CYCLE SYSTEMS

JOHN L. PFALTZ

Abstract

In this paper we show that the composition (symmetric difference) of cycles is well-defined. So, such a collection $\left\{\ldots, C_{i}, C_{k}, \ldots\right\}$ of cycles with a composition operator, \circ, is a matroid. As such, it has sets of independent, or basis, cycles that determine its rank r. This paper is concerned with independent and dependent sets of cycles within a cycle system. In particular, we enumerate the number of all possible basis sets in any cycle system of rank $r \leq 6$. Then we use a generating function to establish that the ratio of basis sets to all possible r element sets approaches $c, 0.287<c<0.289$.

1. Introduction

Cycle systems such as Figure 1 exist in nature. Various protein polymers have a linked cyclic structure [2]. Figure 1, which introduced the author to cycle systems, is a membrane polymer which controls the flow of other proteins across the

Figure 1. The cyclic structure of a Gr4 membrane polymer.
nucleus membrane of every cell in our bodies $[4,10,19]$. But, cycle structures seem not to have been much studied as mathematical systems; even though, as we show in this paper, they are matroids with certain group properties.

There seem to be two reasons why this kind of "cycle matroid" has been largely ignored. First, we normally visualize cycles as figures in a planar setting, such as Figure 1. But, they can be realized in (at least) 3 dimensions; think of a "hula hoop". Consequently, there are many more "non-intersecting" configurations which can be difficult to imagine.

[^0]The second reason is that a different concept of "cycle matroid" already exists in the matroid literature. This conception begins with an ordinary undirected graph, $G=(N, E)$. Any set of edges $T \subseteq E$ that constitute a tree are said to be "independent". Any set of edges containing a cycle are then "dependent". Any spanning tree is considered to be a "basis" of rank $r=n-1$, where $n=|N|$. Since all bases (maximal independent sets) have the same cardinality r (rank), the set of edges can be called a "graphic matroid". It is simplest possible example of the matroid concept and is, thus, found in many texts $[9,20]$. This model is utterly clear. It is essentially trivial. And thus of little research interest.

In Section 2 we will develop a far more complex notion of "cycle matroid". Section 3 introduces a novel way of describing the participation of any particular edge in a set of basis cycles. Then, in Section 4.1 we count the maximal possible number of basis combinations in a cycle system of rank r. By way of a spoiler revelation, for $r=6$ it is only $27,998,208$. When $r=20$ this number is $3.06516 \times$ 10^{101} ! Of particular interest is the ratio of independent sets of r cycles with respect to dependent sets of r cycles.

2. Cycle basics

Cycles, such as Figure 1, exist in 3-space, but it is customary to visualize them in terms of their planar projections using graph theoretic terms. As noted in Section 1, this can be misleading. However, it allows us to use a large body of graph theoretic terminology with minimal explanation. There are a huge number of texts devoted to graph theory; we will rely mostly on the definitions in the old standard, Harary [7], which will be supplemented as necessary by other cited works. Unfortunately, in all of them there is often confusion regarding the terms cycle, circuit, and rank. We must be more careful.

Let a graph $\mathcal{G}=(N, E)$ be the usual collection of nodes, N, and edges E where $e \in E$ is a subset $\{x, y\} \subseteq N . \mathcal{G}$ is undirected. Let $y \in N$ be any node, the set of incident edges, denoted $i(y)$ are those nodes of E of the form $\{x, y\}$ or $\{y, z\}$. Let S be a set of edges, by the degree of y relative to S denoted $\delta_{S}(y)$ we mean the cardinality $|S \cap i(y)|$, that is the number of edges in S that are incident to y.

A cycle, $C \subseteq E$, is a set of edges such that for all $y, \delta_{C}(y)$ is even. This is a rather unusual definition of the cycle concept, even though by Euler's theorem [7, p. 64], [1, p. 135], it is a well known equivalence with the usual definition in terms of closed walks, or traversability. In the graph \mathcal{G}_{α} of Figure 2(a), the set $C_{1}=\{\{a, b\},\{b, d\},\{c, d\},\{a, c\}\}$, shown in bold, is a cycle. Observe that the degree of the node $c, \delta(c)=3$, but the relative degree $\delta_{C_{1}}(c)=2$. The use of relative degree is crucial when considering cycles embedded in larger graphs, or networks.

Given any cycle, C, we let \bar{C} denote the set of edges comprising C; we let \dot{C} denote its incident nodes. Even though a cycle is a set of edges, it is often simpler to denote them by \dot{C}, their incident nodes. So, the cycle $C_{2}=\dot{C}_{2}=\langle d, e, g, f\rangle$ of Figure 2(b). Using this notation, we should properly denote the relative degree of a node y in a cycle C_{i} by $\delta_{\bar{C}_{i}}(y)$; but we will normally elide the bar.

We typically illustrate cycles as rectangular structures; but one can always insert or delete nodes in any edge without changing the topology of the graph

Figure 2. The bolder lines delineate cycles.
$[1,6]$, so these cycles can be inflated or condensed without changing their basic nature. The empty set, $C_{\emptyset}=\emptyset$, is a cycle.

2.1. Cycle composition, ○

By the composition of two cycles $C_{i} \circ C_{k}$ we mean the symmetric difference of \bar{C}_{i} and \bar{C}_{k}, or

$$
\begin{equation*}
C_{i} \circ C_{k}=\left(\bar{C}_{i} \cup \bar{C}_{k}\right) \backslash\left(\bar{C}_{i} \cap \bar{C}_{k}\right) \tag{2.1}
\end{equation*}
$$

In \mathcal{G}_{α} of Figure 2(a) $C_{1} \circ C_{2}=C_{3}=\langle a, b, d, g, c, a\rangle$. In Figure 2(b) $C_{1} \circ C_{2}$ is the entire edge set of \mathcal{G}_{β}.

By a cycle system we mean any collection \mathcal{C} of cycles $\{\ldots, y, \ldots\}$ together with the composition operator. Figure 3 presents two more cycle systems. It

(a) \mathcal{G}_{γ}

(b) \mathcal{G}_{δ}

Figure 3. Two more cycle systems.
is worth verifying that in the cycle system \mathcal{G}_{γ} of Figure 3(a), $C_{4}=C_{1} \circ C_{2}=$ $\langle a, b, c, g, f, e, a\rangle$ and $C_{5}=C_{1} \circ C_{3}$ consists of two disjoint cycles $\langle a, b, f, e, a\rangle$ and $\langle c, d, h, g, c\rangle$. The cycle $C_{1} \circ C_{2} \circ C_{3}=\langle a, b, c, d, h, g, f, e, a\rangle$. In \mathcal{G}_{δ} of Figure 3(b), $C_{1} \circ C_{2} \circ C_{3}=\langle a, b, c, f, e, b, g, h, e, d, a\rangle$ or \mathcal{G}_{δ} itself. Why is the edge $\{b, e\}$ in $C_{1} \circ C_{2} \circ C_{3}$ but not in $C_{1} \circ C_{2}$ or $C_{1} \circ C_{3}$ or $C_{2} \circ C_{3}$?

The composition defined in (2.1) is effectively the symmetric difference, \oplus, of two sets, yielding a set of edges. It is familiar operator (see Wikipedia). But it is not immediately obvious that the set of edges resulting from $C_{i} \circ C_{k}$, or $\bar{C}_{i} \oplus \bar{C}_{k}$, need be a well-formed cycle.

Proposition 2.1. Let C_{i}, C_{k} be cycles. $C_{i} \circ C_{k}=C_{m}$ is a cycle.

Proof. Since C_{i}, C_{k} are cycles, for all $y \in \dot{C}_{i}$, and $\dot{C}_{k}, \delta_{C_{i}}(y)$, and $\delta_{C_{k}}(y)$ are even.

If $\bar{C}_{i} \cap \bar{C}_{k} \neq \emptyset$, let $\dot{C}_{i} \cap \dot{C}_{k}=\{\ldots, y, \ldots\}$. For all such $y, \delta_{C_{i} \cup C_{k} \backslash\left(C_{i} \cap C_{k}\right)}(y)=$ $\delta_{C_{i}}(y)+\delta_{C_{k}}(Y)-2 * \delta_{C_{i} \cap C_{k}}(y)$. The third term is doubled because y is in both C_{i} and C_{k}. Readily, $\delta_{C_{i} \cup C_{k} \backslash\left(C_{i} \cap C_{k}\right)}(y)$ is even.

If $y \notin \dot{C}_{i} \cap \dot{C}_{k}$ the third term is zero and the same result follows.
If $\bar{C}_{i} \cap \bar{C}_{k}=\emptyset$ then all $y \in \dot{C}_{i}$ or \dot{C}_{k} satisfy the condition above.
The author has been unable to find a proof of this proposition using the standard closed path definition of a cycle.

The following properties of \oplus are traditional; but not always stated. It is worth restating and proving them.

Proposition 2.2. Let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ be a cycle system with composition as defined by (2.1), then for all i, k, m
(a) $C_{i} \circ C_{k}=C_{k} \circ C_{i}$;
(symmetry)
(b) $\left(C_{i} \circ C_{k}\right) \circ C_{m}=C_{i} \circ\left(C_{k} \circ C_{m}\right)$;
(associativity)
(c) if $C_{i} \circ C_{k}=C_{m}$ then $C_{i} \circ C_{m}=C_{k}$;
(exchange)
(d) if $C_{i} \neq C_{k}$ then $C_{i} \circ C_{k} \neq C_{\emptyset}$;
(e) if $C_{i} \circ C_{k}=C_{i} \circ C_{m}$ then $C_{k}=C_{m}$. (uniqueness)

Proof. (a) is evident from the Definition (2.1).
(b) $\left(C_{i} \circ C_{k}\right) \circ C_{m}=\left(C_{i} \cup C_{k} \cup C_{m}\right) \backslash\left(C_{i} \cap C_{k} \cap C_{m}\right)=C_{i} \circ\left(C_{k} \circ C_{m}\right)$.
(c) Let $C_{m}=C_{i} \circ C_{k}$, then

$$
C_{k}=C_{\emptyset} \circ C_{k}=\left(C_{i} \circ C_{i}\right) \circ C_{k}=C_{i} \circ\left(C_{i} \circ C_{k}\right)=C_{i} \circ C_{m} .
$$

(d) Suppose $C_{i} \circ C_{k}=C_{\emptyset}$, where $i \neq k$, then

$$
C_{k}=C_{\emptyset} \circ C_{k}=\left(C_{i} \circ C_{i}\right) \circ C_{k}=C_{i} \circ\left(C_{i} \circ C_{k}\right)=C_{i} \circ C_{\emptyset}=C_{i}
$$

or $C_{i}=C_{k}$ contradicting the condition.
(e) Let $C_{i} \circ C_{k}=C_{s}=C_{i} \circ C_{m}$. By (c) above,

$$
C_{k}=C_{i} \circ C_{s}=C_{i} \circ\left(C_{i} \circ C_{m}\right)=C_{\emptyset} \circ C_{m}=C_{m}
$$

The consequence of Proposition 2.2(e) is that C_{i} defines a permutation on the cycles $\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ of \mathcal{C}, since each composition $C_{i} \circ C_{k}$ is a unique cycle of \mathcal{C}.

Let $Y=\left\{C_{1}, \ldots, C_{n}\right\}$ be a set of cycles. By the span^{1} of Y, denoted $Y . \sigma$, we mean the set of all cycles $\left\{C_{m}\right\}$ such that $C_{m}=C_{i} \circ \cdots \circ C_{k}$, where $C_{i}, \ldots, C_{k} \in$ Y. When we wish to denote precisely the cycle $C_{1} \circ \cdots \circ C_{n}$ we will use the notation $\{\circ Y\}$. Thus Y. $\sigma=\cup_{X \subseteq Y}\{\circ X\}$.

[^1]
2.2. Basic cycles

A set $Y=\left\{C_{i}\right\}$ of non-empty cycles is said to be dependent if there exists $C_{m} \in Y$ such that $C_{m}=C_{i} \circ \cdots \circ C_{k}$ where $C_{i}, \ldots, C_{k} \in Y$. If Y is not dependent, it is said to be independent. The early work of Hassler Whitney [22] is a fine reference work on linear independence. But beware; in it a minimal dependent set is called a "circuit". ${ }^{2}$ This terminology is still common in the literature [7,21]. Any cycle can be a member of an independent set.

Proposition 2.3. Let $Y \subseteq \mathcal{C}$ be a collection $\left\{C_{1}, \ldots, C_{n}\right\}$ of cycles.
(a) If $\{\circ Y\}=C_{1} \circ \cdots \circ C_{n}=C_{\emptyset}$ then Y is dependent;
(b) if no subset X of Y is dependent, but Y is dependent, then

$$
\{\circ Y\}=C_{1} \circ \cdots \circ C_{n}=C_{\emptyset} .
$$

Proof. (a) Since $\{\circ Y\}=C_{\emptyset}$, by Prop. 2.2(d), there exists C_{i} such that $\left\{\circ\left\{Y \backslash C_{i}\right\}\right\}=C_{i}$, so Y is dependent.
(b) Suppose Y is dependent, so $\exists C_{i}$ and $X \subseteq Y$ where $\{\circ X\}=C_{i}$ or $\{\circ X\} \circ C_{i}=C_{\emptyset}$. By assumption, $X \not \subset Y$, so $X=Y$.

Thus sets, Y, satisfying Proposition 2.3(b) are "circuits".
A maximal independent set of cycles $\mathcal{B} \subseteq \mathcal{C}$ is said to be a basis for the system \mathcal{C}. Since \mathcal{B} is maximal, every cycle $C_{m} \in \mathcal{C}$ is expressible as the composition of some set Y of cycles contained in \mathcal{B}, that is $C_{m}=\{\circ Y\}, Y \subseteq \mathcal{B}$. (Note: we have not yet established that the cardinality of all basis sets must be the same. However, Proposition 2.2(c) and (e) suggest that this might be so.)

A system may have many bases. $\mathcal{B}_{1}=\left\{C_{1}, C_{2}, C_{3}\right\}$ is one basis for the system \mathcal{C}_{γ} of Figure 3(a); $\mathcal{B}_{2}=\left\{C_{4}, C_{2}, C_{3}\right\}$, shown in Figure $4(\mathrm{~b})$ is another, where $C_{4}=C_{1} \circ C_{2}$.

Figure 4. Two distinct bases for \mathcal{G}_{γ} of Figure 3(a).

Proposition 2.4. Let $\mathcal{B}_{1}=\left\{C_{1}, \ldots, C_{r}\right\}$ be a basis for \mathcal{C} where $|\mathcal{C}| \geq 3$. For any $C_{i} \in \mathcal{B}_{1}$ there exists $C_{i}^{\prime} \notin \mathcal{B}_{1}$ such that $\mathcal{B}_{2}=\mathcal{B}_{1} \backslash\left\{C_{i}\right\} \cup\left\{C_{i}^{\prime}\right\}$ is a basis.

Proof. Since $|\mathcal{C}| \geq 3, \mathcal{B}_{1} \subset \mathcal{C}$ and $\left|\mathcal{B}_{1}\right| \geq 2$. Let $C_{i}, C_{k} \in \mathcal{B}_{1}, C_{k} \neq C_{i}$, and let $C_{i}^{\prime}=C_{i} \circ C_{k}$. Then $C_{i}^{\prime} \notin \mathcal{B}_{1}$ else \mathcal{B}_{1} would be dependent. We claim $\mathcal{B}_{2}=\mathcal{B}_{1} \backslash\left\{C_{i}\right\} \cup\left\{C_{i}^{\prime}\right\}$ is independent and maximal, i.e. a basis.

Suppose there exists $C_{m} \in \mathcal{B}_{2}$ and $Y \subset \mathcal{B}_{2}$ such that $C_{m}=\{\circ Y\}$ then $C_{i}^{\prime} \in Y$, else \mathcal{B}_{1} is dependent. Thus, $C_{m}=C_{i}^{\prime} \circ\left\{\circ Y^{\prime}\right\}$ where $Y^{\prime}=Y \backslash\left\{C_{i}^{\prime}\right\} \subseteq \mathcal{B}_{1}$. But

[^2]then, $C_{m}=C_{i} \circ C_{k} \circ\left\{\circ Y^{\prime}\right\}$, again implying \mathcal{B}_{1} is dependent. Thus, \mathcal{B}_{2} must be independent.

Now suppose $\exists C_{m} \notin \mathcal{B}_{2}$ such that $\mathcal{B}_{2} \cup\left\{C_{m}\right\}$ is independent. A similar argument shows that \mathcal{B}_{1} cannot be maximal.

Proposition 2.4 establishes that every cycle system is a matroid. There is an abundance of literature, of which $[9,20,21]$ are only representative. More relevent is [14] which emphasises independence, and dependence. Cycle systems can be viewed as algebraic matroids. The cycles behave like vectors over GF (2).

2.3. Shortlex order labeling

We have been denoting the cycles in a graph G, or cycle system \mathcal{C}, by the labels $C_{1}, C_{2}, \ldots, C_{i}, \ldots$ where the subscripts are integer. Clearly any index set could be used. Given any initial basis set of r cycles, we will arbitrarily label (denote) them by $C_{1}, C_{2}, \ldots C_{r}$. Then $C_{r+1}=C_{1} \circ C_{2}$. The label C_{r+2} is assigned to $C_{1} \circ C_{3}$ and $C_{r+3}=C_{1} \circ C_{4}$. The cycle $C_{1} \circ C_{r}$ must be labeled $C_{2 r-1}$. Now $C_{2} \circ C_{3}$ becomes $C_{2 r}$ etc. Finally, $C_{1} \circ C_{2} \circ \cdots \circ C_{r}=C_{2^{r}-1}$. This is a shortlex order labeling. Thus if $r=3$ as in \mathcal{G}_{γ} or \mathcal{G}_{δ} of Figure 3, $C_{6}=C_{2} \circ C_{3}$ regardless of the actual position of the cycles C_{2} and C_{3} in the graph.

Table 1. Shortlex order labeling of cycles in any cycle system of rank 5.

$$
\begin{array}{lll}
C_{1} & C_{12}=C_{2} \circ C_{5} & C_{23}=C_{2} \circ C_{3} \circ C_{5} \\
C_{2} & C_{13}=C_{3} \circ C_{4} & C_{24}=C_{2} \circ C_{4} \circ C_{5} \\
C_{3} & C_{14}=C_{3} \circ C_{5} & C_{25}=C_{3} \circ C_{4} \circ C_{5} \\
C_{4} & C_{15}=C_{4} \circ C_{5} \circ C_{26}=C_{1} \circ C_{2} \circ C_{3} \circ C_{4} \\
C_{5} & C_{16}=C_{1} \circ C_{2} \circ C_{3} & C_{27}=C_{1} \circ C_{2} \circ C_{3} \circ C_{5} \\
C_{6}=C_{1} \circ C_{2} & C_{17}=C_{1} \circ C_{2} \circ C_{4} & C_{28}=C_{1} \circ C_{2} \circ C_{4} \circ C_{5} \\
C_{7}=C_{1} \circ C_{3} & C_{18}=C_{1} \circ C_{2} \circ C_{5} & C_{29}=C_{1} \circ C_{3} \circ C_{4} \circ C_{5} \\
C_{8}=C_{1} \circ C_{4} & C_{19}=C_{1} \circ C_{3} \circ C_{4} & C_{30}=C_{2} \circ C_{3} \circ C_{4} \circ C_{5} \\
C_{9}=C_{1} \circ C_{5} & C_{20}=C_{1} \circ C_{3} \circ C_{5} & C_{31}=C_{1} \circ C_{2} \circ C_{3} \circ C_{4} \circ C_{5} \\
C_{10}=C_{2} \circ C_{3} & C_{21}=C_{1} \circ C_{4} \circ C_{5} & \\
C_{11}=C_{2} \circ C_{4} & C_{22}=C_{2} \circ C_{3} \circ C_{4} &
\end{array}
$$

Table 1 represents the shortlex order labeling of any cycle system with $r=5$. This provides a standard factorization for all cycles; so for example,

$$
\begin{aligned}
C_{10} \circ C_{19} & =\left(C_{2} \circ C_{3}\right) \circ\left(C_{1} \circ C_{3} \circ C_{4}\right) \\
& =\left(C_{1} \circ C_{2} \circ C_{4}\right) \circ\left(C_{3} \circ C_{3}\right) \\
& =\left(C_{1} \circ C_{2} \circ C_{4}\right) \\
& =C_{17} .
\end{aligned}
$$

3. Segments

In Figure 4 we had to use multiple lines to convey the position of the alternate basis cycle C_{6}. In this section we formalize this ad hoc procedure.

Let $\{x, z\} \in E$. The edge $\{x, z\}$ can be replaced by a path

$$
\rho(x, z)=\left\langle x, y_{1}, \ldots, y_{k}, z\right\rangle
$$

where $\delta\left(y_{i}\right)=2$ in a process called subdivision. Similarly, such a path can be contracted back to a single edge. We call such paths, "segments" which we define more carefully below. Subdivision, or contraction, of segments will not change the essential structure of the cycle system; they are all topologically equivalent $[1,6]$. Many properties of cycle systems are determined by their segments. Nodes included in segments serve primarily as labels to reference them in figures.

An edge can belong to, or be a part of, several different cycles. By the edge membership operator, $\{x, y\} . \lambda$, we mean a function yielding the set of basic cycles $\left\{C_{i}\right\}$ such that the edge $\{x, z\} \subseteq \bar{C}_{i}$. By a segment $\left\langle x, \ldots, y_{i}, \ldots, z\right\rangle, 0 \leq i<n$ where $n \leq 0$, we mean a path sequence such that $\left\{x, y_{1}\right\} \cdot \lambda=\left\{y_{i}, y_{i+1}\right\} \cdot \lambda=$ $\left\{y_{n}, z\right\} . \lambda$. Thus we can extend the edge membership operator to segments and define $\langle x, z\rangle . \lambda=\left\{y_{i}, y_{i-1}\right\} . \lambda$. We say the segment $\langle x, z\rangle$ is incident to x (and z).

In Figure $4(\mathrm{a})$ the segment $\langle c, g\rangle$ has $\langle c, g\rangle . \lambda=\left\{C_{2}, C_{3}\right\}$. In Figure 4(b) $\langle c, g\rangle . \lambda=\left\{C_{2}, C_{3}, C_{6}\right\}$. In both figures, $\langle d, h\rangle \cdot \lambda=\left\{C_{3}\right\}$.

Lemma 3.1. If $C_{m}=C_{i} \circ C_{k}$ then for all $\langle x, z\rangle \in C_{m},\langle x, z\rangle \in \bar{C}_{i}$ or $\langle x, z\rangle \in$ \bar{C}_{k}, but not both.

Proof. Since $\langle x, z\rangle \in \bar{C}_{i} \cup \bar{C}_{k} \backslash\left(\bar{C}_{i} \cap \bar{C}_{k}\right)$, the assertion follows.
Effectively, any segment remaining after a composition must have membership in precisely one of the composing basic cycles.

The λ operator is well-defined, that is, never empty, because
Proposition 3.2. Let \mathcal{B} be a basis for \mathcal{C}, then for every segment $\langle x, z\rangle$ there exists $C_{k} \in \mathcal{B}$ such that $C_{k} \in\langle x, z\rangle . \lambda$.

Proof. Let $\langle x, z\rangle \in \bar{C}_{m}$ for some $C_{m} \in \mathcal{C}$. If $C_{m} \in \mathcal{B}$ we are done. If not, $C_{m}=\{\circ Y\}$ for some $Y \subseteq \mathcal{B}$. The result follows from Lemma 3.1.

Proposition 3.3. $\langle x, z\rangle$ is a maximal segment if and only if $\delta(x)$ and $\delta(z) \geq 3$.
Proof. This follows directly from the definition.
Proposition 3.4. Let $\delta(y)=3$ where $\langle w, y\rangle,\langle x, y\rangle$, and $\langle y, z\rangle$ are its incident segements. Then $\langle w, y\rangle \cdot \lambda \cup\langle x, y\rangle \cdot \lambda=\langle w, y\rangle . \lambda \cup\langle y, z\rangle \cdot \lambda=\langle x, y\rangle . \lambda \cup\langle y, z\rangle \cdot \lambda$.

Proof. We claim $\langle w, y\rangle . \lambda \subseteq\langle x, y\rangle . \lambda \cup\langle y, z\rangle . \lambda$, since if not, there exists a cycle $C_{i} \in\langle w, y\rangle . \lambda$, but $C_{i} \notin\langle x, y\rangle . \lambda$ and $C_{i} \notin\langle x, z\rangle . \lambda$. But C_{i} is a cycle so $\langle w, y\rangle \in \bar{C}_{i}$ implies either $\langle x, y\rangle$ or $\langle y, z\rangle \in \bar{C}_{i}$.

The same argument holds for all three possible containments, so the result follows.

In short, the edge membership operator of any two segments includes all participating basis cycles.

Corollary 3.5. If $\delta(y) \geq 3$, then for at least one segment, $\langle x, y\rangle,|\langle x, y\rangle . \lambda|>1$.
Figure 5 is an attempt to visualize a segment $\langle x, z\rangle$ in a 3-dimensional space. Here, $|\langle x, z\rangle \cdot \lambda|=4$ and $\delta(x)=\delta(z) \geq 3$ as required by Proposition 3.3.

Figure 5. A segment $\langle x, z\rangle$ in 3-space.

4. Cycle systems with rank ≥ 3

Figure 6 illustrates two cycle systems of rank 3. Tracing $C_{7}=C_{1} \circ C_{2} \circ C_{3}$ is illustrative. In both systems, each segment for which $|\langle x, z\rangle . \lambda|$ is odd must be used in the cycle; but "even" segments can never be in $C_{1} \circ C_{2} \circ \cdots \circ C_{r}=\{\circ \mathcal{B}\}$.

Figure 6. Cycle systems of rank 3.
We have included several unnecessary nodes to provide clarity. For example, the edges $\langle x a b z\rangle$ in Figure 6(a) could be combined to create a maximal segment $\langle x, z\rangle$ with $\langle x, z\rangle . \lambda=\left\{C_{1}\right\}$.

Figure 7 shows two cycle systems of rank 4 . We may consider the segments bounded by w, x, y, z as constituting the core of these systems.

Figure 8 duplicates Figure 7 except that in both cases ((a) and (b)) $C_{15}=$ $C_{1} \circ C_{2} \circ C_{3} \circ C_{4}$ is solid, while the segments not included in C_{15} are dashed. Observe that if $\langle x, z\rangle$ is not a segment of C_{15} then $|\langle x, z\rangle . \lambda|$ is even. Also observe the interesting structure at node z in Figure 8(a), and node w in Figure 8(b), where $\delta(w)=\delta(z)=4$. We have not seen such nodes in simple cycles before.

4.1. Counting bases in a cycle system

Let a cycle system \mathcal{C} have rank r. Then it consists of all possible sets of r cycles, or $\sum_{i=1, \ldots, r} C(r, i)=2^{r}$, or $2^{r}-1$ non-empty cycles. For the case of $r=5$, there are $n_{r}=2^{r}-1=31$ non-empty cycles as shown in Table 1 . Any subset Y of r cycles

Figure 7. Cycle systems of rank 4.

(a)

(b)

Figure 8. $C_{15}=C_{1} \circ C_{2} \circ C_{3} \circ C_{4}$ in cycle systems of rank 4.
could be independent, or a basis set. (Any set of $n>r$ cycles must be dependent.) There are $C\left(n_{r}, r\right)$ ways of choosing these subsets. With $r=5, C(31,5)=169911$. But not all of these collections need be independent. By Table 1, $C_{8}=C_{1} \circ C_{4}$, so any subset Y containing $\left\{C_{1}, C_{4}, C_{8}\right\}$ (which we will now abbreviate by the 3 -set $\{1,4,8\}$) cannot be independent. ${ }^{3}$ There exist 3055 -sets which contain $\{1,4,8\}$ as a subset and so must also be dependent; and 81,375 dependent 5 -sets which contain at least one other dependent subset.

A five element set Y may contain no dependent subset, yet still be dependent. Consider the 5 -set of cycles $\{10,12,15,27,28\}$. The composition

$$
C_{10} \circ C_{12} \circ C_{15} \circ C_{27} \circ C_{28}=C_{\emptyset},
$$

so by Proposition 2.3 is dependent. (This is most easily seen by expressing each cycle in terms of its constituent basic cycles. Thus $\{10,12,15,27,28\}=\{(2 \circ 3)$, $(2 \circ 5),(4 \circ 5),(1 \circ 2 \circ 3 \circ 5),(1 \circ 2 \circ 4 \circ 5)\}$ or $\{(1 \circ 1) \circ(2 \circ 2) \circ(2 \circ 2)$ $\circ(3 \circ 3) \circ(4 \circ 4) \circ(5 \circ 5)\}=C_{\emptyset}$.

Composition of the 5 -set of cycles $\{12,13,14,16,22\}$ yields C_{6}. It has no dependent subset; so is presumably independent. We can show that this is a basis set of

[^3]\mathcal{C} by verifying that $C_{1}=C_{12} \circ C_{14} \circ C_{16}$; that $C_{2}=C_{13} \circ C_{22}$; and similarily for C_{3}, C_{4} and C_{5}. Try it.

By taking advantage of the shortlex ordering and these properties of dependence, one can write a program to generate and count all independent and dependent sets of r cycles in a cycle system of rank $r .{ }^{4}$ Table 2 displays these counts. We note that no combination (set) of just two cycles can be dependent

Table 2. Independent \& dependent subsets in cycle systems of rank r.

rank	total cycles	$\begin{array}{r} \text { total } \\ r \text {-sets } \end{array}$	number independent		number dependent		number w. dependent sub-sets	
2	3	3	3	100\%	0	0\%	0	0\%
3	7	35	28	80\%	7	20\%	0	0\%
4	15	1365	840	61\%	525	39\%	420	80\%
5	31	169911	83328	49\%	86583	51\%	81375	94\%
6	63	67945521	27998208	41%	39947313	58\%	39072369	98\%

and every independent r-set corresponds to a basis set. The increasing percentage of dependent r-sets of cycles and increasing percentage of dependence caused by smaller included dependent subsets are suggestive. Unfortunately, this method of calculation is restricted to $r \leq 6$ because of integer overflow.

It is known that the equation

$$
\begin{equation*}
n _i n d e p e n d e n t=\prod_{i=0, r-1}\left(2^{r}-2^{i}\right) / r! \tag{4.1}
\end{equation*}
$$

counts the number of independent sets in a projective geometry $\operatorname{PG}(r, 2)$ of dimension r over a field of 2 elements $[8,23]$.

In Table 3, which has been generated by the equation (4.1), we see that the fourth column exactly matches that of Table 2 for $r \leq 6$. This illustrates the wellknown cryptomorphism of matroids [20,21], i.e. cycle systems are cryptomorphic to $P G(r, 2)$. In Table 3, we are primarily concerned with the ratios of independent r-sets to all r-sets (column 5) and independent r-sets to dependent r-sets (column 7). Readily, the former appears to converge to a constant $0.2887 \leq c_{1} \leq 0.2889$ and the latter to a constant $0.4059 \leq c_{2} \leq 0.4061$. That the relative abundance of independent and dependent r-sets should approach a constant value is rather surprising. We believe these are new results in the field of algebraic matroids [3, 13, 14].

Table 3 is clearly indicative of the rich combinatorial complexity to be found in cycle matroids of even relatively low rank.

Because of this complexity, cyclic structures have been suggested as possible underlying bases for molecular memory, particularly in organisms without neural systems [12, 15-18], in molecular control structures $[4,10,19]$, and in molecular information conduits [5,11]. They invite more research into their properties.

[^4]Table 3. Independent \& dependent subsets in cycle systems of rank r.

rank	total cycles	$\begin{array}{r} \text { total } \\ r \text {-sets } \end{array}$	number independent	nbr ind \div nbr total	number dependent	nbr ind \div nbr dep
2	3	3	3	1.0	0	-
3	7	35	28	0.8	7	4.0
4	15	1365	840	0.61538	525	1.6
5	31	169911	83328	0.49042	86583	0.96240
6	63	67945521	27998208	0.41206	39947313	0.70087
8	255	3.9686×10^{14}	1.3264×10^{14}	0.33422	2.6422×10^{14}	0.50200
10	1023	3.3100×10^{23}	1.0098×10^{23}	0.30507	2.3002×10^{23}	0.43900
12	4095	4.5677×10^{34}	1.3448×10^{34}	0.29441	3.2229×10^{34}	0.41726
14	16383	1.1446×10^{48}	3.3271×10^{47}	0.29066	8.1196×10^{47}	0.40976
16	65535	5.5227×10^{63}	1.5982×10^{63}	0.28939	3.9245×10^{63}	0.40724
18	262143	5.3345×10^{81}	1.5415×10^{81}	0.28897	3.7929×10^{81}	0.40642
20	1048575	1.0611×10^{102}	3.0651×10^{101}	0.28884	7.5465×10^{101}	0.40616

Acknowledgment. The author would like to thank Zvi Rosen of Florida Atlantic University for pointing out the connection with projective geometries and the generating expression (4.1), and Robert Jamison of Clemson University for his general comments on Section 2. An unknown referee also suggested many helpful changes.

References

[1] G. Agnarsson and R. Greenlaw, Graph Theory: Modeling, Applications and Algorithms, Prentice Hall, Upper Saddle River, NJ, 2007.
[2] M. S. Almén, K. JV Nordström, R. Fredriksson and H. B. Schiöth, Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin, BMC Biology 7, Article Number 50 (2009), 14 pp.
[3] A. Dress and L. Lovász, On some combinatorial properties of algebraic matroids, Combinatorica 7 (1987), 39-48.
[4] S. Frey and D. Görlich, A saturated FG-repeat hydrogel can reproduce the permeability of nuclear pore complexes, Cell 130 (2007), 512-523.
[5] I. Gális, E. Gaquerei, S.P. Pandey and I. T. Baldwin, Molecular mechanisms underlying plant memory in JA-mediated defence responses, Plant, Cell and Environment 32 (2009), 617-627.
[6] J. L. Gross and T. W. Tucker, Topological Graph Theory, Dover Publications, Mineola, NY, 1987.
[7] F. Harary, Graph Theory, Addison-Wesley Publishing, Boston, 1969.
[8] G. Gordon and J. McNulty, Matroids: A Geometric Introduction, 1st ed., Cambridge University Press, 2012.
[9] D. L. Neel and N. A. Neudauer, Matroids you have known, Mathematics Magazine 82 (2009), 26-41.
[10] S. S. Patel, B. J. Belmont, J. M. Sante and M. F. Rexach, Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex, Cell 129 (2007), 83-96.
[11] R. Peters, Introduction to nucleocytoplasmic transport: Molecules and mechanisms, Methods in Molecular Biology 322 (2006), 235-258, 2006.
[12] J. L. Pfaltz, Human have a distributed, molecular long-term memory, in: S. Wang et al. (eds.), Brain Informatics, International Conference, BI 2018, Arlington, TX, December 7-9, 2018, pp. 87-98.
[13] Z. Rosen, Computing algebraic matroids, arXiv:1403.8148v2, April 2014, 15 pp.
[14] Z. Rosen, J. Sidman and L. Theran, Algebraic matroids in action, American Mathematical Monthly 127 (2020), 199-216.
[15] T.D. Schneider, A brief review of molecular information theory, Nano Communication Networks 1 (2010), 173-180.
[16] W. S. Sossin, Molecular memory traces, Progress in Brain Research 169 (2008), 3-25.
[17] J. D. Sweatt, Retrieval: Molecular mechanisms, in: H. L. Roediger III, Y. Dudai and S. M. Fitzpatrick (eds.), Science of Memory: Concepts, Oxford University Press, New York, 2007, pp. 209-213.
[18] N. C. Tronson and J. R. Taylor, Molecular mechanisms of memory reconsolidation, Nature Review Neuroscience 8 (2007), 262-275.
[19] K. Weis, The nuclear pore complex: Oily spaghetti or gummy bear? Cell 130 (2007), 405407.
[20] D. J. A. Welsh, Matroid Theory, Academic Press, 1976.
[21] N. White, Theory of Matroids, Cambridge University Press, Cambridge, UK, 1986.
[22] H. Whitney, On the abstract properties of linear dependence, American Journal of Mathematics 57 (1935), 509-533.
[23] P. Young and J. Edmonds, Matroid Designs, Journal of Research of the National Bureau of Standards B: Mathematical Sciences 77B (1973), 14-44.

John L. Pfaltz, Department of Computer Science, University of Virginia, 85 Engineer's Way, Charlottesville, VA 22904, USA
e-mail: jlp@cs.virginia.edu

[^0]: MSC (2010): primary 05B35; secondary 05C25, 05E14.
 Keywords: cycle composition, cycle basis exchange, matroid, independence, shortlex order .

[^1]: ${ }^{1}$ In graph theory, the term "span" usually refers to a tree whose nodes include all $y \in N$. Since a tree has no cycles, it has no connection to our usage which is taken from the notion of spanning vectors in a vector space.

[^2]: ${ }^{2}$ This is derived from the graphic cycle matroid, described in Section 1, in which circuits (or cycles) are the minimal dependent sets.

[^3]: ${ }^{3}$ By an n-set, we simply mean a set of n distinct elements/cycles.

[^4]: ${ }^{4}$ In the case of $r=3$, accuracy was verified by exhaustive examination. In the case of $r=4,5,6$, large samples of independent and dependent sets, as well as dependencies based on dependent subsets were verified. Source code for this C^{++}program is available from the author.

