
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

SIMULATION FOR SYMBOLIC AUTOMATA
SIMULACE PRO SYMBOLICKÉ AUTOMATY

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR JURAJ SÍČ
AUTOR PRÁCE
SUPERVISOR Mgr. LUKÁŠ HOLÍK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
Symbolic automata are similar to classical automata with one big difference: transitions
are labelled with predicates defined in separate logical theory. This allows usage of large
alphabets while taking less space. In this work we are interested in computing simulation
(a binary relation on states that language inclusion) for these automata. This can be then
used for reducing the size of automata without the need to determinize them first. There
exist few algorithms for computing simulation over Kripke structures, which were then
altered to work over labeled transition systems and classical automata. We show how one
of these algorithms can be modified for symbolic automata by using the partition of the
alphabet domain that is compatible with the predicates labelling transitions and by using
the possibilities of the alphabet theory.

Abstrakt
Symbolické automaty sú podobné klasickým automatom s jedným veľkým rozdielom: pre-
chody sú značené predikátmi definovanými v oddelenej teórii. Toto umožňuje použiť veľké
abecedy s pouźitím oveľa menšieho miesta. V tejto práci sa zaoberáme výpočtom simulá-
cie (binárnej relácie nad množinou stavov, ktorá aproximuje jazykovú inklúziu) pre tieto
automaty. Táto relácia sa dá potom použiť pri redukovaní počtu stavov bez nutnosti de-
terminizácie. Existuje niekoľko algoritomv pre výpočet simulácie pre Kripkeho štruktúry,
ktoré boli neskôr modifikované pre označené prechodové systémy a klasické automaty. V
tejto práci ukážeme ako sa dá jeden z týchto algoritmov modifikovať pre symbolické au-
tomaty použitím rozkladu domény abecedy ktorý je kompatibilný s predikátmi značiacimi
prechody a použitím možností teórie abecedy.

Keywords
symbolic automata, simulation, reduction of automata

Kľúčové slová
symbolický automat, simulácia, redukcia automatov

Reference
SÍČ, Juraj. Simulation for symbolic Automata. Brno, 2017. Bachelor’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Holík Lukáš.

Simulation for symbolic Automata

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Mgr. Lukáš Holík, Ph.D. All the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

. .
Juraj Síč

May 15, 2017

Contents

1 Introduction 2

2 Automata Theory 4
2.1 Classical Automata . 4
2.2 Symbolic Finite Automata . 4

2.2.1 Mintermization . 8
2.3 Simulation . 12

3 The Algorithms 15
3.1 FA Simulation . 15

3.1.1 Time Complexity . 17
3.2 Global SFA Simulation . 18

3.2.1 Implementation . 19
3.2.2 Time Complexity . 20

3.3 Local SFA Simulation . 20
3.3.1 Implementation . 23
3.3.2 Time Complexity . 23

4 Evaluation 25
4.1 Regular Expressions Experiments . 25
4.2 Edge Case Experiments . 28
4.3 WS1S Experiments . 29

5 Conclusion 32

Bibliography 33

Appendices 36

A Contents of CD 37

B Bound of the number of transitions 38

1

Chapter 1

Introduction

Finite automata (FAs) have many applications from text processing to formal verification.
However, FAs have one big disadvantage: representing automata with big alphabets can
take a lot of space. Another problem with big alphabets is that complexity of most of the
algorithms for FAs depends on the number of symbols in the alphabet. This is also why
using infinite alphabets is not possible for FAs. To resolve this problem, symbolic finite
automata (SFAs) were introduced [24] (SFAs have a longer history, but in this work we use
the formalization from [24]). Alphabets are separated from these automata and they are
represented in their own theory. From this theory, we can choose a predicate that denotes
a set of symbols from the alphabet and then use use it to label transitions in SFAs. This
means that if there are transitions between the same states labelled with different symbols in
FA, SFA can represent all these transitions with only one transition labelled with predicate
that denotes these symbols. SFAs can then be used for tackling problems involving big
alphabets such as processing regular expressions encoded in UTF-16 [26]. They are also
used in combination with symbolic transducers1 for sanitizer analysis2 [27].

Applying algorithms for FAs to the symbolic setting directly is not always possible.
Some classical automata constructions (product, difference and determinization) applied to
SFAs are presented in [15]. In [8] authors tweaked two classical deterministic FAs minimiza-
tion algorithms to SFAs and introduced another one that uses the symbolic representation
to the full. While it was shown that finding minimal non-deterministic FA is a hard prob-
lem [18], a number of methods for reducing the number of states of non-deterministic FAs
exists (without a guarantee of minimality). One of these methods is based on simula-
tion [4, 5]. Simulation is a binary relation on states that tells us that if a state 𝑖 simulates
a state 𝑗, then for each transition going from 𝑗 there is a corresponding transition going
from 𝑖. Similar relation—bisimulation—can also be used for reducing the number of states.
While both are similar, bisimulation is defined as an equivalence and simulation as preorder.
This little difference can dramatically change the number of states of reduced automaton
by using either of these relations and finding simulation is then an important problem (this
difference also makes this problem harder). The classical algorithm for computing bisim-
ulation on FAs is Paige-Tarjan’s relational coarsest partition algorithm [20]. Algorithms
for computing bisimulation on SFAs were investigated in [9]. State reduction of automata
is not the only application of simulation. It can also be used in solving the language in-
clusion problem—when we need to check whether the languages accepted by automata are

1automata that also have output
2string transformation routines

2

in inclusion. Simulation underapproximates language inclusion, therefore it can be used to
detect that the inclusion holds [1].

In this text we are concerned with finding an effective algorithm for computing simula-
tion for SFAs. There are several algorithms for computing simulation for Kripke structures3

where the first algorithm with good time complexity is the algorithm by Henziger, Hen-
ziger and Kopke [14]. Other, more effective, simulation algorithms are derived from this
and they usually compute simulation preorder by working with equivalence classes of the
current approximation of simulation instead of with individual states. A summary of these
can be found in [21]. Independently of this, Ilie, Navarro and Yu [17] developed simulation
algorithm for FAs which is very similar to the algorithm in [14]. Because they used simpler
data structures, we use this algorithm as a basis for the simulation algorithms for SFAs.

The structure of this thesis is as follows. In Chapter 2 we give preliminaries to (sym-
bolic) automata theory and simulation. In Chapter 3 we explain the workings of algorithm
introduced in [17] and then we introduce three new algorithms for computing simulation
for SFAs based on this algorithm. In Chapter 4 we thoroughly evaluate these algorithms
on SFAs created from regular expressions over UTF-16 alphabet and during the decision
procedure of weak-monadic second order logic of one successor and compare them with
deterministic minimization of SFAs.

3a transition system where states are labelled, not transitions

3

Chapter 2

Automata Theory

In this chapter, we give the necessary theory that will be used in the next chapters. Firstly,
we give definitions of classical finite automata and then we introduce effective Boolean
algebras with symbolic finite automata and their properties. We also give overview of the
concept called mintermization for effective Boolean algebras. At the end of the chapter, we
explain what simulations on these automata are and how they can be used for reducing the
number of states.

2.1 Classical Automata
Definition 2.1. Finite automaton (FA) is a tuple 𝑁 = (𝑄,Σ,∆, 𝐼, 𝐹) where 𝑄 is a finite
set of states, Σ is an alphabet, ∆ ⊆ 𝑄 × Σ ×𝑄 is a transition relation, 𝐼 ⊆ 𝑄 is the set of
initial states and 𝐹 ⊆ 𝑄 is the set of final states.

A transition (𝑞, 𝑎, 𝑝) ∈ ∆ where 𝑞, 𝑝 ∈ 𝑄, 𝑎 ∈ Σ is also denoted by 𝑞
𝑎→𝑁 𝑝 or 𝑞 𝑎→ 𝑝

if 𝑁 is clear from the context. For 𝑎 ∈ Σ, we define a transition function −→∆𝑎 : 𝑄 → 2𝑄

where 𝑝 ∈ −→∆(𝑞, 𝑎) iff 𝑞
𝑎→ 𝑝. Furthermore, we define a reverse transition function ←−∆𝑎(𝑝) =

{ 𝑞 | 𝑝 ∈
−→
∆𝑎(𝑞) }.

Elements of alphabet Σ are called characters and finite sequence of characters are called
words, where 𝜖 denotes the empty word. The set of all words is denoted by Σ*. The empty
word 𝜖 is accepted from every final state 𝑓 ∈ 𝐹 . A word 𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛 is accepted from a
state 𝑞 ∈ 𝑄 if there exists a sequence of states 𝑟1, 𝑟2, . . . , 𝑟𝑛+1 such that 𝑟1 = 𝑞, 𝑟𝑛+1 ∈ 𝐹
and 𝑟𝑖

𝑎𝑖→ 𝑟𝑖+1 for every 𝑖 = 1, . . . , 𝑛. The set of all words accepted from state 𝑞 is denoted
by ℒ𝑀 (𝑞). The language accepted from a set of states 𝑃 is ℒ𝑀 (𝑃) ≡

⋃︀
𝑞∈𝑃 ℒ𝑀 (𝑞) and the

language accepted by the automaton 𝑀 is ℒ(𝑀) ≡ ℒ𝑀 (𝐼). We now define an important
property of completeness of FAs:

Definition 2.2. We say that FA 𝑁 = (𝑄,Σ,∆, 𝐼, 𝐹) is complete if for all states 𝑞 ∈ 𝑄 and
characters 𝑎 ∈ Σ, there exists a state 𝑝 where 𝑝 𝑎→ 𝑞.

2.2 Symbolic Finite Automata
Before defining symbolic automata, we firstly need to formally define the notion of an
effective Boolean algebra. We use definitions from [24].

Definition 2.3. An effective Boolean algebra is a tuple 𝒜 = (D, 𝛹, [[_]],⊥,⊤,∨,∧,¬)
where:

4

∙ D is a non-empty set called the domain,

∙ 𝛹 is a set of predicates closed under ∨,∧,¬ where ⊥,⊤ ∈ 𝛹 and

∙ [[_]] : 𝛹 → 2D is the denotation function where [[⊥]] = ∅, [[⊤]] = D and for all 𝜙,𝜓 ∈
𝛹, [[𝜙 ∨ 𝜓]] = [[𝜙]] ∪ [[𝜓]], [[𝜙 ∧ 𝜓]] = [[𝜙]] ∩ [[𝜓]] and [[¬𝜙]] = D ∖ [[𝜙]].

For 𝜙 ∈ 𝛹 , we write IsSat (𝜙) when [[𝜙]] ̸= ∅ and say that 𝜙 is satisfiable. We now give
some examples of effective Boolean algebras.

Example 2.4. Let 𝑆 be some set. A trivial example of an effective Boolean algebra is
the powerset algebra 𝒜𝑆 where D𝒜𝑆 = 𝑆, 𝛹 = 2𝑆 , ⊥ = ∅, ⊤ = 𝑆, ∨,∧ and ¬ are the
set operations union, intersection and complement, respectively, and [[_]] is the identity
function ([[𝐴]] = 𝐴 for 𝐴 ⊆ 𝑆). ♦

Example 2.5. For 𝑘 > 0, the BDD algebra BDD𝑘 is an effective Boolean algebra whose
domain is the set of non-negative integers smaller than 2𝑘 (their binary representation has 𝑘
bits) and predicates are binary decision diagrams (BDDs) [3] of depth 𝑘. BDDs are ”binary
tree structures” with two terminal nodes ⊤ and ⊥. Every non-terminal node has two child
nodes with edge labelled by either 0 or 1 (see Figure 2.1 for an example of a BDD). These
structures are usually used as a succinct representation of Boolean functions, which allow
for an efficient polynomial time implementation of logical operations . Boolean operations
of the algebra BDD𝑘 correspond directly to these BDD operations. The denotation of a
BDD is the set of all numbers whose binary representation corresponds to a solution of the
BDD. For example, the denotation of the BDD 𝛽 from Figure 2.1 is [[𝛽]] = {3, 4, 5, 6, 7},
because all numbers whose binary representation is 1** or 011 are solutions of 𝛽. ♦

a

c

b

⊤⊥

0

1

0

1

0
1

Figure 2.1: A binary decision diagram 𝛽.

Example 2.6. In this example we illustrate an effective Boolean algebra over first-order
logic. Let FOLD,𝒯 = (D, 𝛹, [[_]]𝒯 ,⊥,⊤,∨,∧,¬) be the first-order logic algebra where 𝒯 is
some first-order theory. Informally, the first-order theory is the set of first-order formulas
(called axioms) with constants, functions and predicates. Formula evaluates to true wrt.
to some theory if also all axioms evaluate to true. See [2] for more information. Predicates
in 𝛹 are then formulas containing constants, functions and predicates from 𝒯 with one free
variable 𝑥. A variable is free if it is not bounded by quantifier (𝑥 is free in the formula

5

𝑥 < 5 but not in the formula ∀𝑥.𝑥 < 5). The operations of FOLD,𝒯 (∨,∧,¬) are classical
logical connectives and ⊤, ⊥ are formulas 𝑥 = 𝑥 and 𝑥 ̸= 𝑥 respectively.

Interpretation of a first-order logic formula 𝜙 is a tuple (𝑈,𝛼) where 𝑈 is a non-empty
set and the assignment 𝛼 maps constant, function and predicate symbols in 𝜙 to elements,
functions and predicates over 𝑈 . It also maps variables to elements in 𝑈 . The denotation
function [[𝜙(𝑥)]]𝒯 is then the set of all elements 𝑑 ∈ D for which exists interpretation
𝐼 = (D, 𝛼) where 𝑥 is mapped to 𝑑 in 𝛼 and 𝜙(𝑥) evaluates to true under 𝐼 wrt. 𝒯 .

In this work we only use FOLZ,𝒯Z where 𝒯Z is the theory of integers (as defined in [2]).
What is important for us is that < and divisibility by constant are both predicates in this
theory and so formulae like 𝑥 < 5 and isEven(𝑥) can be both predicates in effective Boolean
algebra (where [[𝑥 < 5]]𝒯 = {. . . ,−1, 0, 1, 2, 3, 4}, isEven(𝑥) denotes all even integers and,
similarly, we have the predicate isOdd(𝑥) denoting all odd numbers). ♦

The algebra from Examples 2.5 can be used in practice as an API with corresponding
methods implementing the operations (∨,∧,¬ and IsSat (_)). The algebra from Exam-
ple 2.6 can also be used for some theories with Satisfiability Modulo Theories (SMT) solver
which can decide satisfiability of a quantifier free formula in some first-order theory.

We are now prepared to define symbolic finite automata. Informally, these automata
have transitions labelled by predicates which denote subsets of elements from D𝒜. D𝒜 has
then the same role as the alphabet for FA, but because one predicate can denote potentially
infinite set of domain elements, symbolic finite automata can be used with a big or infinite
alphabet while keeping a compact form.

Definition 2.7. Symbolic finite automaton (SFA) is a tuple 𝑀 = (𝑄,𝒜,∆, 𝐼, 𝐹) where 𝑄
is a finite set of states, 𝒜 is an effective Boolean algebra, ∆ ⊆ 𝑄× 𝛹𝒜 ×𝑄 is a transition
relation, 𝐼 ⊆ 𝑄 is a set of initial states and 𝐹 ⊆ 𝑄 is a set of final states.

Example 2.8. In Figure 2.2 you can see an example of an SFA𝑀 = ({𝑞0, 𝑞1, 𝑞2, 𝑞3},FOLZ,𝒯Z ,
{(𝑞0, 𝑥 < 5, 𝑞1), (𝑞0, 𝑥 > 5, 𝑞1), (𝑞1,⊤, 𝑞1), (𝑞1, isOdd(𝑥), 𝑞2), (𝑞2, isEven(𝑥), 𝑞1), (𝑞2, isOdd(𝑥),
𝑞2), (𝑞3, 𝑥 = 4, 𝑞2)}, {𝑞0}, {𝑞2}) accepting the language ℒ(𝑀) = {𝑙 | 𝑙 is a list of at least two
integers which does not start with 4 and ends with an odd number}. The automaton 𝑀
uses the effective Boolean algebra FOLZ,𝒯Z from Example 2.6. ♦

𝑞0 𝑞1

𝑞2𝑞3

𝑥 < 5

𝑥 > 5

isOdd(𝑥)

⊤

isEven(𝑥)

isOdd(𝑥)
𝑥 = 4

Figure 2.2: Symbolic finite automaton 𝑀 .

Similar to FAs, a transition (𝑞, 𝜓, 𝑝) ∈ ∆ is denoted by 𝑞 𝜓→𝑀 𝑝 or 𝑞 𝜓→ 𝑝 if 𝑀 is clear
from the context. Because the set of domain elements is in the role of the alphabet, we use
the same terminology: elements of D𝒜 are called characters, finite sequence of characters
are called words, D*

𝒜 denotes the set of all words and empty word is denoted by 𝜖. We can

6

then say that for 𝑎 ∈ D𝒜, 𝑞, 𝑝 ∈ 𝑄, 𝑞 𝑎→𝑀 𝑝 is a transition 𝑞
𝜓→𝑀 𝑝 if 𝑎 ∈ [[𝜓]]. This allows

us to define accepted words from a state and by an automaton in the same way as we have
defined them for FAs.

Next we define several important properties of SFAs which we later use and for each of
them we provide an algorithm for transforming an SFA to a one satisfying the property.

Definition 2.9. We say that 𝑀 is complete if for all states 𝑞 ∈ 𝑄 and characters 𝑎 ∈ D𝒜,
there exists a state 𝑝 where 𝑝 𝑎→ 𝑞.

To make any SFA complete, we first need to add a new sink state 𝑞∅ to 𝑄. After that, for
each state 𝑞 ∈ 𝑄, we add a transition (𝑞, 𝜙, 𝑞∅), where 𝜙 = ¬

⋁︀
∃𝑝.𝑞 𝜓→𝑝

𝜓, to ∆ if IsSat (𝜙).
The new automaton accepts the same language as the original automaton 𝑀 .

Definition 2.10. We say that 𝑀 is normalized if for all 𝑞, 𝑝 ∈ 𝑄 there exists at most one
transition from 𝑞 to 𝑝.

Normalization is straightforward. If there exist two states 𝑝, 𝑞 with two distinct transitions
𝑞
𝜓→ 𝑝, 𝑞

𝜙→ 𝑝, we replace these transitions with one transition 𝑞 𝜓∨𝜙→ 𝑝. Again, the language
accepted by the new automaton is clearly the same.

Definition 2.11. We say that 𝑀 is clean if for all states 𝑞 ∈ 𝑄, 𝑞 is reachable from some
𝑝 ∈ 𝐼, and for every 𝑝

𝜙→ 𝑞, 𝜙 is satisfiable. State 𝑞 is reachable from 𝑝 if 𝑞 = 𝑝 or there
exists a sequence of transitions 𝑟𝑖−1

𝑎𝑖→ 𝑟𝑖 for 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑛 ∈ N where 𝑟0 = 𝑝 and
𝑟𝑛 = 𝑞.

Cleaning of SFA is also not complicated. First, we remove all transitions 𝑝 𝜙→ 𝑞 where 𝜙 is
not satisfiable and after that, we remove unreachable states.

𝑞0 𝑞1

𝑞2𝑞3

𝑞∅

𝑥 < 5

𝑥 > 5

𝑥 = 5
isOdd(𝑥)

⊤

isEven(𝑥)

isOdd(𝑥)

𝑥 = 4𝑥 ̸= 4

⊤

(a) Complete SFA

𝑞0 𝑞1

𝑞2𝑞3

𝑥 < 5 ∨ 𝑥 > 5

isOdd(𝑥)

⊤

isEven(𝑥)

isOdd(𝑥)

𝑥 = 4

(b) Normalized SFA

𝑞0 𝑞1 𝑞2

𝑥 < 5

𝑥 > 5

isOdd(𝑥)
⊤

isEven(𝑥)

isOdd(𝑥)

(c) Clean SFA

Figure 2.3: SFAs with different properties accepting the same language.

7

Example 2.12. Figure 2.3 illustrates the properties introduced above on the SFA 𝑀 from
Example 2.2. ♦

Definition 2.13. We say that 𝑀 is global minterm normalized if for every two transitions
𝑞1

𝜙1→ 𝑝1, 𝑞2
𝜙2→ 𝑝2, [[𝜙1]] = [[𝜙2]] or [[𝜙1]] ∩ [[𝜙2]] = ∅.

Definition 2.14. We say that 𝑀 is local minterm normalized if for every state 𝑞 and every
two transitions 𝑞 𝜙1→ 𝑝1, 𝑞

𝜙2→ 𝑝2, [[𝜙1]] = [[𝜙2]] or [[𝜙1]] ∩ [[𝜙2]] = ∅.

In the next section we explain what the minterms are, how to compute them and how to
use them to transform any SFA to SFA with either of these properties.

2.2.1 Mintermization

In this section we introduce the concept of minterms [15], which we then use for transforming
SFAs to their minterm normalized forms. We also give an overview of the algorithm for
computing minterms introduced in [8]. Then we give an algorithm for transforming an SFA
to its global minterm normalized form (this form was used indirectly in [8] for computing
minimal deterministic SFA) and local minterm normalized form (our newly introduced
form).

Definition 2.15. Let 𝒜 = (D, 𝛹, [[_]],⊥,⊤,∨,∧,¬) be an effective boolean algebra and
𝛷 = {𝜙1, 𝜙2, . . . , 𝜙𝑛} ⊆ 𝛹 a non-empty finite set of predicates. Predicate

⋀︀𝑛
𝑖=1 𝜓𝑖 where 𝜓𝑖

is either 𝜙𝑖 or ¬𝜙𝑖 is called minterm generated from 𝛷. The set of all satisfiable minterms
generated from 𝛷 is denoted by Minterms (𝛷), that is

Minterms (𝛷) =

⎧⎨⎩ 𝜓 =
⋀︁

1≤𝑖≤𝑛
𝜓𝑖

⃒⃒⃒⃒
⃒⃒ ∀𝑖 ∈ { 1, . . . , 𝑛 } . (𝜓𝑖 ∈ { 𝜙𝑖,¬𝜙𝑖 }) ∧ IsSat (𝜓)

⎫⎬⎭ .

We also say that the minterm 𝜓 is created from the predicate 𝜙 ∈ 𝛹 if in the conjunction
defining the minterm 𝜓, 𝜙 was used in its non-negated form.

Example 2.16. This example illustrates the notion of minterms. We use the algebra
FOLZ,𝒯Z and 𝛷 = { 𝑥 < 5, 𝑥 > 1, 𝑥 > 8 }. Let us list all minterms generated from 𝛷:

𝜓1 = 𝑥 < 5 ∧ 𝑥 > 1 ∧ 𝑥 > 8

𝜓2 = 𝑥 < 5 ∧ 𝑥 > 1 ∧ ¬(𝑥 > 8)

𝜓3 = 𝑥 < 5 ∧ ¬(𝑥 > 1) ∧ 𝑥 > 8

𝜓4 = 𝑥 < 5 ∧ ¬(𝑥 > 1) ∧ ¬(𝑥 > 8)

𝜓5 = ¬(𝑥 < 5) ∧ 𝑥 > 1 ∧ 𝑥 > 8

𝜓6 = ¬(𝑥 < 5) ∧ 𝑥 > 1 ∧ ¬(𝑥 > 8)

𝜓7 = ¬(𝑥 < 5) ∧ ¬(𝑥 > 1) ∧ 𝑥 > 8

𝜓8 = ¬(𝑥 < 5) ∧ ¬(𝑥 > 1) ∧ ¬(𝑥 > 8)

Because minterms 𝜓1, 𝜓3, 𝜓7 and 𝜓8 are not satisfiable, Minterms (𝛷) = { 𝜓2, 𝜓4, 𝜓5, 𝜓6 }.
The minterm 𝜓2 is created from predicates 𝑥 < 5 and 𝑥 > 1. ♦

8

Note that the number of minterms is at worst exponential to the number of predicates
in 𝛷, that is, |Minterms (𝛷)| ≤ 2|𝛷|. It can be easily shown (by induction over the number of
predicates in 𝛷) that the set 𝑃 = { [[𝜓]] | 𝜓 ∈ Minterms (𝛷) } is a partition of D𝒜. Because
of this, for each 𝑎 ∈ D𝒜 there exists exactly one 𝜓 ∈ Minterms (𝛷) where 𝑎 ∈ [[𝜓]]. This
also means that if 𝛱 is the set of all minterms created from 𝜙, [[𝜙]] = [[

⋁︀
𝜓∈𝛱 𝜓]].

To compute the set Minterms (𝛷) for some set of predicates 𝛷 we use the algorithm
introduced in [8]. This algorithm uses a structure named predicate tree, which is a binary
tree where values of nodes are predicates. Let us define—for a node 𝑛 with the value 𝜙—a
recursive function Refine(𝜓):

1. If 𝑛 is not a leaf, call Refine(𝜓) for the left and the right child of 𝑛.

2. If 𝑛 is a leaf, create a left child with the value 𝜙 ∧ 𝜓 and a right child with the value
𝜙 ∧ ¬𝜓.

For every leaf 𝑚 with a value 𝜙𝑚 of the tree where 𝑛 is the root, this function splits 𝑚 to
two new leaves with values 𝜙𝑚 ∧ 𝜓 and 𝜙𝑚 ∧ ¬𝜓. We can then easily get Minterms (𝛷)
by starting with a predicate tree with only the root node with the value ⊤ and for each
𝜓 ∈ 𝛷 calling the function Refine(𝜓) for the root node. Then the values of the leaves are
the minterms and by checking their satisfiability we get the set Minterms (𝛷).

Example 2.17. In Figure 2.4 we give an example of predicate tree generated from the
set 𝛱 = { 𝑥 < 5, 𝑥 > 1 }. We start with the tree with only the root node. We then call
Refine(𝑥 < 5) for the root value and get the second level of the tree. After that, we again
call Refine(𝑥 > 1) for the root and we get the final form of the predicate tree. ♦

⊤

¬(𝑥 < 5)

¬(𝑥 < 5) ∧ ¬(𝑥 > 1)¬(𝑥 < 5) ∧ 𝑥 > 1

𝑥 < 5

𝑥 < 5 ∧ ¬(𝑥 > 1)𝑥 < 5 ∧ 𝑥 > 1

Figure 2.4: Predicate tree created by using Refine function.

Because we do not need all 2|𝛷| minterms, but only those that are satisfiable, we can
check during the computation whether there is any point in creating both children (or
either). This is why we define for a node 𝑛 with the value 𝜙 a function BetterRefine(𝜓):

1. If 𝑛 does not have any children, then

(a) if both 𝜙∧𝜓 and 𝜙∧¬𝜓 are satisfiable, create both children where the left child
has the value 𝜙 ∧ 𝜓 and the right child has the value 𝜙 ∧ ¬𝜓,

(b) if only 𝜙 ∧ 𝜓 is satisfiable (this means that [[𝜙]] ⊆ [[𝜓]], therefore [[𝜙 ∧ 𝜓]] = [[𝜙]]),
create the left child with the value 𝜙,

(c) if only 𝜙 ∧ ¬𝜓 is satisfiable (this means that [[𝜙]] ⊆ [[¬𝜓]], therefore [[𝜙 ∧ ¬𝜓]] =
[[𝜙]]), create the right child with the value 𝜙.

2. If 𝑛 has only one child, call BetterRefine(𝜓) for it.

9

3. If 𝑛 has both children, then

(a) if both 𝜙∧𝜓 and 𝜙∧¬𝜓 are satisfiable, call BetterRefine(𝜓) for both children,
(b) if only 𝜙∧𝜓 is satisfiable, create for every leaf of the subtree with 𝑛 as the root

a left child with the same value as in the leaf,
(c) if only 𝜙 ∧ ¬𝜓 is satisfiable, do the same thing as in 3b, but the new nodes are

added as the right children of the leaves.

The first step when the node does not have any children (the node is a leaf) is similar
to the step 1 of Refine function, but we create only the children that are satisfiable. As a
further optimization, in order to simplify the predicates, we replace 𝜙∧𝜓 by 𝜙 if only 𝜙∧𝜓
is satisfiable (and 𝜙 ∧ ¬𝜓 is not), because this means that for every 𝑎 ∈ [[𝜙]], 𝑎 is also an
element of [[𝜓]]. Similarly, we replace 𝜙 ∧ ¬𝜓 by 𝜙. This means that, strictly speaking, we
now do not compute minterms, but predicates equivalent to them (that is predicates that
denote the same set of domain elements).

In the third step when both children are present we either refine the children (3a) or, if
only one of the predicates 𝜙 ∧ 𝜓 and 𝜙 ∧ ¬𝜓 is satisfiable, we ”extend” the subtree whose
root node is the node that is being refined. This extension only creates a new level in the
subtree, but values of the leaves do not change. The reason for this is that we can now
easily find all predicates from 𝛷 that each minterm was created from by following the path
from root to the minterm. This is better explained in Example 2.18. Also, because in this
step we create nodes with one child, we need to add step 2 where we refine a node with
only one child. Because the child has the same value as the refined node, we just refine it.

Again, we get Minterms (𝛷) by starting with predicate tree with only the root node
with the value ⊤ and then refining the root node by each predicate in 𝛷. As we mentioned,
we get in the leaves the predicates that are equivalent to minterms.

⊤

¬(𝑥 < 5)

¬(𝑥 < 5)

¬(𝑥 < 5) ∧ ¬(𝑥 > 8)¬(𝑥 < 5) ∧ 𝑥 > 8

𝑥 < 5

𝑥 < 5 ∧ ¬(𝑥 > 1)

𝑥 < 5 ∧ ¬(𝑥 > 1)

𝑥 < 5 ∧ 𝑥 > 1

𝑥 < 5 ∧ 𝑥 > 1

𝑥 < 5

𝑥 > 1

𝑥 > 8

Figure 2.5: Predicate tree created by using BetterRefine function.

Example 2.18. In this example, we show how the refining of predicate tree works, using
the set 𝛷 from Example 2.16. We start with a predicate tree with only one node with the
value ⊤. Then by refining this tree with 𝑥 < 5, we get the second level of the tree shown in
Figure 2.5 (the brown one). After refining with 𝑥 > 1, the third level is added. Notice that
because ¬(𝑥 < 5) ∧ ¬(𝑥 > 1) is unsatisfiable, the value ¬(𝑥 < 5) is copied to the created
child in the left subtree. After refining with the last predicate 𝑥 > 8, we get the final form
of the predicate tree. In the right subtree, after checking that only 𝑥 < 5 ∧ ¬(𝑥 > 8) is

10

satisfiable, the previous leaves in level tree are ”extended” to the right. Every predicate
that refines the predicate tree then adds a new level to this tree. The values of the leaves are
equivalent to the minterms 𝜓2, 𝜓4, 𝜓5, and 𝜓6. Also notice that each minterm 𝜓 becomes
the left leaf if 𝜓 is created from the predicate 𝜙 that is refining the tree or the right leaf if 𝜓
is not created from 𝜙. This and the fact that each refined predicate adds a new level to the
tree means that after we create the predicate tree we can look at the path from the root to
the minterm to find the predicates from which the minterm is created. Let us explain on
an example. The path from the root to the minterm 𝑥 < 5∧¬(𝑥 > 1) first goes left, so this
minterm is created from 𝑥 < 5. Then it turns right and we can see that this minterm is not
created from 𝑥 > 1. At last, the path goes left again and so we can say that the minterm
is created only from the predicate 𝑥 < 5. ♦

As promised we now explain how minterms can be used to transform any SFA 𝑀 =
(𝑄,𝒜,∆𝑀 , 𝐼, 𝐹) to its global minterm normalized or local minterm normalized form. Let

Minterms (𝑀) ≡ Minterms
(︁
{𝜓 | ∃𝑞 𝜓→𝑀 𝑝 }

)︁
be a set of minterms generated by the set of all labels occurring in the automaton 𝑀 . Then
SFA 𝑀𝐺 = (𝑄,𝒜,∆𝑀𝐺

, 𝐼, 𝐹) where

∆𝑀𝐺
= { (𝑞, 𝜓, 𝑝) | 𝜓 ∈ Minterms (𝑀) ∧ ∃𝑞 𝜙→𝑀 𝑝.(IsSat (𝜙 ∧ 𝜓)) } (2.1)

is the global minterm normalized form of 𝑀 . That is, we have replaced every transition
𝑞

𝜙→𝑀 𝑝 with transitions 𝑞 𝜓1→𝑀𝐺
𝑝, 𝑞

𝜓2→𝑀𝐺
𝑝, . . . 𝑞

𝜓𝑛→𝑀𝐺
𝑝 where 𝜓1, 𝜓2, . . . , 𝜓𝑛 are all

minterms created from 𝜙. This is why the possibility of determining the predicates that
the minterm was created from in the predicate tree is useful. Because [[𝜙]] = [[

⋁︀
1≤𝑖≤𝑛 𝜓𝑖]],

ℒ(𝑀) = ℒ(𝑀𝐺).
Local mintermization is similar; let for 𝑞 ∈ 𝑄,

Minterms (𝑞) ≡ Minterms
(︁
{𝜓 | ∃𝑞 𝜓→𝑀 𝑝 }

)︁
,

that is, we get minterms generated by the set of labels occurring in transitions with the
source state 𝑞. Then the SFA 𝑀𝐿 = (𝑄,𝒜,∆𝑀𝐿

, 𝐼, 𝐹) where

∆𝑀𝐿
= { (𝑞, 𝜓, 𝑝) | 𝜓 ∈ Minterms (𝑞) ∧ ∃𝑞 𝜙→𝑀 𝑝. (IsSat (𝜙 ∧ 𝜓)) } (2.2)

is the local minterm normalized form of 𝑀 . Again, we have split transitions into minterm-
labelled transitions, but only locally for each state. This usually results in a much smaller
blow-up in the number of transitions than in global minterm normalized form.

Example 2.19. In this example we compare global and local minterm normalized forms cre-
ated from the automaton 𝑀 = ({𝑞0, 𝑞1, 𝑞2},FOLZ,𝒯Z , {(𝑞0, 𝑥 < 5, 𝑞1), (𝑞0, 𝑥 > 8, 𝑞2), (𝑞1, 𝑥 >
1, 𝑞2)}, {𝑞1}, {𝑞3}). Labels are chosen from the set 𝛷 from Example 2.16. In Figure 2.6 you
can see the automaton 𝑀 and local and global minterm normalized automata created from
𝑀 . This example also shows that while the local automaton has 4 transitions, the global
one has 5. If there were more transitions, this number would only grow. ♦

11

𝑞0 𝑞1

𝑞2

𝑥 < 5 ∧ 𝑥 > 1

𝑥 < 5

𝑥 > 8 𝑥 > 1

(a) Original SFA

𝑞0 𝑞1

𝑞2

𝑥 < 5 ∧ 𝑥 > 1

𝑥 < 5 ∧ ¬(𝑥 > 8)

¬(𝑥 < 5) ∧ 𝑥 > 8 𝑥 > 1

(b) Local minterm normalized SFA

𝑞0 𝑞1

𝑞2

𝑥 < 5 ∧ 𝑥 > 1

𝑥 < 5 ∧ ¬(𝑥 > 1)

¬(𝑥 < 5) ∧ 𝑥 > 8 ¬(𝑥 < 5) ∧ 𝑥 > 8

𝑥 < 5 ∧ 𝑥 > 1

(c) Global minterm normalized SFA

Figure 2.6: Local and global minterm normalization.

2.3 Simulation
Having defined FAs and SFAs we can now introduce a simulation on automata. Firstly, we
give the definition of the simulation for FAs and SFAs and then we show why this relation
is important and where it can be used. In the next paragraphs let 𝑁 = (𝑄,Σ, ∆𝑁 , 𝐼, 𝐹)
be an FA and 𝑀 = (𝑄,𝒜,∆𝑀 , 𝐼, 𝐹) be an SFA.

Definition 2.20. A relation 𝑆 on 𝑄 is a simulation on 𝑁 if whenever (𝑝, 𝑟) ∈ 𝑆,

(i) if 𝑝 ∈ 𝐹 , then 𝑟 ∈ 𝐹 and

(ii) for all 𝑎 ∈ Σ and 𝑝′ ∈ 𝑄, if 𝑝 𝑎→ 𝑝′, then there exists 𝑟 𝑎→ 𝑟′ such that (𝑝′, 𝑟′) ∈ 𝑆.

It is obvious that for any 𝑞 ∈ 𝑄, relation created by adding (𝑞, 𝑞) to any simulation is also
a simulation. That means that the reflexive closure of any simulation is also a simulation.
It can also be easily shown that the transitive closure of a simulation is again a simulation
and that simulation is closed under union. From this, it is obvious that there exists a unique
maximal simulation that is also a preorder, unsurprisingly called the simulation preorder.
We denote this preorder by ⪯ and we say that state 𝑟 simulates state 𝑝 when 𝑝 ⪯ 𝑟. We
use the same definitions for the SFA 𝑀 , but we replace Σ with D𝒜.

The following well known lemma shows a link between simulation preorder and a lan-
guage accepted from a state (we show the proof only for SFAs but it is very similar for
FAs):

Lemma 2.21. Let ⪯ be a simulation preorder on 𝑀 and 𝑝, 𝑟 ∈ 𝑄. If 𝑝 ⪯ 𝑟, then ℒ(𝑝) ⊆
ℒ(𝑟).

12

Proof. The proof is by induction on the length |𝑤| of the word 𝑤 ∈ D*
𝒜. For word 𝑤 we

want to prove this statement:

∀𝑝, 𝑟 ∈ 𝑄.((𝑝 ⪯ 𝑟 ∧ 𝑤 ∈ ℒ(𝑝)) =⇒ 𝑤 ∈ ℒ(𝑟))

Base case: |𝑤| = 0. In this case 𝑤 is the empty word and only final states accept the empty
word. From condition (i) in Definition 2.20 of simulation stems the fact that if 𝑝 ∈ 𝐹 and
𝑝 ⪯ 𝑟, 𝑟 is also a final state. Then 𝑤 ∈ ℒ(𝑟).
Induction step: As the induction hypothesis (IH) assume that the statement we want to
prove holds for 𝑤. Let 𝑎 ∈ D𝒜. We prove that the statement holds for 𝑎𝑤. Fix 𝑝, 𝑟 ∈ 𝑄
such that:

𝑝 ⪯ 𝑟 ∧ 𝑎𝑤 ∈ ℒ(𝑝) =⇒ ∀𝑏 ∈ D𝒜, 𝑝
′ ∈ 𝑄.

(︁
𝑝

𝑏→ 𝑝′ =⇒ ∃𝑟′ ∈ 𝑄.(𝑟 𝑏→ 𝑟′ ∧ 𝑝′ ⪯ 𝑟′)
)︁

∧ ∃𝑞 ∈ 𝑄.
(︁
𝑝

𝑎→ 𝑞 ∧ 𝑤 ∈ ℒ(𝑞)
)︁

𝑏=𝑎,
𝑝′=𝑞
=⇒ ∃𝑞, 𝑟′ ∈ 𝑄.(𝑟 𝑎→ 𝑟′ ∧ 𝑞 ⪯ 𝑟′ ∧ 𝑤 ∈ ℒ(𝑞))

by IH
=⇒ ∃𝑟′ ∈ 𝑄.(𝑟 𝑎→ 𝑟′ ∧ 𝑤 ∈ ℒ(𝑟′))

=⇒ 𝑎𝑤 ∈ ℒ(𝑟)

Corollary 2.22. If 𝑝 ⪯ 𝑟 and 𝑟 ⪯ 𝑝, then ℒ(𝑝) = ℒ(𝑟).

Lemma 2.21 shows why the simulation preorder is useful. It can be used in solving
the language inclusion problem (when we need to check whether for two automata 𝑁1,𝑁2,
ℒ(𝑁1) ⊆ ℒ(𝑁2)). Namely, as a safe but incomplete detection that the inclusion holds. The
test is incomplete since the converse of Lemma 2.21 does not hold, but because simulation
is polynomial in contrast to PSPACE-complete language inclusion a preliminary simulation
test may pay off [1]. Another application of simulation preorder is in the state reduction
of automata. Simulation-based state reduction was thoroughly investigated in [4]. They
introduced an algorithm for reducing the number of states of Kripke structures using sim-
ulation preorder which can be easily adapted for FAs and SFAs. The algorithm works in
three steps:

∙ First, merge simulation equivalent states, that is, if for states 𝑞, 𝑝, 𝑞 ⪯ 𝑝 and 𝑝 ⪯ 𝑞,
merge these two states into one state 𝑞 (all transition going from and to 𝑝 will now
go from and to 𝑞 and 𝑝 will be removed; let 𝐾 be the new automaton after this step
is done),

∙ then, if there is a state 𝑞, such that 𝑞 𝑎→𝐾 𝑝, 𝑞
𝑎→𝐾 𝑟 and 𝑝 ⪯ 𝑟, remove transition

𝑞
𝑎→𝐾 𝑝 from ∆𝐾 and

∙ finally, remove all unreachable states.

That the first step preserves the language follows from Corollary 2.22 (languages ac-
cepted from simulation equivalent states are equal, so, for the language accepted by the
automaton, reaching one of them is the same as reaching the other). We apply Lemma 2.21
to show that the second step also preserves the language. Let 𝑤 ∈ ℒ(𝑝). Then 𝑎𝑤 ∈ ℒ(𝑞),
because there is a transition 𝑞 𝑎→ 𝑝. But because 𝑝 ⪯ 𝑟, 𝑤 ∈ ℒ(𝑟) and from this we can also
determine that 𝑎𝑤 ∈ ℒ(𝑞), because there is a transition 𝑞

𝑎→ 𝑟. So the transition 𝑞
𝑎→ 𝑝 is

redundant and can be removed. Because in this step some transitions were removed, some

13

new states could became unreachable and we can safely remove them, thus reducing the
size of the automaton even more. Important observation is that the simulation computed
in the first step can be reused in the second step.

Another possible state reduction technique explored in [5] is by using simulation preorder
on reverse automaton. Reverse automaton of FA 𝑁 or SFA 𝑀 is an automaton 𝑁−1

(𝑀−1) where for each transition the source and target states are swapped and the set of
final states and initial states are also swapped (this automaton accepts reversed language).
Using the same algorithm, we can then reduce this automaton to automaton accepting the
same language. If we then reverse this automaton, we get automaton accepting the same
language as original automaton.

Finally, we can also combine these two simulation preorders and merge states 𝑞, 𝑝 when
𝑞 ⪯𝑁 𝑝, 𝑞 ⪯𝑁−1 𝑝 and for 𝑛 ≥ 1 there does not exist a sequence of transitions 𝑟𝑖

𝑎𝑖→ 𝑠𝑖 where
𝑟𝑖, 𝑠𝑖 ∈ 𝑄, 𝑎𝑖 ∈ Σ for 𝑖 ∈ {0, 1, . . . , 𝑛} and 𝑟1 = 𝑟𝑛 = 𝑞 (explained in [5], later corrected
in [6]). Intuitively, this last merging can be explained by realizing that every word that
gets us from some initial state to 𝑞 also gets us to 𝑝 and every word accepted from 𝑞 is also
accepted from 𝑝 so 𝑝 encompasses 𝑞. However, combining these two methods can create
a problem with preserving the preorders (if we merge two simulation equivalent states in
the reverse automaton, the simulation preorder of the original automaton can change and
has to be computed again). A possible way to use both simulations is to first reduce the
number of states by simulation computed on original automaton and then reversing and
reducing this automaton by simulation. We can repeat this until both simulations do not
reduce the number of states any more.

14

Chapter 3

The Algorithms

In the previous chapter we gave the necessary introduction to automata theory and sim-
ulation. In this chapter we first continue by giving an overview of an existing algorithm
for computing simulation preorder for FAs. Then we present the main contribution of this
work, namely, three new algorithms that are modification of FA algorithm for SFAs, each
offering different complexity trade-offs. In this chapter we say, for states 𝑞, 𝑝 and symbol
𝑎, that 𝑞 goes above 𝑝 via 𝑎 wrt. some relation 𝑆 if there exists a transition 𝑞

𝑎→ 𝑞′ where
(𝑝, 𝑞′) ∈ 𝑆. The set of these states 𝑞′ is denoted by 𝑞𝑎1𝑝, so 𝑞𝑎1𝑝 = { 𝑞′ | 𝑞 𝑎→ 𝑞′, (𝑝, 𝑞′) ∈ 𝑆 }.
If we say 𝑞 goes above 𝑝 via 𝑎 wrt. ⪯, this means that there exists a transition 𝑞 𝑎→ 𝑞′ where
𝑞′ simulates 𝑝. All the algorithms presented in this chapter maintain an overapproximation
of the simulation proeorder represented as a union Rel ∪ NotRel of two relations. Below,
whenever we write 𝑞 goes above 𝑝 or 𝑞𝑎1𝑝, we refer to the approximation Rel ∪NotRel , not
to the simulation preorder itself.

3.1 FA Simulation
In this section we explain how the already existing algorithm for computing simulation
preorder by Ilie, Navarro and Yu (INY) [17] works. We chose this algorithm because of its
good time complexity and its relative simplicity.

It starts with some initial overapproximation of simulation preorder and then removes
the pairs of states contradicting with Definition 2.20 until fixpoint, when the resulting
relation becomes the simulation preorder. Algorithm SimpleINY shows the main idea (the
final optimized version will then be presented as Algorithm INY). The initial relation is
given by condition (i) in Definition 2.20 as 𝑄×𝑄 minus all the pairs of states (𝑞, 𝑝) where
𝑞 is final state and 𝑝 is not (line 1). It was shown in [11] that this initial choice works only
for complete automata and for non-complete automata more pairs need to be taken from
the relation. This could influence the time complexity and because of this, we work only
with the complete automata (this is better explained in Section 3.1.1 where we analyse the
time complexity). The initial relation is called Rel and at the end of the algorithm it will
be equal to the simulation preorder. Because we want process every pair removed from
Rel , we save all these pairs in a set called NotRel . This set is initialized as the complement
of Rel (line 2). The algorithm ends when all pairs in NotRel are processed, that is, when
NotRel = ∅.

In the next part of the algorithm, every pair of states (𝑖, 𝑗) in NotRel is processed, in
two steps:

15

Algorithm 1: SimpleINY
Input: FA 𝑁 = (𝑄,Σ,∆, 𝐼, 𝐹)
Output: ⪯

1 Rel = (𝑄×𝑄) ∖ (𝐹 × (𝑄 ∖ 𝐹))
2 NotRel = 𝐹 × (𝑄 ∖ 𝐹)
3 while NotRel ̸= ∅ do
4 remove some (𝑖, 𝑗) from NotRel
5 forall the 𝑎 ∈ Σ do
6 forall the 𝑡 ∈ ←−∆𝑎(𝑗) do
7 if @𝑞 ∈

−→
∆𝑎(𝑡).((𝑖, 𝑞) ∈ Rel ∪NotRel) then

8 for 𝑠 ∈ ←−∆𝑎(𝑖) do
9 if (𝑠, 𝑡) ∈ Rel then

10 Rel = Rel ∖ {(𝑠, 𝑡)}
11 NotRel = NotRel ∪ {(𝑠, 𝑡)}
12 return Rel

1. a check, whether condition (ii) in Definition 2.20 holds for all symbols 𝑎 ∈ Σ and pairs
of states (𝑠, 𝑡) where 𝑠 ∈ ←−∆𝑎(𝑖), 𝑡 ∈

←−
∆𝑎(𝑗), and

2. a removal of (𝑠, 𝑡) from Rel if the check 1 fails.

That is, we check if for all states 𝑡 going via some symbol 𝑎 to 𝑗, 𝑡 does no longer go above
𝑖 via 𝑎 (because 𝑗 was the last state in 𝑡𝑎1𝑖). If 𝑡 does not go above 𝑖, we can now say that
each pair (𝑠, 𝑡) where 𝑠 ∈ ←−∆𝑎(𝑖) contradicts with condition (ii) in Definition 2.20 and we
remove them from Rel (line 10) and add them to NotRel (line 11) for future processing (if
they were not removed already). We illustrate one step in Figure 3.1. Vertical lines shows
which pairs are in Rel , so (𝑖, 𝑞), (𝑠, 𝑡1), (𝑠, 𝑡2) ∈ Rel , while (𝑖, 𝑗) is not (the pair (𝑖, 𝑗) is being
processed). Now, if we look at states 𝑡1, 𝑡2, which both go to 𝑗 via 𝑎, we can see that 𝑡2
goes to 𝑞, so it still goes above 𝑖 but 𝑡1 does not go above 𝑖. This means that we remove
the pair (𝑠, 𝑡1) from Rel , because 𝑡1 surely does not simulate 𝑠 (𝑠 goes to 𝑖 but 𝑡1 does not
go above 𝑖).

𝑖

𝑗

𝑞

𝑡1

𝑡2

𝑠

𝑎

𝑎

𝑎

𝑎

/

(a) Before

𝑖

𝑗

𝑞

𝑡1

𝑡2

𝑠

𝑎

𝑎

𝑎

𝑎

/

(b) After

Figure 3.1: Proccessing of the pair (𝑖, 𝑗).

To make the check on line 7 constant, we use counters. For every 𝑖, 𝑡 ∈ 𝑄 and 𝑎 ∈ Σ,
we introduce counter 𝑁𝑎(𝑖, 𝑡) where equality 𝑁𝑎(𝑖, 𝑡) = |𝑡𝑎1𝑖| should hold before and after

16

any pair in NotRel is processed. Algorithm INY uses these counters. In the beginning
”every state simulates all states” (Rel = 𝑄×𝑄), so we initialize 𝑁𝑎(𝑖, 𝑡) to |−→∆𝑎(𝑖)| (line 4).
Then, after we start processing (𝑖, 𝑗) ∈ NotRel , we need to update counters 𝑁𝑎(𝑡, 𝑖) for all
𝑎 ∈ Σ, 𝑡 ∈

←−
∆𝑎(𝑗). Because we removed 𝑗 from 𝑡𝑎1𝑖, counter 𝑁𝑎(𝑡, 𝑖) is decremented by one

(line 11). If this counter reaches zero (line 12), this means that 𝑡 no longer goes above 𝑖
via 𝑎 (this is the check we wanted to make faster) and we continue with updating Rel and
NotRel as we did in Algorithm SimpleINY.

Algorithm 2: INY
Input: FA 𝑁 = (𝑄,Σ,∆, 𝐼, 𝐹)
Output: ⪯

1 forall the 𝑞 ∈ 𝑄, 𝑎 ∈ Σ do
2 compute −→∆𝑎(𝑞),

←−
∆𝑎(𝑞)

3 forall the 𝑞, 𝑝 ∈ 𝑄, 𝑎 ∈ Σ do
4 𝑁𝑎(𝑞, 𝑝) = |

−→
∆𝑎(𝑝)|

5 Rel = (𝑄×𝑄) ∖ (𝐹 × (𝑄 ∖ 𝐹))
6 NotRel = 𝐹 × (𝑄 ∖ 𝐹)
7 while NotRel ̸= ∅ do
8 remove some (𝑖, 𝑗) from NotRel
9 forall the 𝑎 ∈ Σ do

10 forall the 𝑡 ∈ ←−∆𝑎(𝑗) do
11 𝑁𝑎(𝑖, 𝑡) = 𝑁𝑎(𝑖, 𝑡)− 1
12 if 𝑁𝑎(𝑖, 𝑡) == 0 then
13 for 𝑠 ∈ ←−∆𝑎(𝑖) do
14 if (𝑠, 𝑡) ∈ Rel then
15 Rel = Rel ∖ {(𝑠, 𝑡)}
16 NotRel = NotRel ∪ {(𝑠, 𝑡)}
17 return Rel

3.1.1 Time Complexity

If 𝑛 is the number of states and 𝑚 is the number of transitions in FA, then the time
complexity of this algorithm is 𝒪

(︀
𝑛𝑚

)︀
. This is not immediately obvious, so in this section

we give an informal analysis of the time complexity from [11].
The initialization on lines 1–6 is done in 𝒪

(︀
𝑚 + 𝑛2|Σ| + 𝑛2

)︀
. As we said before, this

algorithm works only with complete FAs, so for each state 𝑞 ∈ 𝑄, there are at least |Σ|
transitions going from 𝑞. Then the number of all transitions 𝑚 is at least 𝑛|Σ| and the
initialization is done in 𝒪

(︀
𝑛𝑚

)︀
. If we worked with non-complete automata (like they do

in [11]), we would need to remove in initialization pairs (𝑖, 𝑗) where there exists a symbol
𝑎 that 𝑖 does not go via into some state, but 𝑗 does. This algorithm has then complexity
𝒪
(︀

max{𝑛𝑚, 𝑛2|Σ|}
)︀
.

Because in NotRel we save pairs of states that are not in simulation and we only save
each pair at most once, line 8 is reached at most 𝑛2. To explain the next part we need to

17

know the value of the sum of the initial values of all counters∑︁
𝑖,𝑡∈𝑄
𝑎∈Σ

𝑁𝑎(𝑖, 𝑡) =
∑︁
𝑖,𝑡∈𝑄
𝑎∈Σ

|
−→
∆𝑎(𝑡)|.

For some 𝑡 ∈ 𝑄 the sum
∑︀

𝑎∈Σ |
−→
∆𝑎(𝑡)| is equal to the number of transitions going from the

state 𝑡 and the sum
∑︀

𝑡∈𝑄
∑︀

𝑎∈Σ |
−→
∆𝑎(𝑡)| is then equal to the number of all transitions 𝑚.

Therefore, ∑︁
𝑖,𝑡∈𝑄
𝑎∈Σ

|
−→
∆𝑎(𝑡)| =

∑︁
𝑖∈𝑄

∑︁
𝑡∈𝑄
𝑎∈Σ

|
−→
∆𝑎(𝑡)| =

∑︁
𝑖∈𝑄

𝑚 = 𝑛𝑚.

Also, because counters cannot be negative (because they represent the number of states
simulating some state) we can now say that line 11 (decrementing of counters) is reached
at most 𝑛𝑚 times.

Now the only thing left to show is that lines 14–16 are reached at most 𝑛𝑚 times. First
we need to realize that if we fix 𝑖 ∈ 𝑄, 𝑎 ∈ Σ in 𝑁𝑎(𝑖, 𝑡), line 13 is reached at most 𝑛 times
(there are 𝑛 such counters). On the other hand, if we fix 𝑡, the for loop on lines 13–16
is iterated at most 𝑛𝑚 times. This stems from the similar fact as in the summation of
the counters: the for loop enumerates all states in ←−∆𝑎(𝑖) and summed over all states 𝑖
and symbols 𝑎 it computes its body 𝑚 times (for fixed 𝑡). If we combine these two facts,
lines 14–16 are reached at most 𝑛𝑚 times.

Overall, we showed that Algorithm INY computes in 𝒪
(︀
𝑛𝑚

)︀
time.

3.2 Global SFA Simulation
In the previous section, we presented the existing algorithm for computing simulation pre-
orders for FAs. In this section, we show how it can be generalized to SFAs. The basic
idea of the generalization is the same as in [8], in which they adapted deterministic FA
minimization algorithm [16] for symbolic automata. They (indirectly) use global minterm
normalized form to create FA whose minimal form is the same as the minimal form of the
input SFA.

The idea works like this: first we transform input SFA 𝑀 to its minterm normalized
form 𝑀𝐺. After that, interpret 𝑀𝐺 as an FA with Minterms (𝑀) as the alphabet. The next
theorem shows the relation between these three automata and their simulation preorders.

Theorem 3.1. Let 𝑀 = (𝑄,𝒜,∆𝑀 , 𝐼, 𝐹) be SFA, 𝑀𝐺 = (𝑄,𝒜,∆𝑀𝐺
, 𝐼, 𝐹) its minterm

normalized form where ∆𝑀𝐺
is given by Equation 2.1 and 𝑁 = (𝑄,Minterms (𝑀) , ∆𝑀𝐺

, 𝐼, 𝐹)
be FA. Then for each 𝑞, 𝑝 ∈ 𝑄, 𝑞 ⪯𝑀 𝑝 iff 𝑞 ⪯𝑁 𝑝.

Proof. We prove that 𝑞 ⪯𝑀 𝑝 iff 𝑞 ⪯𝑀𝐺
𝑝 and 𝑞 ⪯𝑀𝐺

𝑝 iff 𝑞 ⪯𝑁 𝑝, because this implies
the proposition in theorem. We do this by showing that the definitions of simulation
(Def. 2.20) for these automata are equivalent and because simulation preorder is a unique
maximal simulation on 𝑄 × 𝑄, this would mean that simulation preorders are equivalent.
Because the set of states 𝑄 and the set of final states 𝐹 are the same for all three automata,
we only need to show that the second conditions are equivalent. Because for all 𝑎 ∈ D𝒜,
𝑞, 𝑝 ∈ 𝑄, 𝑞 𝑎→𝑀 𝑝 iff 𝑞

𝑎→𝑀𝐺
𝑝, the second conditions are equivalent for 𝑀 and 𝑀𝐺 and so

the equivalence 𝑞 ⪯𝑀 𝑝 iff 𝑞 ⪯𝑀𝐺
𝑝 holds.

Also, because for all 𝑎 ∈ D𝒜 there exists exactly one minterm 𝜙 for which 𝑎 ∈ [[𝜙]]. The
transition 𝑞

𝑎→𝑀𝐺
𝑝 must then denote the transition 𝑞

𝜙→𝑀𝐺
𝑝. Then the second condition

18

can be rewritten in a way that 𝑎 ∈ D𝒜 is replaced by 𝜙 ∈ Minterms (𝑀), which is exactly
the same as the second condition for 𝑁 and because of this, relations ⪯𝑀𝐺

and ⪯𝑁 are
equal.

Algorithm GlobalSFA then computes simulation preorder of input SFA 𝑀 . Because the
original algorithm works only for complete FAs, 𝑀 must also be complete. We also assume
that 𝑀 is clean and normalized.

Algorithm 3: GlobalSFA
Input: SFA 𝑀 = (𝑄,𝒜,∆𝑀 , 𝐼, 𝐹)
Output: ⪯𝑀

1 compute global minterm normalized form of 𝑀 , 𝑀𝐺 = (𝑄,𝒜,∆𝑀𝐺
, 𝐼, 𝐹)

2 compute ⪯𝑁 of FA 𝑁 = (𝑄,Minterms (𝑀) ,∆𝑀𝐺
, 𝐼, 𝐹)

3 return ⪯𝑁

However, Algorithm GlobalSFA is plagued with one big problem: the number of minterms
in Minterms (𝑀) is in the worst case exponential to the number of transitions in ∆𝑀 . The
next example demonstrate a worst case scenario.

Example 3.2. Let 𝑀𝑘 = ({𝑞0, 𝑞1, . . . , 𝑞𝑘+1, 𝑝1, . . . , 𝑝𝑘+1},BDD𝑘,∆, {𝑞0}, {𝑞𝑘, 𝑝𝑘}) (Fig-
ure 3.2) be SFA for some 𝑘 ∈ N. Let 𝛽𝑖, for some 𝑖 ∈ N, 𝑖 ≤ 𝑘 be a BDD where
[[𝛽𝑖]] = {𝑛 | 𝑖-th bit in binary representation of 𝑛 is 1 }. This BDD and also the BDD ¬𝛽𝑖
have only one node, which means these predicates are really small. However, Minterms (𝑀)
has 2𝑘 elements, because each minterm denotes exactly one number. For example, sup-
pose 𝑘 = 3, then [[𝛽1]] = {1, 3, 5, 7}, [[𝛽2]] = {2, 3, 6, 7}, [[¬𝛽3]] = {0, 1, 2, 3} and thus
[[𝛽1 ∧ 𝛽2 ∧ ¬𝛽3]] = {3}. In this example 𝑝𝑖 ⪯ 𝑞𝑖 for 𝑖 ∈ {1, 2, . . . , 𝑘 + 1} and this au-
tomaton can be reduced to the automaton where every state 𝑝𝑖 is removed. This example
is a modification of an example from [8]. ♦

𝑞0 𝑞1

𝑝1

𝑞2

𝑝2

. . .

. . .

𝑞𝑘−1

𝑝𝑘−1

𝑞𝑘

𝑝𝑘

𝛽1

¬𝛽1

𝛽2

𝛽1

𝛽2

𝛽3

𝛽2

𝛽2

𝛽𝑘−1

𝛽𝑘−1

𝛽𝑘

𝛽𝑘−1

𝛽𝑘

Figure 3.2: SFA 𝑀𝑘.

3.2.1 Implementation

We implemented this algorithm with the symbolic automata toolkit [25] implemented in
C#1. In this toolkit, SFAs are represented as a generic class with one type parameter that
determines which effective Boolean algebra is used (both BDD𝑘 and FOLD,𝒯 algebras

1source code available at https://github.com/AutomataDotNet/Automata

19

https://github.com/AutomataDotNet/Automata

are implemented, the latter in the form of interface to SMT solver Z3 [10]). States are
represented as integers, transition relation is implemented in the form of two dictionaries
which map state 𝑞 to either all transitions where 𝑞 is the source state or all transitions
where 𝑞 is the target state.

In the implementation of Algorithm GlobalSFA we used a predicate tree introduced
in Section 2.2.1 (already implemented in the tool) to compute minterms, which we then
mapped to a subset of integers. After mintermization, we initialized counters and computed
∆𝑀𝐺

(by returning on the path from minterm to the root of the predicate tree explained
in Example 2.18) with minterms mapped to integers. We actually only computed ”reverse”
transition function implemented as a dictionary in which we mapped every state 𝑞 to all
transitions where 𝑞 is the target state. Because we then run Algorithm INY on FA with this
reverse transition function, we avoided iterating over all symbols (in this case minterms)
on line 9 of Algorithm INY (lines 9 and 10 can be combined to forall the 𝑡 𝑎→ 𝑗 do).

3.2.2 Time Complexity

Let 𝑛 be the number of states of 𝑀 , 𝑚 be the number of transitions of 𝑀 , 𝑚′ the number of
transition of 𝑀𝐺 and 𝑓(𝑥) the complexity of checking the satisfiability of predicate of size 𝑥.
Because 𝑀 is normalized, there are at most 𝑛 transitions going from a single state state and
𝑚 is then bounded by 𝑛2. As there can be at most 2𝑚 minterms in Minterms (𝑀) and every
minterm is generated from 𝑚 predicates, we can compute them in 𝒪

(︀
2𝑚𝑓(𝑚𝑙)

)︀
time where

𝑙 is the size of the largest predicate in 𝑀 . Computing ∆𝑀𝐺
is then done in 𝒪

(︀
2𝑚𝑓(𝑚𝑝) +

𝑚2𝑚
)︀

(every transition is replaced by transitions labelled with minterms). Because we then
run standard simulation algorithm for FA 𝑁 with the same number of transitions as in 𝑀𝐺,
we can conclude that Algorithm GlobalSFA has complexity 𝒪

(︀
2𝑚𝑓(𝑚𝑙) +𝑚2𝑚 + 𝑛𝑚′)︀.

It is not immediately obvious, but we can also bound 𝑚′ by 𝑚2𝑚. For this we need to
realise how many transitions of 𝑀𝐺 can be labelled by the same minterm 𝜓. Let 𝑚𝜓 be the
number of these transitions. If we have minterm in the form 𝜓 = 𝜙1∧𝜙2∧· · ·∧𝜙𝑘∧¬𝜙𝑘+1∧
· · · ∧ ¬𝜙𝑚 where, for 𝑖 = 1, 2, . . . ,𝑚, 𝜙𝑖 is some predicate labelling a transition in 𝑀 , then
the number of transitions 𝑚𝜓 = 𝑘, because every transition 𝑞𝑖

𝜙𝑖→𝑀 𝑝𝑖, for 1 ≤ 𝑖 ≤ 𝑘, is
replaced by 𝑞𝑖

𝜓→𝑀𝐺
𝑝𝑖 (and also by all the other minterms that are created from 𝜙𝑖). In the

worst case, the number of minterms where 𝑘 predicates are not negated (these minterms
are created from 𝑘 predicates) is

(︀
𝑚
𝑘

)︀
(because we choose 𝑘 transitions from 𝑚 transitions).

So the number of transitions labelled with minterms created from 𝑘 predicates is
(︀
𝑚
𝑘

)︀
𝑘 and

the numbers of transitions in 𝑀𝐺 is

𝑚′ =

𝑚∑︁
𝑘=0

𝑘

(︂
𝑚

𝑘

)︂
= 𝑚2𝑚−1 (3.1)

and the complexity of Algorithm GlobalSFA is 𝒪
(︀
2𝑚𝑓(𝑚𝑙) + 𝑛𝑚2𝑚

)︀
. See Appendix B for

the detailed derivation of Equation 3.1.

3.3 Local SFA Simulation
In the previous section we introduced simulation algorithm for SFAs that uses minterms
generated by predicates labelling transitions. As we explained, this mintermization can in
worst case have exponential time complexity to the number of transitions. In this section
we introduce another two algorithms that try to remedy this problem. First, we introduce

20

an algorithm where no mintermization and no counters are used and then we present its
modification where local mintermization is used.

Algorithm 4: NoCountSFA
Input: FA 𝑀 = (𝑄,𝒜,∆, 𝐼, 𝐹)
Output: ⪯

1 Rel = (𝑄×𝑄) ∖ (𝐹 × (𝑄 ∖ 𝐹))
2 NotRel = 𝐹 × (𝑄 ∖ 𝐹)
3 while NotRel ̸= ∅ do
4 remove some (𝑖, 𝑗) from NotRel

5 forall the 𝑡 𝜙𝑡𝑗→ 𝑗 do
6 𝜓 = 𝜙𝑡𝑗

7 forall the 𝑡 𝜙𝑡𝑘→ 𝑘 do
8 if (𝑖, 𝑘) ∈ Rel ∪NotRel then
9 𝜓 = 𝜓 ∧ ¬𝜙𝑡𝑘

10 forall the 𝑠 𝜙𝑠𝑖→ 𝑖 do
11 if (𝑠, 𝑡) ∈ Rel then
12 if IsSat (𝜓 ∧ 𝜙𝑠𝑖) then

// [[𝜓]] ∪ [[𝜙𝑠𝑖]] ̸= ∅
13 Rel = Rel ∖ {(𝑠, 𝑡)}
14 NotRel = NotRel ∪ {(𝑠, 𝑡)}
15 return Rel

Algorithm NoCountSFA is a modification of Algorithm SimpleINY adapted to the sym-
bolic setting. Initialization is done in the same way as in Algorithm SimpleINY, the initial
relation is given by condition (i) of Definition 2.20. Again, Rel is a relation on 𝑄 which
in the end of computation will be equal to the simulation preorder, and NotRel is the set
of all pairs that are taken from Rel and then, later, processed. This processing is slightly
different than in Algorithm SimpleINY. Again, during the processing of pair (𝑖, 𝑗) we want
to remove pairs (𝑠, 𝑡) where 𝑠 goes to 𝑖 and 𝑡 goes to 𝑗 that are contradicting condition (ii)
in Definition 2.20. In Algorithm SimpleINY we looked for all such states 𝑡 where 𝑡 did not
go above 𝑖 via some symbol. However, because we are now working with SFAs, we would
like to find all symbols (a predicate denoting this symbols) 𝑎 ∈ D𝒜 where 𝑡 goes to 𝑗 via
𝑎 but not above 𝑡 via 𝑎. This is done on lines 6–9 where 𝜓 is the predicate that denotes
all such symbols. First, it is initialized to 𝜙𝑡𝑗 , because 𝜙𝑡𝑗 is the predicate denoting all
symbols 𝑎 ∈ D𝒜 that 𝑡 goes via 𝑎 to 𝑗 (we assume that 𝑀 is normalized). Then we remove
all symbols 𝑏 ∈ D𝒜 from 𝜓 where 𝑡 goes above 𝑖 via 𝑏 (lines 7–9). After that, we check, for
each state 𝑠 that goes to 𝑖, if it goes to 𝑖 via some symbol in [[𝜓]] (line 12). If it does, we
remove the pair (𝑠, 𝑡) from Rel and save it in NotRel for later processing. After all pairs in
NotRel are processed, Rel becomes the simulation preorder.

Notice that because we work with symbolic representation, we now enumerate all states
𝑠 going to 𝑖 on line 10 and not only those that go to 𝑖 via some symbol from [[𝜓]], because
we do not know beforehand if 𝑠 goes to 𝑖 via some symbol from [[𝜓]]. This is in contrast
with Algorithm SimpleINY where we needed to only enumerate those states where there
was a transition going from them to 𝑖 via some concrete symbol. Because of this, the time
complexity is worse.

21

Algorithm 5: LocalSFA
Input: FA 𝑀 = (𝑄,𝒜,∆𝑀 , 𝐼, 𝐹)
Output: ⪯

1 compute local minterm normalized form of 𝑀 , 𝑀𝐿 = (𝑄,𝒜,∆𝑀𝐿
, 𝐼, 𝐹)

2 forall the 𝑞 ∈ 𝑄 do
3 forall the 𝜓 ∈ Minterms (𝑞) do
4 forall the 𝑝 ∈ 𝑄 do
5 𝑁𝜓(𝑞, 𝑝) = |{ 𝑟 | 𝑞 𝜓→𝑀𝐿

𝑟 }|
6 Rel = (𝑄×𝑄) ∖ (𝐹 × (𝑄 ∖ 𝐹))
7 NotRel = 𝐹 × (𝑄 ∖ 𝐹)
8 while NotRel ̸= ∅ do
9 remove some (𝑖, 𝑗) from NotRel

10 forall the 𝑡 𝜓𝑡𝑗→𝑀𝐿
𝑗 do

11 𝑁𝜓𝑡𝑗 (𝑖, 𝑡) = 𝑁𝜓𝑡𝑗 (𝑖, 𝑡)− 1

12 if 𝑁𝜓𝑡𝑗 (𝑖, 𝑡) == 0 then
13 for 𝑠 𝜙𝑠𝑖→𝑀 𝑖 do
14 if (𝑠, 𝑡) ∈ Rel and IsSat (𝜓𝑡𝑗 ∧ 𝜙𝑠𝑖) then
15 Rel = Rel ∖ {(𝑠, 𝑡)}
16 NotRel = NotRel ∪ {(𝑠, 𝑡)}
17 return Rel

In Section 3.3.2 we will explain that the for loop on lines 7–9 of Algorithm NoCountSFA
introduces a factor 𝑛

∑︀
𝑞∈𝑄𝑚

2
𝑞 to the time complexity, where 𝑛 is the number of states and

𝑚𝑞 the number of transitions with source state 𝑞. Now we show how to replace the for
loop with more efficient test using counters. We cannot have counters 𝑁𝑎(𝑡, 𝑖) for some
𝑎 ∈ D𝒜, 𝑡, 𝑖 ∈ 𝑄 as we have in Algorithm INY, because the domain D𝒜 could be infinite
and even if it was not, we would need to constantly check if 𝑎 was in the set of symbols
denoted by some predicate. This is why we want to have counters 𝑁𝜙(𝑡, 𝑖) for some predicate
𝜙 ∈ 𝛹 . We cannot use predicates that label transitions because the sets of symbols these
predicates denote can intersect. This is where the local minterm normalized form comes
into play. Because SFAs in this form have the property that for each 𝑞 ∈ 𝑄, 𝑎 ∈ D𝒜 there
exists exactly one 𝜓 ∈ Minterms (𝑞) where 𝑎 ∈ [[𝜓]] and all transitions going from state
𝑞 are labelled by predicates from Minterms (𝑞), we can say that for 𝑝 ∈ 𝑄, 𝑎, 𝑏 ∈ [[𝜓]],
𝑞𝑎1𝑝 = 𝑞𝑏1𝑝. Let 𝑞𝜓1𝑖 denote the set of states 𝑟 where 𝑞 𝜓→ 𝑟 and 𝑖 ⪯ 𝑟. This means that
we can have counter 𝑁𝜓(𝑞, 𝑖) that will be equal to |𝑞𝜓1𝑖| except during the processing of
pair from NotRel (similarly to counters in Algorithm INY). However, using predicates for
counters is not the only difference from counters in Algorithm INY. Because each 𝑞 ∈ 𝑄
has different set Minterms (𝑞), this means, that while there is a counter 𝑁𝜓(𝑞, 𝑝) for some
𝑝 ∈ 𝑄,𝜓 ∈ Minterms (𝑞), the counter 𝑁𝜓(𝑖, 𝑗) for some 𝑖, 𝑗 ∈ 𝑄 might not make a sense,
because generally 𝜓 ̸∈ Minterms (𝑖). This means that we have counters 𝑁𝜓(𝑞, 𝑝) for all
𝑞, 𝑝 ∈ 𝑄, 𝜓 ∈ Minterms (𝑞).

Algorithm LocalSFA uses local mintermizations and counters. The initialization is done
in the same way as in Algorithm INY, 𝑁𝜓(𝑞, 𝑝) = |{ 𝑟 | 𝑞 𝜓→𝑀𝐿

𝑟 }| (line 5). Then, during the
processing of the pair (𝑖, 𝑗), we decrement all counters 𝑁𝜓𝑡𝑗 (𝑡, 𝑖) where 𝑡

𝜓𝑡𝑗→𝑀𝐿
𝑗 (because 𝑗

was taken from the set 𝑡𝜓𝑡𝑗1𝑖). If the counter reaches zero, we want to remove all pairs (𝑠, 𝑡)

22

where 𝑠 𝜙𝑠𝑖→𝑀 𝑖 and there exists some 𝑎 ∈ [[𝜙𝑠𝑖]] and at the same time 𝑎 ∈ [[𝜓𝑡𝑗]], so we check
the satisfiability of 𝜓𝑡𝑗 ∧𝜙𝑠𝑖 (line 14). If such symbol exists, we can be sure that 𝑡 does not
simulate 𝑠 and so we remove the pair (𝑠, 𝑡) from Rel .

As with Algorithm INY, Algorithms NoCountSFA and LocalSFA works only with com-
plete SFAs. We also assume that 𝑀 is clean and normalized.

3.3.1 Implementation

We implemented both Algorithms NoCountSFA and LocalSFA in the symbolic automata
toolkit [25]. To make Algorithm NoCountSFA faster, we process pairs (𝑖, 𝑗) in NotRel with
the same lower state at the same time. Lower state is the state 𝑖 in the pair (𝑖, 𝑗). This
means that if there are pairs (𝑖, 𝑗1), (𝑖, 𝑗2) in NotRel , we take the set of all states 𝑡 going to
either 𝑗1 or 𝑗2 and then we create the disjuction 𝜓 =

⋁︀
𝜙𝑡𝑘 for all 𝜙𝑡𝑘 where exists 𝑡 𝜙𝑡𝑘→ 𝑘

such that (𝑖, 𝑘) ∈ Rel . The predicate 𝜓 then denotes all the symbols 𝑎 such that 𝑡 goes
above 𝑖 via 𝑎. The check on line 12 of Algorithm NoCountSFA is then for satisfiability of
¬𝜓 ∧ 𝜙𝑠𝑖. In this example we saved one iteration of the for loop on line 10 because we
processed pairs (𝑖, 𝑗1), (𝑖, 𝑗2) at the same time. The effect of the optimization is the more
significant the more pairs with the same lower state appear in NotRel . To implement this
optimization efficiently, we divide NotRel to sets NotRel 𝑖 for all 𝑖 ∈ 𝑄 where NotRel 𝑖 is
the set of all 𝑗 ∈ 𝑄 where (𝑖, 𝑗) would be in NotRel . We then save all those 𝑖 for which
NotRel 𝑖 ̸= ∅ for later processing (instead of saving pairs).

The local mintermization is implemented similarly as global mintermization in Sec-
tion 3.2.1. Counters are now implemented as 2D arrays of arrays of integers with variable
sizes (the size depends on how much minterms were created from a state). In this situation
we can also implement an optimization: when a counter 𝑁𝜓1(𝑖, 𝑡) reaches zero, we save 𝜓1

for a pair (𝑖, 𝑡) but we do not immediately start with removing of pairs. We first process all
pairs in NotRel and if some other counter 𝑁𝜓2(𝑖, 𝑡) reaches zero, we now save 𝜓1 ∨𝜓2 for a
pair (𝑖, 𝑡), etc. After processing all pairs in NotRel , we check if we have saved for any pair
of states (𝑖, 𝑡) this predicate and if yes, we continue with this predicate instead of predicate
𝜓𝑡𝑗 in the for loop on line 13 of Algorithm LocalSFA.

3.3.2 Time Complexity

The time complexity of Algorithm NoCountSFA is 𝒪
(︀
𝑛
∑︀

𝑞∈𝑄𝑚
2
𝑞 +𝑚2𝑓(𝑚𝑝𝑘)

)︀
where 𝑛 is

the number of states, 𝑚 is the number of transitions, 𝑚𝑞 is the number of transitions with
the source state 𝑞, 𝑝 is the state with the most number of transitions going from it, 𝑘 is the
size of the largest predicate in 𝑀 and 𝑓(𝑥) is the complexity of checking the satisfiability
of predicate of the size 𝑥. We now examine why. Initialization (lines 1 and 2) is obviously
done in 𝒪

(︀
𝑛2

)︀
. Line 4 is also reached at most 𝑛2 times, because we can save each pair

of states in NotRel only once. Line 6 is for fixed 𝑖 reached at most 𝑚 times (because we
enumerate all transitions going to 𝑗 and summed over all 𝑗 ∈ 𝑄 this is all transitions in
𝑀), so for all 𝑖 ∈ 𝑄 it is reached at most 𝑛𝑚 times. Let 𝑖, 𝑗, 𝑡 ∈ 𝑄 be fixed such that 𝑡
goes to 𝑗. Lines 8–9 are then reached 𝑚𝑡 times. There are 𝑚𝑡 states that 𝑡 goes to (𝑀
is normalized), so summed over all such 𝑗 these lines are reached at most 𝑚2

𝑡 times. This
means that summed over all 𝑖, 𝑡 ∈ 𝑄, these lines are reached at most 𝑛

∑︀
𝑡∈𝑄𝑚

2
𝑡 times. The

last thing to show is that lines 12–14 are reached at most 𝑚2 times. If we fix 𝑡 and 𝑗, these
lines are reached at most 𝑚 times (again we enumerate all transitions going to some state
𝑖 and summed over all states this is all transitions). Because there is only one transition

23

going from 𝑡 to 𝑗, summing over all such states 𝑡, 𝑗 where there is a transitions between
them, we can conclude that these lines are reached at most 𝑚2. Also the predicate 𝜓 is a
conjunction of 𝑚𝑡 predicates and 𝑛2 ≤ 𝑛𝑚 ≤ 𝑛

∑︀
𝑞∈𝑄𝑚

2
𝑞 so Algorithm NoCountSFA has

the time complexity
𝒪
(︀
𝑛
∑︁
𝑞∈𝑄

𝑚2
𝑞 +𝑚2𝑓(𝑚𝑝𝑘)

)︀
.

We now examine the time complexity of Algorithm LocalSFA. Let for some 𝑞 ∈ 𝑄,
𝑟𝑞 be the number of minterms in Minterms (𝑞). Using the same reasoning as for global
mintermization, 𝑀𝐿 can be computed in 𝒪

(︀∑︀
𝑞∈𝑄(𝑟𝑞𝑓(𝑚𝑞𝑘)+𝑚𝑞𝑟𝑞)

)︀
. Let 𝑟 be the number

of all local minterms, that is 𝑟 =
∑︀

𝑞∈𝑄 𝑟𝑞. The initialization on lines 2–5 is done in 𝒪
(︀
𝑛𝑟

)︀
time (|{ 𝑟 | 𝑞 𝜓→𝑀𝐿

𝑟 }| is computed during mintermization). Let 𝑚′ be the number of
transitions in 𝑀𝐿. Using the same reasoning as in FA simulation, we can say that the
summation of all counters at the beginning is 𝑛𝑚′ and so line 11 is reached at most 𝑛𝑚′

times. For fixed 𝑖, line 12 is reached 𝑟 times, because there are 𝑟 counters 𝑁𝜓𝑡𝑗 (𝑖, 𝑡) that can
reach zero only once (for each 𝑡 ∈ 𝑄 there is one counter 𝑁𝜓(𝑖, 𝑡) for each 𝜓 ∈ Minterms (𝑡)).
If we now fix 𝑡 and 𝜓𝑡𝑗 , lines 13–16 are reached at most 𝑚 times. All in all, these lines are
reached at most 𝑟𝑚 times. Because 𝜓𝑡𝑗 is minterm created from 𝑚𝑡 transitions and 𝑟 ≤ 𝑚′,
the time complexity of this algorithm is 𝒪

(︀∑︀
𝑞∈𝑄(𝑟𝑞𝑓(𝑚𝑞𝑘) +𝑚𝑞𝑟𝑞) + 𝑛𝑚′ +𝑚𝑟𝑓(𝑚𝑝𝑘)

)︀
.

Because for some 𝑞 ∈ 𝑄, 𝑟𝑞 is bounded by 2𝑚𝑞 (because 𝑟𝑞 is the number of minterms) and
𝑚′ is bounded by

∑︀
𝑞∈𝑄𝑚𝑞2

𝑚𝑞 (by Equation 3.1), the final time complexity of Algorithm
LocalSFA is

𝒪
(︀∑︁
𝑞∈𝑄

(𝑓(𝑚𝑞𝑘)2𝑚𝑞 +𝑚𝑞2
𝑚𝑞) + 𝑛

∑︁
𝑞∈𝑄

𝑚𝑞2
𝑚𝑞 +𝑚𝑓(𝑚𝑝𝑘)

∑︁
𝑞∈𝑄

2𝑚𝑞
)︀
.

Comparing the complexities of the algorithms, it is obvious that the time complexity of
Algorithm LocalSFA is worse than the time complexity of Algorithm NoCountSFA. Local
mintermization adds the first factor to the time complexity of Algorithm LocalSFA, in the
second factor one 𝑚𝑞 is replaced with 2𝑚𝑞 and in the third factor one 𝑚 is replaced with∑︀

𝑞∈𝑄 2𝑚𝑞 . However, the number of created minterms can be really small compared to
the number of transitions, especially if 𝑚𝑞 is small for all 𝑞 ∈ 𝑄 and predicates labelling
transitions do not intersect much. This means that Algorithm LocalSFA can sometimes
outperform Algorithm NoCountSFA.

24

Chapter 4

Evaluation

In the last chapter we introduced three new algorithms for computing simulation preorder
for SFAs. In this chapter we present experimental evaluation of these algorithm imple-
mented with the symbolic automata toolkit [25] (we talked about implementation details
in Sections 3.2.1 and 3.3.1). All the experiments were run on Intel Core i5–3230M CPU
2.6 GHZ with 4 GB of RAM. The results of experiments can be found on the attached CD
(see Appendix A for a list).

4.1 Regular Expressions Experiments
In this section we evaluate the algorithms on SFAs created from 1920 regular expressions
over the UTF-16 alphabet (we use the algebra BDD16). These regular expressions were
taken from the website [23] which contains a library of regular expressions contributed by
people all over the world, created for different purposes, such as detecting emails, URIs,
dates, times, addresses, phone numbers, etc. SFAs created from these regular expressions
were used during evaluation of algorithms computing minimal SFAs from deterministic
SFAs [8] and during the evaluation of bisimulation algorithms for SFAs [9]. The largest
automaton has 3190 states and 10 702 transitions and these SFAs have on average 2.5
transitions per state. Because UTF-16 alphabet is too large, only symbolic representation
is feasible for these automata.

102 103 104

100

101

102

103

104

number of transitions

co
m

pu
tin

g
tim

e/
m

s

globalSFA
localSFA

nocountSFA

Figure 4.1: Runtimes of algorithms for computing simulation preorder on SFAs created
from reg. expressions.

25

First, we compared the runtimes of Algorithms GlobalSFA, NoCountSFA and LocalSFA.
Figure 4.1 illustrates the runtimes where on 𝑥-axis is the number of transitions of automa-
ton and on the 𝑦-axis the time it took to compute algorithms in milliseconds. Both scales
are logarithmic and the figure does not show runtimes where all three algorithms took less
than 10 ms to finish. In 96.5 % cases Algorithms NoCountSFA and LocalSFA had similar
runtimes (differing less than 10 ms). In 58 cases Algorithm NoCountSFA performed better
(on average by 0.1 s with the largest difference 4.8 s) and in 7 cases Algorithm LocalSFA
performed better (on average by 0.5 s with the largest difference 1.8 s). Comparing Algo-
rithms NoCountSFA and GlobalSFA, these numbers were as follow: in 94 % cases they had
similar runtimes, in 98 cases Algorithm NoCountSFA was better and in 14 cases Algorithm
GlobalSFA was better (the average differences were 0.2 s and 0.4 s and the largest differences
were 8.6 s and 2.1 s respectively). For Algorithms LocalSFA and GlobalSFA the numbers
were: 97 % of similar cases, in 71 cases Algorithm LocalSFA was better and in 19 cases
Algorithm GlobalSFA was better (on average by 0.2 s and 0.1 s with largest differences 4 s
and 1.2 s).

102 103 104
100

101

102

103

104

number of transitions

co
m

pu
tin

g
tim

e/
m

s

globalSFA
localSFA

nocountSFA

Figure 4.2: Runtimes of algorithms for computing simulation preorder on reverse SFAs
created from reg. expressions.

We also compared runtimes of algorithms on reversed SFAs (Figure 4.2). In 96 % cases
Algorithms NoCountSFA and LocalSFA had similar runtimes, Algorithm NoCountSFA pre-
formed better 52 times (on average by 0.2 s with the largest difference 7.7 s) while Algo-
rithm LocalSFA 9 times (on average by 0.9 s with the largest difference 1.5 s). In the case
of Algorithms NoCountSFA and GlobalSFA the numbers were as follow: 94 % of simi-
lar cases, 101/14 cases of better performance on average by 0.4 s/0.4 s with largest differ-
ences 31.5 s/1.7 s. Finally, Algorithms LocalSFA and GlobalSFA they were: 94 % of similar
cases, 89/23 cases of better performance on average by 0.4 s/0.1 s with largest differences
23.7 s/0.9 s.

To conclude, in most cases Algorithm NoCountSFA had the best performance. How-
ever, in some cases Algorithm GlobalSFA outperformed other two, sometimes by quite big
margin. This can be explained by the small number of distinct predicates occurring in
these automata. For this reason, the automata generated relatively small number of global
minterms (sometimes smaller than the number of transitions), so the exponentional blow-
up in Algorithm GlobalSFA did not occur. In Section 4.2 we show situations where this
algorithm fails miserably. Interestingly, Algorithm LocalSFA usually performed worse than
one of those two, but better than another. This means that it ”mimicked” the behaviour

26

of the better one: if Algorithm NoCountSFA was better than Algorithm GlobalSFA, so
was Algorithm LocalSFA. Conversely, if Algorithm GlobalSFA was better than Algorithm
NoCountSFA, Algorithm LocalSFA was also better than Algorithm NoCountSFA.

100 101 102 103 104
100

101

102

103

104

simulation-based reduction

de
te

rm
in

ist
ic

m
in

im
iz

at
io

n

Figure 4.3: Comparison of the number of states using simulation-based reduction and
deterministic minimization on SFAs created from reg. expressions

In the next experiment we compared simulation-based state reduction with determin-
istic minimization. For reduction by simulation we used the technique introduced at the
end of Section 2.3. This means that we first reduced automaton with simulation preorder,
by merging simulation equivalent states, deleting unneeded transitions and removing un-
reachable states. Then we reversed the reduced automaton. After that we reduced the
reversed automaton with simulation and again reversed the result. We repeated this pro-
cess until a fixpoint, where reduction by simulation did not result in smaller automaton.
Because Algorithm NoCountSFA outperformed the other two in most cases, we used this
algorithm for computing simulation. For deterministic minimization we first determinized
the automaton and then used the algorithm introduced in [8] for minimization. In 11 cases
the determinization timed out after 100 seconds. Figure 4.3 shows the relation between
the number of states after the simulation-based reduction with the deterministic minimiza-
tion (logarithmic scales). In 64 % cases the automata did not differ in size while in 28.3 %
cases the simulation-based reduction created smaller automata (on average by 58 states).
In other cases the deterministic minimal automaton was smaller than the one created by
simulation by up to 8 states. On average, the simulation-based method reduced SFAs by
31 %. Deterministic minimization has on average created bigger automata by 4 %, because
in some cases after determinization the resulting automata were much bigger than original.
All in all, the simulation-based reduction created from some SFAs much smaller automata
than deterministic minimization.

27

101 102 103 104 105
101

102

103

104

105

simulation and det. min./ms

di
re

ct
de

t.
m

in
./

m
s

Figure 4.4: Comparison of runtimes of simulation-based reduction followed deterministic
minimization and direct deterministic minimization on SFAs created from reg. expressions

Because simulation-reduced automaton is smaller but still non-deterministic automaton,
we also wanted to check whether the runtime of simulation followed by deterministic mini-
mization is faster than deterministic minimization of original automaton. Figure 4.4 shows
this comparison, where we compare runtimes of direct minimization and simulation fol-
lowed by deterministic minimization. The runtimes are in milliseconds and maximal value
means that the determinization timed out. There were four cases where determinization
on reduced SFAs timed out after 100 seconds. In 91 cases direct deterministic minimiza-
tion was faster with the biggest difference 2.6 s and average difference 0.1 s. In 114 cases
deterministic minimization after simulation reduction was faster with the biggest difference
55.8 s and average difference 2.6 s. In other cases the difference was less than 10 ms. Clearly,
simulation reduction often significantly improves efficiency of determinization, especially in
hard cases. The differences in determinization time are usually either vast or negligeable

4.2 Edge Case Experiments
To show the problematic case for which the Algorithm GlobalSFA fails, we run all three
algorithms on SFA 𝑀𝑘 from the Example 3.2 for 1 < 𝑘 < 20. Figure 4.5 compares run-
times of these algorithms, where 𝑥-axis is the value of 𝑘 and 𝑦-axis is the computation time
in ms. It also shows that while Algorithms NoCountSFA and LocalSFA take roughly the
same time (1 ms) to compute the simulation preorder for all 𝑘, for Algorithm GlobalSFA
the execution time grows exponentially and for 𝑘 > 17 it runs out of memory. Obviously,
as this example was created as an edge case for Algorithm GlobalSFA, it does not always
reflect the real situation. Also, because there are at most two transitions going from each
state, the local mintermization in Algorithm LocalSFA had small impact on the runtime

28

5 10 15 20

0

5

10

15

𝑘

co
m

pu
tin

g
tim

e/
s

globalSFA
localSFA

nocountSFA

Figure 4.5: Runtimes of algorithms on 𝑀𝑘

of algorithm. In the next experiment we show the situation where both global and local
mintermizations cause problems.

4.3 WS1S Experiments
For experiments in this sections we used SFAs created during the decision procedure for
weak-monadic second order logic of one successor (WS1S). This logic uses variables that
can represent both numbers and finite sets of numbers and it has many applications such as
in software verification or computational linguistic. The WS1S decision procedure creates
an automaton from a WS1S formula whose language is the set of all encoded assignments
of variables in the predicate such that it satisfies the formula. See [7] for more information.
We used two batches of SFAs: 95 deterministic ones from the tool VATA [19] and 38
non-deterministic from dWiNA [13]. These automata had at most 2508 states and 34 374
transitions and, on average, 6 transitions per state. They use the algebra BDD𝑘 for suitably
chosen 𝑘.

102 103 104

100

101

102

103

104

105

number of transitions

co
m

pu
tin

g
tim

e/
m

s

globalSFA
localSFA

nocountSFA

Figure 4.6: Runtimes of algorithms for computing simulation preorder on SFAs created
during the WS1S decision procedure.

29

We again compare runtimes of simulation algorithms for original and also reversed
automata. Even though simulation is usually used for non-deterministic automata, we in-
cluded the results from deterministic SFAs, because the algorithms behaviours were similar
as for non-deterministic ones. Figure 4.6 shows runtimes on original SFAs. Again, we re-
moved SFAs where each algorithm took less than 10 ms to compute simulation preorder.
Algorithm GlobalSFA has run out of memory in 18 cases and there was one case where
Algorithm LocalSFA has run out of memory. Algorithm NoCountSFA had similar runtime
as Algorithm LocalSFA in 56 cases and in 76 cases it outperformed it (on average by 1.8 s).
Algorithm NoCountSFA also outperformed (77 cases) or had similar runtime (36 cases)
as Algorithm GlobalSFA. There were only 2 cases where Algorithm GlobalSFA was better
than NoCountSFA, and only by 0.1 s. Comparison of Algorithms LocalSFA and GlobalSFA
was similar; in 41 cases they performed similarly, in 66 cases Algorithm LocalSFA outper-
formed GlobalSFA on average by 2.5 s and in 8 cases Algorithm GlobalSFA was better (by
up to 0.3 s).

102 103 104
10−1

101

103

105

number of transitions

co
m

pu
tin

g
tim

e/
m

s

globalSFA
localSFA

nocountSFA

Figure 4.7: Runtimes of algorithms for computing simulation preorder on reverse SFAs
created during the WS1S decision procedure.

Figure 4.7 shows the runtimes of algorithms on reversed SFAs. Now, Algorithms Glob-
alSFA and LocalSFA run out of memory in 21 and 3 cases respectively. Also, both Al-
gorithms NoCountSFA and LocalSFA were similar to (in 29 and 32 cases respectively) or
outperformed (in 83 and 80 cases respectively; on average by 1.9 s) Algorithm GlobalSFA.
Algorithms NoCountSFA and LocalSFA performed similarly in 58 cases and in 71 cases Al-
gorithm NoCountSFA performed better, on average by 2.3 s. Obviously, for these automata
using global mintermization is out of question and using Algorithm NoCountSFA is the
best course of action.

We again compared the simulation-based state reduction with deterministic minimiza-
tion, but only for non-deterministic automata. Figure 4.8a compares the number of states
after deterministic minimization and simulation reduction and Figure 4.8b compares the
runtimes of direct deterministic minimization and simulation followed by deterministic min-
imization run on reduced automaton. In four cases both determinizations timed out, while
there was one case where only direct determinization timed out. In 18 cases deterministic
minimization produced smaller automata, while in 8 cases simulation reduction produced
smaller automata. On average, simulation reduced the number of states by 30 %, with
maximal reduction of 72 % (from 2217 states to 624 states). Deterministic minimization
created on average bigger automata by 20 %, because in some cases blow-up of states oc-

30

0 200 400 600 800 1,000
0

200

400

600

800

1,000

simulation-based reduction

de
te

rm
in

ist
ic

m
in

im
iz

at
io

n

(a) State reduction comparison

0 20 40 60 80 100
0

20

40

60

80

100

simulation and det. min./s

di
re

ct
de

t.
m

in
./

s

(b) Runtime comparison

Figure 4.8: Comparison of the number of states using simulation-based reduction and det.
min. and runtimes of simulation-based reduction followed by det. min. and direct det.
min. on SFAs created during the WS1S decision procedure

curred during determinization. Direct minimization was faster in 7 cases by up to 2.50 s (on
average by 0.8 s). Minimization with simulation was faster in 10 cases by up to 81 s (18 s
on average). While simulation did not usually create smaller automata than deterministic
minimization, it is obvious that using simulation-based reduction before determinization
can vastly improve the performance of determinization.

In this chapter we showed that Algorithm NoCountSFA is in most cases the best choice
for computing simulation preorder on SFAs. We also demonstrated that using simulation
before determinization to directly reduce the number of states of nondeterministic automa-
ton can greatly improve efficiency of determinization.

31

Chapter 5

Conclusion

In this work we introduced three new algorithms for computing simulation preorder on
SFAs. First one, Algorithm GlobalSFA, was based on global mintermization. Second one,
Algorithm NoCountSFA, did not use mintermization but only the capabilities of symbolic
automata. The last one, Algorithm LocalSFA was a modification of Algorithm NoCountSFA
that used local mintermization. We implemented and evaluated them on SFAs created from
regular expressions and during the decision procedure of WS1S logic. The two of them that
were based on mintermization did not scale well with larger automata while Algorithm No-
CountSFA had no problem with them. We also compared simulation-based reduction with
deterministic minimization where on benchmark of SFAs created from regular expressions
simulation-reduction usually created smaller automata than deterministic minimization.
On benchmarks of SFAs created during the decision procedure of WS1S logic in some cases
simulation-based reduction was better and in another deterministic minimization. Finally,
we showed that using simulation to reduce the number of states before determinization can
vastly improve the runtime of determinization of SFAs.

The next step for this work is to come up with an algorithm that improves efficiency by
working with equivalence classes of the current approximation of simulation instead of with
individual states. This technique was used in [22]. Another possible direction is extending
algorithms presented in this work to the symbolic encoding of automata similar to that of
MONA [12] where predicate constraint also the target states, not only input symbols.

32

Bibliography

[1] Abdulla, P. A.; Chen, Y.; Holík, L.; et al.: When Simulation Meets Antichains. In
TACAS, Lecture Notes in Computer Science, vol. 6015. Springer. 2010. pp. 158–174.

[2] Bradley, A. R.; Manna, Z.: The Calculus of Computation: Decision Procedures with
Applications to Verification. Secaucus, NJ, USA: Springer-Verlag New York, Inc..
2007. ISBN 3540741127.

[3] Bryant, R. E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Comput.. vol. 35, no. 8. August 1986: pp. 677–691. ISSN 0018-9340.
doi:10.1109/TC.1986.1676819.

[4] Bustan, D.; Grumberg, O.: Simulation-based Minimization. ACM Trans. Comput.
Logic. vol. 4, no. 2. April 2003: pp. 181–206. ISSN 1529-3785.
doi:10.1145/635499.635502.

[5] Champarnaud, J.-M.; Coulon, F.: NFA Reduction Algorithms by Means of Regular
Inequalities. Theor. Comput. Sci.. vol. 327, no. 3. November 2004: pp. 241–253. ISSN
0304-3975. doi:10.1016/j.tcs.2004.02.048.

[6] Champarnaud, J.-M.; Coulon, F.: Erratum to "NFA Reduction Algorithms by Means
of Regular Inequalities" [Theoret. Comput. Sci. 327(2004) 241-253]. Theor. Comput.
Sci.. vol. 347, no. 1-2. November 2005: pp. 437–440. ISSN 0304-3975.
doi:10.1016/j.tcs.2005.07.001.

[7] Comon, H.; Dauchet, M.; Gilleron, R.; et al.: Tree Automata Techniques and
Applications. 2007. [Online; accessed 13. 05. 2017].
Retrieved from: http://www.grappa.univ-lille3.fr/tata

[8] D’Antoni, L.; Veanes, M.: Minimization of Symbolic Automata. In Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’14. New York, NY, USA: ACM. 2014. ISBN 978-1-4503-2544-8. pp. 541–553.
doi:10.1145/2535838.2535849.

[9] D’Antoni, L.; Veanes, M.: Forward Bisimulations for Nondeterministic Symbolic
Finite Automata. In Proceedings of the 23rd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. TACAS’2017. Berlin,
Heidelberg: Springer-Verlag. 2017. ISBN 978-3-662-54577-5. pp. 518–534.
doi:10.1007/978-3-662-54577-5_30.

[10] De Moura, L.; Bjørner, N.: Z3: An Efficient SMT Solver. In Proceedings of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms for

33

http://www.grappa.univ-lille3.fr/tata

the Construction and Analysis of Systems. TACAS’08/ETAPS’08. Berlin, Heidelberg:
Springer-Verlag. 2008. ISBN 3-540-78799-2, 978-3-540-78799-0. pp. 337–340.

[11] Eberl, M.: Efficient and Verified Computation of Simulation Relations on NFAs.
Bachelor’s thesis. Technical University of Munich. Munich. 2012.

[12] Elgaard, J.; Klarlund, N.; Møller, A.: MONA 1.X: New Techniques for WS1S and
WS2S. In Proceedings of the 10th International Conference on Computer Aided
Verification. CAV ’98. London, UK, UK: Springer-Verlag. 1998. ISBN 3-540-64608-6.
pp. 516–520.

[13] Fiedor, T.; Holík, L.; Lengál, O.; et al.: Nested Antichains for WS1S. In Proceedings
of the 21st International Conference on Tools and Algorithms for the Construction
and Analysis of Systems - Volume 9035. New York, NY, USA: Springer-Verlag New
York, Inc.. 2015. ISBN 978-3-662-46680-3. pp. 658–674.
doi:10.1007/978-3-662-46681-0_59.

[14] Henzinger, M. R.; Henzinger, T. A.; Kopke, P. W.: Computing Simulations on Finite
and Infinite Graphs. In FOCS. IEEE Computer Society. 1995. pp. 453–462.

[15] Hooimeijer, P.; Veanes, M.: An Evaluation of Automata Algorithms for String
Analysis. In Proceedings of the 12th International Conference on Verification, Model
Checking, and Abstract Interpretation. VMCAI’11. Berlin, Heidelberg:
Springer-Verlag. 2011. ISBN 978-3-642-18274-7. pp. 248–262.

[16] Hopcroft, J. E.: An 𝑛 log 𝑛 Algorithm for Minimizing States in a Finite Automaton.
Technical report. Stanford University. Stanford, CA, USA. 1971.

[17] Ilie, L.; Navarro, G.; Yu, S.: On NFA Reductions. In Theory Is Forever, Lecture
Notes in Computer Science, vol. 3113. Springer. 2004. pp. 112–124.

[18] Jiang, T.; Ravikumar, B.: Minimal NFA Problems Are Hard. SIAM J. Comput..
vol. 22, no. 6. December 1993: pp. 1117–1141. ISSN 0097-5397. doi:10.1137/0222067.

[19] Lengál, O.; Šimáček, J.; Vojnar, T.: VATA: A Library for Efficient Manipulation of
Non-deterministic Tree Automata. In Proceedings of the 18th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
TACAS’12. Berlin, Heidelberg: Springer-Verlag. 2012. ISBN 978-3-642-28755-8. pp.
79–94. doi:10.1007/978-3-642-28756-5_7.

[20] Paige, R.; Tarjan, R. E.: Three Partition Refinement Algorithms. SIAM J. Comput..
vol. 16, no. 6. December 1987: pp. 973–989. ISSN 0097-5397. doi:10.1137/0216062.

[21] Ranzato, F.: A More Efficient Simulation Algorithm on Kripke Structures. In MFCS,
Lecture Notes in Computer Science, vol. 8087. Springer. 2013. pp. 753–764.

[22] Ranzato, F.; Tapparo, F.: A New Efficient Simulation Equivalence Algorithm. In
LICS. IEEE Computer Society. 2007. pp. 171–180.

[23] Regular Expression Library. 2017. [Online; accessed 13. 05. 2017].
Retrieved from: http://regexlib.com/

34

http://regexlib.com/

[24] Veanes, M.: Applications of Symbolic Finite Automata. In Proceedings of the 18th
International Conference on Implementation and Application of Automata. CIAA’13.
Berlin, Heidelberg: Springer-Verlag. 2013. ISBN 978-3-642-39273-3. pp. 16–23.
doi:10.1007/978-3-642-39274-0_3.

[25] Veanes, M.; Bjørner, N.: Symbolic Automata: The Toolkit. In Proceedings of the 18th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. TACAS’12. Berlin, Heidelberg: Springer-Verlag. 2012. ISBN
978-3-642-28755-8. pp. 472–477. doi:10.1007/978-3-642-28756-5_33.

[26] Veanes, M.; Halleux, P. d.; Tillmann, N.: Rex: Symbolic Regular Expression
Explorer. In Proceedings of the 2010 Third International Conference on Software
Testing, Verification and Validation. ICST ’10. Washington, DC, USA: IEEE
Computer Society. 2010. ISBN 978-0-7695-3990-4. pp. 498–507.
doi:10.1109/ICST.2010.15.

[27] Veanes, M.; Hooimeijer, P.; Livshits, B.; et al.: Symbolic Finite State Transducers:
Algorithms and Applications. In Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’12. New York, NY, USA: ACM. 2012. ISBN 978-1-4503-1083-3. pp. 137–150.
doi:10.1145/2103656.2103674.

35

Appendices

36

Appendix A

Contents of CD

Directories and files of attached CD:

∙ /doc/ contains source files of this thesis,

∙ /src/ contains source files of implementation of simulation algorithms,

∙ /results/ contains .csv files of experimental results where

– regexNormal.csv contains comparison of simulation algorithms for SFAs created
from regular expressions,

– regexReverse.csv contains comparison of simulation algorithms for reversed
SFAs created from regular expressions,

– WS1SNormal.csv contains comparison of simulation algorithms for SFAs created
during decision procedure of WS1S logic where automata ending with .dfa are
deterministic and thos ending with .aut are nondeterministic,

– WS1SReverse.csv contains comparison of simulation algorithms for reversed
SFAs created during decision procedure of WS1S logic,

– edgecase.csv contains comparison of simulation algorithms for SFAs 𝑀𝑘 from
Example 3.2,

– regexSimDetMin.csv contains comparison of deterministic minimization and
reduction based on simulation of SFAs created from regular expressions,

– WS1SSimDetMin.csv contains comparison of deterministic minimization and re-
duction based on simulation of SFAs created during decision procedure of WS1S
logic.

37

Appendix B

Bound of the number of transitions

In this section we prove Equation 3.1:
𝑚∑︁
𝑘=0

𝑘

(︂
𝑚

𝑘

)︂
= 𝑚2𝑚−1.

Proof. To prove this equation, we need to first realize that for 𝑛 ≥ 0

2𝑛 = (1 + 1)𝑛 = 1𝑛10
(︂
𝑛

0

)︂
+ 1𝑛−111

(︂
𝑛

1

)︂
+ · · ·+ 101𝑛

(︂
𝑛

𝑛

)︂
=

𝑛∑︁
𝑘=0

(︂
𝑛

𝑘

)︂
.

Now
𝑚∑︁
𝑘=0

𝑘

(︂
𝑚

𝑘

)︂
= 0

(︂
𝑚

0

)︂
+ 1

(︂
𝑚

1

)︂
+ · · ·+𝑚

(︂
𝑚

𝑚

)︂
=

=

(︂
𝑚

0

)︂
+

(︂
𝑚

1

)︂
+ · · ·+

(︂
𝑚

𝑚

)︂
−
(︂
𝑚

0

)︂
+

+

(︂
𝑚

0

)︂
+

(︂
𝑚

1

)︂
+ · · ·+

(︂
𝑚

𝑚

)︂
−
(︂
𝑚

0

)︂
−
(︂
𝑚

1

)︂
+

+

(︂
𝑚

0

)︂
+

(︂
𝑚

1

)︂
+ · · ·+

(︂
𝑚

𝑚

)︂
−
(︂
𝑚

0

)︂
−
(︂
𝑚

1

)︂
−
(︂
𝑚

2

)︂
+

+
... +

... +
. . . +

... −
... −

... −
... − . . . +

+

(︂
𝑚

0

)︂
+

(︂
𝑚

1

)︂
+ · · ·+

(︂
𝑚

𝑚

)︂
−
(︂
𝑚

0

)︂
−
(︂
𝑚

1

)︂
−
(︂
𝑚

2

)︂
− · · · −

(︂
𝑚

𝑚− 1

)︂
=

= 𝑚

𝑚∑︁
𝑘=0

(︂
𝑚

𝑘

)︂
−𝑚

(︂
𝑚

0

)︂
− (𝑚− 1)

(︂
𝑚

1

)︂
− · · · − 1

(︂
𝑚

𝑚− 1

)︂
− 0

(︂
𝑚

𝑚

)︂
=

= 𝑚2𝑚 −
𝑚∑︁
𝑘=0

𝑘

(︂
𝑚

𝑚− 𝑘

)︂
= 𝑚2𝑚 −

𝑚∑︁
𝑘=0

𝑘

(︂
𝑚

𝑘

)︂
,

because
(︀
𝑚

𝑚−𝑘
)︀

=
(︀
𝑚
𝑘

)︀
. Let 𝑥 =

∑︀𝑚
𝑘=0 𝑘

(︀
𝑚
𝑘

)︀
. Then we have

𝑥 = 𝑚2𝑚 − 𝑥
2𝑥 = 𝑚2𝑚

𝑥 = 𝑚2𝑚−1.

38

	Introduction
	Automata Theory
	Classical Automata
	Symbolic Finite Automata
	Mintermization

	Simulation

	The Algorithms
	FA Simulation
	Time Complexity

	Global SFA Simulation
	Implementation
	Time Complexity

	Local SFA Simulation
	Implementation
	Time Complexity

	Evaluation
	Regular Expressions Experiments
	Edge Case Experiments
	WS1S Experiments

	Conclusion
	Bibliography
	Appendices
	Contents of CD
	Bound of the number of transitions

