VYSOKÉ U ENÍ TECHNICKÉ V BRN

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKA NÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF RADIO ELECTRONICS

NÍZKOPROFILOVÁ MAGNETICKÁ ANTÉNA

BAKALÁ SKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE

FRANTIŠEK BURIÁNEK

BRNO 2011

VYSOKÉ U ENÍ TECHNICKÉ V BRN

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKA NÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF RADIO ELECTRONICS

NÍZKOPROFILOVÁ MAGNETICKÁ ANTÉNA

LOW-PROFILE MAGNETIC ANTENNA

BAKALÁ SKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR FRANTIŠEK BURIÁNEK

VEDOUCÍ PRÁCE SUPERVISOR

prof. Dr. Ing. ZBYN K RAIDA

BRNO 2011

VYSOKÉ U ENÍ TECHNICKÉ V BRN

Fakulta elektrotechniky a komunika ních technologií

Ústav radioelektroniky

Bakalá ská práce

bakalá ský studijní obor Elektronika a sd lovací technika

Student:František BuriánekRo ník:3

ID: 119370 *Akademický rok:* 2010/2011

NÁZEV TÉMATU:

Nízkoprofilová magnetická anténa

POKYNY PRO VYPRACOVÁNÍ:

Seznamte se s koncepcí vícepásmové magnetické antény, popsané v [1]. Vytvo te numerický model antény v programu CST Microwave Studio a dosažené výsledky porovnejte s výsledky uvedenými v [1]. Anténu optimalizujte, aby bylo dosaženo co nejlepšího impedan ního p izp sobení v p edepsaných kmito tových pásmech.

Optimalizovanou anténu vyrobte a experimentáln ov te její vlastnosti. Zm ené parametry detailn porovnejte s výsledky po íta ových simulací.

DOPORU ENÁ LITERATURA:

[1] RYŠÁNEK, M. Vícepásmová magnetická anténa. Diplomová práce. Brno: FEKT VUT v Brn, 2010.

[2] BALANIS, C. A. Antenna Theory: Analysis and Design, 3rd Edition. New York: J. Wiley and Sons, 2005.

Termín zadání: 7.2.2011

Termín odevzdání: 27.5.2011

Vedoucí práce: prof. Dr. Ing. Zbyn k Raida

prof. Dr. Ing. Zbyn k Raida P edseda oborové rady

UPOZORN NÍ:

Autor bakalá ské práce nesmí p i vytvá ení bakalá ské práce porušit autorská práva t etích osob, zejména nesmí zasahovat nedovoleným zp sobem do cizích autorských práv osobnostních a musí si být pln v dom následk porušení ustanovení § 11 a následujících autorského zákona . 121/2000 Sb., v etn možných trestn právních d sledk vyplývajících z ustanovení ásti druhé, hlavy VI. díl 4 Trestního zákoníku .40/2009 Sb.

ABSTRAKT

Práce se zabývá návrhem a simulací nízkoprofilové magnetické antény v programu CST Microwave Studio. Je zde popsán postup včetně veškerých nastavení potřebných pro správný chod simulace. V další části se práce věnuje výběru vhodného materiálu, samotné konstrukci a metodám výroby.

KLÍČOVÁ SLOVA

Nízkoprofilová magnetická anténa, CST Microwave Studio, metody výroby a konstrukce trychtýřové antény.

ABSTRACT

This bachelor thesis presents design and simulation of low-profile magnetic antenna in CST Microwave Studio program. The simulation procedure is described here, including all the settings required for proper operation of the simulation. In the next part the work deals with the selection of the appropriate material for the antenna, its design and methods of manufacturing.

KEYWORDS

Low-profile magnetic antenna, CST Microwave Studio, methods of manufacturing and design of conical horn antenna.

BURIÁNEK, František *Nízkoprofilová magnetická anténa*: bakalářská práce. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav radioelektroniky, 2011. 37 s. Vedoucí práce byl prof. Dr. Ing. Zbyněk Raida, CSc.

PROHLÁŠENÍ

Prohlašuji, že svou bakalářskou práci na téma "Nízkoprofilová magnetická anténa" jsem vypracoval samostatně pod vedením vedoucího bakalářské práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti s vytvořením této bakalářské práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení \S 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení \S 152 trestního zákona č. 140/1961 Sb.

V Brně dne

(podpis autora)

PODĚKOVÁNÍ

Děkuji vedoucímu bakalářské práce Prof. Dr. Ing. Zbyňku Raidovi za účinnou metodickou, pedagogickou a odbornou pomoc a další cenné rady při zpracování mé bakalářské práce.

V Brně dne

(podpis autora)

OBSAH

Ú	vod		9
1	Pop	is a princip činnosti	10
2	\mathbf{Sim}	ulace	11
	2.1	Model antény a globální nastavení	11
	2.2	Transient solver	16
		2.2.1 Nastavení	16
		2.2.2 Výsledky simulace	18
	2.3	Frequency domain solver	19
		2.3.1 Nastavení	19
		2.3.2 Výsledky simulace	20
3	Srov	vnání výsledků simulací	21
4	Náv	rh antény	26
	4.1	Impedanční přizpůsobení	26
		4.1.1 Koaxiální část	26
		4.1.2 Vlnovodná část	26
	4.2	Vliv materiálu	27
	4.3	Konkrétní parametry antény	29
5	Výs	ledky	30
6	Výr	oba konstrukce	32
	6.1	Další alternativy výroby	33
7	Záv	ěr	34
$\mathbf{Li}^{\mathbf{r}}$	terat	ura	35
\mathbf{Se}	znan	n symbolů, veličin a zkratek	37

SEZNAM OBRÁZKŮ

Fyzické vlastnosti antény.	10
Tvorba projektu.	11
Vlastnosti pracovní oblasti.	12
Nastavení materiálu.	13
Konstrukce koaxiálního vedení.	13
Konstrukce apertury.	14
Tvorba středního vodiče	15
Nastavení okrajových podmínek	15
Nastavení 3D výstupu (Field Monitors).	16
Nastavení Mesh mřížky.	17
Spuštění simulace pomocí Transient solveru.	17
Závislost činitele odrazu s_{11} na frekvenci	18
Vyzařovací charakteristika antény při $f = 2 GHz$	18
Spuštění simulace pomocí Frequency domain solveru.	19
Závislost činitele odrazu s_{11} na frekvenci.	20
Vyzařovací charakteristika antény při $f=2GHz.$	20
Modul činitele odrazu s_{11}	21
Kmitočtový průběh činitele odrazu v polárních souřadnicích	21
Fáze činitele odrazu.	22
Vyzařovací charakteristika antény při $f=1GHz.$	22
Vyzařovací charakteristika antény při $f = 1, 2 GHz$	23
Vyzařovací charakteristika antény při $f=1,4GHz.$	23
Vyzařovací charakteristika antény při $f=1,6GHz.$	23
Vyzařovací charakteristika antény při $f=1,8GHz.$	24
Vyzařovací charakteristika antény při $f=2GHz.$	24
Vyzařovací charakteristika antény při $f=2,2GHz.$	24
Vyzařovací charakteristika antény při $f=2,4GHz.$	25
Vyzařovací charakteristika antény při $f=2,6GHz.$	25
Značení rozměrů jednotlivých vedení.	27
Grafická závislost impedančního přizpůsobení antény.	28
Fyzické vlastnosti lomené antény.	29
Závislost činitel odrazu s_{11} na frekvenci.	30
Fáze činitele odrazu.	30
Směrová charakteristika.	31
Vyzařovací charakteristika antény při $f=2,4GHz.$	31
Ukázka konstrukce antény	32
	Fyzické vlastnosti antény.Tvorba projektu.Vlastnosti pracovní oblasti.Nastavení materiálu.Konstrukce koaxiálního vedení.Konstrukce apertury.Tvorba středního vodiče.Nastavení okrajových podmínek.Nastavení okrajových podmínek.Nastavení 3D výstupu (Field Monitors).Nastavení Mesh mřížky.Spuštění simulace pomocí Transient solveru.Závislost činitele odrazu s_{11} na frekvenci.Vyzařovací charakteristika antény při $f = 2 GHz$.Spuštění simulace pomocí Frequency domain solveru.Závislost činitele odrazu s_{11} na frekvenci.Vyzařovací charakteristika antény při $f = 2 GHz$.Modul činitele odrazu s_{11} na frekvenci.Vyzařovací charakteristika antény při $f = 1 GHz$.Vyzařovací charakteristika antény při $f = 1, 2 GHz$.Vyzařovací charakteristika antény při $f = 1, 2 GHz$.Vyzařovací charakteristika antény při $f = 1, 4 GHz$.Vyzařovací charakteristika antény při $f = 1, 6 GHz$.Vyzařovací charakteristika antény při $f = 1, 6 GHz$.Vyzařovací charakteristika antény při $f = 2, 2 GHz$.Vyzařovací charakteristika antény při $f = 2, 2 GHz$.Vyzařovací charakteristika antény při $f = 2, 2 GHz$.Vyzařovací charakteristika antény při $f = 2, 2 GHz$.Vyzařovací charakteristika antény při $f = 2, 2 GHz$.Vyzařovací charakteristika antény při $f = 2, 2 GHz$.Vyzařovací charakteristika antény při $f = 2, 2 GHz$.Vyzařovací charakteristika antény při $f = 2, 2 GHz$.Vyzařovací charakteristika antény při $f = 2, 2 GHz$.Vyzařovací charakteristika

SEZNAM TABULEK

2.1	Parametry všech použitých materiálů	12
4.1	Veškeré rozměry a parametry antény.	29

ÚVOD

Nízkoprofilová elektromagnetická anténa je v podstatě zakončení koaxiálního vedení kuželovitého tvaru, tzv. trychtýř. Tato bakalářská práce vychází z numerické simulace antény v programu COMSOL Multiphysics, která je popsána v diplomové práci *Vícepásmová magnetická anténa* [1]. Získané parametry antény se ověří v simulačním programu CST Microwave Studio. Jelikož výsledkem má být i celkové fyzické zhotovení navrhované antény a původní návrh není z konstrukčního hlediska úplně ideální (např. trychtýřová část antény se skládá ze třech různých dielektrických substrátů), musí návrh projít několika změnami. Hlavním úkolem práce je tedy nejlépe optimalizovat a přizpůsobit anténu tak, aby výroba samotné antény byla co možná nejjednodušší a zároveň aby splňovala ty samé parametry, které byly uvažovány v diplomové práci *Vícepásmová magnetická anténa* [1]. Následně opětovnou simulací získáme předběžné informace o takto navržené anténě.

Dalším krokem již bude fyzická realizace, u které se měřením ověří reálné vlastnosti antény. Diskuzí hodnot, získaných výstupem z měření, porovnáme s předběžnými parametry simulace a zhodnotíme tak použitou metodiku návrhu antén.

1 POPIS A PRINCIP ČINNOSTI

V pásmu centimetrových vln se šíří prostorová vlna. Jako mikrovlnné antény se nejčastěji používají tzv. plošné antény. Charakteristickým rysem těchto antén je rozšířené ústí (apertura) obvykle vlnovodného vedení. Takto tvarované ústí připomíná trychtýř, proto se tyto antény právem nazývají trychtýřové. Konstrukce trychtýřů jsou různé, většinou kopírují tvar vedení, na které plynule navazují. Nejčastěji mají podobu plošného trychtýře (zúžený obdélník), jehlanu nebo kuželu. Výhodou těchto antén je nízká cena a konstrukční jednoduchost, to je ovšem vykoupeno malým ziskem.

Samotná práce se zabývá právě kuželovou plošnou anténou (viz obr. 1.1). Anténa je složena z koaxiálního vedení s charakteristickou impedancí 50 Ω , jenž se pozvolna rozšiřuje do trychtýře kuželovitého tvaru. Z řezu koaxiálního vedení lze pozorovat, že kulatý středový vodič obklopuje izolační vrstva (dielektrikum), kterou objímá vodivá vrstva válcového tvaru a následně to celé končí v izolačním zapouzdření (plášti kabelu). Výplň samotného trychtýře sestává z dielektrika s relativní permitivitou ϵ_r . Střední vodič je zakončen od konce antény ve vzdálenosti L_f . Frekvenční odezva může být ovlivněna délkou trychtýře L_1 , hloubkou zanoření středního vodiče L_f , permitivitou ϵ_r či rozšířením středního vodiče o poloměru R_{f3} . Simulace budou prováděny u antény s těmito rozměry: výška trychtýře $L_1 = 65 mm$, hloubka zanoření středního vodiče $L_f = 20 mm$, délka středního vodiče $L = L_1 - L_f = 45 mm$, poloměr trychtýře $R_1 = 150 mm$, poloměr středního vodiče $R_{f3} = R_{f1} = 1 mm$ a vnější poloměr dielektrika koaxiálního vedení $R_{f2} = 5,86 mm$. Hodnoty všech poměrných permitivit ϵ_r jsou uvedeny v tab. 2.1 podkapitoly *Návrh antény a globální nastavení.*

Obr. 1.1: Fyzické vlastnosti antény.

2 SIMULACE

Veškeré simulace budou prováděny v simulačním programu CST Microwave Studio 2010. V části Návrh antény se práce věnuje sestavení konstrukčního modelu antény, na který navazují nastavení a výsledky simulace. Jelikož CST Microwave studio disponuje vícero možnostmi, jak navrhovanou anténu odsimulovat, bude v následujících řádcích popsán postup dvěma různými způsoby. První způsob, Transient solver, vhodnější spíše pro méně výkonné počítače, má totiž výhodu v širším rozsahu nastavení, jež dá více prostoru pro optimální nastavení simulace dané hardwarovými možnostmi počítače. Taktéž umožňuje simulaci pozastavit a kdykoliv se k ní navrátit. Na druhou stranu lze použít Frequency domain solver, který má sice vyšší hardwarové nároky a doba výpočtu se rapidně zvyšuje, ovšem výsledky simulací jsou přesnější než simulace pomocí Transient solveru. Obě metody budou řádně popsány a jejich výsledky porovnány.

2.1 Model antény a globální nastavení

Při prvním spuštění *CST Studio Suite* vyskočí okno s možností výběru projektu. Jelikož je cílem navrhnout mikrovlnou anténu, zvolíme možnost vytvoření nového projektu v aplikaci *CST Microwave Studio*, které se specializuje na mikrovlnné struktury. Následující okno (viz obr. 2.1) disponuje několika šablonami, jež v sobě skrývají výchozí nastavení pro dané aplikace (např. jednotky, pozadí, ohraničení apod.) - vybereme možnost *Antenna (Horn, Waveguide)*.

Obr. 2.1: Tvorba projektu.

Nyní je potřeba nastavit velikost pracovní oblasti tak, aby se požadovaný model antény do této plochy vměstnal. Nastavení se nachází v menu Edit, položka *Working Plane Properties*, kde zadáme hodnoty, jak je tomu na obr. 2.2.

ize:		OK
450		Canaal
2		Lancel
Raster		Help
Width:		
50	🔽 Auto	
Snap width:		
0.01	Snap	

Obr. 2.2: Vlastnosti pracovní oblasti.

Prostředí máme tedy nadefinováno, tak již můžeme začít s konstrukcí antény. V první řadě nadefinujeme některé hodnoty jednotlivých materiálů. V levé části programu je situován navigační strom, v němž se nachází položka *materials*. Kliknutím pravým tlačítkem myši na tuto položku vyskočí nabídka – zvolíme *New material*. V tomto nastavení na záložce *general* se vyskytují následující parametry materiálu: název (Material name), typ (Type), permitivita (Epsilon), permeabilita (Mue), barva (Color) a průhlednost (Transparency) – viz obr. 2.3a. Pokud dopředu uvažujeme nad optimalizací, je dobré u parametru *Epsilon* zadat namísto hodnoty pouze její označení např. E1, na konkrétní hodnotu se program zeptá až při potvrzení této nabídky (viz obr. 2.3b). U všech materiálů zvolíme ϵ_r podle tab. 2.1, ponecháme $\mu_r = 1$ a typ nastaven na *Normal*. Kvůli přehlednosti doporučuji mít materiály barevně rozlišeny.

Název materiálu	Permitivita ϵ_r	Тур	Permeabilita μ_r
material1	4,4		
material2	9,7	normal	1
material3	1,5	normai	I
material4	4,7		

Tab. 2.1: Parametry všech použitých materiálů.

roblem type: Default	•		
Seneral Conductivity Disper	rsion Thermal Mechanics Density		
General properties			
Material name:			
material1			
Type:			
Normal -			
Epsilon:	Mue:		
E1	1		
Color			
Color	0% Transparency 100%		
	and independing foort		
Ch	hange		
Ch	nange		
Draw as wireframe	hange		
Draw as wireframe Draw reflective surface Allow outline display	ange		
Draw as wireframe Draw reflective surface Allow outine display Draw outine for transpa	rent shapes		
Draw as wireframe Draw reflective surface Allow outine display Draw outine for transpa Add to material library	vent shapes	New Parameter	
Ch Draw as wireframe Draw reflective surface Allow outine display Draw outine for transpa Add to material library	rent shapes	New Parameter Define missing parameter	
Ch Draw as wireframe Draw reflective surface V Allow outline display Draw outline for transpa Add to material library	rent shapes	New Parameter Define missing parameter Parameter: E1	
Ch Draw as wireframe Draw reflective surface V Allow outine display Draw outine for transpa Add to material library	rent shapes	New Parameter Define missing parameter Parameter: E1 Value: 4.5	OK Cancel
Chi Craw as wireframe Craw reflective surface Allow outline display Craw outline display Craw outline for transpa Add to material library	rent shapes	New Parameter Define missing parameter Parameter. E1 Value: 4.5 Description material	OK Cancel

Obr. 2.3: Nastavení materiálu.

Materiály máme již řádně nastaveny a zbývá už jen navrhnout samotnou anténu. Nejprve naznačíme kousek koaxiálního vedením, které slouží jako anténní napáječ a v CST Microwave studiu jej taktéž použijeme k označení vstupního portu. Nyní vytvoříme stínění koaxiálního vedení za použití funkce *Create cylinder* (ikona). Parametry zvolíme podle obr. 2.4a. Pro vytvoření dielektrika kolem středního vodiče opět použijeme *Create cylinder* s parametry viz obr. 2.4b. Při potvrzení vyskočí dialogové okno, kde zatrhneme *Insert highlighted shape*. Nakonec tím samým způsobem vytvoříme střední vodič s parametry viz obr. 2.4c.

Cylinder		**	Cylinder	-	× 1	Cylinder		×
Name: solid1 Orientation:	Y © Z Inner radius: 0.0 Ycenter:	OK Preview Cancel	Name: solid2 Orientation:	⊙Y ⊚Z Inner radius: 0.0 Ycenter:	OK Preview Cancel	Name: solid3 Drientation: © X Outer radius: 1 Xcenter:	○ Y ● Z Inner radius: 0.0 Ycenter:	OK Preview Cancel
0 Zmin: -10	0 Zmax 0		0 Zmin: -10	0 Zmax: 0		0 Zmin: -10	0 Zmax: 0	
Segments:			Segments:			Segments: 0		
Component: component1 Material: PEC		Help	Component: component1 Materiat material1		• Help	Component: component1 Material: PEC	•	Help

Obr. 2.4: Konstrukce koaxiálního vedení.

Koaxiální napáječ máme již dokončen a následně na něj navážeme aperturou skládající se ze třech různých dielektrik. Postup je podobný, jak v případě koaxiálního napáječe, výjimkou je však použití funkce *Creative cone* **(A)**. Vytvoříme tedy čtyři různé kužely podle obr. 2.5.

Name:		ОК	Name:		OK
solid4		Preview	colido		Previo
Drientation: 💿 🗙	©Y ⊚Z	P TOVIOW	Orientation: 🕥 🗙	⊙Y ⊚Z	Fievie
Bottom radius:	Top radius:	Cancel	Bottom radius:	Top radius:	Canc
6.86	150		5.86	54	
Xcenter	Ycenter		Xcenter	Ycenter	
0	0		0	0	
Zmin	Zmay		Zmin	Zmay	
0	65		0	21.7	
Commenter			Comente		
0			0		
Component			Component		
component1		-	component1	•	
Material			Material		
PEC		- Help	material2		Help
0.77			Contentione		
(a) v	vnější ma	teriál	(b) diele	ektrická vrs	tva č.
(a) v	vnější ma	uteriál	(b) diele	ektrická vrs	tva č.
(a) v	vnější ma	teriál	(b) diele	ektrická vrs	tva č.:
(a) T	vnější ma	uteriál	(b) diele	ektrická vrs	tva č.:
(a) N one Name: solid6	vnější ma	uteriál	(b) diele	ektrická vrs	tva č.:
(a) T one Name: solid6 Orientation: ©×	vnější ma ⊙v ⊙z	ateriál	(b) diele	ektrická vrs ⊙y ⊛z	tva č.:
(a) T one Name: solid5 Orientation: ©× Bottom radius:	vnější ma ⊙v ⊛z Topradus:	ateriál	(b) diele Cone Name: solid7 Orientation: © × Bottom radius:	ektrická vrs ⊙Y ⊚Z Topradus:	tva č.:
(a) Norme Name: solid6 Orientation: OX Bottom radius: 54	vnější ma OY © Z Topradus: 101.9	ateriál	(b) diele Cone Name: solid7 Orientation: X Bottom radius: 101.9	OY ⊙Z Top radius: 149	tva č.:
(a) T one Name: solid6 Orientation: O × Bottom radius: 54 Xcenter:	vnější ma OY © Z Topradus: 101.9 Ycenter:	ateriál	(b) diele Cone Name: solid7 Orientation: X Bottom radius: 101.9 Xcenter:	OY ⊙Z Top radius: 149 Ycenter:	tva č. OK Previe Cance
(a) T one Name: solid5 Orientation: S4 Xcenter: 0	vnější ma OY ©Z Topradus: 101.9 Ycenter: 0	ateriál	(b) diele Cone Name: solid7 Orientation: X Bottom radius: 101.9 Xcenter: 0	OY ⊙Z Top radius: 149 Ycenter: 0	tva č.:
(a) T one Name: solid6 Orientation: • × Bottom radius: 54 ×center: 0 Zmin:	vnější ma OY © Z Topradus: 101.9 Ycenter: 0 Zmax	ateriál	(b) diele Cone Name: solid7 Orientation: X Bottom radius: 101.9 Xcenter: 0 Zmirx	ektrická vrs ○Y @Z Topradus: 149 Ycente: 0 Zmax	tva č.:
(a) T one Name: solid6 Orientation: • × Bottom radius: 54 ×center: 0 2 zmin: 21.7	Vnější ma OY © Z Topradus: 101.9 Ycente: 0 Zmax 43.3	tteriál	(b) diele Cone Name: solid7 Orientation: X Bottom radius: 101.9 Xcenter: 0 Zmin: 43.3	ektrická vrs ○Y @Z Topradus: 149 Ycente: 0 Zmax 65	tva č.
(a) T one solid6 Orientation: • × Bottom radius: 54 Xcenter: 0 Zmin: 21.7 Secoments:	vnější ma vnější ma Top radius: 101.9 Ycenter: 0 Zmax 43.3	tteriál	(b) diele Cone Name: solid7 Orientation: X Bottom radius: 101.9 Xcenter: 0 Zmin: 43.3 Segments:	ektrická vrs ○Y ●Z Top radiu: 149 Ycenter: 0 Zmax 65	tva č.
(a) T nee Name: solid6 Orientation: • × Bottom radius: 54 × Center: 0 2min: 21.7 Segments: 0	vnější ma ○Y ●Z Top radius: 101.9 Ycentet: 0 Zmax 43.3	tteriál	(b) diele Cone Name: solid7 Orientation: • × Bottom radius: 101.9 Xcenter: 0 Zmirc 43.3 Segments: 0	OY ⊛Z Top radiu: 149 Ycenter: 0 Zmax 65	tva č. OK Previe Cance
(a) T	vnější ma ●Y ●Z Topradus: 101.9 Ycente: 0 Zmax 43.3	ateriál	(b) diele Cone Name: solid7 Orientation: X Bottom radius: 101.9 Xcenter: 0 Zmin: 43.3 Segments: 0 Conconnent	OY ⊚Z Topradua: 149 Ycenter: 0 Zmasc 65	tva č. OK Previe Cance
(a) Norme Name: solid6 Onientation: X Bottom radius: 54 Xcenter: 0 Zmin: 21.7 Segments: 0 Component1	vnější ma OY © Z Topradus: 101.9 Ycente: 0 Zmax 43.3	ateriál	(b) diele	ektrická vrs V OZ Topradiu: 149 Ycente: 0 Zmax 65	tva č.:
(a) Norme Name: solid6 Orientation: O × Bottom radius: 54 Xcenter: 0 2min: 21.7 Segments: 0 Component: component!	vnější ma OY © Z Topradus: 101.9 Ycente: 0 Zmax 43.3	tteriál	(b) diele Cone Name: solid7 Orientation: • × Bottom radius: 101.9 Xcenter: 0 Zmirc 43.3 Segments: 0 Component: component: Component: Name:	ektrická vrs ○Y @Z Topradiu: 149 Ycente: 0 Zmac 65	tva č.
(a) T one Name: solid5 Orientation: X Bottom radius: 54 Xcenter: 0 Zmin: 21.7 Segments: 0 Component: component! Material: material?	vnější ma OY © Z Topradus: 101.9 Ycenter: 0 Zmax 43.3	tteriál	(b) diele Cone Name: solid7 Orientation: X Bottom radius: 101.9 Xcenter: 0 Zmirc 43.3 Segments: 0 Component: com	ektrická vrs ○Y ○Z Topradius: 143 Ycenter: 0 Zmasc 65	tva č.

(c) dielektrická vrstva č.2

(d) dielektrická vrstva č.3

```
Obr. 2.5: Konstrukce apertury.
```

Úplně nakonec zbývá vytvořit střední vodič. Zde záleží, jakých parametrů chceme, aby anténa dosahovala. Na zapuštění, tvaru a průřezu středního vodiče závisí totiž anténa nejvíce. Z konstrukčního hlediska můžeme použít jak funkci *Creative cone* \triangle , tak i *Create cylinder* . Jelikož záměrem je ověření vlastností z diplomové práce Vícepásmová magnetická anténa [1], budou prvotní simulace prováděny za stejných podmínek. Zvolíme tedy funkci *Create cylinder* a nastavení parametrů provedeme podle obr. 2.6.

Name:		OK
solid8		Preview
Irientation: 💿 X	OY OZ	Tienen
)uter radius:	Inner radius:	Cancel
1	0.0	
(center:	Ycenter:	
0	0	
(min:	Zmax	
3	45	
egments:		
D		
omponent:		
component1	-	
faterial:		
PEC	•	Help

Obr. 2.6: Tvorba středního vodiče.

Konstrukce je již dokončena, nicméně jsou tu i některá nastavení, která by se neměla přehlédnout. V menu Solve je schována položka *Frequency* , jež poskytuje nastavení kmitočtového rozsahu, na kterém simulace bude probíhat. Zadáme tedy 1 - 2, 6 GHz (výchozí nastavení jednotek je v GHz, není potřeba hodnoty přepočítávat). V neposlední řadě je potřeba nastavit okrajové podmínky (*Boundary Conditions* , které určují, jak bude výsledek vypadat. Na záložce *Boundaries* je možnost nastavení jednotlivých prostředí vztahujících se k dané ose. Zadáme-li např. u minimální hodnoty osy Z *electric* (Et = 0) bude v této poloze vložen perfektně elektricky vodivá plocha, která zapříčiní seříznutí výsledné 3D vyzařovací charakteristiky. Jelikož se jedná o anténu, jež se bude převážně využívat v otevřeném prostoru, ponecháme nastavení ve výchozí poloze (viz obr. 2.7).

Boundaries	Symmetry Planes	Ther	nal Bound	laries	Boundary Temp	perature
Apply	r in all directions					
Xmin:	open (add space)	٠	Xmax:	open	(add space)	•
Ymin:	open (add space)	•	Ymax:	open	(add space)	٠
Zmin:	open (add space)	•	Zmax:	open	(add space)	•
Cond.:	1000		S/m		Open Boundary	

Obr. 2.7: Nastavení okrajových podmínek.

Abychom vůbec simulaci spustili, je potřeba nastavit port, který určí odkud se bude energie šířit (v podstatě se tak nastaví buzení antény). To se provede následujícím způsobem: Vybereme $Objects \Rightarrow Pick \Rightarrow Pick$ Face \blacksquare z hlavního menu. Dvojklikem označíme vnější vodič koaxiálního napáječe (stínění) a otevřeme dialog portů zvolením $Solve \Rightarrow Waveguide \ Ports \ B \ z \ hlavního \ menu. Vše je již nastaveno správně, takže stačí jen potvrdit kliknutím na OK. Výsledkem bude červeným čtvercem ohraničený koaxiální napáječ.$

Je-li potřeba i výstupní vyzařovací charakteristiky ve 3D zobrazení, tak k tomu slouží funkce tzv. *Field Monitors*, která na předem zvoleném kmitočtu tuto charakteristiku vyobrazí. Nastavení *Field monitorů* je situováno v menu $Solve \Rightarrow Field$ *Monitors* , vzor specifikace kmitočtu viz obr. 2.8. Pokud namísto *Farfield/RCS* zvolíme možnost *H-field/surface current*, bude ve výsledcích možné zobrazit průběh povrchových proudů.

Obr. 2.8: Nastavení 3D výstupu (Field Monitors).

2.2 Transient solver

2.2.1 Nastavení

Jak již bylo zmíněno *Transient Solver* disponuje širokou škálou možností a volností v nastavení, takže simulace lze velice pěkně přizpůsobit obrazu svému. Nevýhodou je však zvýšení nepřesnosti, takže při špatné konfiguraci může být odchylka od skutečného jevu daleko větší. Pokud se ale simulace provádí na méně výkonném počítači, je nejlepší volbou právě použití zmiňovaného *Transient Solver*. V následujících řádcích bude předvedeno nastavení pro dnes běžné počítačové sestavy.

Nejlepším možným uvolněním výpočetního výkonu je správné nastavení mřížky tzv. *Mesh*, jež má za úkol zmapovat vnitřek apertury. Samozřejmě na požadovaný výpočetní výkon a samotnou délku simulace má vliv hustota a tvar buněk v mřížce. Veškeré nastavení mřížky se nachází v menu $Mesh \Rightarrow Global Mesh Properties$ Jako typ mřížky byl zvolen šestihranný tvar, tzv. *Hexahedral*. Ostatní nastavení *Mesh* mřížky je patrné na obr. 2.9.

lesh type:	ОК
Hexahedral	
Mesh density control	
Lines per waveleng	gth: Cancel
20	
Lower mesh limit:	
8	Specials
Mesh line ratio limit:	Simplify Mode
10.0	Help
🔘 Smallest mesh step	:
0.0	
Automatic mesh gen Mesh summary Min. mesh step: 1	Nx: 147
	Ny:
Max. mesh step:	
Max. mesh step: 5.8648	147
Max. mesh step: 5.8648 Meshcells:	147 Nz:

Obr. 2.9: Nastavení Mesh mřížky.

Výběrem $Solve \Rightarrow Transient Solver$ **Solver** z hlavního menu vyskočí dialogové okno s nastavením posledních parametrů *Transient Solveru* (viz obr. 2.10).

Solver settings			Start
-60	▼ d8	Store result data in cache	Optimize
			Par. Sweep.
Stimulation set	tings		Laurenter
Source type:	All Ports 👻	Inhomogeneous port	Acceleration
Mode:	All	Calculate modes only	Specials
		Superimpose plane wave excitation	Simplify Mode
S-parameter se	ettings		Apply
Normalize	to fixed impedance	S-parameter symmetries	Close
50	Ohms	S-Parameter List	Help
Adaptive mesh	refinement		
Adaptive (mesh refinement	Adantiva Properties	

Obr. 2.10: Spuštění simulace pomocí Transient solveru.

Zde se nachází důležitá položka *Accuracy*, kterou volíme do určité míry přesnost výpočtu. Dalším zajímavým nastavením je *Acceleration*, jež dovolí lépe specifikovat

hardwarovou akceleraci (např. u vícejádrových procesorů lze určit počet vláken - *Multithreading*). Pokud je třeba provést optimalizaci s výhodou využijeme funkci *Optimize*. Již přednastavenou simulaci spustíme tlačítkem start, doba simulace je odhadována na cca 40 minut.

2.2.2 Výsledky simulace

Obr. 2.11: Závislost činitele odrazu s_{11} na frekvenci.

Obr. 2.12: Vyzařovací charakteristika antény při f = 2 GHz.

2.3 Frequency domain solver

2.3.1 Nastavení

Frequency domain solveru je nejlepší možnou cestou, jak provést přesnou simulaci. Nicméně to je podmíněno hardwarovou náročností. Na běžných počítačových sestavách při následující konfiguraci nedocílíme výsledku ani po třech dnech. V případě Frequency domain solveru je nastavení minimální a uzpůsobeno pro servery z ústavu radioelektroniky. Volbou $Solve \Rightarrow$ Frequency Domain Solver s z hlavního menu aktivujeme dialogové okno nastavení (viz obr. 2.13). V tomto okně ponecháme Mesh type nastaven na Tetrahedral Mesh a v položce Specials změníme parametr na hodnotu $\Im rd$ (high accuracy), čímž se nastaví na vysokou přesnost. V položce Acceleration povolíme a nastavíme parametr Distribute frequency calculation up to na 2 vzorky. Tlačítkem start se spustí simulace.

	eld results Uptimiz Unit GHz GHz GHz GHz Dptimiz Optimiz Optim
Resonant: Fast S-Parameter Store result data in cache Resonant: S-Parameter, fields Calculate modes only Mesh type: Accuracy (tetrahedral mesh): Tetrahedral Mesh 1e-4 Source type: Mode: All Ports All	It data in cache modes only rahedral mesh): Accelera stings to fixed impedance Ohms Unit GHz GHz
Resonant: S-Parameter, fields Calculate modes only Par.3 Mesh type: Accuracy (tetrahedral mesh): Accel Tetrahedral Mesh 1e-4 Spe Excitation settings S-parameter settings Simplify Source type: Mode: Normalize to fixed impedance All Ports All Constrained	modes only rahedral mesh): Accelera settings Simplify M to fixed impedance Appl Ohms Closs Help GHz GHz GHz
Mesh type: Accuracy (tetrahedral mesh): Accuracy (tetrahedral mesh): Tetrahedral Mesh 1e-4 Spectra for the settings Excitation settings S-parameter settings Simplify Source type: Mode: Normalize to fixed impedance A All 50 Ohms C	Accelera Specia Specia Simplify M to fixed impedance Ohms Close Unit GHz GHz GHz
Tetrahedral Mesh 1e-4 Spe Excitation settings S-parameter settings Simplify Source type: Mode: Normalize to fixed impedance All All 50 Ohms C	Specia Specia Simplify M to fixed impedance Ohms Close Unit GHz GHz GHz
Excitation settings Source type: Mode: All Ports All Frequency samples Simplif	ettings to fixed impedance Ohms Unit GHz GHz GHz
Source type: Mode: Normalize to fixed impedance All Ports All All Source type: Al	to fixed impedance Appl Ohms Close Unit A GHz GHz
All Ports All All So Ohms	Ohms Appl Close Unit A GHz GHz
	Unit A GHz GHz
	Unit A GHz GHz
requeries samples	Unit A GHz GHz
Auto Samples From To Unit	GHz GHz
Max.Range (i) 1 2.6 GHz	GHz =
Adapt.Freq. 🗵 1 2.6 GHz	
Frequency 🔀 GHz	GHz
Frequency GHz	GHz
Frequency GHz +	GHz 👻

Obr. 2.13: Spuštění simulace pomocí Frequency domain solveru.

2.3.2 Výsledky simulace

Obr. 2.14: Závislost činitele odrazu \boldsymbol{s}_{11} na frekvenci.

Obr. 2.15: Vyzařovací charakteristika antény při $f=2\;GHz.$

3 SROVNÁNÍ VÝSLEDKŮ SIMULACÍ

Obr. 3.1: Modul činitele odrazu s_{11} .

Obr. 3.2: Kmitočtový průběh činitele odrazu v polárních souřadnicích.

Obr. 3.3: Fáze činitele odrazu.

Obr. 3.4: Vyzařovací charakteristika antény při $f=1\,GHz.$

Obr. 3.5: Vyzařovací charakteristika antény při $f=1,2\,GHz.$

Obr. 3.6: Vyzařovací charakteristika antény při $f=1,4\,GHz.$

Obr. 3.7: Vyzařovací charakteristika antény při $f=1,6\;GHz.$

(a) Transient solver

(b) Frequency domain solver

Obr. 3.9: Vyzařovací charakteristika antény při $f=2\,GHz.$

Obr. 3.10: Vyzařovací charakteristika antény při $f=2,2\,GHz.$

(a) Transient solver

(b) Frequency domain solver

Obr. 3.11: Vyzařovací charakteristika antény při $f=2,4\,GHz.$

Obr. 3.12: Vyzařovací charakteristika antény při $f=2,6\,GHz.$

Porovnáme-li výsledky obou simulací, zjistíme, že pro tyto účely je dostačující simulace prováděna za pomoci *Transient solveru*. Vyzařovaná energie zobrazená ve 3D a fázové charakteristiky u obou metod jsou téměř totožné. Největší rozdíly byly zaznamenány u závislostí činitele odrazu s_{11} na frekvenci, nicméně i přes takovéto odchylky se tvary křivek přibližně podobají. Z těchto důvodů se bude v následujících částí práce používat pouze metoda s *Transient solverem*.

4 NÁVRH ANTÉNY

Z důvodu snazší výroby je vhodné uvažovat výplň antény pouze s minimálním počtem dielektrických materiálů, nejlépe z jednoho kusu materiálu. To ovšem zahrnuje celou řadu změn v návrhu antény.

4.1 Impedanční přizpůsobení

Pod pojmem impedanční přizpůsobení si lze představit takovou situaci, při níž nedochází k odrazům vln na rozhraní. Proto je zapotřebí zajistit plynulý přechod z charakteristické impedance koaxiálního kabelu $Z_{koax} = 50 \Omega$ na impedanci volného prostřední $Z_0 = 377 \Omega$. Aby bylo vůbec možné tuto podmínku splnit, musí se anténa uvažovat z jedné části jako koaxiální vedení a z druhé jako kruhový vlnovod. Pro přesný návrh fyzických vlastností antény je zapotřebí použít následující vztahy.

4.1.1 Koaxiální část

Koaxiální část antény je ta část, která je určená výškou středního vodiče, tzn. od konektoru (portu) antény až po konec středního vodiče. Jedná se v podstatě o rozšiřující se koaxiální vedení a platí zde úplně stejné zákonitosti jako je tomu u koaxiálního kabelu. Řez společně s označením rozměrů je uveden na obrázku 4.1a. Vzorec pro výpočet charakteristické impedance koaxiálního vedení je uveden ve vztahu 4.1, z kterého lze pomocí matematických úprav vyjádřit fyzické vlastnosti:

$$Z_{koax} = \frac{60}{\sqrt{\epsilon_r}} \cdot \ln\left(\frac{D}{d}\right) \qquad [\Omega],\tag{4.1}$$

kde je ϵ_r relativní permitivita dielektrika, D průměr vnějšího vodiče a d průměr vnitřního vodiče (viz obr 4.1a).

4.1.2 Vlnovodná část

Zbývající část antény, tj. část zakončení antény od konce středního vodiče, má charakter kruhového vlnovodu. Také zde platí stejná pravidla jako pro kruhové vlnovody, nicméně oproti koaxiální části je vyjádření fyzických vlastností nepatrně složitější. Na vyšších kmitočtech mohou být různá uspořádání elektromagnetického pole. Takovýchto rozložení polí je několik, proto se zavedl pojem vid. V praxi se nejčastěji pro přenos energie používá pásmo jednovidovosti – to znamená, že se použije pouze jednoho vidu a ostatní vidy jsou utlumeny. Existence více vidů by totiž mohla negativně ovlivnit přenos energie.

Dominantní vid kruhového vlnovodu je vid TE_{11} (TE - transverzálně elektrická

vlna). V našem případě však musíme použít nejbližší vyšší vid TM_{01} (TM - transverzálně magnetická vlna). Pro výpočet charakteristické impedance kruhového vlnovodu je potřeba stanovit mezní kmitočet pro vid TM_{01} použitím vzorce 4.2, v němž je skryt další konstrukční parametr (poloměr apertury):

$$f_m = \frac{\alpha_{mn} \cdot c}{2\pi a \sqrt{\epsilon_r}} = \frac{\alpha_{mn}}{2\pi a \sqrt{\epsilon \cdot \mu}} \qquad [Hz], \tag{4.2}$$

kde je α_{mn} n-tý kořen Besselovy funkce 1. druhu m-tého řádu, *c* rychlost světla, *a* poloměr kruhového vlnovodu (apertury antény) – viz obr 4.1b, ϵ permitivita a μ permeabilita použitého materiálu. Pomocí Besselových funkcí zjistíme hodnotu α_{mn} pro TM_{01} , která odpovídá $\alpha_{01} = 2,4048$. Nyní následuje výpočet impedance vlnovodu:

$$Z_{wave} = Z_0 \cdot \sqrt{\frac{\mu_r}{\epsilon_r}} \cdot \sqrt{1 - \left(\frac{f_m}{f}\right)^2} \qquad [\Omega], \tag{4.3}$$

kde je Z_0 impedance volného prostředí ($Z_0 \approx 377 \Omega$), μ_r relativní permeabilita, ϵ_r relativní permitivita, f_m mezní kmitočet a f frekvence na které bude anténa užívána. Výše popsané zákonitosti byly převzaty z [6] a [7].

Obr. 4.1: Značení rozměrů jednotlivých vedení.

4.2 Vliv materiálu

S výše uvedenými vztahy lze relativně snadno získat požadované parametry antény. Největší problém ovšem nastává s volbou dielektrického materiálu, kdy každý materiál povolí nárůst impedance antény jen do určité hodnoty. Platí tedy pravidlo, že se zvyšující se poměrnou permitivitou ϵ_r klesá maximální možná impedance antény. Také pokud se uvažuje anténa vyrobená z jednoho kusu dielektrického materiálu, je problém zajistit impedanční přizpůsobení antény, tj. plynulý přechod z charakteristické impedance koaxiálního vedení na impedanci volného prostředí. Ve většině případů u takto konstruovaných antén dochází ke skokovým změnám impedance při přechodu antény z koaxiálního charakteru na vlnovodný.

Těmto nežádoucím vlastnostem se lze celkem pěkně vyhnout, pokud jsou při návrhu konstrukce použity dva různé dielektrické materiály a vrchní vlnovodná část apertury je více otevřená. Vznikne tzv. lomená trychtýřová anténa (viz obr. 4.3), jejíž dielektrická výplň sestává z materiálu s vyšší (koaxiální část) a s nižší (vlnovodná část) poměrnou permitivitou ϵ_r . Materiál s nižší poměrnou permitivitou, tj. $\epsilon_r \in \langle 1; 2 \rangle$, zajistí větší hodnotu impedance na výstupu apertury (v ideálním případě blížící se hodnotě 377 Ω). Naopak materiál s vyšší poměrnou permitivitou ϵ_r slouží ke snížení impedance na požadovaných 50 Ω . Najde-li se správná kombinace mezi oběma materiály, rozšířením apertury, hloubkou zanoření středního vodiče a tvarem středního vodiče, tak výsledkem bude přizpůsobená anténa, jak to dokazuje grafická závislost impedance na poloměru apertury (viz obr. 4.2).

Obr. 4.2: Grafická závislost impedančního přizpůsobení antény.

Z grafu je patrné, že maximální velikost impedance je opravdu limitována materiálem. Také z něj lze vyčíst, jaký má impedance charakter. V koaxiální části narůstá impedance téměř exponenciálně a v části vlnovodné trend kopíruje logaritmickou křivku. Při návrhu je důležité správné napojení obou křivek. To však kvůli spoustě možností v kombinaci zabere nejvíce práce.

Obr. 4.3: Fyzické vlastnosti lomené antény.

4.3 Konkrétní parametry antény

Jelikož trychtýřová anténa je sama o sobě úzkopásmová, tak i s úpravami a metodou pokus–omyl se nepodařilo docílit větší širokopásmovosti antény. Z tohoto důvodu byla navržena anténa pro frekvenci f = 2, 4 GHz, tedy pro pásmo Wi-Fi standartu IEEE 802.11b,g. Konstrukce antény odpovídá obrázku 4.3b s parametry uvedenými v tabulce č. 4.1.

Parametr	Značení	Hodnota/Rozměr
dielektrikum	ϵ_{r1}	5,4
	ϵ_{r2}	1,8
	L	75 mm
výška	L_1	65 mm
	L_2	45 mm
	R_1	102 mm
poloměr	R_2	46 mm
	R_{f1}	1 mm
	R_{f2}	$0,6\ mm$
	R_{fk}	$6,86\ mm$
tloušťka	Т	3-5 mm

Tab. 4.1: Veškeré rozměry a parametry antény.

5 VÝSLEDKY

Výsledky dokazují, že lze anténu opravdu dobře naladit. Směrová charakteristika (viz obr. 5.1) vyšla podle představ a anténa skutečně pracuje na požadovaném kmitočku f = 2, 4 GHz.

Obr. 5.1: Závislost činitel odrazu s_{11} na frekvenci.

Obr. 5.2: Fáze činitele odrazu.

Obr. 5.3: Směrová charakteristika.

Obr. 5.4: Vyzařovací charakteristika antény při $f=2,4\,GHz.$

6 VÝROBA KONSTRUKCE

Z důvodu špatné dostupnosti a vysoké ceny dielektrických materiálů bohužel nebylo možné anténu experimentálně vyrobit a měřením porovnat její vlastnosti se simulacemi. Uvedu zde však alespoň nástin konstrukčního řešení.

I když anténa není příliš vysoká, je nutné počítat s větší váhou. Proto bude výhodou vyrobit anténu s co možná nejširší stěnou (doporučuji alespoň stěnu tloušťky 5mm). Při samotném obrábění trychtýře pak nebude hrozit rezonanční rozkmitání a následné prolomení materiálu. Také to vyřeší problém s uchycením klasického SMA konektoru, který bude možné upevnit vruty přímo k plášti antény, jak to dokazuje obrázek 6.1. Co se týče materiálu pro korpus trychtýře, tak by pravděpodobně nejlepší volbou mohl být dural, který naproti oceli, litin ocelí, bronzu (hodně drahý) nebo jiného materiálu se velmi snadno obrábí. Jeho další výhodou je chemická odolnost, dobrá povrchová upravitelnost a pájitelnost.

Obr. 6.1: Ukázka konstrukce antény.

V případě dielektrických materiálů, jak již bylo řečeno, byl problém s dostupností a cenou. Většina prodejců, zabývající se materiály pro elektroniku, prodává materiály ve větším množství (velkoprodej) nebo když už je možnost koupě menšího množství, tak za vysokou cenu. Hlavním kandidátem pro dielektrický materiál blížící se hodnotě $\epsilon_r = 5, 4$ byl tzv. sklotextit FR4, případně FR5. Jako další alternativa se jevila keramika nebo porcelán, který se používá při výrobě kondenzátorů. Naopak celkem dobře se dal obstarat materiál s relativní permitivitou blízkou $\epsilon_r = 1, 8$. Zde se ukazovala jako nejvhodnější obyčejný vosk. Mezi další alternativy se řadila např. epoxidová pryskyřice, polystyrén, silikon nebo různé druhy plastů (polypropylen). Samozřejmě by následovalo při případném získání těchto materiálů proměření vlastností na požadovaném kmitočtu a uzpůsobení konstrukce těmto vlastnostem.

6.1 Další alternativy výroby

Jako velice dobrý nápad se jevila možnost použití 3D tiskárny, kdy by se "vytiskly" vrstvy dielektrického materiálu a z vnější strany by byl napařen vodivý materiál. Od toho se také rychle upustilo, jelikož výroba byla drahá a možnost použitých materiálů nebyla nejlepší.

Poslední variantou bylo vytvoření trychtýře stejnou metodou, jak je popsáno výše. Ovšem dielektrický materiál by se musel namíchat např. z epoxidové pryskyřice (Araldit DBF/HY956EN) a oxidu titaničitého (Titanium(IV)oxid, rutile TiO_2 s velikostí nanočástic < 100 nm). Epoxidová pryskyřice by plnila úlohu tzv. matrice, která tvoří tvar celého materiálu. Oxid titaničitý by se uvažoval jako plnivo, mající zlepšit parametry materiálu jako např. zpevnění vazeb \Rightarrow zatuhnutí, ovlivnění elektrických vlastností – zvýšení poměrné permitivity ϵ_r . Tato metoda je nejlevnější, nicméně výroba se značně zkomplikuje. Předešlý odstavec je převzatý z [12].

7 ZÁVĚR

Cílem bakalářské práce byl návrh trychtýřové antény za pomoci simulací v CST Microwave studiu, její samotná výroba a následně měřením ověřené vlastnosti.

Daný problém návrhu vychází z diplomové práce Vícepásmová magnetická anténa [1]. Zde byl vytvořen numerický model antény, který byl podkladem k návrhu antény. V první části se práce zabývá právě rekonstrukcí těchto výsledků. Zároveň popisuje dvě metody, které lze při simulaci použít.

Po ověření funkce simulačního programu následuje část zabývající se návrhem a výrobou. Původně se zamýšlela výroba antény z jednoho kusu materiálu, aby konstrukce byla co možná nejjednodušší. Nastal však problém s impedančním přizpůsobením, kdy bylo usouzeno, že se od antény z jednoho kusu dielektrického materiálu upustí. Výsledkem je tedy lomená trychtýřová anténa, která má tu nevýhodu, že je úzkopásmová a není možné ji používat pro více pásem, jak je tomu v práci *Více-pásmová magnetická anténa*. Z výsledků simulací, prováděných během návrhu však plyne, že anténa lze velice pěkně naladit na požadovaný kmitočet. Největší problém ovšem nastává s volbou materiálů, kdy jejich dostupnost a cena pro běžného kutila není příliš lichotivá. Bohužel tedy z finančních a posléze i z časových důvodů nebylo možno výrobu dokončit, i když se podařilo přijít na alternativní postup výroby za pomoci míchání materiálů.

LITERATURA

- [1] RYŠÁNEK, Martin. Vícepásmová magnetická anténa [online]. Brno: VUT v Brně, 2010. 44 s. Diplomová práce. FEKT VUT Brno. Dostupné z WWW: <http://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_ id=26965>. [e-akademická práce]
- BALANIS, Constantine A. Antenna Theory : Analysis and Design. 2nd edition. New Yourk : John Wiley & Sons, Inc, 1997. 941 s. ISBN 0-471-59268-4. [kniha]
- [3] VÁVRA, Štefan; TURÁN, Ján. Antény a šírenie elektromagnetických vľn. 1. vydanie. Bratislava : Alfa, 1989. 424 s. ISBN 80-05-00131-2. [kniha]
- [4] MATUSZCZYK, Jacek. Antény prakticky. 3. české vydání. Praha : BEN technická literatura, 2005. 240 s. ISBN 80-7300-178-0. [kniha]
- [5] CST MICROWAVE STUDIO : Workflow and Solver Overview [online]. [s.l.] : CST - Computer Simulation Technology AG, 2010 [cit. 2010-11-23]. Dostupné z WWW: http://www.cst.com>. [e-kniha]
- [6] NOVÁČEK, Zdeněk. Elektromagnetické vlny, antény a vedení. Brno, 2009.
 145 s. Skripta. FEKT VUT Brno. [akademická práce]
- [7] HANUS, Stanislav; SVAČINA, Jiří. Vysokofrekvenční a mikrovlnná technika.
 Brno, 2002. 208 s. Skripta. FEKT VUT Brno. [akademická práce]
- [8] RAIDA, Zbyněk, et al. Multimediální učebnice : Elektromagnetické vlny, Mikrovlnná technika [online]. Brno : FEEC VUT Brno, 2010 [cit. 2010-11-23]. Multimediální učebnice. Dostupné z WWW:<http://www.urel.feec.vutbr. cz/~raida/multimedia/index.php>. [webová stránka]
- [9] ČAPEK, Miloslav. Vyzařovací diagram elmag.org [online]. 2009, poslední změna 8.9.2009 [cit. 2010-11-23]. Vyzařovací diagram. Dostupné z WWW: http://www.elmag.org/doku.php>. [webová stránka]
- [10] STŘÍŽKOV, Vláďa. Trychtýře [online]. Osmá aktualizace. 2003-04-16, poslední změna 13.5.2004 [cit. 2010-11-23]. Trychtýřové antény. Dostupné z WWW: http://strizkov.wz.cz/trychtyre/>. [webová stránka]

- [11] VŠETULA, Petr; RAIDA, Zbyněk. Coaxial / Circular Horn Antenna for 802.11a Standard. In Proceedings of the 17th Conference STUDENT EEICT 2011 [online]. Brno: VUT v Brně, 2011. s. 76-80. [cit. 2011-05-20]. Dostupné z WWW: http://www.feec.vutbr.cz/EEICT/2011/ sbornik/03-Doktorske%20projekty/01-Elektronika%20a%20komunikace/ 13-vsetula.pdf>. ISBN 978-80-214-4273-3. [e-příspěvek]
- [12] OVSÍK, Jiří. Studium elektrických vlastností nanokompozitu [online]. Brno: VUT v brně, 2010. 50 s. Bakalářská práce. FEKT VUT Brno. Dostupné z WWW: http://www.vutbr.cz/www_base/zav_prace_soubor_ verejne.php?file_id=30579>. [e-akademická práce]

SEZNAM SYMBOLŮ, VELIČIN A ZKRATEK

Computer Simulation Technology
dokonalý elektrický vodič (perfect electric conductor)
relativní permitivita materiálu
relativní permeabilita materiálu
činitel odrazu
impedance volného prostředí, $Z_0=377\Omega$
charakteristická impedance koaxiálního kabelu, obvykle $Z_{koax} = 50 \ nebo \ 75 \ \Omega$
charakteristická impedance vlnovodu
mezní kmitočet
n-tý kořen Besselovy funkce 1. druhu m-tého řádu
transverzálně magnetická vlna, druhý nejbližší vid