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CYCLE SYSTEMS

JOHN L. PFALTZ

Abstract. In this paper we show that the composition (symmetric difference) of
cycles is well-defined. So, such a collection {. . . , Ci, Ck, . . .} of cycles with a com-
position operator, ◦ , is a matroid. As such, it has sets of independent, or basis,
cycles that determine its rank r. This paper is concerned with independent and
dependent sets of cycles within a cycle system. In particular, we enumerate the
number of all possible basis sets in any cycle system of rank r ≤ 6. Then we use
a generating function to establish that the ratio of basis sets to all possible r element
sets approaches c, 0.287 < c < 0.289.

1. Introduction

Cycle systems such as Figure 1 exist in nature. Various protein polymers have
a linked cyclic structure [2]. Figure 1, which introduced the author to cycle sys-
tems, is a membrane polymer which controls the flow of other proteins across the

Figure 1. The cyclic structure of a Gr4 membrane polymer.

nucleus membrane of every cell in our bodies [4,10,19]. But, cycle structures seem
not to have been much studied as mathematical systems; even though, as we show
in this paper, they are matroids with certain group properties.

There seem to be two reasons why this kind of “cycle matroid” has been largely
ignored. First, we normally visualize cycles as figures in a planar setting, such as
Figure 1. But, they can be realized in (at least) 3 dimensions; think of a “hula
hoop”. Consequently, there are many more “non-intersecting” configurations which
can be difficult to imagine.
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The second reason is that a different concept of “cycle matroid” already exists
in the matroid literature. This conception begins with an ordinary undirected
graph, G = (N,E). Any set of edges T ⊆ E that constitute a tree are said to
be “independent”. Any set of edges containing a cycle are then “dependent”. Any
spanning tree is considered to be a “basis” of rank r = n−1, where n = |N |. Since
all bases (maximal independent sets) have the same cardinality r (rank), the set
of edges can be called a “graphic matroid”. It is simplest possible example of the
matroid concept and is, thus, found in many texts [9, 20]. This model is utterly
clear. It is essentially trivial. And thus of little research interest.

In Section 2 we will develop a far more complex notion of “cycle matroid”.
Section 3 introduces a novel way of describing the participation of any particular
edge in a set of basis cycles. Then, in Section 4.1 we count the maximal possible
number of basis combinations in a cycle system of rank r. By way of a spoiler
revelation, for r = 6 it is only 27,998,208. When r = 20 this number is 3.06516×
10101! Of particular interest is the ratio of independent sets of r cycles with respect
to dependent sets of r cycles.

2. Cycle basics

Cycles, such as Figure 1, exist in 3-space, but it is customary to visualize them
in terms of their planar projections using graph theoretic terms. As noted in
Section 1, this can be misleading. However, it allows us to use a large body of
graph theoretic terminology with minimal explanation. There are a huge number
of texts devoted to graph theory; we will rely mostly on the definitions in the
old standard, Harary [7], which will be supplemented as necessary by other cited
works. Unfortunately, in all of them there is often confusion regarding the terms
cycle, circuit, and rank. We must be more careful.

Let a graph G = (N,E) be the usual collection of nodes, N , and edges E where
e ∈ E is a subset {x, y} ⊆ N . G is undirected. Let y ∈ N be any node, the set
of incident edges, denoted i(y) are those nodes of E of the form {x, y} or {y, z}.
Let S be a set of edges, by the degree of y relative to S denoted δS(y) we mean
the cardinality |S ∩ i(y)|, that is the number of edges in S that are incident to y.

A cycle, C ⊆ E, is a set of edges such that for all y, δC(y) is even. This is
a rather unusual definition of the cycle concept, even though by Euler’s theorem
[7, p. 64], [1, p. 135], it is a well known equivalence with the usual definition
in terms of closed walks, or traversability. In the graph Gα of Figure 2(a), the
set C1 = {{a, b}, {b, d}, {c, d}, {a, c}}, shown in bold, is a cycle. Observe that the
degree of the node c, δ(c) = 3, but the relative degree δC1(c) = 2. The use of
relative degree is crucial when considering cycles embedded in larger graphs, or
networks.

Given any cycle, C, we let C̄ denote the set of edges comprising C; we let Ċ
denote its incident nodes. Even though a cycle is a set of edges, it is often simpler
to denote them by Ċ, their incident nodes. So, the cycle C2 = Ċ2 = 〈d, e, g, f〉 of
Figure 2(b). Using this notation, we should properly denote the relative degree of
a node y in a cycle Ci by δC̄i

(y); but we will normally elide the bar.
We typically illustrate cycles as rectangular structures; but one can always

insert or delete nodes in any edge without changing the topology of the graph



CYCLE SYSTEMS 57

a

e

b

c d

hgf

(a) (b)

b

g

c

a

f

e

G G

d

α β

1

2

1

2

C

C

C

C

Figure 2. The bolder lines delineate cycles.

[1, 6], so these cycles can be inflated or condensed without changing their basic
nature. The empty set, C∅ = ∅, is a cycle.

2.1. Cycle composition, ◦

By the composition of two cycles Ci ◦ Ck we mean the symmetric difference of C̄i
and C̄k, or

Ci ◦ Ck = (C̄i ∪ C̄k)\(C̄i ∩ C̄k) (2.1)
In Gα of Figure 2(a) C1 ◦ C2 = C3 = 〈a, b, d, g, c, a〉. In Figure 2(b) C1 ◦ C2 is the
entire edge set of Gβ .

By a cycle system we mean any collection C of cycles {. . . , y, . . .} together
with the composition operator. Figure 3 presents two more cycle systems. It
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Figure 3. Two more cycle systems.

is worth verifying that in the cycle system Gγ of Figure 3(a), C4 = C1 ◦ C2 =
〈a, b, c, g, f, e, a〉 and C5 = C1 ◦ C3 consists of two disjoint cycles 〈a, b, f, e, a〉 and
〈c, d, h, g, c〉. The cycle C1 ◦ C2 ◦ C3 = 〈a, b, c, d, h, g, f, e, a〉. In Gδ of Figure 3(b),
C1 ◦ C2 ◦ C3 = 〈a, b, c, f, e, b, g, h, e, d, a〉 or Gδ itself. Why is the edge {b, e} in
C1 ◦ C2 ◦ C3 but not in C1 ◦ C2 or C1 ◦ C3 or C2 ◦ C3?

The composition defined in (2.1) is effectively the symmetric difference, ⊕, of
two sets, yielding a set of edges. It is familiar operator (see Wikipedia). But it is
not immediately obvious that the set of edges resulting from Ci ◦ Ck, or C̄i ⊕ C̄k,
need be a well-formed cycle.

Proposition 2.1. Let Ci, Ck be cycles. Ci ◦ Ck = Cm is a cycle.
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Proof. Since Ci, Ck are cycles, for all y ∈ Ċi, and Ċk, δCi
(y), and δCk

(y) are
even.

If C̄i ∩ C̄k 6= ∅, let Ċi ∩ Ċk = {. . . , y, . . . }. For all such y, δ
Ci∪Ck\(Ci∩Ck)(y) =

δCi(y) + δCk
(Y ) − 2 ∗ δCi∩Ck

(y). The third term is doubled because y is in both
Ci and Ck. Readily, δCi∪Ck\(Ci∩Ck)(y) is even.

If y 6∈ Ċi ∩ Ċk the third term is zero and the same result follows.
If C̄i ∩ C̄k = ∅ then all y ∈ Ċi or Ċk satisfy the condition above. �

The author has been unable to find a proof of this proposition using the standard
closed path definition of a cycle.

The following properties of ⊕ are traditional; but not always stated. It is worth
restating and proving them.

Proposition 2.2. Let C = {C1, C2, . . . , Cn} be a cycle system with composition
as defined by (2.1), then for all i, k,m

(a) Ci ◦ Ck = Ck ◦ Ci; (symmetry)
(b) (Ci ◦ Ck) ◦ Cm = Ci ◦ (Ck ◦ Cm); (associativity)
(c) if Ci ◦ Ck = Cm then Ci ◦ Cm = Ck; (exchange)
(d) if Ci 6= Ck then Ci ◦ Ck 6= C∅;
(e) if Ci ◦ Ck = Ci ◦ Cm then Ck = Cm. (uniqueness)

Proof. (a) is evident from the Definition (2.1).
(b) (Ci ◦ Ck) ◦ Cm = (Ci ∪ Ck ∪ Cm)\(Ci ∩ Ck ∩ Cm) = Ci ◦ (Ck ◦ Cm).
(c) Let Cm = Ci ◦ Ck, then

Ck = C∅ ◦ Ck = (Ci ◦ Ci) ◦ Ck = Ci ◦ (Ci ◦ Ck) = Ci ◦ Cm.

(d) Suppose Ci ◦ Ck = C∅, where i 6= k, then

Ck = C∅ ◦ Ck = (Ci ◦ Ci) ◦ Ck = Ci ◦ (Ci ◦ Ck) = Ci ◦ C∅ = Ci

or Ci = Ck contradicting the condition.
(e) Let Ci ◦ Ck = Cs = Ci ◦ Cm. By (c) above,

Ck = Ci ◦ Cs = Ci ◦ (Ci ◦ Cm) = C∅ ◦ Cm = Cm.

�

The consequence of Proposition 2.2(e) is that Ci defines a permutation on the
cycles {C1, C2, . . . , Cn} of C, since each composition Ci ◦ Ck is a unique cycle of
C.

Let Y = {C1, . . . , Cn} be a set of cycles. By the span1 of Y , denoted Y.σ, we
mean the set of all cycles {Cm} such that Cm = Ci ◦ · · · ◦ Ck, where Ci, . . . , Ck ∈
Y . When we wish to denote precisely the cycle C1 ◦ · · · ◦ Cn we will use the
notation { ◦ Y }. Thus Y.σ = ∪X⊆Y { ◦ X}.

1In graph theory, the term “span” usually refers to a tree whose nodes include all y ∈ N .
Since a tree has no cycles, it has no connection to our usage which is taken from the notion of
spanning vectors in a vector space.
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2.2. Basic cycles

A set Y = {Ci} of non-empty cycles is said to be dependent if there exists Cm ∈ Y
such that Cm = Ci ◦ · · · ◦ Ck where Ci, . . . , Ck ∈ Y . If Y is not dependent, it is
said to be independent. The early work of Hassler Whitney [22] is a fine reference
work on linear independence. But beware; in it a minimal dependent set is called
a “circuit”.2 This terminology is still common in the literature [7, 21]. Any cycle
can be a member of an independent set.

Proposition 2.3. Let Y ⊆ C be a collection {C1, . . . , Cn} of cycles.
(a) If { ◦ Y } = C1 ◦ · · · ◦ Cn = C∅ then Y is dependent;
(b) if no subset X of Y is dependent, but Y is dependent, then

{ ◦ Y } = C1 ◦ · · · ◦ Cn = C∅.

Proof. (a) Since { ◦ Y } = C∅, by Prop. 2.2(d), there exists Ci such that
{ ◦ {Y \Ci}} = Ci, so Y is dependent.

(b) Suppose Y is dependent, so ∃ Ci and X ⊆ Y where { ◦ X} = Ci or
{ ◦ X} ◦ Ci = C∅. By assumption, X 6⊂ Y , so X = Y . �

Thus sets, Y , satisfying Proposition 2.3(b) are “circuits”.
A maximal independent set of cycles B ⊆ C is said to be a basis for the system

C. Since B is maximal, every cycle Cm ∈ C is expressible as the composition of
some set Y of cycles contained in B, that is Cm = { ◦ Y }, Y ⊆ B. (Note: we
have not yet established that the cardinality of all basis sets must be the same.
However, Proposition 2.2(c) and (e) suggest that this might be so.)

A system may have many bases. B1 = {C1, C2, C3} is one basis for the system
Cγ of Figure 3(a); B2 = {C4, C2, C3}, shown in Figure 4(b) is another, where
C4 = C1 ◦ C2.

b c d

e f g h

a b c d

e f g h

a

C1 C2 C3 C4 C2 C3

Figure 4. Two distinct bases for Gγ of Figure 3(a).

Proposition 2.4. Let B1 = {C1, . . . , Cr} be a basis for C where |C| ≥ 3. For
any Ci ∈ B1 there exists C ′i 6∈ B1 such that B2 = B1\{Ci} ∪ {C ′i} is a basis.

Proof. Since |C| ≥ 3, B1 ⊂ C and |B1| ≥ 2. Let Ci, Ck ∈ B1, Ck 6= Ci,
and let C ′i = Ci ◦ Ck. Then C ′i 6∈ B1 else B1 would be dependent. We claim
B2 = B1\{Ci} ∪ {C ′i} is independent and maximal, i.e. a basis.

Suppose there exists Cm ∈ B2 and Y ⊂ B2 such that Cm = { ◦ Y } then C ′i ∈ Y ,
else B1 is dependent. Thus, Cm = C ′i ◦ { ◦ Y ′} where Y ′ = Y \{C ′i} ⊆ B1. But

2This is derived from the graphic cycle matroid, described in Section 1, in which circuits (or
cycles) are the minimal dependent sets.
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then, Cm = Ci ◦ Ck ◦ { ◦ Y ′}, again implying B1 is dependent. Thus, B2 must
be independent.

Now suppose ∃Cm 6∈ B2 such that B2∪{Cm} is independent. A similar argument
shows that B1 cannot be maximal. �

Proposition 2.4 establishes that every cycle system is a matroid. There is an
abundance of literature, of which [9,20,21] are only representative. More relevent
is [14] which emphasises independence, and dependence. Cycle systems can be
viewed as algebraic matroids. The cycles behave like vectors over GF(2).

2.3. Shortlex order labeling

We have been denoting the cycles in a graph G, or cycle system C, by the labels
C1, C2, . . . , Ci, . . . where the subscripts are integer. Clearly any index set could be
used. Given any initial basis set of r cycles, we will arbitrarily label (denote) them
by C1, C2, . . . Cr. Then Cr+1 = C1 ◦ C2. The label Cr+2 is assigned to C1 ◦ C3
and Cr+3 = C1 ◦ C4. The cycle C1 ◦ Cr must be labeled C2r−1. Now C2 ◦ C3
becomes C2r etc. Finally, C1 ◦ C2 ◦ · · · ◦ Cr = C2r−1. This is a shortlex order
labeling. Thus if r = 3 as in Gγ or Gδ of Figure 3, C6 = C2 ◦ C3 regardless of the
actual position of the cycles C2 and C3 in the graph.

Table 1. Shortlex order labeling of cycles in any cycle system of rank 5.

C1 C12 = C2 ◦ C5 C23 = C2 ◦ C3 ◦ C5
C2 C13 = C3 ◦ C4 C24 = C2 ◦ C4 ◦ C5
C3 C14 = C3 ◦ C5 C25 = C3 ◦ C4 ◦ C5
C4 C15 = C4 ◦ C5 C26 = C1 ◦ C2 ◦ C3 ◦ C4
C5 C16 = C1 ◦ C2 ◦ C3 C27 = C1 ◦ C2 ◦ C3 ◦ C5
C6 = C1 ◦ C2 C17 = C1 ◦ C2 ◦ C4 C28 = C1 ◦ C2 ◦ C4 ◦ C5
C7 = C1 ◦ C3 C18 = C1 ◦ C2 ◦ C5 C29 = C1 ◦ C3 ◦ C4 ◦ C5
C8 = C1 ◦ C4 C19 = C1 ◦ C3 ◦ C4 C30 = C2 ◦ C3 ◦ C4 ◦ C5
C9 = C1 ◦ C5 C20 = C1 ◦ C3 ◦ C5 C31 = C1 ◦ C2 ◦ C3 ◦ C4 ◦ C5
C10 = C2 ◦ C3 C21 = C1 ◦ C4 ◦ C5
C11 = C2 ◦ C4 C22 = C2 ◦ C3 ◦ C4

Table 1 represents the shortlex order labeling of any cycle system with r = 5.
This provides a standard factorization for all cycles; so for example,

C10 ◦ C19 = (C2 ◦ C3) ◦ (C1 ◦ C3 ◦ C4)
= (C1 ◦ C2 ◦ C4) ◦ (C3 ◦ C3)
= (C1 ◦ C2 ◦ C4)
= C17.

3. Segments

In Figure 4 we had to use multiple lines to convey the position of the alternate
basis cycle C6. In this section we formalize this ad hoc procedure.
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Let {x, z} ∈ E. The edge {x, z} can be replaced by a path
ρ(x, z) = 〈x, y1, . . . , yk, z〉

where δ(yi) = 2 in a process called subdivision. Similarly, such a path can be
contracted back to a single edge. We call such paths, “segments” which we define
more carefully below. Subdivision, or contraction, of segments will not change
the essential structure of the cycle system; they are all topologically equivalent
[1, 6]. Many properties of cycle systems are determined by their segments. Nodes
included in segments serve primarily as labels to reference them in figures.

An edge can belong to, or be a part of, several different cycles. By the edge
membership operator, {x, y}.λ, we mean a function yielding the set of basic cycles
{Ci} such that the edge {x, z} ⊆ C̄i. By a segment 〈x, . . . , yi, . . . , z〉, 0 ≤ i < n
where n ≤ 0, we mean a path sequence such that {x, y1}.λ = {yi, yi+1}.λ =
{yn, z}.λ. Thus we can extend the edge membership operator to segments and
define 〈x, z〉.λ = {yi, yi−1}.λ. We say the segment 〈x, z〉 is incident to x (and z).

In Figure 4(a) the segment 〈c, g〉 has 〈c, g〉.λ = {C2, C3}. In Figure 4(b)
〈c, g〉.λ = {C2, C3, C6}. In both figures, 〈d, h〉.λ = {C3}.

Lemma 3.1. If Cm = Ci ◦ Ck then for all 〈x, z〉 ∈ Cm, 〈x, z〉 ∈ C̄i or 〈x, z〉 ∈
C̄k, but not both.

Proof. Since 〈x, z〉 ∈ C̄i ∪ C̄k\(C̄i ∩ C̄k), the assertion follows. �

Effectively, any segment remaining after a composition must have membership in
precisely one of the composing basic cycles.

The λ operator is well-defined, that is, never empty, because

Proposition 3.2. Let B be a basis for C, then for every segment 〈x, z〉 there
exists Ck ∈ B such that Ck ∈ 〈x, z〉.λ.

Proof. Let 〈x, z〉 ∈ C̄m for some Cm ∈ C. If Cm ∈ B we are done. If not,
Cm = { ◦ Y } for some Y ⊆ B. The result follows from Lemma 3.1. �

Proposition 3.3. 〈x, z〉 is a maximal segment if and only if δ(x) and δ(z) ≥ 3.

Proof. This follows directly from the definition. �

Proposition 3.4. Let δ(y) = 3 where 〈w, y〉, 〈x, y〉, and 〈y, z〉 are its incident
segements. Then 〈w, y〉.λ ∪ 〈x, y〉.λ = 〈w, y〉.λ ∪ 〈y, z〉.λ = 〈x, y〉.λ ∪ 〈y, z〉.λ.

Proof. We claim 〈w, y〉.λ ⊆ 〈x, y〉.λ ∪ 〈y, z〉.λ, since if not, there exists a cycle
Ci ∈ 〈w, y〉.λ, but Ci 6∈ 〈x, y〉.λ and Ci 6∈ 〈x, z〉.λ. But Ci is a cycle so 〈w, y〉 ∈ C̄i
implies either 〈x, y〉 or 〈y, z〉 ∈ C̄i.

The same argument holds for all three possible containments, so the result
follows. �

In short, the edge membership operator of any two segments includes all partici-
pating basis cycles.

Corollary 3.5. If δ(y) ≥ 3, then for at least one segment, 〈x, y〉, |〈x, y〉.λ| > 1.

Figure 5 is an attempt to visualize a segment 〈x, z〉 in a 3-dimensional space.
Here, |〈x, z〉.λ| = 4 and δ(x) = δ(z) ≥ 3 as required by Proposition 3.3.
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Figure 5. A segment 〈x, z〉 in 3-space.

4. Cycle systems with rank ≥ 3

Figure 6 illustrates two cycle systems of rank 3. Tracing C7 = C1 ◦ C2 ◦ C3 is
illustrative. In both systems, each segment for which |〈x, z〉.λ| is odd must be used
in the cycle; but “even” segments can never be in C1 ◦ C2 ◦ · · · ◦ Cr = { ◦ B}.
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Figure 6. Cycle systems of rank 3.

We have included several unnecessary nodes to provide clarity. For example,
the edges 〈xabz〉 in Figure 6(a) could be combined to create a maximal segment
〈x, z〉 with 〈x, z〉.λ = {C1}.

Figure 7 shows two cycle systems of rank 4. We may consider the segments
bounded by w, x, y, z as constituting the core of these systems.

Figure 8 duplicates Figure 7 except that in both cases ((a) and (b)) C15 =
C1 ◦ C2 ◦ C3 ◦ C4 is solid, while the segments not included in C15 are dashed.
Observe that if 〈x, z〉 is not a segment of C15 then |〈x, z〉.λ| is even. Also observe
the interesting structure at node z in Figure 8(a), and node w in Figure 8(b),
where δ(w) = δ(z) = 4. We have not seen such nodes in simple cycles before.

4.1. Counting bases in a cycle system

Let a cycle system C have rank r. Then it consists of all possible sets of r cycles, or∑
i=1,...,r C(r, i) = 2r, or 2r − 1 non-empty cycles. For the case of r = 5, there are

nr = 2r − 1 = 31 non-empty cycles as shown in Table 1. Any subset Y of r cycles
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C1

C 3

C
2

4C

C1

C3

4C

C2

(a)

fe

1
2

a b

c

2

3
zw

1

1
1

2

2

3

3

1

d

x
3

4 4
2

y

g h

2

(b)

a

e

f

x

y

w

1

1

1

1

3

3

1 2 4

4
2
3

4
4

4

g

4

2

4

h

z
c

b

4
2

2

d

3

3

Figure 8. C15 = C1 ◦ C2 ◦ C3 ◦ C4 in cycle systems of rank 4.

could be independent, or a basis set. (Any set of n > r cycles must be dependent.)
There are C(nr, r) ways of choosing these subsets. With r = 5, C(31, 5) = 169911.
But not all of these collections need be independent. By Table 1, C8 = C1 ◦ C4, so
any subset Y containing {C1, C4, C8} (which we will now abbreviate by the 3-set
{1, 4, 8}) cannot be independent.3 There exist 305 5-sets which contain {1, 4, 8}
as a subset and so must also be dependent; and 81,375 dependent 5-sets which
contain at least one other dependent subset.

A five element set Y may contain no dependent subset, yet still be dependent.
Consider the 5-set of cycles {10, 12, 15, 27, 28}. The composition

C10 ◦ C12 ◦ C15 ◦ C27 ◦ C28 = C∅,

so by Proposition 2.3 is dependent. (This is most easily seen by expressing each
cycle in terms of its constituent basic cycles. Thus {10, 12, 15, 27, 28} = {(2 ◦ 3),
(2 ◦ 5), (4 ◦ 5), (1 ◦ 2 ◦ 3 ◦ 5), (1 ◦ 2 ◦ 4 ◦ 5)} or {(1 ◦ 1) ◦ (2 ◦ 2) ◦ (2 ◦ 2)
◦ (3 ◦ 3) ◦ (4 ◦ 4) ◦ (5 ◦ 5)} = C∅.
Composition of the 5-set of cycles {12, 13, 14, 16, 22} yields C6. It has no depen-

dent subset; so is presumably independent. We can show that this is a basis set of

3By an n-set, we simply mean a set of n distinct elements/cycles.
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C by verifying that C1 = C12 ◦ C14 ◦ C16; that C2 = C13 ◦ C22; and similarily
for C3, C4 and C5. Try it.

By taking advantage of the shortlex ordering and these properties of depen-
dence, one can write a program to generate and count all independent and de-
pendent sets of r cycles in a cycle system of rank r.4 Table 2 displays these
counts. We note that no combination (set) of just two cycles can be dependent

Table 2. Independent & dependent subsets in cycle systems of rank r.

number w.
total total number number dependent

rank cycles r-sets independent dependent sub-sets
2 3 3 3 100% 0 0% 0 0%
3 7 35 28 80% 7 20% 0 0%
4 15 1 365 840 61% 525 39% 420 80%
5 31 169 911 83 328 49% 86 583 51% 81 375 94%
6 63 67 945 521 27 998 208 41% 39 947 313 58% 39 072 369 98%

and every independent r-set corresponds to a basis set. The increasing percentage
of dependent r-sets of cycles and increasing percentage of dependence caused by
smaller included dependent subsets are suggestive. Unfortunately, this method of
calculation is restricted to r ≤ 6 because of integer overflow.

It is known that the equation

n_independent =
∏

i=0,r−1
(2r − 2i)/r! (4.1)

counts the number of independent sets in a projective geometry PG(r, 2) of di-
mension r over a field of 2 elements [8, 23].

In Table 3, which has been generated by the equation (4.1), we see that the
fourth column exactly matches that of Table 2 for r ≤ 6. This illustrates the well-
known cryptomorphism of matroids [20, 21], i.e. cycle systems are cryptomorphic
to PG(r, 2). In Table 3, we are primarily concerned with the ratios of independent
r-sets to all r-sets (column 5) and independent r-sets to dependent r-sets (column
7). Readily, the former appears to converge to a constant 0.2887 ≤ c1 ≤ 0.2889
and the latter to a constant 0.4059 ≤ c2 ≤ 0.4061. That the relative abundance
of independent and dependent r-sets should approach a constant value is rather
surprising. We believe these are new results in the field of algebraic matroids
[3, 13,14].

Table 3 is clearly indicative of the rich combinatorial complexity to be found in
cycle matroids of even relatively low rank.

Because of this complexity, cyclic structures have been suggested as possible
underlying bases for molecular memory, particularly in organisms without neural
systems [12, 15–18], in molecular control structures [4, 10, 19], and in molecular
information conduits [5, 11]. They invite more research into their properties.

4In the case of r = 3, accuracy was verified by exhaustive examination. In the case of
r = 4, 5, 6, large samples of independent and dependent sets, as well as dependencies based on
dependent subsets were verified. Source code for this C++ program is available from the author.
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Table 3. Independent & dependent subsets in cycle systems of rank r.

total total number nbr ind ÷ number nbr ind ÷
rank cycles r-sets independent nbr total dependent nbr dep

2 3 3 3 1.0 0 -
3 7 35 28 0.8 7 4.0
4 15 1 365 840 0.61538 525 1.6
5 31 169 911 83 328 0.49042 86 583 0.96240
6 63 67 945 521 27 998 208 0.41206 39 947 313 0.70087
8 255 3.9686× 1014 1.3264× 1014 0.33422 2.6422× 1014 0.50200

10 1 023 3.3100× 1023 1.0098× 1023 0.30507 2.3002× 1023 0.43900
12 4 095 4.5677× 1034 1.3448× 1034 0.29441 3.2229× 1034 0.41726
14 16 383 1.1446× 1048 3.3271× 1047 0.29066 8.1196× 1047 0.40976
16 65 535 5.5227× 1063 1.5982× 1063 0.28939 3.9245× 1063 0.40724
18 262 143 5.3345× 1081 1.5415× 1081 0.28897 3.7929× 1081 0.40642
20 1 048 575 1.0611× 10102 3.0651× 10101 0.28884 7.5465× 10101 0.40616
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