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Abstract: The purpose of this paper is to give sufficient conditions for existence of right semi-global
solutions to mixed-type functional differential equations. We also give an example to illustrate appli-
cability of the result.

Keywords: semi-global solutions, mixed-type functional differential equations, delayed argument,
advanced argument, monotone iterative method

INTRODUCTION

For r > 0 let C, := C([0,r],R") be the Banach space of continuous functions from the interval [0, r]
to R"” equipped with the supremum norm

[wll, = sup |y(a)|,  weC(0,r],R"),

oel0,r]

where | - | is the maximum norm in R”.

For a function y = y(¢), continuous on an interval [t —d,t], t € R, d > 0 we define a delayed-type
function y, € C; by formula y, (t) = y(r —t) where t € [0,d]. Similarly, for a function y = y(z),
continuous on an interval [t,r +al, t € R, a > 0, we define an advanced-type function y' € C, by
formula y’ (6) = y(t + 6) where 6 € [0,a]. Throughout the rest of the paper we assume that d > 0
and a > 0 are fixed.

In this paper we will consider a system of mixed-type functional differential equations

y ()= f(t,3.)), (1)

where f: J xCy x C, — R’ is a continuous quasi-bounded functional which satisfies a local Lipschitz
condition with respect to the second and the third argument. For definitions of quasi-boundedness,
etc., we refer to [3].

Let 1 be fixed, 7 := [tp,o0) and J; := [fo —d, ). A continuous function y: J; — R”" is a right semi-
global solution of (1) if it is continuously differentiable on 7 and satisfies (1) on 7.

By R, (RZ,) we denote the set of all componentwise nonnegative (positive) vectors v in R”, i.e.,
V= (vl,...,v") with v/ >0 (v > 0) fori = 1,...,n. For u,v € R", we denote u < vif v—u € R,
u<Lvifv—ueRYy, andu <vifu <vandu#v. Inorder to avoid unnecessary additional definitions,
we use, whenever the meaning is not ambiguous, the same symbols RY, (R';O) to denote relevant

subsets of the set R”.
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2 MAIN RESULT

Below we will look for a solution of system (1) in the form

y(6) =1(kA) (1), @)
where [ is a mapping, I: R, x C (44, R") — C (44, R"),
I(k,A) = (I (k,A) I (k,A) ..., I, (k, L))
defined as .
I (k,2) (1) = kiexp ( /t A ds> ,
fori=1,...,nandt € J,.

Substituting (2) into (1) we have
(diag (1 (k, ) (1)) A (t) = f (2.0 (k, 1), 1 (K, A)')
for ¢ € 4, by diag we denote a diagonal matrix. Consequently,
M(t) = (diag (I (k, 1) (1)) " £ (6,1 (k,X), .1 (k, 1)) 3)

Note that the matrix (diag (I (k,A)(r)))”" exists because the matrix (diag (I (k,A)(r))) is regular.
Equation (3) is an operator equation with respect to A. A function A € C(J;,R") is called a solu-
tion of equation (3) on J; if (3) is valid for all € 7.

Let us define an operator
T:C(J4,R") — C(Js,RY),

where
(TA) (1) = (diag (I (k, 1) (1)) ™"+ f (6,1 (k, ), 1 (K, 1)) “)
fort e 9.

Theorem 1. Let us assume that the following holds:

(i) Forany M >0, © > 1y + a there exists a constant K, such that for all t,t" € [ty,0 — a] and for any
continuous function \: [ty —d,0] — R" with |A| < M,

|(TA) (1) = (TA) ()| < K |t —1]. )

(ii) There exist k € R and continuous functions L,U: J; — R" satisfying here L (t) < U(t), and
on 9 and

on [t() —d,t()].
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(iii) For any continuous functions A,u: 9; — R" the inequality A(t) < u(t), t € Jy implies
(TA) (1) < (Tw) (1)
forted.

Then there exists a right semi-global solution y: J; — R" of (1) satisfying

I(k, L) (1) <y(r) <I(k,U) () (6)
fort € 9; and such that
y (t() — d) =k.

Proof. We need to show, that the equation (3), i.e.,

M) = (TN (1) = (diag (1 (k,A) ()" ) £ (1.1 (6. 0), T (6V)'), 1€

has a solution A € C (J;,R) which satisfies £ (1) <A(t) < U(z) forz € ;.

For 0 > fy + a, we denote by
Lo :=C([to—d,0],R")

the Banach space of the continuous functions from [ty — d,0] into R” equipped with the maximum
norm. Further, we introduce the closed, normal cone

%o :=C ([to —d,0],R,)

of the continuous functions from [t) —d, 6] into RZ,. The cone defines a partial ordering in Lg: for
A,u € Ly, we say that A < u if and only if u— A € Kp.

Let us define an operator Ty: Lg — Lg by
(T}\/) (l‘()) te [l‘()—d,t()),

(Teh) (1) = 4 (TA) (1) 1€ 10,0 —a),
(TA)(8—a) t€[0—a,0].

The operator Ty is well-defined and, according to condition (iii), monotone increasing. Further, we
define

L@ €lto—d,0—a),
v (t) "{ L(0-a) rc[o—a0]

U@ €lto—d,0—a),
’“’9(”'—{ UOB—a) 1 [é) a.0].

Then, we construct a monotone and bounded sequences
Vo < Tyve < Ty Ve < -+ < Tyup < Topto < Lo

Now, we are going to show that Ty is compact and therefore there exist limit functions Ay and Ag such
that
< g = Tokg < Tohg = Ao < . (7

Let M be a bounded subset of Lg. We need to prove that TgM is relatively compact subset of L.
According to Arzela-Ascoli Theorem, it is enough to show that Ty M is bounded and equicontinuous.
Because of the definition of the operator 7y the equicontinuity has to be checked in the following six
cases:
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1. l‘,l‘/ S [l‘()—rl,l‘()) 4.t € [t()—rl,l‘()),l‘/ S [l‘(),e—rz)
2. t,Z‘IE[l‘o,e—}’z) 5. tG[l‘o—rl,l‘o),l‘/E[e—rz,e]

3. 1,1 €[0—r2,6] 6. 1 €[tg,0—r2),1' €[0—r2,0]

For example, if ¢ € [tg —d,10), 1’ € [tp,0 — a), using the inequality (5) we obtain

[(ToL) (r) — (To) (£')| = [(TA) (o) — (TA) (') | < Kltg—1'| < Kt —1.
The remaining estimations can be obtained in a similar way. Now, we may conclude that Ty is
equicontinuous.

Next, the boundedness of Ty is guaranteed due to the quasi-boundedness of f and the fact that

t

(I; (k,\) (t))_1 :klflexp <— Ai(s) ds) < k;lexp (M-(0—t9+d)), (8)

fori=1,...,nand |A| <M.

to—d

So we have shown that Ty is compact. Therefore the sequences (Te’”ve)::0 and (Te’",ue) :::0 have limit
functions Ay and Ag satisfying inequality (7).

It is easy to see that
(ToM) lty—a.6-a) = (TOM) [j1y—d.0—a)
for ® > 0 and A € Lg. Therefore,

le‘[to—d,e—a] = l@\[zo—d,e—a],

Mol ity—d.0-a] = Moljto—a.0-d
for ® > 0.
Let us define the functions A, A € C (;,R")

and
¥ Xe(l‘) lE[to—d,e—a),
Alt):=4¢ =
® { Ao (1) t€[0—a,)
where O () = 1 + a. The defined functions A and A satisfy
LKA <M< UE), 1€, ©)
A(t) = (T2) (1)

and

fort € 9.

The proof will be completed by choosing, for example, A = A and the searched solution will be
y=1(k,)\). The inequality (6) holds because of (9).

O
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3 EXAMPLE

Consider a linear equation

2 2 1
y(t)=— (2—narctant> -y(t—2)+(3—e_’ ) -y<t+10>. (10)

In this case
t 2 ) 1
Feny') = = (2= Zarctant ) -y (e=2)+ (3-¢ ) -y (14 5 )

Then, according to (4), the corresponding operator 7 is defined as

(TA) (1) = — <2 - iarctant) exp < tzzx(s) ds) + (3 —e*fz) exp < /, ) ds> .

The operator T is equicontinuous and monotone increasing. (Details, how to prove it, may be found
in [1], [2]). That means, assumptions (i) and (iii) of Theorem 1 are valid. Set L =1 and U = 10.
Then, for every ¢ € R holds

(TL)(t)=~— <2 - iarctant) el 4 (3 - e”2> 10> 362 420> 1= £,

2
(TU)(1)=- (2— narctant) om0 (3—6”2) e < (3—6”2) e<10=1U.

So, assumption (ii) of Theorem 1 holds. These expressions were calculated online by Wolfram Alpha
software (see [4]).

Therefore, by Theorem 1, for every fixed 7 € R there exists a solution of equation (10) on [t — 2, )
such that
keexp(t—to+2) <y(t) <k-exp(10(t—1o+2)).

Moreover, this solution satisfies y (fo —2) = k.

4 CONCLUSION

In this paper we have discussed existence of right semi-global solutions to mixed-type functional
differential equations and formulated conditions under which such solutions exist. Moreover, upper
and lower bound for solutions are derived.

ACKNOWLEDGEMENT

The author was supported by the Grant FEKT-S-17-4225 of Faculty of Electrical Engineering and
Communication, BUT.

REFERENCES

[1] Diblik, J., Koksch, N.: Sufficient conditions for the existence of global solutions of delayed
differential equations. J. Math. Anal. Appl., vol. 318, no. 1, 2006, p. 611-625

[2] Diblik, J., Kadel¢ikova, M.: Two classes of asymptotically different positive solutions to ad-
vanced differential equations via two different fixed-point principles. In: Math. Meth. Appl. Sci.,
vol. 40, 2017, 1422-1437

[3] Driver, R.: Ordinary and delay differential equations. Applied mathematical sciences. Springer-
Verlag, 1977

[4] Wolfram Alpha [online software]. Retrieved from <https://wolframalpha.com>, 2018

502



