒) := {(𝑣𝑘.rst 1, 𝜏(2𝑘 − 1) |

𝜒 = (⟨𝑣1, 𝑒1, . . . , 𝑒𝑘−1 = 𝑣𝑘.rst, 𝑣𝑘⟩, 𝜏)}.
(9.8)

In particular, 𝛼h
en ensures that the data transferred along the path described by the execu-

tion 𝜒 are indeed written to its destination storage 𝑣𝑘 at the end of the execution. Therefore,
𝛼h
d produces a singleton containing a pair consisting from the condition 𝑣𝑘.en 1 and the

stage 𝜏(2𝑘 − 1) which is the stage where the data reside just prior to the write. Similarly,
𝛼h
rst produces a singleton containing a pair consisting from the condition 𝑣𝑘.rst  1 and

the stage 𝜏(2𝑘− 1) so that the target storage is indeed cleared. Using the above mappings,
we can define 𝛼h for the given hazard case h = (𝜒sp , 𝜒vi) such that the following holds for
any state ⟨𝜅, 𝑠⟩ ∈ {sp, vi} × S̄:5

𝛼h(⟨𝜅, 𝑠⟩) := {𝑐 ∈ E | (𝑐, 𝑠) ∈ 𝛼h
sel(𝜒𝜅) ∪ 𝛼h

en(𝜒𝜅) ∪
𝛼h
rst(𝜒𝜅)}.

(9.9)

Example 6. Assume the hazard case (𝜒sp , 𝜒vi) shown in Example 4 for the microprocessor
from Example 1. First, we focus on the spoiler execution 𝜒sp = (𝜋sp , 𝜏sp). Since the
microprocessor contains five pipeline stages, the spoiler gets associated with the set of
states Qh

sp := {sp}× S̄ where S̄ = {⊥, 1, . . . , 5, ⊤}. We will now show how the 𝛼h mapping
is computed for the states of Qh

sp . From the definition of 𝛼h , it directly follows that

𝛼h(⟨sp,⊥⟩) = 𝛼h(⟨sp,⊤⟩) = ∅.

For the states ⟨sp, 1⟩, ..., ⟨sp, 5⟩, one has to first compute the auxiliary mappings 𝛼h
sel,

𝛼h
en, and 𝛼h

rst from Equation 9.9. As the X register is written via its d connection, it
immediately follows that

𝛼h
rst(𝜒sp) = ∅.

Next, since the walk 𝜋sp of the spoiler store execution 𝜒sp passes through a single multi-
plexer, namely, MxInc, via the edge MxInc.c0 with 𝜏sp(4

MxInc.c0) = 2, we get

𝛼h
sel(𝜒sp) = {(MxInc.sel 0, 2)}.

5Note that the executions can also end by an 𝑣𝑘.en edge. However, in this case, no matter what the value
of the enable signal is a hazard happens by enabling/not enabling a write of some data into an architectural
storage. Hence, no further condition is needed in this case.
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For 𝛼h
en, we only need to assure that the storage X is written at the end of the execution.

Since 𝜏sp(5X .d) = 2, we let
𝛼h
en(𝜒sp) = {(X .en 1, 2)}.

Finally, by uniting the above computed auxiliary mappings, we get that

𝛼h(⟨sp, 2⟩) = {MxInc.sel 0,X .en 1}

and ∀𝑖 ∈ S ∖ {2} : 𝛼h(⟨sp, 𝑖⟩) = ∅. Analogically, for the victim execution 𝜒vi = (𝜋vi , 𝜏vi) of
the analyzed hazard case, we would infer that

𝛼h
sel(𝜒vi) = {(MxSel 𝑗 .sel 1, 4)}

and 𝛼h
rst(𝜒vi) = 𝛼h

en(𝜒vi) = ∅. Therefore, we get that

𝛼h(⟨vi , 4⟩) = {MxSel 𝑗 .sel 1}

and ∀𝑖 ∈ S ∖ {4} : 𝛼h(⟨vi , 𝑖⟩) = ∅. ▷

9.5.2 Transition Relation of the Parametric System

For the construction of the transition relation Δh presented later on, we will first introduce
three predicates that characterise mutual interactions of pairs of instructions whose execu-
tion has reached some states 𝑞1, 𝑞2 ∈ Qh of the verified HS Ph . We stress that 𝑞1 and 𝑞2 are
states of the execution of two considered instructions, which are of course a part of a single
configuration of the HS Ph . Before providing rigorous definitions of the predicates, which
are given later in this section, we first provide some intuition behind them.

A pair of states 𝑞1, 𝑞2 ∈ Qh and a stage 𝑠 ∈ S satisfy the ternary stage stall predicate
st,ℎ←−→ ⊆ Qh × S×Qh provided that the edge conditions associated with the states 𝑞1 and 𝑞2

ensure that the stage 𝑠 is stalled, and thus the contents of all pipeline storages of 𝑠 stays
unchanged. We will further use the shorthand 𝑞1

st,ℎ,𝑠←−−→ 𝑞2 for (𝑞1, 𝑠, 𝑞2) ∈
st,ℎ←−→.

Further, a pair of states 𝑞1, 𝑞2 ∈ Qh and a stage 𝑠 ∈ S satisfy the ternary stage clear
predicate cl,ℎ←−→ ⊆ Qh × S × Qh provided that the stage 𝑠 is cleared, i.e., the contents of
all pipeline storages of 𝑠 is nullified. We will further use the shorthand 𝑞1

cl,ℎ,𝑠←−−→ 𝑞2 for
(𝑞1, 𝑠, 𝑞2) ∈

cl,ℎ←−→.
Finally, a pair of states 𝑞1, 𝑞2 ∈ Qh satisfies a binary state conflict predicate cf,ℎ←−→ ⊆

Qh ×Qh provided that the given processor excludes a configuration where two instructions
would appear in the states 𝑞1, 𝑞2 at the same time. We will further use the shorthand
𝑞1

cf,ℎ←−→ 𝑞2 for (𝑞1, 𝑞2) ∈
cf,ℎ←−→. For instance, one of the typical scenarios when two states 𝑞1,

𝑞2 ∈ Qh are in a state conflict occurs when there exists an edge 𝑒 ∈ E so that 𝑒  𝑏1 ∈
𝛼h(𝑞1) ∧ 𝑒 𝑏2 ∈ 𝛼h(𝑞2), 𝑏1, 𝑏2 ∈ B, while 𝑏1 ̸= 𝑏2.

In order to formally define the above described predicates, we first introduce two auxil-
iary notions: in particular, (i) a mapping unwindh : Q

h → 2𝐶 where 𝐶 is the set of configu-
rations of the TS 𝑇 h = (C , →˓) induced by the PSG and (ii) a predicate csath ⊆ 2E × 2Q

h .
The purpose of the unwindh mapping is to compute all configurations of the TS 𝑇 h

in which 𝑇 ℎ (and hence the processor it represents) can be when the processor contains
an instruction of a class 𝜅 in a stage 𝑠 while executing within the given hazard case ℎ.
The considered configurations must be such that the processor can reach them by going
through all preceding stages and such that the processor can finish the execution of the
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instruction by going through all its further stages, all the time executing within the hazard
case ℎ. In particular, let 𝑚 = max(S) be the number of stages and let ⟨𝜅, 𝑠⟩ ∈ Qh be an
instruction state representing an instruction of a class 𝜅 in a stage 𝑠 within a hazard case
ℎ. Then, unwindh(⟨𝜅, 𝑠⟩) consists of exactly all those configurations 𝑘0 ∈ C such that there
is a trace ⟨𝑘−𝑠, . . ., 𝑘0, . . ., 𝑘𝑚−𝑠⟩ in 𝑇 h that conforms to the following rules for all 𝑖 such
that −𝑠 < 𝑖 ≤ 𝑚− 𝑠:

𝑘𝑖 →˓ 𝑘𝑖+1, (9.10)

𝑘𝑖 ∈ 𝛾(𝛼h(⟨𝜅, 𝑠+ 𝑖⟩)). (9.11)

The first constraint above ensures that we indeed consider a trace in the TS 𝑇 h . The second
condition then ensures that the trace passes all stages of an instruction of the given class
while the processor is executing within the given hazard case.

The above described computation of the unwindh mapping can be implemented sym-
bolically using a BVL formula unwind⋆

h(𝑞) for any 𝑞 ∈ Qh . To describe the computation,
we introduce the notation →˓⋆

(𝑖,𝑖+1) to denote the result of a (straightforward) conversion of
the relation →˓ to a BVL formula where all variables representing the current state of the
TS 𝑇 h are indexed with 𝑖 and those representing the future state are indexed with 𝑖 + 1.
Moreover, as in Section 9.3.2, we use 𝑒⋆𝑖 to denote the conversion of an edge 𝑒 ∈ E indexed
with the trace index 𝑖 to a BVL variable. Then, given 𝑞 = ⟨𝜅, 𝑠⟩ ∈ Qh ∖ K × {⊥,⊤}, the
BVL formula unwind⋆

h(𝑞) is obtained as follows:

𝐹1 :=
𝑚−𝑠−1⋀︀
𝑖=−𝑠+1

→˓⋆
(𝑖,𝑖+1),

𝐹2(𝑞) :=
𝑚−𝑠⋀︀

𝑖=−𝑠+1

⋀︀
𝑒 𝑏∈𝛼h (⟨𝜅,𝑠+𝑖⟩)

𝑒⋆𝑖 = 𝑏,

𝐹3 :=
⋀︀
𝑒∈E

𝑒⋆ = 𝑒⋆0,

unwind⋆
h(𝑞) := ∃𝐸 : 𝐹1 ∧ 𝐹2(𝑞) ∧ 𝐹3.

(9.12)

Above, the existential quantification ranges over the set 𝐸 = {𝑒⋆𝑖 | 𝑒 ∈ 𝐸∧−𝑠 < 𝑖 ≤ 𝑚−𝑠}.
Its reason is to get rid of the concrete past and future values of the variables that appear
in the execution, keeping only their impact on the current values of the variables.6 Finally,
in order to extend the definition of unwindh for initial and final states 𝑞′ ∈ K×{⊥,⊤}, we
define unwind⋆

h(𝑞
′) := true.

Further, we proceed to the second auxiliary predicate: csath . The csath predicate
determines satisfiability of a set of edge conditions 𝐼 ⊆ E in a situation when the pipeline
contains instructions in states from a set 𝑆 ⊆ Qh . Formally, it is defined as follows:

csath(𝐼, 𝑆)⇔
⋂︁
𝑞∈𝑆

unwindh(𝑞) ∩
⋂︁
𝑐∈𝐼

𝛾(𝑐) ̸= ∅. (9.13)

The evaluation of csath(𝐼, 𝑆) can be naturally reduced to checking the satisfiability of
a BVL formula as follows:

csath(𝐼, 𝑆)⇔ sat
(︁ ⋀︁

𝑞∈𝑆
unwind⋆

h(𝑞) ∧
⋀︁

𝑒 𝑏∈𝐼
𝑒⋆ = 𝑏

)︁
. (9.14)

6In our implementation of the approach, we replace the existential quantification by simply pruning away
all variables unrelated with any 𝑒⋆ for any 𝑒 ∈ 𝐸 and by renaming the remaining variables in a unique way
such that no conflicts arise when constructing more complex formulae on top unwind⋆

h(𝑞).
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Now, the predicate csath can be used to precisely define the needed predicates st,ℎ←−→,
cl,ℎ←−→, and cf,ℎ←−→ as follows.

Definition 23. For any instruction states 𝑞1, 𝑞2 ∈ Qh and any stage 𝑠 ∈ S, the stage stall
predicate 𝑞1

st,ℎ,𝑠←−−→ 𝑞2 is defined as follows:

𝑞1
st,ℎ,𝑠←−−→ 𝑞2 ⇐⇒ ∃ 𝑣𝑝 ∈ 𝑉𝑝 : 𝜙(𝑣𝑝) = 𝑠 ∧

¬csath({𝑣𝑝.en 1}, {𝑞1, 𝑞2}) ∧

¬csath({𝑣𝑝.rst 1}, {𝑞1, 𝑞2}).

(9.15)

Intuitively, the definition requires that the presence of some instructions in states 𝑞1
and 𝑞2 in the pipeline ensures that there is a pipeline storage 𝑣𝑝 in stage 𝑠, which we denote
as a representative storage below, such that the value of 𝑣𝑝 can neither be updated nor
cleared, i.e., 𝑣𝑝 keeps its value. Note that the already established validity of the consistency
Rules 1 and 4 implies that the setting of any control edge (en, rst) is the same for all
pipeline storages across the given pipeline stage, and so the fact that some representative
storage is stalled means that all storages of the given stage are stalled (and the instruction
that is now in stage 𝑠 stays in it).

In a similar fashion, we define the cl,ℎ←−→ predicate.

Definition 24. For any instruction states 𝑞1, 𝑞2 ∈ Qh and any stage 𝑠 ∈ S, the stage clear
predicate 𝑞1

cl,ℎ,𝑠←−−→ 𝑞2 is defined as follows:

𝑞1
cl,ℎ,𝑠←−−→ 𝑞2 ⇐⇒ ∃ 𝑣𝑝 ∈ 𝑉𝑝 : 𝜙(𝑣𝑝) = 𝑠 ∧

¬csath({𝑣𝑝.rst 0}, {𝑞1, 𝑞2}).
(9.16)

Note that the definition requires that the representative storage must be cleared (since
the formula cannot be satisfied with the 𝑣𝑝.rst edge being zero). The consistency rules
then assure that the same holds for all storages of the given stage.

In order to be able to define the cf,ℎ←−→ predicate, we only need to be able to determine
whether two given instruction states are prohibited from occurring together in a single
pipeline configuration by the control logic of the considered processor. This is, however,
easy thanks to the csath predicate as shown below.

Definition 25. For any instruction states 𝑞1, 𝑞2 ∈ Qh , the state conflict predicate 𝑞1
cf,ℎ←−→ 𝑞2

is defined as follows:

𝑞1
cf,ℎ←−→ 𝑞2 ⇐⇒ ¬csath(∅, {𝑞1, 𝑞2}). (9.17)

Intuitively, the expression csath(∅, {𝑞1, 𝑞2}) does not put any constraints on edge con-
ditions, but it still checks whether some concurrently executing instructions can simultane-
ously get into states 𝑞1 and 𝑞2. Hence, its negation says that this is excluded in the given
processor, allowing us to define the cf,ℎ←−→ predicate.

Example 7. In this example, we will demonstrate how the predicate st,ℎ←−→ can be evaluated
for a given pair of states and a given stage. Let us consider states ⟨sp, 2⟩, ⟨vi , 3⟩, Stage
2, and the hazard case h = (𝜒sp , 𝜒vi) from Example 4. Here, the spoiler instruction in
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state ⟨sp, 2⟩ writes into the register X the (auto-incremented) value previously read from
the same register. The victim instruction in state ⟨vi , 4⟩ then reads the value 𝑗 from the
register X and uses it as an index to access the memory cell Mem𝑗 .

From Definition 23, we know that, in order to determine the value of ⟨sp, 2⟩ st,h,2←−−→ ⟨vi , 3⟩,
one has to (i) pick a representative pipeline storage 𝑣𝑝 ∈ {𝑣 ∈ 𝑉𝑝 | 𝜙(𝑣) = 2}, (ii) evaluate
Φ1 := ¬csat({𝑣𝑝.en  1}, {⟨sp, 2⟩, ⟨vi , 3⟩}), and (iii) evaluate Φ2 := ¬csat({𝑣𝑝.rst  1},
{⟨sp, 2⟩, ⟨vi , 3⟩}).

As for Step (i) above, it suffices to look in Table 9.1 and choose, for instance, IdIr as
the representative storage. Moreover, in Example 1, we have pointed out that the value of
the enable edge on the IdIr storage is determined by the following expression in BVL:

IdIr .en⋆ = ¬IncX .q⋆ ∨ ¬OfWrMem.q⋆. (9.18)

Now, to address Step (ii), we know that, according to Equation 9.14, Φ1 expands to

¬sat(unwind⋆
h(⟨sp, 2⟩) ∧ unwind⋆

h(⟨vi , 3⟩) ∧

IdIr .en⋆ = 1).
(9.19)

We further concetrate on the expansion of unwind⋆
h(⟨sp, 2⟩). According to Equation 9.12, we

need to construct formulae 𝐹1, 𝐹2(⟨sp, 2⟩), and 𝐹3. First, the transition relation described
by Formula 𝐹1 contains the following conjuncts7:

Impl .q⋆0 = (IncX .q⋆0 ⇒ ExWrX .q⋆0) ∧

MxInc.sel⋆0 = Impl .q⋆0.
(9.20)

To see that the above holds, it suffices to check how the value of MxInc.sel is computed
from its predecesors in the PSG shown in Fig. 9.28. The formula 𝐹2(⟨sp, 2⟩) then gives

MxInc.sel⋆0 = 0 ∧X .en⋆0 = 1, (9.21)

which is a direct consequence of the result that we have obtained in Example 6 where we
have shown

𝛼(⟨sp, 2⟩) = {MxInc.sel 0, 𝑋.en 1}.

Finally, Formula 𝐹3 simply asserts equality between zero-indexed and non-indexed variables.
We can then apply the existential quantification from Equation 9.12, which allows us to get
rid of the indexed variables, leading to that the below equality must hold:

IncX .q⋆ = 1. (9.22)
7The entire formula is, of course, much bigger—indeed, it describes the entire transition relation. When

the satisfiability checking is done automatically, the solver will consider the entire formula. However, we
select its relevant parts only so that the example is readable.

8We assume that the Impl vertex of the PSG computes the standard implication function 𝑓impl(𝑎0, 𝑎1) :=
𝑎0 ⇒ 𝑎1 for 𝑎0, 𝑎1 ∈ B.
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Now, we will apply a similar approach to expand the formula unwind⋆
h(⟨vi , 3⟩). In this

case, the following conjuncts of Formula 𝐹1 turn out to be relevant:

ExWrMem.d⋆0 = OfWrMem.q⋆0 ∧

ExWrMem.q⋆1 = 𝑓nextExWrMem(ExWrMem.q⋆0,

ExWrMem.d⋆0,ExWrMem.en⋆0,

ExWrMem.rst⋆0) ∧

MxSel 𝑗 .sel
⋆
1 = ExWrMem.q⋆1.

(9.23)

Above, 𝑓nextExWrMem is the next-state function that was defined in Section 9.1.2 and that
propages the value on the data-in edge d to the data-out edge q iff the enable edge en is
set and the reset edge rst is unset. Moreover, if rst is set, then the data-out q is nullified.
Otherwise, when both en and rst are unset, the data-out edge q keeps the value from the
previous cycle. Further, in Example 6, we have seen that

𝛼(⟨vi , 4⟩) = {MxSel 𝑗 .sel 1},

which imples that the formula 𝐹2(⟨vi , 3⟩) must ensure

MxSel .sel⋆1 = 1. (9.24)

By combining the observations from Formulae 9.23 and 9.24, and by adding Formula 𝐹3

and the existential quantification of Equation 9.12, we obtain the following statement:(︀
(ExWrMem.en⋆ = 1) ⇒ (OfWrMem.q⋆ = 1)

)︀
∧

ExWrMem.rst⋆ = 0.
(9.25)

Here, the ExWrMem.rst⋆ = 0 conjuct comes from the fact that the data-out edge must
not be zero because of the constraint in Formula 9.24.

Next, according to the consistency Rule 3 from Section 9.3.2 that holds globally at any
pipeline cycle, the following expression must hold:

(ExWrMem.en⋆ = 0 ∧ ExWrMem.rst⋆ = 0) ⇒

(IdIr .en⋆ = 0 ∧ IdIr .rst⋆ = 0).
(9.26)

In particular, the above comes from the fact that 𝜙(IdIr) + 1 = 𝜙(ExWrMem), i.e., IdIr
and ExWrMem are two pipeline storages in adjacent stages.

By applying the modus tollens rule on Formula 9.26, we get

(IdIr .en⋆ = 1 ∨ IdIr .rst⋆ = 1) ⇒

(ExWrMem.en⋆ = 1 ∨ ExWrMem.rst⋆ = 1).
(9.27)

Finally, if we put together our observations made in Formulae 9.18, 9.22, 9.25, and 9.27,
we can conclude that the expression

unwind⋆
h(⟨sp, 2⟩) ∧ unwind⋆

h(⟨vi , 3⟩) ∧ IdIr .en⋆ = 1

is not satisfiable. Thus, the expression Φ1 evaluates to true.
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Analogically, for Step (iii), we would also derive that Φ2 is true, and therefore the
predicate ⟨sp, 2⟩ st,h,2←−−→ ⟨vi , 3⟩ necessarily holds. In other words, this means that the NOP

injection into Stage 3 takes place whenever there is a spoiler defined by 𝜒sp in Stage 2 and
a victim described by 𝜒vi in Stage 3. ▷

We can now define transitions that the transition relation Δh of the HS Ph contains.
First, for every instruction state 𝑞 = ⟨𝜅, 𝑠⟩ ∈ Qh , Δh contains a transition 𝑞 → 𝑞 allowing
the instruction that is in 𝑞 to stay in 𝑞 whenever the state 𝑞 appears in a configuration of
the pipeline of the given processor (i.e., a configuration of the transition system induced
by Ph) that contains a combination of instruction states 𝑞1, 𝑞2 ∈ Qh which causes the
instruction in the state 𝑞 to be stalled. Formally, ∀𝑞 = ⟨𝜅, 𝑠⟩, 𝑞1, 𝑞2 ∈ Qh :

(∃↔ : {𝑞1, 𝑞2} |= 𝑞 → 𝑞) ∈ Δh ⇔ 𝑞1
st,ℎ,𝑠←−−→ 𝑞2. (9.28)

As we have already mentioned at the beginning of Section 9.5, we use the stall-flow sf
and normal-flow nf instruction classes to model pipeline-filler instructions, i.e., to model
all other instructions than the spoiler and victim. The difference between the stall- and
normal-flow operation modes is that an sf -class instruction in a stage 𝑠′ ∈ S causes all
pipeline stages 𝑠 ∈ S s.t. 𝑠 < 𝑠′ to be stalled. In other words, an instruction stays in a state
𝑞 = ⟨𝜅, 𝑠⟩ ∈ Qh whenever 𝑞 appears in a configuration of the pipeline containing an earlier
instruction in the stall-flow operation mode. Formally, ∀𝑞 = ⟨𝜅, 𝑠⟩, 𝑞′ = ⟨sf , 𝑠′⟩ ∈ Qh :

(∃← : {𝑞′} |= 𝑞 → 𝑞) ∈ Δh ⇔ 𝑠 < 𝑠′. (9.29)

Including stalls caused by stall-flow instructions is necessary as they may introduce oth-
erwise unreachable configurations of the verified HS Ph . Moreover, since a pipeline stall
caused by some filler instruction may occur at any processor cycle, we will always allow
random transitions between stall- and normal-flow operation modes of filler instructions in
the upcoming explanation.

Next, an instruction in a state 𝑞 = ⟨𝜅, 𝑠⟩ ∈ ̂︁Qh , ̂︁Qh = K × ̂︀S, ̂︀S = S ∖ {max(S)}, is
cancelled, i.e., yields a transition 𝑞 → ⟨𝜅′, 𝑠+ 1⟩, 𝜅′ ∈ {nf , sf }, provided that 𝑞 appears in
a configuration of the pipeline in which there exist instructions in states 𝑞1 and 𝑞2 that cause
the stage 𝑠+1 to be cleared. More formally, ∀𝑞 = ⟨𝜅, 𝑠⟩ ∈ ̂︁Qh , ∀𝑞1, 𝑞2 ∈ Qh , ∀𝜅′ ∈ {nf , sf } :

(∃↔ : {𝑞1, 𝑞2} |= 𝑞 → ⟨𝜅′, 𝑠+ 1⟩) ∈ Δh ⇔

𝑞1
cl,ℎ,𝑠+1←−−−→ 𝑞2 ∧ ¬

(︁
𝑞1

st,ℎ,𝑠←−−→ 𝑞2

)︁
.

(9.30)

Note that for a successful clearing of an instruction in the stage 𝑠, it is also required that
𝑠 is not stalled at the same time.

For the case when our over-approximating abstraction allows two states 𝑞 and 𝑞′ that are
conflicting to be reached in a single configuration of the transition system induced by the
HS Ph , we introduce the following solution to reduce the number of possible false alarms.
Namely, we kill the instruction that entered the pipeline later assuming that this instruction
is in the state 𝑞 = ⟨𝜅, 𝑠⟩, i.e., we introduce the transition 𝑞 → ⟨𝜅′, 𝑠+1⟩, 𝜅′ ∈ {nf , sf }, into
Δh . Formally, ∀𝑞 = ⟨𝜅, 𝑠⟩ ∈ ̂︁Qh , ∀𝑞′ ∈ Qh , ∀𝜅′ ∈ {nf , sf } :

(∃← : {𝑞′} |= 𝑞 → ⟨𝜅′, 𝑠+ 1⟩) ∈ Δh ⇔ ⟨𝜅, 𝑠⟩ cf,ℎ←−→ 𝑞′. (9.31)

As for the possibility of new instructions entering the pipeline, only the left-most in-
struction in a given configuration that has so far not entered the pipeline is allowed to enter
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it. Moreover, new instructions cannot enter the first stage if it is stalled. More precisely,
∀𝑞 = ⟨𝜅,⊥⟩, 𝑞′ = ⟨𝜅′,⊥⟩, 𝑞1, 𝑞2 ∈ Qh :

(∃← : {𝑞′} |= 𝑞 → 𝑞) ∈ Δh , (9.32)

(∃↔ : {𝑞1, 𝑞2} |= 𝑞 → 𝑞 ∈ Δh)⇔ 𝑞1
st,ℎ,1←−−→ 𝑞2. (9.33)

Next, an instruction can proceed to the next stage iff none of the above rules is appli-
cable. To model this fact, we use local transitions, building on that we define all global
transitions (used above) to be of a higher probability than the local ones. Further, we add
transitions reflecting that once finalized instructions stay in their final state forever. More
rigorously, ∀⟨𝜅, 𝑠⟩ ∈ ̂︁Qh :

(⟨𝜅, 𝑠⟩ → ⟨𝜅, 𝑠+ 1⟩) ∈ Δh , (9.34)

(⟨𝜅,⊥⟩ → ⟨𝜅, 1⟩) ∈ Δh , (9.35)

(⟨𝜅,max(S)⟩ → ⟨𝜅,⊤⟩) ∈ Δh , (9.36)

(⟨𝜅,⊤⟩ → ⟨𝜅,⊤⟩) ∈ Δh . (9.37)

To ensure a possibility of the pipeline being stalled by some filler instruction, we allow
switching between stall- and normal-flow operation modes. More formally, ∀⟨sf , 𝑠⟩, ⟨nf , 𝑠⟩ ∈̂︁Qh :

(⟨nf , 𝑠⟩ → ⟨sf , 𝑠+ 1⟩) ∈ Δh , (9.38)

(⟨sf , 𝑠⟩ → ⟨nf , 𝑠+ 1⟩) ∈ Δh . (9.39)

Finally, we recall that apart from the higher priority of global (i.e., guarded) transitions
over local (i.e., unguarded) ones, the transition relation Δh is constructed under the as-
sumption that, in each step of the transition system induced by the HS Ph , each instruction
whose state is a part of the given configuration of Ph must make a step. This is, if we take,
e.g., a configuration 𝑞1𝑞2𝑞3 consisting of three states of three instructions, all of the three
instructions must synchronously fire some of the above described transitions such that we
get the successor configuration 𝑞′1𝑞

′
2𝑞
′
3.

9.5.3 Construction of the Minimal Bad Set

In the previous section, we have constructed a hazard system Ph = (Qh ,Δh , 𝛼h) that
models possible interactions of a spoiler and a victim instruction, forming a hazard case
ℎ = (𝜒sp , 𝜒vi) ∈ X×X, surrounded by other instructions during a pipelined execution. We
now need to be able to check whether some kind of data or control hazard occurs.

To facilitate detection of possible hazards from the constructed HS, we will construct
a set Bh of minimal bad configurations describing minimal illegal configurations whose
reachability (within possibly larger configurations) will mean that the given hazard case h
does indeed lead to a hazard. We define the set Bh wrt an extended hazard system Ph

⊤
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Table 9.2: Roles of e-/ℓ-class instructions in hazards cases.

Hazard e-class Role ℓ-class Role

RAW writes spoiler (too slow) reads victim
WAR reads victim writes spoiler (too fast)

WAW writes victim writes spoiler (too fast)

CTL writes spoiler (too slow) jumps victim

(defined later in this section), which is obtained by applying four transformations, described
also later in the section, on the input system Ph . Since the ordering of instructions within
a hazard case is an important factor in the following explanation, we will be speaking
about pairs of instruction classes consisting of an e (“earlier”) instruction class and an ℓ
(“later”) instruction class such that either e = sp ∧ ℓ = vi or e = vi ∧ ℓ = sp, meaning
that an earlier instruction always enters the pipeline sooner than the later one. For the e
and ℓ class instructions, one of the following statements always holds: (a) For RAW and
CTL hazards, the e-class instruction is a spoiler that enters the pipeline first and should
write data to be read by the later instruction, but it is too slow and the later instruction
uses obsolete data. (b) For WAR and WAW hazards, the spoiler is an ℓ-class instruction
that enters the pipeline later, but it is too fast and it either destroys data to be read by
the earlier instruction (WAR), or it stores its result too early and the result is overwritten
by the obsolete result of the earlier instruction (WAW). These scenarios are summarized in
Table 9.2.

We are going to build the set Bh such that it will contain so-called hazard pairs
𝑞1e𝑞

1
ℓ , . . . , 𝑞

𝑛
e 𝑞

𝑛
ℓ of states of the earlier and later instruction such that a hazard described

by the hazard case h may occur iff there exists a configuration of the system Ph
⊤ that con-

tains as a subword some hazard pair from the set Bh and that is reachable from the set of
initial configurations I h . Note, however, that the control states of the earlier/later instruc-
tions that signify that something relevant for the hazard has happened (some critical value
has been written or read) do not necessarily occur at the same time. On the other hand,
hazard pairs consist of pairs of states that should be reached at the same time. To resolve
this discrepancy, we will pass information that the critical control state of an instruction has
been reached to its successor states. For that, we will introduce several auxiliary notions,
which will be introduced such that the detection of the different kinds of hazards may be
described in an as uniform way as possible.

We first introduce the hazard distance 𝛿 that, intuitively, determines the maximum de-
lay (measured in pipeline cycles) with which the later instruction can still cause a hazard.
Intuitively, the basis of the distance is the difference in the number of the stages in which
the colliding read/write operations happen within the concerned instructions. However,
sometimes, this basic difference has to be decreased by one since one of the colliding opera-
tions must appear by at least one cycle earlier than the other, while in other cases a hazard
appears even when they occur at the same time. More details on that are given below the
definition.
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Definition 26. The hazard distance 𝛿 : X × X → N is defined as follows for all hazards
ℎ = (𝜒sp , 𝜒vi) ∈ X× X where 𝜒𝑘 = (𝜋𝑘, 𝜏𝑘) for 𝑘 ∈ {sp, vi}:

𝛿(ℎ) =

⎧⎪⎨⎪⎩
𝜏 lst
sp − 𝜏 fst

vi − 1 if ℎ is a RAW or CTL hazard,
𝜏 fst
vi − 𝜏 lst

sp if ℎ is a WAR hazard, and
𝜏 lst
vi − 𝜏 lst

sp − 1 if ℎ is a WAW hazard.

Notice that the hazard distance is indeed always non-negative as the definitions of RAW
and CTL hazard cases (Definitions 19, 22) imply that 𝜏 fst

vi < 𝜏 lst
sp , and the definitions of WAR

and WAW hazards (Definitions 20, 21) imply that 𝜏 lst
sp < 𝜏 fst

vi (and, for the case of WAW
hazards, one can add the fact that 𝜏 fst

vi < 𝜏 lst
vi ). For RAW and CTL hazard cases, the

distance is decremented by one because reading a value at a cycle when its writing was
finished, which is what the corresponding value of 𝜏 records (recall that the writing starts
one cycle earlier), is safe. On the other hand, in WAR hazards, overwriting the value that is
read/written by the earlier instruction at the same time is an error. Finally, WAW hazards
are special in that the conflict arises between two write operations where the most extreme
case arises when the write operation in the spoiler appears one cycle before the write in the
victim: that is why, we have the decrement by one in the formula of WAW hazards. For
a further illustration of the notion, see Figure 9.3.

We will next introduce the so-called spoiler/victim gap and detection windows. Intu-
itively, the gap window 𝑔sp/𝑔vi of a spoiler/victim instruction 𝜄 will tell us for how many
cycles one has to wait within the execution of 𝜄, starting from its critical write operation,
until the detection of a possible hazard may start. In some cases, the gap will be zero while
in some other cases it will be positive. The latter case will happen when the victim/spoiler
instruction 𝜄′, possibly colliding with 𝜄, has no chance to perform its write operation be-
fore the moment when the write operation of 𝜄 happens even if 𝜄′ starts right after 𝜄. The
detection window (of size at least one) will then tell us for how many cycles the detection
of a possible hazard should be performed within a given instruction after the gap window
passes.

In particular, we will define all the windows such that the detection window of victim
instructions, denoted 𝑑vi , will be fixed to one, i.e., 𝑑vi = 1. Intuitively, the hazard detection
will always be performed as soon as the victim instruction writes (and hence “publishes”)
the wrong data and the gap window of that instruction is over.

The detection window of a spoiler instruction will be possibly longer, in particular, it
will correspond to the hazard distance, i.e., 𝑑sp = 𝛿(h) where ℎ = (𝜒sp , 𝜒vi) is the considered
hazard case. The definition of the gap windows must then be done in such a way that any
hazard may be detected with the detection windows defined as above, i.e., the detection
within the particular instructions must be postponed such that the hazard can always be
caught within the detection windows. This definition is more complex and is given below
separately for different types of hazards.

Gap Windows for RAW and CTL Hazards

First, notice that 𝜏 fst < 𝜏 lst holds for each forward execution (𝜋, 𝜏) ∈ X where 𝜋fst, 𝜋lst ∈ 𝑉𝑠.
Second, recall that the definitions of RAW and CTL hazard cases (Definitions 19, 22) imply
that 𝜏 fst

vi < 𝜏 lst
sp . If put together, one can see that there are two possible orderings of 𝜏 fst

vi ,
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(a) Detection of a RAW hazard using a delay in the
spoiler: 𝛿(h) = 𝜏 lst
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sp + 1 = 5 − 4 + 1 = 2, 𝑔vi = 0,
𝑑sp = 𝛿(h) = 2, and 𝑑vi = 1.
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(c) Detection of a WAR hazard using a delay in
the spoiler: 𝛿(h) = 𝜏 fst
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(d) Detection of a WAW hazard using a delay in the
spoiler: 𝛿(h) = 𝜏 lst

vi −𝜏 lst
sp −1 = 5−2−1 = 2, 𝑔sp = 1,

𝑔vi = 0, 𝑑sp = 𝛿(h) = 2, and 𝑑vi = 1.

Figure 9.3: An illustration of the notions of hazard distance and gap and detection windows
used to construct minimal bad sets.

𝜏 lst
vi , and 𝜏 lst

sp :

𝜏 fst
vi < 𝜏 lst

sp ≤ 𝜏 lst
vi (9.40)

𝜏 fst
vi < 𝜏 lst

vi < 𝜏 lst
sp (9.41)

We start with the ordering (9.40), which is illustrated by the scenarios in Fig. 9.3(a).
In this case, the spoiler finishes its write operation earlier, and the RAW hazard occurs as
soon as the victim performs its write operation. Hence, in order to be able to detect the
hazard via states simultaneously reached in the spoiler and the victim, the detection needs
to be put off in the spoiler. Provided that the we consider a victim that starts right after
the spoiler, 𝜏 lst

vi − 𝜏 lst
sp + 1 cycles need to be skipped in the spoiler (including the cycle in
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which the write operation of the spoiler happens), and so 𝑔sp = 𝜏 lst
vi − 𝜏 lst

sp + 1.9 On the
other hand, no cycles need to be skipped before the detection starts in the victim, and so
𝑔vi = 0. Note that the detection of hazards with victims that start later than one cycle
behind the spoiler is handled through the detection window 𝑑sp .

Next, we consider the ordering (9.41), which is illustrated in Fig. 9.3(b). In this case,
the victim performs the write operation first, and the hazard occurs as soon as the spoiler
performs its write operation. Hence, this time, the detection needs to be put off in the
victim. Using a similar reasoning as above, we define 𝑔sp = 0 and 𝑔vi = 𝜏 lst

sp − 𝜏 lst
vi − 1.10

Gap Windows for WAR Hazards

For an illustration of the gap and detection windows of WAR hazards, see Fig. 9.3(c). As
above, we can use the fact that 𝜏 fst < 𝜏 lst holds for each forward execution (𝜋, 𝜏) ∈ X
where 𝜋fst, 𝜋lst ∈ 𝑉𝑠. Moreover, the definition of WAR hazards (Definition 20) implies that
𝜏 lst
sp < 𝜏 fst

vi . Hence, for WAR hazards, 𝜏 fst
vi , 𝜏 lst

vi , and 𝜏 lst
sp can be ordered as follows only:

𝜏 lst
sp < 𝜏 fst

vi < 𝜏 lst
vi (9.42)

Intuitively, after the spoiler instruction writes, the WAR hazard does not occur until
the victim performs its write as well. Unlike for RAW/CTL hazards, we now consider
as the base case not the situation when the later instruction starts right after the earlier,
but the case when the later instruction starts as late as possible to be still able to cause
a hazard, i.e., the case when the spoiler starts 𝛿(ℎ) cycles after the victim. Then, it is easy
to see that the detection needs to be put off by 𝜏 lst

vi − (𝜏 lst
sp + 𝛿(ℎ)) cycles. Hence, we define

𝑔sp = 𝜏 lst
vi − (𝜏 lst

sp + 𝛿(ℎ)) = 𝜏 lst
vi − (𝜏 lst

sp + 𝜏 fst
vi − 𝜏 lst

sp ) = 𝜏 lst
vi − 𝜏 fst

vi while 𝑔vi = 0. The cases of
the spoiler that start sooner are then handled appropriately by using the detection window
𝑑sp = 𝛿(ℎ) as also illustrated in Fig. 9.3(c).

Gap Windows in WAW Hazards

As with WAR hazards, for WAW hazards, the ordering between writes given in Equa-
tion 9.42 is the only possible. After the spoiler instruction writes, the WAW hazard does
not occur until the victim performs its write as well. This cannot happen sooner than after
passing through at least one pipeline stage. Therefore, we put the spoiler gap distance
equal to one and the victim gap distance equal to zero, i.e., 𝑔sp = 1 and 𝑔vi = 0.

Tracking Passage through Gap and Detection Windows

To facilitate tracking whether a spoiler/victim instruction is inside a gap or detection win-
dow and, if so, how far inside the window it is, we will introduce a notion of extended hazard
systems (EHS). In an EHS, each state of the execution of a spoiler/victim instruction will
be labelled by a set of tags saying whether the write operation of the spoiler/victim has
already happened and, if so, how many cycles have passed since then. The universe of tags
𝒯 will therefore include all couples from the set {winsp , winvi}×N. The universe of tags is,
however, not defined to be equal to the above set since we will need to add some more tags

9Intuitively, the addition of 1 is needed since the victim starts by one cycle later. Further, note that the
gap is appropriately defined also for the case when 𝜏 lst

sp = 𝜏 lst
vi when a gap window of size 1 is needed to

compensate the fact that the victim starts by one cycle later.
10The subtraction of 1 comes from that the spoiler starts by one cycle earlier.
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into it later on when we examine the effect of stalling of an instruction, which we will need
to reflect in the tags as well. We defer the discussion of the stalling-related tags behind we
properly explain the basic spoiler/victim tags.

Below, we will introduce the EHSs step-wise by first adding tracking of spoiler windows,
then victim windows, and then adding tracking of stalled instructions. This will lead to
introduction of EHSs of various levels, with the zero level being the original hazard system,
level one being the extension by tracking spoilers, etc.

More formally, for a hazard case h = (𝜒sp , 𝜒vi) and the associated HS Ph = (Qh , Δh ,
𝛼h), the corresponding extended hazard system (EHS) of level 𝑛 ≥ 0 is a tuple Ph

𝑛 = (Qh
𝑛 ,

Δh
𝑛, 𝛼

h
𝑛, 𝛽

h
𝑛) where:

1. Qh
𝑛 is a finite subset of the set Qh×(N∪{⊥,⊤})𝑛.11 We let Qh

0 = Qh , and we give the
precise construction of the set Qh

𝑛 for 𝑛 ≥ 1 below. Intuitively, the additional compo-
nents of the states will allow us to track the passage of the spoiler/victim instructions
through the gap and detection windows, for which some states of the original HS
will need to be split to multiple occurrences to reflect whether an instruction in that
state is in the window and, if so, how far. Moreover, some further splitting will be
needed when some of the tracked instructions are stalled some number of times. The
finiteness of Qh

𝑛 will stem from that the tracked gap and detection windows are finite,
that we are tracking a pair of instructions, and that the stalling can happen for finite
time only.

2. The transition relation Δh
𝑛 and the labelling function 𝛼h

𝑛 lift the transition relation
Δh and the labelling function 𝛼h to the extended set of states. We have Δh

0 = Δh

and 𝛼h
0 = 𝛼h , and the construction of the relations for 𝑛 ≥ 1 is described in detail

below.

3. Finally, 𝛽h𝑛 : Qh
𝑛 → 2𝒯 is the new tag function. We let 𝛽h0 (𝑞) = ∅ for any 𝑞 ∈ Qh

0 . For
𝑛 ≥ 1, the construction of the function will also be shown below.

For 𝑛 ≥ 1, the construction of the EHS Ph
𝑛 will be based on applying Alg. 3 and 4

several times on the EHS Ph
0 . We start by presenting Alg. 3 that implements a procedure

denoted as window . This procedure extends the input EHS such that it allows for tracking
a spoiler/victim instruction, which performs its critical write instruction 𝑤 in a state from
some given set of states 𝑆, through its gap and detection windows whose combined length is
𝑘. Here, note that we monitor the gap and detection windows joint into one window which
is possible since the latter follows immediately after the former (and we can distinguish in
which of the original windows we are by just looking at how deep into the combined window
we are).

Intuitively, the algorithm extends all states of the input EHS by one more component
that ranges over the set 𝐼 := {⊥,⊤, 0, . . . , 𝑘 − 1}. When the additional component is ⊥,
the tracked instruction has not yet entered the gap/detection window. If the additional
component 𝑖 is from the set {⊥,⊤, 0, . . . , 𝑘 − 1}, the instruction is in the window for 𝑖+ 1
cycles. If the additional component is ⊤, the instruction has already got out of the window.

The transition relation is updated straightforwardly such that the monitoring phase
can be entered whenever an instruction is in some state from the given set 𝑆 (and the

11For convenience, by a slight abuse of the notation, we let (Qh × (N ∪ {⊥,⊤})) × (N ∪ {⊥,⊤}) =
Qh × (N ∪ {⊥,⊤}) × (N ∪ {⊥,⊤}) and ((𝑞, 𝑖1), 𝑖2) = (𝑞, 𝑖1, 𝑖2) for any 𝑞 ∈ Qh and 𝑖1, 𝑖2 ∈ N ∪ {⊥,⊤}, and
likewise for higher values of 𝑛.
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monitoring has not yet started). If the monitoring is started, every executed transition
increases the number of cycles spent in the window (recorded in the additional component
of states) until the end of the window is reached. Note that, for transitions with guards, the
states used in the guards must be lifted to the new set of states, which is done by allowing
them to appear with any value of the additional component. Indeed, satisfaction of the
guard is not subject to the cycle in which it is reached.

The 𝛼 function does not depend on the additional component, and so it is lifted to the
new set of states by ignoring the additional component. On the other hand, the 𝛽 function
is extended such that states that are inside the monitored window will be tagged by a couple
(𝑤, 𝑖), which says that the operation 𝑤 is in the (𝑖+1)-th cycle of its gap/detection window.

To be able to compute the set 𝑆 where the tracking of gap/detection windows starts,
which we need to be able to apply Alg. 3, we introduce some further notation. Namely,
given a state 𝑞 = ⟨𝜅, 𝑠, 𝑖1, . . . , 𝑖𝑛⟩ ∈ Qh × (N∪{⊥,⊤})𝑛, representing the state of execution
of some instruction, we denote by K(𝑞) = 𝜅 and S(𝑞) = 𝑠 the class and stage of execution
of the concerned instruction, respectively. To identify the states where the critical write
operations happen and the tracking of the passage of the gap/detection windows starts,
we introduce the following function. Namely, given an EHS P = (Q , Δ, 𝛼, 𝛽) of any
level and an instruction class 𝜅 ∈ K, we define wr𝑃𝜅 : X → 2Q as the function that maps
any execution (𝜋, 𝜏) ∈ X to the set {𝑞 ∈ Q | K(𝑞) = 𝜅 ∧ S(𝑞) = 𝜏(𝜋lst)} of all the states
of P where a 𝜅-class instruction makes the write 𝜋lst to its target storage in the execution
(𝜋, 𝜏).

We can now proceed to the transformation of the original EHS P0 to the EHS P1

extended to track the spoiler gap and detection windows. With the above notation and
algorithm in hand, the EHS P1 can be obtained simply as

Ph
1 := window(Ph

0 ,wr
Ph
0

sp (𝜋sp , 𝜏sp), winsp , 𝑔sp + 𝑑sp).

Indeed, the critical operation is writing in a spoiler, which we denote as winsp . The write
operation can happen in one of the states returned by wr

Ph
0

sp (𝜋sp , 𝜏sp). These states thus
serve as the initial states for tracking the gap and detection windows. Their sizes are 𝑔sp and
𝑑sp , respectively, which gives the length 𝑔sp + 𝑑sp of the combined window whose tracking
is ensured in Ph

1 by Alg. 3.
The EHS Ph

2 extended to track the victim gap and detection windows can be obtained
from Ph

1 in a very similar way as follows:

Ph
2 := window(Ph

1 ,wr
Ph
1

vi (𝜋vi , 𝜏vi)), winvi , 𝑔vi + 𝑑vi).

An example of a computation of the tracking window is demonstrated in Fig. 9.4.

Tracking Windows in Stalled Instructions

Since our approach builds on counting the exact number of cycles spent within the tracking
windows, we also need to deal with any scenario when an ℓ-class instruction is stalled while
the corresponding e-class instruction is not.12 This scenario breaks the counting scheme
introduced in the previous paragraphs as the later instruction can get delayed and the earlier
instruction might get out of the detection window before the later one gets into its detection
window. The goal of the following transformations is to compensate such misalignments

12The converse cannot happen due to the basic consistency checks that we perform.
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Algorithm 3 The window procedure transforming an EHS P𝑛 to an EHS P𝑛+1 to facilitate
tracking of the execution of an instruction that performs a critical write operation 𝑤 in
a state from some given set 𝑆 through a window of some given length 𝑘.
Require: An EHS P𝑛 = (Q𝑛, Δ𝑛, 𝛼𝑛, 𝛽𝑛) of any level 𝑛 ≥ 0, a set 𝑆 ⊆ Q𝑛 of states to

start the transformation from, a tag 𝑤 ∈ {winsp , winvi}, and the length of the tracking
window 𝑘 ∈ {1, . . ., max(S)}.

Ensure: An EHS P𝑛+1 = (Q𝑛+1,Δ𝑛+1, 𝛼𝑛+1, 𝛽𝑛+1) where each state based on 𝑞 ∈ 𝑆
together with its 𝑘 reachable successors is tagged by a pair (𝑤, 𝑖) where 0 ≤ 𝑖 < 𝑘
denotes the distance of the successor from the original occurrence of 𝑞.

1: 𝐼 := {⊥,⊤, 0, . . . , 𝑘 − 1}.
2: Q𝑛+1 := Q𝑛 × 𝐼.
3: Δ𝑛+1 is defined as the minimal relation such that the following two conditions hold:

(a) For every global transition Q∘ : 𝐺 |= 𝑞1 → 𝑞2 ∈ Δ𝑛 and for every injection Γ : Q𝑛 →
𝐼, the following transitions are in Δ𝑛+1:

∙ Q∘ : ̂︀Γ(𝐺) |= (𝑞1,⊥)→ (𝑞2,⊥),

∙ Q∘ : ̂︀Γ(𝐺) |= (𝑞1,⊥)→ (𝑞2, 0) if 𝑞2 ∈ 𝑆,

∙ Q∘ : ̂︀Γ(𝐺) |= (𝑞1, 𝑖)→ (𝑞2, 𝑖+ 1) for all 0 ≤ 𝑖 < 𝑘 − 1,

∙ Q∘ : ̂︀Γ(𝐺) |= (𝑞1, 𝑖)→ (𝑞2,⊤) for 𝑖 = 𝑘 − 1,

∙ Q∘ : ̂︀Γ(𝐺) |= (𝑞1,⊤)→ (𝑞2,⊤)

where ̂︀Γ: 2Q𝑛 → 2Q𝑛+1 is defined such that ∀𝑄′ ⊆ Q𝑛 : ̂︀Γ(𝑄′) := {(𝑞,Γ(𝑞)) | 𝑞 ∈ 𝑄′}.
(b) For every local transition 𝑞1 → 𝑞2 ∈ Δ𝑛, the following transitions are in Δ𝑛+1:

∙ (𝑞1,⊥)→ (𝑞2,⊥),

∙ (𝑞1,⊥)→ (𝑞2, 0) if 𝑞2 ∈ 𝑆,

∙ (𝑞1, 𝑖)→ (𝑞2, 𝑖+ 1) for all 0 ≤ 𝑖 < 𝑘 − 1,

∙ (𝑞1, 𝑖)→ (𝑞2,⊤) for 𝑖 = 𝑘 − 1,

∙ (𝑞1,⊤)→ (𝑞2,⊤).

4: ∀(𝑞, 𝑖) ∈ Q𝑛 × 𝐼 : 𝛼𝑛+1(𝑞, 𝑖) = 𝛼𝑛(𝑞).
5: ∀(𝑞, 𝑖) ∈ Q𝑛 × {⊥,⊤} : 𝛽𝑛+1(𝑞, 𝑖) = 𝛽𝑛(𝑞).
6: ∀(𝑞, 𝑖) ∈ Q𝑛 × {0, . . . , 𝑘 − 1} : 𝛽𝑛+1((𝑞, 𝑖)) = 𝛽𝑛(𝑞) ∪ {(𝑤, 𝑖)}.
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(b) A part of the EHS P𝑛+1 =
window(P𝑛, {sp0}, winsp , 2) that correponds to the
same part of P𝑛 depicted in Part (a). States sp𝑗

𝑖 ,
0 ≤ 𝑖 ≤ 2, 0 ≤ 𝑗 < 2, for which (winsp , 𝑗) ∈ 𝛽𝑛(sp

𝑗
𝑖 ),

are highlighted in red. Please note that each global
transition from the orignal EHS P𝑛 corresponds
to a family of transitions given by all possible
injections Γ1, . . . ,Γ𝑘 : Q𝑛 → {⊥, 0, 1,⊤} with
the mappings ̂︀Γ𝑖, 1 ≤ 𝑖 ≤ 𝑘, defined such that
∀𝑄′ ⊆ Q𝑛 : ̂︀Γ𝑖(𝑄

′) := {(𝑞,Γ𝑖(𝑞)) | 𝑞 ∈ 𝑄′}. These
families of transactions are denoted by the dashed
lines in the figure.

Figure 9.4: An illustration of an application of the window procedure on a fragment of an
EHS P𝑛.

by (1) using so-called slack tags to count how many times the later instruction gets stalled
and (2) by expanding the detection window of the earlier instruction correspondingly.

The introduction of slack tags, which are drawn from the set {sl} ×N, is implemented
in Alg. 4, which takes us from the EHS Ph

2 obtained by the previous transformations to
EHS Ph

3 as follows:

Ph
3 := slack(Ph

2 ,max(S)).

Intuitively, all states from the EHS Ph
2 are considered to have the initial slack zero. Then,

whenever a self-loop on any such state is possible, the self-loop is changed into a transition
going to a new copy of the concerned state with the slack being one. More generally,
a self-loop on a state with the slack being 𝑖 is transformed into a transition to a new
copy of that state with the slack being 𝑖+ 1 (unless the number of slack steps reaches the
maximum number of pipeline stages—going to such a number and beyond is not necessary
since such behaviors are ruled out by the initial sanity checks). The number of stalls (slack
transitions) performed by an instruction is thus remembered in the structure of the states,
and, in addition, we add it into the tags of the states at the end of Alg. 4 so that the
slack information is easier to access. An example of an application of the slack mapping is
demonstrated in Fig. 9.5.

What remains to be done is to adjust the tracking window of the earlier instruction,
which has to be done such that the extension corresponds to the number of the slack

92



Algorithm 4 A procedure for computing the slack mapping.
Require: An EHS P𝑛 = (Q𝑛, Δ𝑛, 𝛼𝑛, 𝛽𝑛) of any level 𝑛 ≥ 0 and the total number of

pipeline stages 𝑚 ≥ 1.
Ensure: An EHS P𝑛+1 = (Q𝑛+1,Δ𝑛+1, 𝛼𝑛+1, 𝛽𝑛+1) whose states P𝑛+1 are tagged by pairs

(sl, 𝑖) where 0 ≤ 𝑖 < 𝑚 denotes the number of self-loop transitions taken by the later
tracked instruction in the EHS P𝑛.

1: 𝐼 := {⊤, 0, . . . ,𝑚− 1}.
2: Q𝑛+1 := Q𝑛 × 𝐼.
3: Δ𝑛+1 is defined as the minimal relation such that the following two conditions hold:

(a) For every global transition Q∘ : 𝐺 |= 𝑞1 → 𝑞2 ∈ Δ𝑛 and for every injection Γ : Q𝑛 →
𝐼, the following transitions are in Δ𝑛+1:

∙ Q∘ : ̂︀Γ(𝐺) |= (𝑞1, 𝑖)→ (𝑞2, 𝑖+ 1) if 𝑞1 = 𝑞2 for all 0 ≤ 𝑖 < 𝑚− 1,

∙ Q∘ : ̂︀Γ(𝐺) |= (𝑞1, 𝑖)→ (𝑞2, 𝑖) if 𝑞1 ̸= 𝑞2 for all 0 ≤ 𝑖 < 𝑚,

∙ Q∘ : ̂︀Γ(𝐺) |= (𝑞1, 𝑖)→ (𝑞2,⊤) if 𝑞1 = 𝑞2 and 𝑖 = 𝑚− 1,

∙ Q∘ : ̂︀Γ(𝐺) |= (𝑞1,⊤)→ (𝑞2,⊤)

where ̂︀Γ: 2Q𝑛 → 2Q𝑛+1 is defined such that ∀𝑄′ ⊆ Q𝑛 : ̂︀Γ(𝑄′) := {(𝑞,Γ(𝑞)) | 𝑞 ∈ 𝑄′}.
(b) For every local transition 𝑞1 → 𝑞2 ∈ Δ𝑛, the following transitions are in Δ𝑛+1:

∙ (𝑞1, 𝑖)→ (𝑞2, 𝑖+ 1) if 𝑞1 = 𝑞2 for all 0 ≤ 𝑖 < 𝑚− 1,

∙ (𝑞1, 𝑖)→ (𝑞2, 𝑖) if 𝑞1 ̸= 𝑞2 for all 0 ≤ 𝑖 < 𝑚,

∙ (𝑞1, 𝑖)→ (𝑞2,⊤) if 𝑞1 = 𝑞2 and 𝑖 = 𝑚− 1,

∙ (𝑞1,⊤)→ (𝑞2,⊤).

4: ∀(𝑞, 𝑖) ∈ Q𝑛 × 𝐼 : 𝛼𝑛+1(𝑞, 𝑖) = 𝛼𝑛(𝑞).
5: ∀(𝑞, 𝑖) ∈ Q𝑛 × {⊤} : 𝛽𝑛+1(𝑞, 𝑖) = 𝛽𝑛(𝑞).
6: ∀(𝑞, 𝑖) ∈ Q𝑛 × {0, . . . ,𝑚− 1} : 𝛽𝑛+1((𝑞, 𝑖)) = 𝛽𝑛(𝑞) ∪ {(sl, 𝑖)}.
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(b) A part of an EHS P𝑛+1 = slack(P𝑛, 2) that cor-
reponds to the same part of P𝑛 depicted in Part
(a). States sp𝑗

𝑖 , 0 ≤ 𝑖 ≤ 3, 0 ≤ 𝑗 < 2, for which
(sl, 𝑗) ∈ 𝛽𝑛(sp

𝑗
𝑖 ) with the same value of 𝑗, indi-

cating that the instructions passed the same num-
ber of self-loops, share the same color. Please note
that each global transition from the orignal EHS
P𝑛 corresponds to a family of transitions given by
all possible injections Γ1, . . . ,Γ𝑘 : Q𝑛 → {⊥, 0, 1,⊤}
with the mappings ̂︀Γ𝑖, 1 ≤ 𝑖 ≤ 𝑘, defined such that
∀𝑄′ ⊆ Q𝑛 : ̂︀Γ𝑖(𝑄

′) := {(𝑞,Γ𝑖(𝑞)) | 𝑞 ∈ 𝑄′}. These
families of transactions are denoted by the dashed
lines in the figure.

Figure 9.5: An illustration of an application of the slack mapping on a fragment of an EHS
P𝑛.

transitions taken by the later instruction. For that, we will again use the window procedure
from Alg. 3, but we will instruct it to add special tags of the form win

(𝑖)
vi/sp meaning that

the tracking window of the earlier instruction is extended by 𝑖 cycles. The definition of the
bad configurations will then match states of the earlier instruction tagged by win

(𝑖)
vi/sp with

winsp/vi -tagged states of the later instruction that are at the same time tagged by such sl

tags which show that the later instruction went through 𝑖 slack transitions more than the
earlier one.

To be able to formalize the above, we need to be able to distinguish whether the earlier
instruction of a hazard case ℎ is a spoiler or a victim. For that, we define the following
notation: 𝜅(e, ℎ) = sp provided that ℎ is a RAW or CTL hazard and 𝜅(e, ℎ) = vi provided
that ℎ is a WAR or WAW hazard. Likewise, for later use, we define the analogous notation
for the later instruction too: 𝜅(ℓ, ℎ) = vi provided that ℎ is a RAW or CTL hazard and
𝜅(ℓ, ℎ) = sp provided that ℎ is a WAR or WAW hazard.

With all the notation at hand, it is now easy to derive the EHSs Ph
3+𝑖 of levels 3+ 𝑖 for

1 ≤ 𝑖 ≤ 𝑚 with 𝑚 = max(S) being the maximum number of pipeline stages that extend
the tracking window of the earlier instruction by 𝑖 cycles. Let 𝜅 = 𝜅(e, ℎ). For 𝑖 iterating
from 1 to 𝑚, we get

Ph
3+𝑖 := window(Ph

3+𝑖−1,wr
Ph
3+𝑖−1

𝜅 (𝜋𝜅, 𝜏𝜅), win
(𝑖)
𝜅 , 𝑔𝜅 + 𝑑𝜅 + 𝑖).

Finally, we put Ph
⊤ := Ph

3+𝑚.

Initial and Bad Configurations

Above, we have finished the construction of the EHS Ph
⊤ designed to facilitate the construc-

tion of the set Bh of minimal bad configurations describing minimal illegal configurations
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whose reachability (within possibly larger configurations) will mean that the given haz-
ard case h does indeed lead to a hazard. It now remains to define the set Bh along with
the corresponding set of initial configurations between which reachability will have to be
checked.

We first define the regular set I h of initial configurations of Ph
⊤ that consists solely

of instructions in the state ⊥, i.e., before entering the pipeline. An initial configuration
may be of an arbitrary length, and it may contain exactly one spoiler sp and one victim
instruction vi , interleaved by any other instructions in any order, modeled using the nf
class. Formally, the set I h of the initial states of EHS Ph

⊤ is defined as follows

I h := I h1 ∪ I h2

where
I h1 := {⟨nf ,⊥⟩}*{⟨vi ,⊥⟩}{⟨nf ,⊥⟩}*{⟨sp,⊥⟩}{⟨nf ,⊥⟩}*

and
I h2 := {⟨nf ,⊥⟩}*{⟨sp,⊥⟩}{⟨nf ,⊥⟩}*{⟨vi ,⊥⟩}{⟨nf ,⊥⟩}*.

Next, we define the set Bh of minimal bad configurations that describe hazardous config-
urations. The main challenge behind the construction of Bh is to correctly match detection
states of the earlier and later instructions. For that, we will use the tracking mechanism
that we have provided by the winsp/vi tags. Namely, we will construct Bh to include all
configurations that contain any pair of states 𝑞e , 𝑞ℓ ∈ Qh

⊤, K(𝑞e) = 𝜅(e, h), K(𝑞ℓ) = 𝜅(ℓ, h),
where the win tags correspond to the detection part of the tracking window, i.e.,

𝛽h⊤(𝑞e) ∈ {(win𝜅(e,h), 𝑖) | 𝑔𝜅(e,h) ≤ 𝑖 < 𝑔𝜅(e,h) + 𝑑𝜅(e,h)}

and
𝛽h⊤(𝑞ℓ) ∈ {(win𝜅(ℓ,h), 𝑖) | 𝑔𝜅(ℓ,h) ≤ 𝑖 < 𝑔𝜅(ℓ,h) + 𝑑𝜅(ℓ,h)}.

It now remains to deal with situations when some of the instructions are stalled. This is
monitored using the sl tags. First, we can observe that we do not have to further elaborate
cases when both (earlier and later) instructions are stalled together. Clearly, any hazard
that would occur after these cases would also occur in the case when the instructions are
not stalled. Second, the case when the earlier instruction is stalled while the later is not
is excluded by the consistency of the pipeline. Therefore, it suffices to only consider those
states of the earlier instruction 𝑞e for which (sl, 0) ∈ 𝛽(𝑞e). Next, let 𝑖 be a counter that
increases each time the later instruction is stalled while the earlier one is not. Since the
consistency Rules 1–4 from Section 9.3.2 guarantee that each instruction leaves the pipeline
in a final number of steps, the value of the counter 𝑖 may only range from 0 to max(S).
Every time the counter 𝑖 is increased, the detection in the earlier instruction is postponed
by a single pipeline cycle.

Taken all together, the set Bh of minimal bad configurations describing hazardous
configurations is defined as

Bh :=

max(S)⋃︁
𝑖=0

Bh
𝑖 (9.43)
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where

Bh
𝑖 := {𝑞e𝑞ℓ | {(sl, 0), (win

(𝑖)
𝜅(e,h), 𝑖+ 𝑗)} ⊆ 𝛽h⊤(𝑞e) ∧

{(sl, 𝑖), (win𝜅(ℓ,h), 𝑘)} ⊆ 𝛽h⊤(𝑞ℓ) ∧
𝑔𝜅(e,h) ≤ 𝑗 < 𝑔𝜅(e,h) + 𝑑𝜅(e,h) ∧
𝑔𝜅(ℓ,h) ≤ 𝑘 < 𝑔𝜅(ℓ,h) + 𝑑𝜅(ℓ,h) ∧
𝑞e , 𝑞ℓ ∈ Qh

⊤}.

(9.44)

With the EHS Ph
⊤ and the sets of initial I h and minimal bad configurations Bh at

hand, checking whether the hazard ℎ is feasible reduces to checking whether there is some
configuration in Bh that is reachable from some configuration in I h , for which one can use
techniques described, e.g., in [3, 17].

9.6 Experimental Evaluation
We have implemented the above described method in a prototype tool called Hades [33].
Hades is written in C++ combined with Python and consists of several components depicted
in Figure 9.6. The tool first reads an RTL description of the processor to be verified and
converts it into its internal PSG representation. Currently, Hades supports the RTL format
expressed in CodAL which is an architectural description language used in the processor de-
sign IDE [1]. For other RTL languages like VHDL and Verilog where architectural storages
are not explicitly identified, a list of architectural storages with an explicit identification of
the program counter must be provided.

The obtained PSG representation is then normalised and simplified. This step includes,
for instance, a replacement of conditional branching by multiplexors, an application of value
propagation, and a removal of redundant nodes and edges. The normalisation is done using
an internal component of Hades called as the RTL query engine (RQE), which allows one
to search for data-paths and substitute parts of the microprocessor RTL design described
via a PSG. Subsequently, pipeline stages are identified by the data-flow analysis discussed
in Section 9.3.1. Next, pipeline consistency is checked using Rules 1–4 from Section 9.3.2
by an SMT solver for bit-vector logic. Hades is compatible with all SMT solvers accepting
the SMT2 formula format. In particular, for the below experiments, Z3 [100] was used.
Further, after the PSG is annotated by pipeline stages identified by the data-flow analysis,
Hades repeatedly utilizes the RQE and the SMT solver to extract potential hazard cases
as described in Section 9.4 and to generate the appropriate hazard systems (HSs) for each
hazard case as we have seen in Section 9.5. The generated HSs are then checked using the
abstract regular model checker (ARMC) of [17]. The process of evaluation of the inputs
and generation of the results by the above mentioned subsystems is orchestrated by the
so-called “core” component of Hades.

We have tested the tool on six kinds of processors. The first four are identical to
the ones already presented in Section 7.6. CompAcc is then an 8-bit processor based on
an accumulator architecture with a very similar structure as the one shown in Fig. 9.2.
Finally, DLX5 is a 5-staged 32-bit processor able to execute a subset of the instruction set
of the DLX architecture [108] (with no floating point instructions).

We consider multiple variants of the above introduced processors, which gives us 17
unique test cases in total. In particular, the variants of the particular processors differ
in the following aspects: (i) the way how data hazards are avoided (pipeline stalling and
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Figure 9.6: A schematic of the Hades verification tool.

clearing or data bypassing), (ii) the presence of flag/status registers, and (iii) utilization of
the auto-increment logic.

We conducted a series of experiments on a PC with Intel Xeon E5-2630 v2 @2.60GHz
and 32 GB RAM with results shown in Table 9.3. The first columns give the verified
processor, its variant, the time needed for the PSG simplification and its data flow analysis.
The next columns give the duration of the consistency checking and the time spent by
verification of the parametric systems that are created for each hazard case. The times are
split to the times consumed by the different parts of the tool’s architecture.

The following column gives the overall verification time, which remains in the order of
minutes even for complex designs. Moreover, the tool also scales well with the growing size
of the processor data-path as can be seen by comparing the times obtained for SPP8 and
SPP16. It should be noted that the amount of time consumed by the tool’s core can be
reduced by using a direct API of the SMT solver used instead of the current implementation
that relies on exporting (potentially large) formulas in the smt2 file format. (On the other
hand, the current implementation does not depend on any particular SMT solver.) Finally,
the last column represents the number of data and control hazard cases that had to be
generated and checked. Note that each hazard case represents a separate task so the part
of generation and verification of the parametric systems can be parallelized in the future.

During the experiments, we identified a flaw in a RAW hazard resolution when accessing
the data memory in a development version of the SPP8 processor. Our approach also
correctly identified all potential control hazards that are supposed to be handled by the
compiler (by explicitly generating series of NOP instructions after a conditional branch).

9.7 Conclusion
We have presented an approach that harnesses methods for formal verification of parametric
systems in order to discover incorrectly handled data and control pipeline hazards in the
RTL implementation of pipeline-based execution. The approach was developed with the aim
to be highly automated, not requiring any additional efforts from the developers (apart from
specifying the architectural registers). We have implemented the approach and successfully
tested it on several non-trivial microprocessors where the approach was able to discover
previously unknown flaws caused by unhandled hazards.
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A potential future work may include extension of the proposed approach to support
microprocessors equipped with multiple pipelines. Further, as we have already mentioned
in Section 9.4, another considerable topic is extending the approach so it can detect issues
caused by spoilers and/or victims that consist of multiple instructions.
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Chapter 10

Epilogue

The subject of the thesis was to design new verification techniques based on formal ap-
proaches that are optimized for use in the process of concurrent development of hardware
and software, the so-called HW/SW co-design.

In accordance with the set-up goals, the thesis firstly presented a novel technique for
dealing with memory modeling that can be used for efficient formal verification of hardware
designs. The approach can accommodate different data sizes such as quad words, double
words, words, or bytes. At the same time, it is also applicable to memories with multiple
read and write ports and memories with read and write operations with zero- or single-clock
delay. The memory is allowed to start with a random initial state permitting one to formally
verify the given design for all initial contents of the memory. An abstraction used in the
approach represents large register-files and memories in a way that dramatically reduces
the state space explored during formal verification of microprocessors as can be witnessed
by our experiments presented in Chapter 7.

Further, in Chapter 8, the thesis presents the correspondence checking approach based
on the idea of utilizing bounded model checking to compare the outputs produced by auto-
matically derived RTL and ISA models of a given processor for all possible instructions and
their inputs. To guarantee that results are obtained in a given time limit, each instruction
is checked in parallel for several bit-widths of its input. The approach then returns only
the result of the verification task with maximal bit-width that finished within the time
limit. Our experiments included a non-trivial single-pipelined processor in which, during
its development, the approach revealed three previously unknown bugs confirmed by the
developers. The experiments have also shown that vast majority of instructions of single-
pipelined microprocessors, typically used within embedded devices, can be verified within
seconds.

Finally, in Chapter 9, the thesis presents an approach that harnesses methods for formal
verification of parametric systems in order to discover incorrectly handled data and control
pipeline hazards in the RTL implementations of pipeline-based executions. The approach
was developed with the aim to be highly automated, requiring no external information
about the design (apart from specifying the architectural registers). The experimental im-
plementation of the approach was successfully tested on several non-trivial microprocessors
where the approach was able to discover a previously unknown flaw caused by an unhandled
hazard.

The design of all the above-presented approaches was motivated by the general idea of
splitting processor verification into several simpler, more specialized tasks. Moreover, each
approach was designed to be highly automated, requiring minimal additional effort from
developers.
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