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Abstract. Evaporation duct is a specific atmospheric 
structure at sea, which has an important influence on the 
propagation path of electromagnetic waves (EW). Consid-
ering the limit of existing evaporation duct height (EDH) 
prediction models and aiming at proposing more accurate 
and stronger generalization ability of EDH models, we 
applied eXtreme Gradient Boosting (XGBoosting) algo-
rithm to the field of evaporation duct for the first time. And 
we proposed the new EDH prediction model using 
XGBoost algorithm (XGB model). Simultaneously, tradi-
tional Paulus-Jeske (PJ) model and deep learning Multi-
layer Perceptron (MLP) model were introduced into the 
experiment to make a comparison. In terms of comprehen-
sive performance, XGB model is optimal in all sub-regions 
and total area. Finally, cross-learning experiments were 
carried out to test the generalization ability of XGB model. 
The results show that the generalization ability of XGB 
model is better than that of MLP model.  

Keywords 
Evaporation duct, machine learning, XGBoost 
algorithm, XGB model, Paulus-Jeske (PJ) model  

1. Introduction 
Atmospheric duct is a special atmospheric stratifica-

tion in which the refractivity of the lower troposphere de-
creases sharply with the increase of altitude. This stratifi-
cation makes the curvature radius of radio rays less than 
the curvature radius of the earth. As long as the frequency 
and angle are appropriate, the energy of EW will be re-
fracted repeatedly in the atmosphere stratification, which 
restricts the propagation of EW beyond in this narrow 
region, thus forming over-the-horizon propagation [1], [2]. 
Previous researches show that evaporation duct is easily 
formed in the air-sea boundary environment and is widely 
distributed in the surrounding sea areas of China. Espe-

cially in the South China Sea, the occurrence probability of 
available evaporation duct is about 80% [3]. The occur-
rence probability in some specific sea areas is as high as 
90% or even exists permanently [1]. Regarding to varia-
tions of the height of evaporation duct, multiple researches 
reported the global annual average EDH is about 13 meters 
with the maximum of 40 m [1]. Generally, EDH is close to 
that of radio information system equipment such as ship 
radar and communication at sea. The trapping effect of 
evaporation duct can change the propagation path and 
attenuation characteristics of EW, which enables the 
equipment to detect beyond-the-horizon but may also cause 
adverse effects such as detection and communication dead 
zone [4], [5]. Therefore, accurate prediction of EDH is of 
great practical significance for detection and communica-
tion at sea and has always been the research focus of at-
mospheric duct [6], [7].  

At present, the main measurement methods of EDH 
include direct measurement, radar clutter inversion, satel-
lite signal inversion, theoretical model prediction and ma-
chine learning prediction. Because of the low EDH, the 
general direct measurement method is to observe the verti-
cal distribution of meteorological elements by the meteor-
ological gradiometer and calculate the refractivity profile 
by empirical formula [8]. Using the microwave refractivity 
meter to measure the refractivity profile is also a direct 
measurement method [9]. However, there are some short-
comings of direct measurement method, such as high cost, 
low spatial and temporal resolution of measured data and 
poor confidentiality [10]. Radar clutter inversion method 
inverts EDH using radar backscattering signals that ac-
tively transmit and receive EW from the sea surface, which 
has the problems of poor concealment and low accuracy 
[11], [12]. Satellite signal inversion method is a method of 
inverting evaporation duct by using the power distribution 
of satellite reflected signals on the sea surface, but the 
technology is not mature enough with a low precision [13].  

Theoretical model prediction method is the main 
method to obtain the vertical distribution of the corrected 
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refractivity and EDH, which is generally based on the 
Monin-Obukhov similarity theory of atmospheric boundary 
layer [14]. The refractivity profiles of evaporation duct are 
obtained and EDH is determined according to the meteor-
ological factors (mainly sea surface temperature, air tem-
perature, humidity, pressure, wind speed at specific alti-
tudes). A large number of relevant researchers have been 
engaged in the research of evaporation duct model [14]. 
Many prediction models have been proposed, including 
Liu-Katsaros-Businger (LKB) model [15], Paulus-Jeske 
(PJ) model [16], Naval Research Laboratory (NRL) model 
[17], [18], Musson-Gauthier-Bruth (MGB) model [19], 
Babin-Young-Carton (BYC) model [20], Naval-Postgradu-
ate-School (NPS) model [21] and CORE 3.0 algorithm 
model [22], as well as domestic pseudo-refractivity model 
[23], Universal Evaporation Duct (UED) model [24] and 
non-iterative flux algorithm evaporation duct prediction 
model [25]. Due to the complexity of the local geographic 
and hydrometeorological environment, the practicability of 
the theoretical prediction model at sea based on the Monin-
Obkhov similarity theory of homogeneous and steady at-
mospheric boundary layer usually has some limitations and 
large prediction errors. PJ model is the most widely used 
and successful evaporation duct prediction model in the 
20th century, which has been applied to the Integrated-
Refractive-Effect Prediction System (IREPS) of the U.S. 
Navy since 1978 and is still in use [26], [27]. At present, 
many scholars have carried out research on the adaptability 
of PJ model in Chinese sea area with good results [28–30]. 
Therefore, we choose PJ model for subsequent contrast 
experiment analysis, which is valuable for comparison. 

Machine learning prediction method is a method that 
computer trains EDH prediction model with hydrometeor-
ological observation data on the sea surface to predict new 
observation data. Machine learning is a general term for 
data analysis algorithms, which enables computers to 
quickly mine the correlation and implicit rules of large 
amounts of data without explicit programming, and to do 
a precise regression prediction or classification [31], [32]. 
Currently, machine learning has been widely used in many 
research fields, including artificial intelligence, financial 
industry, network security and so on, which has a signifi-
cant impact on social productivity and economy. For at-
mospheric duct, machine learning prediction method is 
a new technology for EDH prediction with high efficiency 
and accuracy, which possesses great application value and 
achieved some results [33–37]. However, these researchers 
mainly use support vector machine (SVM) and feedfor-
ward neural network. SVM has some problems, such as 
difficulty to implement large-scale samples, sensitivity to 
parameter and kernel function selection. Feedforward neu-
ral network also has some problems, such as large sample 
dependence and weak generalization ability. However, the 
methods still have limitations in application.  

In summary, more accurate and stronger generaliza-
tion ability of evaporation duct models need to be pro-
posed. Based on the data of hydrometeorological and EDH 

measured during a voyage, a pure data-driven prediction 
model of XGBoost evaporation duct was proposed in this 
paper by using decision tree algorithm XGBoost (XGB 
model) for the first time. In consideration of performance 
comparison of MLP and XGBoost have been applied to 
a land cover urban classification [38], MLP model pro-
posed by Zhu X. Y. et al. [36], [37] and traditional PJ 
model are introduced in the contrast experiment. The pre-
dicted results based on XGB model, MLP model and PJ 
model were compared with the measured EDH of the voy-
age. A comprehensive performance evaluation experiment 
was carried out to evaluate the comprehensive performance 
of XGB model.  In order to test the generalization ability of 
XGB model, cross-learning comparative experiments were 
also conducted.  

This paper is organized as follows: Section 2 intro-
duces the existing EDH prediction models and methods; 
Section 3 establishes XGB model; Section 4 introduces the 
experimental and results analysis; and Section 5 presents 
the conclusion. 

2. Introduction of Existing 
Evaporation Duct Prediction 
Models and Methods 

2.1 PJ Model  

PJ model is the most widely used EDH prediction 
model developed by Paulus on the basis of Jeske in the 
20th century [16], which has been coupled into the inte-
grated refraction effects prediction system [26]. The input 
parameters of the model are sea surface temperature and 
atmospheric temperature, relative humidity, wind speed 
and assumed atmospheric pressure of 1000 hPa. 

The PJ model replaces atmospheric refractivity N, at-
mospheric temperature T and vapor pressure e with atmos-
pheric potential refractivity NP, potential temperature θ and 
potential vapor pressure ep respectively. However, Paulus 
assumes that they are equal. The expression of NP is as 
follows: 
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The critical potential refractivity gradient is 
determined by ∂NP/∂z. ∂NP/∂z is [41]: 
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where SNp is vertical flux of NP. Φ is dimensionless gradi-
ent defined as a stable function. For stable atmosphere, 
 = 1 +  (z/L)，α is Businger-Dyer constant of 5.2, L is 
Monin-Obkhov length. For unstable atmospheric condi-
tions, 4– 4(z/L)3= 1, α is of 4.5. ρa is atmospheric 
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density. κ is Kalman constant of 0.4, u* is friction velocity, 
z is the height of 6 meters and z0 is rough length. 

Paulus [16] derived an empirical relationship from 
many field experiments, and the EDH can be calculated by 
solving (2). The further details of PJ model can be found in 
[16]. 

2.2 Evaporation Duct Prediction Model for 
Multilayer Perceptron 

This model is a pure data driven evaporation duct 
prediction model, MLP model, which is built by Zhu 
Xiaoyu et al. [38], [39] based on multi-layer perception 
mechanism. The following is a brief introduction. 

Multilayer Perceptron (MLP), also known as Deep 
Feedforward Network, is a typical neural network. Its goal 
is to approximate a function f(x). For regression problems, 
y = f(x) maps the input x to the function value of the func-
tion f(x) to be fitted. Figure 1 is the simplest MLP network 
structure, which includes three basic network types: Input, 
Hidden layer and Output. MLP contains the most quintes-
sential part of the neural network theory. It is widely used 
in pattern recognition, function approximation, regression 
and classification, which is the most basic neural network 
and also one of the most widely used neural networks at 
present. 

The essence of MLP is a non-linear function mapping 
from input vector to output, which is very similar to the 
design idea of traditional evaporation duct prediction 
model. The input format of MLP model based on this idea 
is similar to that of PJ model, and the input variables are 
sea surface temperature, atmospheric temperature, relative 
humidity, wind speed and air pressure. Therefore, the input 
layer contains five neurons corresponding to these five 
observation elements. Since it is essentially a regression 
model, the output layer contains one neuron. According to 
the specific situation of the experimental data, through 
a large number of computer experiments, the hyperparame-
ters are finally determined as follows: hidden layers are 4, 
the number of neurons in each layer from shallow to deep: 
10, 15, 10, 5. Batch size is 128 and epoch is 100. How-
ever, the hyperparameters will be fine-tuned according to the 

 
Fig. 1.  Structural sketch of MLP neural network. 

amount of data. Finally, the MLP model is obtained, which 
has been trained on the training set with adjusted hyperpa-
rameters. 

3. Establishment of XGBoost Evapora-
tion Duct Prediction Model 

3.1 Introduction of XGBoost Algorithm 

XGBoost is short for eXtreme Gradient Boosting 
package, which is designed and optimized to be efficient, 
flexible and portable. The package includes efficient linear 
model solver and tree learning algorithm. It supports vari-
ous objective functions, including ranking, classification 
and regression [39]. It is an efficient and scalable imple-
mentation and optimization of gradient boosting frame-
work [40]. Regularized model is used to control the com-
plexity of the model, which makes the learning model 
simpler and avoids overfitting. XGBoost supports paral-
lelization. It implements parallelization when selecting the 
best splitting points for enumeration, which makes the 
training speed very fast. The tree building is stopped ahead 
of time when the prediction results are good, so that the 
training speed is accelerated. Furthermore, it supports 
setting sample weight embodied in the firstly derivative g 
and the secondly derivative h. We can pay more attention 
to some samples by adjusting the weight. At present, 
XGBoost is one of the most successful machine learning 
algorithms. 

The traditional gradient boosting frameworks are 
expressed as follows: 
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where m is the number of weak learners, β is the coeffi-
cient, f is the weak learner and F is the general model.  

Our ultimate goal is to get an excellent general total 
model, which minimizes the loss function as much as 
possible. That is: 
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It is impossible to solve it simultaneously since F is 
eventually weighted by multiple weak learners. Therefore, 
gradient lifting uses a greedy algorithm. At the beginning, 
model F is a constant function, and only one weak learner 
and its coefficients are solved on time to improve the per-
formance of F step by step. Gradient boosting minimizes 
the loss function as quickly as possible by making the new 
term equal to the negative gradient of the loss function in 
each step.    

The new item can be written in the following form: 
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where γ is called step size, which contains minus sign of 
negative gradient and β parameter. The part on the left of 
the formula that removes γ is generally called pseudo-
residual (also known as gradient): 

    
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According to the above formula, the previous step 
model of F knows that for each training sample. We can 
always find its pseudo residual R. In this way, as long as a 
weak learner is assumed, we can train the current weak 
learner fm according to x and y values of the training sam-
ples. Finally, the trained weak learner is drag-in formula 
(4) to minimize the loss function, and γ can be obtained.  

The final general model is: 

 )()()( 1 xfxFxF immm   .  (7) 

However, Xgboost improves the regularization 
learning target L on the basis of traditional gradient boost-
ing framework. L is: 
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The first term l is a differentiable convex loss func-
tion, which measures the difference between the predicted 

value and the target value. 
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term Ω is the sum of the complexity of all regression trees. 
(f) = T + λw2/2, where γT is total number of leaf 
nodes, γ is the difficulty of node segmentation, T is the 
number of leaf nodes; λw2/2 is the regularization term 
L2, λ is the regularization coefficient. 

The optimal leaf node fraction w of XGBoost and the 
objective function Obj formula are respectively: 
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where 


jIi ij gG , 
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jTi jj hH , gi and hi represent the 

first derivative and the second derivative of the prediction 
error to the current model respectively.  

Different machine learning models are suitable for 
different types of tasks. Deep neural network can capture 
high-dimensional and large data such as image, voice and 
text well by modeling space-time position. XGBoost based 
on tree model can deal with table data well, which is less 
demanding on sample size and feature data types. And the 
application scope of it is wide. Meanwhile, XGBoost has 
some characteristics that deep neural network does not 
have, including model interpretability, invariance of input 

data and ease to adjust parameters. In theory, the applica-
tion effect of XGBoost algorithm will be better due to the 
low-dimensional tabular observed data of evaporation duct 
and small amount of data. 

3.2 Building XGB Model 

The essence of traditional evaporation duct prediction 
model is the function of hydrometeorological factors (such 
as sea surface temperature, air temperature, relative hu-
midity, wind speed, air pressure, etc.). Taking PJ model as 
an example, Paulus and Jeske obtained the empirical rela-
tionship of similar variables in local boundary layer 
through large-scale field observation experiments. Com-
bining Monin-Obukhov similarity theory with the for-
mation mechanism of evaporation duct itself, the complex 
functional relationship between EDH and basic hydrome-
teorological factors was finally obtained 

 EDH = f (SST, Ta, RH, U). 

SST is the sea surface temperature, Ta is the temperature, 
RH is the relative humidity, U is the wind speed. 

XGBoost is good at regression of low-dimensional 
tabular data, which is essentially a function mapping from 
input vector to output and is consistent with the traditional 
evaporation duct prediction model. The prediction model 
obtained by XGBoost is entirely based on measured data, 
which is not subject to basic physical assumptions such as 
atmospheric boundary layer similarity theory and physical 
backgrounds. Based on the above theory, we propose a 
pure data driven evaporation duct prediction model based 
on XGBoost. 

Firstly, a series of pretreatments of the original obser-
vation data are carried out, and the processed sample pairs 
(xi, yi)

n
i=1 are obtained. The original sample is used as input 

sample feature for xi = (SSTi, Ti, RHi, Ui, Pi) (SSTi, Ti, RHi, 
Ui, and Pi represent the sea surface temperature, atmos-
pheric temperature, relative humidity, wind speed and 
pressure of the ith sample respectively).The measured EDH 
yi = EDH_Obsi is used as sample label. n is the number of 
total samples. 70% of n is the training set and 30% of n is 
the test set. Determining the key parameters of XGBoost is 
an engineering work. Different application areas and data 
attributes will have different key parameters configuration. 
According to the specific conditions of the experimental 
data and some prior knowledge, the parameters are finally 
determined as follows through a large number of computer 
experiments: learning rate (learning_rate) = 0.01, number 
of weak learners (n_estimators) = 1000, maximum depth 
(max_depth) = 4, minimum leaf node sample weight 
(min_child_weight) = 5, L2 regularization term weight 
coefficient (reg_lambda) = 4. The key parameters will be 
fine-tuned according to the amount of data. Finally, the 
XGBoost trained on the training set with adjusted parame-
ters is called XGB model. The flow chart of the model is 
shown in Fig. 2. 



RADIOENGINEERING, VOL. 29, NO. 1, APRIL 2020 85 

 

 
Fig. 2.  XGB model construction diagram. 

4. Experiments and Results Analysis 

4.1 Introduction to Experiment 

(1) Observation experimental areas: mainly in the 
South China Sea, the equator and the Indian Ocean. Due to 
the large spatial and temporal locality of evaporation duct, 
the whole experimental area is further subdivided into five 
sub-regions and total area (all regions). South China Sea 
(SCS, including SCS Go, SCS Back), Equator Region 
(ER), South of Sri Lanka (SSL), North of the Bay of 
Bengal (NBB) and Total Area are shown in Fig. 3. 

Observation experimental data: The hydrometeoro-
logical observation elements (including sea surface tem-
perature and atmospheric temperature, humidity, wind 
speed, pressure at 10 m altitude) and EDH were collected 
in this experiment. After a series of pretreatments, missing 
data sample pairs and singular values were eliminated, and  

  
Fig. 3.  Experimental area diagram. 

finally, about 10,000 sample pairs were included. Consid-
ering the spatial and temporal characteristics of the evapo-
ration duct, we shuffled the spatial and temporal order of 
the observed data of each section of the voyage, make the 
data attributes uniform, and make the experiment more 
reasonable and scientific. 

(2) Machine learning experimental training set: Ac-
cording to the sub-regions, the training set of XGB model 
and MLP model is constructed as shown in Tab. 1, as de-
tailed in Sec. 2.2 and Sec. 3.2. (Total area training set and 
the test set are the sum of the five sub-regionals training 
sets and the test sets, respectively.)  

(3) Experimental performance evaluation indicators: 
Root Mean Square Error (RMSE) and Square of Correla-
tion Coefficient (SCC) are used to evaluate the perfor-
mance of models. RMSE represents the accuracy of the 
prediction model in estimating the height of evaporation 
duct. The less the value is, the higher the prediction accu-
racy would be. SCC represents the goodness of fit between 
the predicted results and the observed data. The numerical 
range of SCC is usually (0,1). The closer it is to 1, the 
better the goodness of fit would be with the higher inter-
preted degree of dependent variables by independent varia-
bles. 

The expression is as follows: 
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4.2 Comprehensive Performance Evaluation 
Experiment 

In order to evaluate the comprehensive performance 
of the three evaporation duct prediction models, the pre-
dicted results of the three models in the all regions are 
compared with the measured values. The experimental 
results are shown in Fig. 4, Fig. 5 and Tab. 2. According to 
Fig. 4a-4f, XGB model and MLP model are closer to the 
measured values than PJ model in all regions, and both fit 
the observation data better than PJ model. The prediction 
results of XGB model and MLP model are more accurate 
than PJ model, which indicates that machine learning algo-
rithm can be applied to the optimization research of EDH 
prediction. Comparing XGB model and MLP model further, 

 

 

Model Type of experiment Sample characteristics xi Sample label yi
XGB mode comprehensive performance 

evaluation 
observed data elements 
70% data of sub-regions 

measured EDH  
70% data of sub-regions 

MLP model contrastive experiment of cross-
learning 

observed data elements 
100% data of sub-regions 

measured EDH  
100% data of sub-regions 

Tab. 1.  Training set of machine learning prediction models. 
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it can be found that both models are very close to measured 
values, and the prediction accuracy and goodness of fit are 
both good. However, on account of the comparison be-
tween the two models it is not intuitive enough, it is impos-
sible to determine who has the better prediction result 
according to Fig. 4. Therefore, we compare and analyze the 
bias between the predicted results and the measured values 
of the two models. According to Fig. 5a–5f, we can see 
that in all regions, the frequency and the bias of XGB 
model and MLP model are less than that of PJ model. The 
prediction accuracy of the two machine learning algorithm 
models is indeed higher. Comparing XGB model with 
MLP model further, we can find that the bias and fre-
quency of XGB model is less than that of MLP model in all 
regions, with the maximum of bias generally less than that 
of MLP model. It fully shows that the prediction accuracy 
of XGB model is higher than that of MLP model. From 
Fig. 5d and 5e, it shows XGB model can achieve ultra-
accurate prediction with almost no bias in NBB and SCS 
Back. In conclusion, compared with PJ model and MLP 
model, XGB model has higher prediction accuracy and 
better goodness of fit. 

Quantitative comparison results based on RMSE and 
SCC are shown in Tab. 2. For RMSE firstly: XGB model 
and MLP model are much less than that of PJ model in all 
regions with quite low values. This shows that the accuracy 
of evaporation duct prediction model can be improved by 
combining machine learning algorithm with measured data. 
Further comparisons show that the RMSE of XGB model 
is significantly less than that of MLP model in all regions. 
In NBB and SCS Back regions, the corresponding RMSE 
values are as low as 0.32 and 0.35, respectively. The pre-
diction accuracy of XGB model is indeed higher. For SCC 
secondly: the SCC reaction patterns in all regions were 
completely consistent with RMSE. In all regions, PJ model 
has the lowest SCC. XGB model with the highest SCC is 
obviously higher than MLP model, which means that XGB 
model has the best goodness of fit. 

Considering the accuracy and goodness of fit syn-
thetically, XGB model and MLP model based on machine 
learning have significantly been improved compared to PJ 
model, and the prediction results of both models are better. 
The comprehensive performance of XGB model is the best 
in all regions with RMSE always at about 0.4 and SCC 
higher than 0.90. In Total Area, where the learning data is 
the larger, the prediction accuracy and goodness of fit of 
XGB model are still excellent whose RMSE is as low as 
0.54 and SCC is as high as 0.97. Even in SCS Back with 
less learning data, XGB model performs equally well, and 
the corresponding RMSE is as low as 0.35 and SCC is as 
high as 0.99. It indicates that the XGB model is better than 
MLP model in learning with stronger, more stable and 
higher prediction ability. It is little affected by the amount 
of data and the regional adaptability is better. In conclu-
sion, compared with MLP model, XGB model based on 
machine learning of XGBoost algorithm has better predic-
tion accuracy and goodness of fit with stable and compre-

hensive performance. In terms of total area, RMSE is re-
duced by 57.1% and SCC is increased by 11.5%, which 
shows that machine learning tree boosting algorithm is 
more suitable for the prediction of EDH than feedforward 
deep neural network in the field of evaporation duct. Com-
pared with the PJ model, the prediction accuracy and 
goodness of fit of XGB model improved significantly, in 
terms of the total area, the corresponding RMSE decreased 
by 92% and the SCC increased by 110%. 

4.3 Contrastive Experiment of Cross-learning 

In cross-learning experiment, all observation data of 
one sub-region are used as training set, and all data of other 
sub-regions are used as test set. That is, learning one sub-
region to predict the other sub-regions. The experimental 
results in previous section show that the XGB model has 
the best comprehensive performance for EDH prediction in 
all regions. The cross-learning experiment will base XGB 
model and MLP model to test the generalization ability of 
XGB model and explore the spatial correlation of evapora-
tion duct among different regions. The prediction results of 
other regions based on SCS Go, ER, SSL, NBB and SCS 
Back (where "Observe" (black solid line) denotes the 
measured EDH, MLP (yellow dotted line) denotes the 
predicted results of MLP model, and XGB (red dotted line) 
denotes the predicted results of XGB model) are shown in 
Fig. 6–10. RMSE and SCC comparisons represent cross-
learning prediction results of XGB model and MLP model 
in Tab. 3 (where "Go" means SCS Go and "Back" means 
SCS Back). Based on the analysis of the Fig. 6–10 and 
Tab. 3, the following conclusions are drawn: 

(1) Except for the special case of SCS that Go pre-
dicted by ER, the cross-learning prediction accuracy and 
goodness of fit of XGB model are better than MLP model. 
That is, the XGB model’s comprehensive ability of cross-
learning prediction is better than MLP’s. In terms of RMSE 
and SCC, it can be seen that the XGB model is equal to the 
MLP model only in the special case of learning ER men-
tioned above. While RMSE of XGB model is absolutely 
less than that of MLP model in the other cases, accompa-
nied by the larger SCC value. This fully implies that XGB 
model has stronger generalization ability, better stability 
and universality than MLP model, which is suitable for the 
prediction of EDH. For the special case of XGB model (Go 
predicted by ER), we think, in ER, the upwelling motion of 
atmospheric convection in the equatorial boundary layer is 
so stronger. Compared with other regions, the meteorologi-
cal and oceanic environment of ER is more complex and 
possesses strong local characteristics of equatorial evapo-
ration duct, which leads to the poor accuracy of model 
learning ER in predicting EDH in SCS Go. 

(2) The best prediction regions of the two models 
(XGB and MLP) are the same. Learning SCS Go, the best 
prediction area is SCS Back, followed by SSL. Correspond-
ingly, learning SCS Back, the best prediction area is SCS 
Go, followed by SSL. For learning SSL, the best prediction 
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KPI Model SCS Go ER SSL NBB SCS Back Total Area 

RMSE 
PJ 4.30 5.80 6.90 7.38 8.23 6.60 

MLP 1.22  1.40 1.00 1.11 1.33 1.26 
XGB 0.65   0.57 0.50 0.32 0.35 0.54 

SSC 
PJ 0.51   0.40 0.46 0.36 0.51 0.46 

MLP 0.82   0.82 0.87 0.88 0.84 0.87 
XGB 0.94   0.97 0.96 0.99 0.99 0.97 

Tab. 2.  Comparison of performance indicators for different sub-regions and total area. 

 

 

 

Fig. 4.  Comparison of predictive curves for different sub-regions and total area ("Observe" (black solid line) denotes the measured height of 
evaporation duct, "PJ" (yellow solid line) denotes the predicted result of PJ model, "MLP" (blue dotted line) denotes the predicted 
result of MLP model, "XGB" (red dotted line) denotes the predicted result of XGB model). 
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Fig. 5.  Comparison of the difference between predictive curves for different sub-regions and total area and the measured values ("PJ" (yellow 
solid line) denotes the difference value of PJ model, "MLP" (blue solid line) denotes the difference value of MLP model, "XGB" (red 
solid line) denotes difference value of XGB model). 

area is SCS Back, followed by SCS Go. The similarity 
between the meteorology and oceanic environments of 
SCS and SSL results in similar spatial correlation charac-
teristics and relatively high accuracy of mutual prediction 
between the two geographically distant regions. Learning 
ER, the best prediction area is NBB and correspondingly, 
learning NBB, the best prediction area is ER. ER and NBB 
are geographically close, with the latitudinal spans of them 
less than 10 degrees. Thus, their meteorological and ma-

rine environments are comparatively similar, and the rela-
tive prediction accuracy is relatively high. The worst pre-
diction region of SCS Go and SCS back both is NBB with 
the small spatial correlation of evaporation duct, which is 
due to the large difference of meteorological and marine 
environment between the South China Sea and the Indian 
Ocean. The above conclusions show that the method is 
consistent with the theory and that evaporation duct has 
strong spatial correlation. 
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Fig. 6.  Prediction of the other areas based on SCS Go data. Prediction of (a) ER, (b) SSL, (c) NBB and (d) SCS Back. 

 

 
Fig. 7.  Prediction of the other areas based on ER data. Prediction of (a) SCS Go, (b) SSL, (c) NBB and (d) SCS Back. 
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Fig. 8.  Prediction of the other areas based on SSL data. Prediction of (a) SCS Go, (b) ER, (c) NBB and (d) SCS Back. 

 

Fig. 9.  Prediction of the other areas based on NBB data. Prediction of (a) SCS Go, (b) ER, (c) SSL (d) SCS Back. 
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Fig. 10.  Prediction of the other areas based on SCS Back data. Prediction of (a) SCS Go, (b) ER, (c) SSL and (d) NBB. 
 

 
Training area 

 

Test area 
 Go ER SSL NBB  Back Average value  

XGB MLP XGB MLP XGB MLP XGB MLP XGB MLP XGB MLP 

RMSE 

Go - - 2.12 2.23 1.5 1.65 2.52 2.83 1.40 1.46 1.88 2.04 
ER 3.77 2.55 - - 0.94 1.33 0.73 1.21 1.36 1.70 1.70 1.70 
SSL 1.59 1.65 1.73 1.79 - - 1.69 2.63 1.15 1.34 1.54  1.85 
NBB 2.80 2.84 1.28 1.47 1.57 2.55 - - 1.41 2.28 1.76 2.28 
Back 1.27 1.33 1.93 2.15 1.46 1.48 2.06 2.79 - - 1.68 1.94 

SCC 

Go - - 0.68 0.64 0.74 0.70 0.63 0.56 0.84 0.82 0.72 0.68 
ER 0.47 0.53 - - 0.88 0.78 0.99 0.87 0.84 0.77 0.79 0.74 
SSL 0.74 0.72 0.75 0.73 - - 0.78 0.59 0.88 0.84 0.72 0.72 
NBB 0.56 0.47 0.85 0.80 0.72 0.52 - - 0.82 0.65 0.74 0.61 
Back 0.78 0.80 0.71 0.65 0.75 0.74 0.72 0.57 - - 0.74 0.69 

Tab. 3.  Comparison of RMSE and SCC in cross learning and prediction. 

 

5. Conclusions 

Due to the limitation of the traditional evaporation 
duct model, which relies on the similarity theory of the air-
sea boundary layer with the large prediction error, we 
propose the XGBoost evaporation duct prediction model 
based on the hydrometeorological observation data by 
using XGBoost algorithm. Through the comprehensive 
performance evaluation experiments of XGB model, MLP 
model and traditional PJ model and cross-learning contrast 
experiments, we draw the following conclusions: 

(1) Compared with the traditional PJ model, the com-
prehensive performance of XGB model and MLP model 
based on machine learning has been significantly im-
proved, and the prediction results of both XGB model and 
MLP model are excellent. The prediction accuracy and 
goodness of fit of XGB model are optimal in all regions 
with stable comprehensive performance. Compared to 
MLP model, XGB model reduces RMSE by 57.1% and 
promotes SCC by 11.5%. It shows the learning and pre-
diction ability of XGBoost algorithm are better than feed-
forward deep neural network for EDH prediction. Com-
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pared with the traditional PJ model, the performance of 
XGB model is improved more sharply, RMSE is reduced 
by 92% and SCC is improved by 110%.  

(2) In cross-learning experiment, XGB model has 
better prediction accuracy and goodness of fit than MLP 
model except for the special case of SCS Go predicted by 
ER. XGB model’s comprehensive ability of cross-learning 
prediction is better than MPL’s. From the mean values of 
RMSE and SCC in other sub-regions predicted by one 
region, it shows the RMSE of XGB model is less than that 
of MLP model and the SCC value is larger than that of 
MLP model. It fully shows that XGB model has stronger 
generalization ability, better stability and universality than 
MLP model, which is suitable for the prediction of EDH. 

Evaporation duct possesses strong characteristics of 
relating space with physics, fully verified by XGB model 
and MLP model from the experimental and technical level, 
which shows the consistency of the research method and 
theory in this paper. SCS Go and SCS Back, ER and NBB 
are respectively the best learning prediction regions for 
each other. Because the geographic location is relatively 
close and the meteorological and marine environment are 
comparatively similar, which leads to the spatial correla-
tion of evaporation duct in the two regions and the high 
accuracy of mutual prediction. The worst prediction region 
for SCS Go and SCS back is NBB. Similarly, due to the 
different geographical locations of SCS and the Indian 
Ocean, the meteorological and marine environment differs 
greatly, and the spatial correlation of evaporation duct is 
relatively low. The best prediction area for learning SSL is 
SCS Back, followed by SCS Go. The secondly best pre-
diction area for both learning SCS Go and SCS Back is 
SSL. The geographical location of the two areas is far from 
each other, but because of the similarity of meteorological 
and marine environment, similar spatial correlation of 
evaporation duct is also produced. 
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