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Abstract 

The main goal of this master thesis is to carry out the analysis of differential gene 

expression using a negative binomial model. The first part is devoted to theoretical basis, 

discusses the RNA sequencing, Next-Generation Sequencing (NGS), the benefits and 

applications, and FASTAQ format. The second part is the practical part, there was chosen a 

suitable data set of genes, that will be later analyzed, and the relevant data was downloaded. 

This data was aligned to the human genome version 37 by Burrows-Wheeler transform and 

the SAM formatted files were created using the Bowtie mapper. The SAM formatted files 

were sorted by SAMtools. In the following part of this work was created an annotation object 

of target genes using Ensembl´s BioMart service and Matlab (version R2013b). Next, digital 

gene expression was determined and library size factor was estimated. In the end the negative 

binomial distribution parameters were estimated and data was tested for a differential gene 

expression. 
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Abstrakt 

Hlavním cílem této diplomové práce je analýza diferenciální exprese genů na základě 

negativního binomického modelu. Úvodní část je věnována teoretickému základu, pojednává 

o sekvenování RNA, sekvenování nové generace, výhodách a možném využití, formátu fastQ 

aj. Následující část už se zabývá samotnou praktickou částí, zde byl vybrán vhodný set genů, 

které budou později analyzovány a příslušná data byla stažena. Tato data byla zarovnána 

k lidskému genomu verze 37 Burrowsovou-Wheelerovou transformací s využitím bowtie 

mapovače, byly tak vytvořeny soubory ve formátu SAM. Toto soubory dat byly později 

setříděny pomocí nástroje SAMtools. Následně byly v programovém prostředí Matlab (verze 

R2013b) vytvořeny anotované objekty genů s využitím služby Ensembl´s BioMart. Dále byla 

určena genová exprese a byly odhadnuty faktory velikosti knihovny. Na závěr byly odhadnuty 

parametry negativního binomického rozložení a byla vyhodnocena diferenciální exprese genů. 

Klíčová slova 

RNA-sekvenování, sekvenování nové generace, diferenciální genová exprese, rakovina 

prostaty 
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INTRODUCTION 
 

Gene expression is the process by which information from a gene is used in the 

physiological synthesis of functional gene products; the most important are proteins. All 

somatic cells in our body contain the same genetic information, but each cell type expresses a 

unique subset of all encoded genes. This is because each type of cell expresses different 

genes, this mechanism is known as "differential gene expression." Every organism regulates 

its gene expression to achieve developmental changes, cellular specialization or adaptation to 

a new environment. Analysis of gene expression patterns provides a valuable understanding 

of the normal biological and disease processes. The most percentage of differential gene 

expression analysis is now focused on cancer diseases. The scientists are studying the 

differences between the gene expression of treated and non-treated cells. The research can 

bring huge possibilities in the future to provide an answer, how to affect part of the genome in 

a way that a diseased person becomes healthy again. [47] 

Differential gene expression can be controlled at many levels. Transcription occurs at the 

first stage of the expression. RNA-sequencing, called also whole genome sequencing, is an 

emerging technology for surveying gene expression at the transcript resolution. The recent 

Next-Generation Sequencing (NGS) methods have been developed during the last decade. 

Those revolutionary technologies provide cheap, fast and correct information about the DNA 

sequencing. [9] 

The aim of this work is identifying differentially expressed genes from RNA-Seq Data by 

a selected method implemented in MATLAB using its bioinformatics and statistics toolboxes. 

This thesis deals with various methods of Next-Generation Sequencing, their advantages and 

applications, and provides theoretical basis.  

In the practical part, we choose  a set of interested genes, as prostate cancer data set and 

download their sequences  to analyze them by MATLAB environment. Following the NGS 

data analyzing workflow, we produce SAM formatted files by mapping the downloaded short 

reads to the whole human genome. For this task, we use Bowtie mapper under Linux as an 

implementation of a method to map short reads to a reference sequence using Burrows-

Wheeler transform. Then we sort the mapped reads in SAM format using SAMtools. For the 

subsequent analysis we create an annotation object of the targeted genes.  Then use Ensemle´s 

BoiMart service to download the table of all protein encoding genes and load this table in 

MATLAB to create an annotation file. To create a BioMap, which is an object enables better 

manipulation of the sequences, we import the mapped short reads into MATLAB. To 
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determine the digital gene expression, we use  the previously created BioMap objects and the 

bioinformatics toolbox including its implemented functions. Then we study the inference of 

differential signal in RNA expression, this means estimating library size factor and negative 

binomial distribution parameters. Eventually we test the data for differential gene expression, 

to figure out how the gene expression was affected in DHT-treated sample.      
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1 BACKGROUND INFORMATION 
 

1.1 Genomic sequencing 

  

As the DNA carries the genetic information, we need to know the nucleotide order of 

DNA fragments. The process of getting this information is called sequencing. By sequencing 

we can find the epigenetic changes which are affected by the gene expression, for example 

methylation. DNA sequences are essential virtually for all branches of biological research. 

One of the first methods; Sanger sequencing has always been restricted by inherent limitations 

(throughput, scalability, speed, and resolution). To overcome these barriers, a new technology 

was required; Next-Generation Sequencing (NGS). In last 50 years the field of molecular 

biology made a huge progress, specially sequencing, in the beginning we could read only few 

bp (base pair), nowadays we are able to read millions of reads in only few hours.  

Next-Generation Sequencing is called also second or third generation sequencing, deep or 

ultra-deep sequencing or massive parallel sequencing. With discovery of the NGS, the cost 

per Mb of DNA sequence has rapidly decreased. The same effect is seen on the cost per 

genome. (Figure 1, Figure 2) [1] 

 

 

Figure 1: Cost per Megabase of DNA sequence has rapidly decreased (www.genome.gov) 

http://www.genome.gov/
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Figure 2: Cost per Human Genomes rapid decrease (www.genome.gov ) 
 

  

1.2 RNA sequencing – view the whole transcriptome 

 

Transcriptome analysis is an important tool for characterizing and understanding of the 

molecular basis of phenotypic variation in biology, including diseases. In the previous time, 

DNA microarrays have been used to quantify of mRNA, which corresponds to different 

genes, but recently high-throughput sequencing of cDNA (RNA-seq) has come out as a 

powerful competitor. The use of RNA-seq for differential expression analysis will rapidly 

increase, because the cost of sequencing decreases.  

RNA sequencing workflow, from sample preparation through data analysis, enables rapid 

profiling and deep investigation of the transcriptome. With the greatest daily output available 

for any sequencing system, transcript profiles can be viewed in a single day.  

RNA sequencing reads can be aligned across splice junctions and isoforms, novel transcripts 

and gene fusion can be identified. [2] 

 

 

 

 

http://www.genome.gov/


 

 11 

1.2.1 Application of RNA-Seq 

mRNA-Seq 

 

mRNA-Seq delivers unbiased and unparalleled information about the transcripotome, that 

all with no probes or primers to design. "Stranded" information identifies from which of the 

two DNA strands was the given transcript delivered. It provides increased trust in transcript 

annotation  particularly for non-human samples and may serve to increase the percentage of 

aligned reads, and reducing sequencing costs per sample. Strand orientation also provides the 

detection of antisense expression, providing visibility to regulatory relationships that would 

otherwise be missed. [3] 

 

Total RNA-Seq 

 

Whole-transcriptome analysis with total RNA-seq covers a wide range of gene expression 

changes and enables the detection of novel transcripts in both coding and non-coding RNA 

types. Ribo-Zero ribosomal RNA reduction chemistry, removes efficiently ribosomal RNA 

(rRNA), using a hybridization/bead capture procedure, that selectively binds target sequences 

using biotinylated capture probes. This process minimizes ribosomal contamination and 

optimizes the percentage of reads covering RNA species that are interesting. [3] 

 

Paired-End RNA-Seq 

 

Paired-End RNA-Seq is a universal application using 200-500 bp fragments, paired-end 

libraries [3]. It is strategy for genome-wide, high-resolution identification of fusion genes and 

other large scale rearrangements. It can be used for paired-end sequencing of clones, or other 

fragments of genomic DNA, from tumor samples. The resulting paired reads, are mapped 

back to the reference human genome sequence. If the mapped locations of the ends of a clone 

are “invalid” (i.e. have abnormal distance or orientation) then a genomic rearrangement is 

suggested. [4] 

 

Ultra-Low RNA Input 

 

Ultra-Low RNA Input workflow enables RNA sequencing from extremely low amounts 

of total RNA, starting with as little as 100 pg total RNA. It offers the powerful attributes of 

RNA-Seq with unparalleled sensitivity, accurate gene quantification, and dynamic range. [3] 
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1.2.2 RNA-Seq Advantages 

Data Benefits 

 Provides discreet and digital sequencing reads count that can be aligned to particular 

sequence. 

 Capture all changes in gene expression. 

 Real-time discovery. 

 Applicable for any specie or transcriptome, even with no prior knowledge about the 

sequence. [3] 

 

Cost 

 RNA-Seq experiments are scalable for many applications. 

 Get arrays with minimal reads. 

 Faster results and lower cost per sample, because of high throughput of RNA-Seq. 

 Constant sequencer improvements make the price per sample lower [3] 

 

 

Workflow 

 With an RNA-Seq library preparation workflow, the potential error can be minimized. 

 Integrated indexed adapters enhance the performance. 

 Eliminating gel purification reduces the time consuming. 

 Possibility to automate the RNA-Seq workflow for the high volume. [3] 

 

Software options 

 Developed an open-source software. 

 Possibility to reanalyze the data as a new information is available. 

 Gives a digital profile of the whole transcriptome. [3] 

 

1.3 Next-Generation Sequencing 

The Next-Generation Sequencing (NGS) is a revolutionary technology provides cheap, 

correct and accurate information about DNA sequence. Capillary electrophoresis-based 

Sanger sequencing has always been constrained by few limitations in throughput; the 

scalability, the speed and the resolution that often prevent the scientists from obtaining the 

most important information, which they need for their study [5]. NGS has completely 
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dominated the area of basic and applied research that dealing with DNA analysis. The latest 

next-generation sequencing instruments can generate as much data in 24 hours as several 

hundred of Sanger-type DNA capillary sequencers, but they are operated by a single person 

[6]. Nowadays, NGS is used also in clinic diagnosis, mainly in those applications where huge 

quantity of sequence information or high resolution is needed.  

The principle of NGS technology is similar to Sanger method; the bases of a small fragment 

of DNA are identified from signals emitted, as each fragment is synthesized from a DNA 

template strand. NGS runs this process in millions of reactions in massively parallel way, it is 

not limited to a single or a few DNA fragments. That is why NGS is also called massive 

parallel sequencing. This advantage allows rapid sequencing of large sections of DNA, such 

as whole genomes. The overview of whole-genome sequencing in Figure 3 shows the 

principle. There is a single genomic DNA (gDNA) in the first step (A). Then in the second 

step (B) the gDNA is fragmented into a library of small segments that are sequenced in 

parallel. While the individual sequence reads are compiled by aligning to a reference genome 

in the third step (C). Eventually in the last step (D) the whole genome sequence is derived 

from the consensus of aligned reads. NGS produces hundreds of gigabases of data in a single 

sequencing run [7].  

 

 

Figure 3: Overview of the whole-genome sequencing (modified from www.illumina.com ) 

 

More important than the sequencing throughput and its relative low cost compared with 

traditional Sanger method, is the type of data it generates. NGS provides much shorter reads 

(~21 to ~400 bp), but millions of them instead of long reads generated from a PCR-amplified 

samples. Another advantage is high flexibility for the level of resolution for a given 

http://www.illumina.com/
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experiment. It can focus on specific regions of the genome with high resolution (cancer 

research), or provide more expansive view to the whole genome with lower resolution. To 

adjust the level of resolution, the coverage is tuned. The coverage means, the average number 

of sequencing reads that align to each base within the sample DNA. (Example: a whole 

genome sequenced at 25x coverage means that, on average, each base in the genome was 

covered by 25 sequencing reads) [6]. 

NGS provides quantitative data – discrete and digital sequencing read counts – it allows 

quantifying applications, such as gene expression analysis [16]. 

However, the huge amount of data from next-generation sequencing studies might take a 

relatively long time to be translated into useful clinical information. [9] 

 

1.3.1 454 (Roche), 2005 

It is the first commercial platform of the NGS. It is unique combination of Sanger read 

lengths and NGS high throughput. The system 454 uses beads; each one bead equals one 

DNA fragment  or one read. After emulsion amplification millions of beads are loaded onto 

PicoTitre Plate, where the design allows to bind just one bead per one well. All beads are then 

sequenced in parallel using pyrosequencing reaction. [8] 

 

The complete sequencing workflow: 

1. Generating of a single-stranded DNA library. 

2. Amplifying of the library using emulsion PCR (millions of copies). 

3. Sequencing – data generating. 

4. Data analysis. 

 

  
       Figure 4: emulsion PCR (www.454.com)               Figure 5: PicoTitrePlate (www.454.com) 

 

 

http://www.454.com/
http://www.454.com/
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Application:  

 Whole genome sequencing (de novo, sequencing). 

 Amplicon sequencing. 

 Transcriptome sequencing (RNA-seq – gene expression analysis). 

 Metagenomics.  

    

1.3.2 Illumina (Illumina), 2007 

It is the second commercial platform of the NGS. The principle is based on amplification 

using “bridge” PCR on solid glass surface to amplify DNA into small clusters and sequence it 

using synthesis. Illumina genome analyzer provides variable lengths of reads (36-300 bp), 

(Table 1). Illumina has the lowest cost per read per Mb. In the beginning it was for genome 

sequencing, but nowadays it is widely used in many other applications. [9] 

 

Complete workflow can be divided into 3 steps: 

1. Library Preparation. 

2. Cluster Generation. 

3. Sequencing. 

 

Library Preparation 

DNA is randomly fragmented. The ends of fragments are repaired; by adding adenine 

overhang (Figure 6, B) and ligating the adapters to both ends of the fragments (Firuge 6, C). 

Then the ligated DNA fragments are selected using gel electrophoresis (Figure 6, D). 

 

 

Figure 6: Illumina workflow – Library Preparation [9] 
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Cluster Generation 

The single-strand fragments are randomly bounded to the surface (Figure 7, E). Unlabeled 

nucleotides and enzyme are added to perform bridge PCR (Figure 7, F). During the next step 

DNA fragments are amplified (Figure 7, G) and the clusters are generated (Figure 7, G). In 

the end the sequencing primer is annealed (Figure 7, H). 

 

 

Figure 7: Illumina workflow – Cluster Generation [9] 

 

Sequencing 

To initiate the first sequencing cycle, all the four labeled reversible terminators, primers 

and DNA polymerase are added to the flow cell. After the laser excitation, the image of 

emitted fluorescence from each cluster on the flow cell is captured. The identity of the first 

base for each cluster is recorded (Figure 8, I). The previous step is repeated until the whole 

strand is extended (Figure 8, J). After generating base calls (Figure 8, K), data can be aligned, 

compared to a reference genome to identify the differences.   

 

Application: 

 Whole-genome sequencing. 

 De novo sequencing. 

 Targeted sequencing. 

 DNA sequencing. 

 RNA sequencing . 

 Methylation analysis. 
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Figure 8: Sequencing steps [9] 

 

1.3.3 SOLiD System (Applied Biosystems / Life Technologies), 2008 

The massively parallel sequencing by hybridization-ligation, and the implementation in 

the supported oligonucleotide ligation and detection system (SOLiD), became available in 

2008. The ligation chemistry is used in SOLiD, based on the same technique as in 454 [10]. 

Construction of libraries for analysis begins with emulsion PCR single-molecule 

amplification, similar to the using technique in 454. The products of amplification are 

transferred onto a glass surface, where the sequencing happens by sequential rounds of 

hybridization and ligation. The glass surface with the products is labeled by four different 

fluorescent colors. As the 4 colors encoding scheme is used, each position is probed twice. 

The identity of nucleotide is determined by analyzing the color that results from two 

sequential ligation reactions. This method has significantly higher specificity and a higher 

accuracy than the sequencing by synthesis approach [11]. SOLiD system produces 1-3 Gb of 

sequence data in 35-bp reads. (Table 1) 

 

Application: 

 Whole genome sequencing. 

 Microbial and eukaryotic sequencing. 

 Medical sequencing. 

 Gene expression. 

 Small RNA discovery. 
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1.3.4 Ion Torrent (Life Technologies), 2010 

Ion semiconductor sequencing is considered to be the fastest and most affordable 

benchtop sequencer. The Ion Personal Genome Machine (PGM) Sequencers delivers the 

fastest run time, at the most affordable price, of any next-generation sequencer. High accuracy 

and long reads of the Ion PGM
 
Sequencer makes the next-generation sequencing more 

accessible to scientists. This technology directly translates chemically encoded information 

(A, T, C, G) into digital information (0, 1) on a semiconductor chip. The principle of this 

technology that the hydrogen ion is released as a byproduct, when a nucleotide is incorporated 

into a DNA strand by a polymerase. It is based on the direct detection, without scanning, nor 

cameras, nor light. This type of detection using ion sensor makes Ion PGM Sequencer so fast. 

However, the throughput is currently lower than the other NGS systems. Developers hope to 

change it by increasing density of the chip. [12] 

 

Complete workflow is affordable, almost fully automated: 

1. Library construction. 

2. Template preparation. 

3. Sequencing (only hours, not days). 

4. Data analysis. 

 

As the Ion PGM Sequencer is most flexible and scalable technology, the application is 

wide from the targeted sequencing, through the exome sequencing, and the transcriptome 

sequencing to the whole genome sequencing. [12] 

1.3.5 Oxford Nanopore (Oxford NANOPORE Technologies), 2012 

The platform technology analyzes single molecules, it is also called the 3rd generation  

sequencing, as no amplification is required. Oxford Nanopore’s system uses nanopore 

sequencing to rapidly read DNA sequences. A DNA strand is fed through a biological pore by 

an enzyme and the various bases are identified by measuring the difference in their electrical 

conductivity as they pass through the pore [13] (Figure 9). The most important advantages of 

this technology are the potential for dramatically longer read lengths (from tens of bases to 

tens of thousands of bases per read (Table 1), shorter time (from days to hours or minutes), 

small amounts of starting material (theoretically only single molecule) and lower overall cost. 

[14] 
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The initial system provides the nodes containing 2.000 nanopores that can read DNA at a rate 

of hundreds of kilobases per second. Gordon Sanghera, Oxford’s chief executive said, that 

combining 20 nodes containing 8.000 nanopores would theoretically be able to sequence a 

whole human genome in 15 minutes. 

The company has developed two systems. The portable MiniION device would theoretically 

allow doctors to sequence directly from a patient’s blood in the clinic, while the larger 

GridION device can sequence a whole genome in a day. 

 

 

 

Figure 9: The nanopore sequencing identification of the bases in a DNA strand as it passes through 

a pore (www.nanoporetech.com ) 

 

DNA sequencing applications: 

 Whole genome sequencing (de novo, sequencing). 

 Targeted sequencing. 

 Gene expression analysis. 

 Metagenomics. 

 

 

 

 

http://www.nanoporetech.com/
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New generation sequencing methods have undergone very fast evolution in previous decade. 

In Table 1 are summarized the methods and their properties that discussed in this work.  

 

Platform Year Seq. 

method 

Amplification Read 

length 

Detection Features 

454 2005 Pyro-

sequencing 

Emulsion PCR 200-300 

bp 

Light 1
st
 NGS 

Illumina 2007 Synthesis Bridge PCR 36-300 

bp 

Light 90% of market 

SOLiD 2008 Ligation Emulsion PCR 35 bp Light Lowest Error 

Rate 

Ion 

Torrent 

2010 Synthesis Emulsion PCR 400 bp Hydrogen 

Ion 

Semiconductor 

Chip 

Oxford 

Nanopore 

2012 Nanopore None=Single 

molecule 

>10.000 

bp 

Electrical 

Conductivity 

“Run Until’’ 

Sequencing 

 

Table 1: Summary of the recent NGS methods (modified from [15]) 

 

1.4 NGS Data Analysis Workflow  

Next-generation sequencing has surely many advantages, especially decreasing price per 

Mb or whole genome, speed, high throughput and accuracy. However, the data is less 

understood and the data analysis is still under development. [16] 

Few important questions must be answered before every experiment: 

Where on the genome did each fragment originate?  

For each gene, how many fragments did originate from this gene?  

What are the problems we may encounter?  

 

As the NGS brings the biggest benefit in Human diseases researches, there is a good 

reference genome available, and it is possible to align obtained NGS data to it [17]. Below is 

one of the workflows how to handle with NGS Data. (Figure 10) 
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Figure 10: Data Analysis Workflow with a good reference genome [16] 

 

1.4.1 FASTQ format 

Raw NGS data is usually in FASTQ format. It has emerged as a common file format for 

sharing sequencing reads data and combining both the sequence and the associated quality 

score per base [18]. FASTQ format is practically extension of previous FASTA format, but 

the last-mentioned still widely used. However, the FASTA format is not ideal for very long 

sequences.  

In FASTQ format each read has 4 lines: 

1. ID 

2. Reads sequence 

3. Optional ID 

4. Quality score 

 

ID 

ID begins with @ and includes information about the sequence. 

Example: 

@HWI-ST972:1044:D0E8NACXX:8:1101:1098:2055 1:N:0: ATCACG 

The red is machine, run and lane identifier. 

The blue: is the read (fragment) identifier. 

The green: is the direction of the read 1 or 2 (3’ or 5’ end of the paired DNA reads). 

Read Quality Check 

Read Pre-processing 

Mapping to a reference 
genome 

Count 
Fragments/Abundance 

Differential expression 
analysis 
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The black: is the passed or the failed filter. Barcode sequence.  

Read Sequence 

The sequence itself  

Example: 

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTC 

 

Optional ID 

It always begins with “+” and contains additional information about the sequence. 

 

Quality score 

Quality scores. The most used is the Phred Quality Scores. 

 

1.4.2 Phred Quality Scores 

Phred Quality Score of a nucleotide base is considered to be standard for estimating the 

probability of error. The quality value is assigned for each base. History of Phred Quality 

Scores goes back to Human Genome Project, where it helped in the automation of DNA 

sequencing. Nowadays, it is widely accepted quality format to characterize the quality of 

DNA sequences. Phred Quality Score can be used to compare the efficacy of different 

sequencing methods.  

Phred Quality Score QPHRED is defined as a property which is logarithmically linked to the 

base error probabilities P [19].  

                                  )(log10 10 PQPHRED                       (1) 

The quality scores are shown in Table 2.  

Phred Score Probability of 

incorrect base call 

Accuracy 

10 1 in 10 90 % 

20 1 in 100 99 % 

30 1 in 1000 99.9 % 

40 1 in 10000 99.99 % 

50 1 in 100000 99.999 % 

 

Table 2: Phred Quality Scores and their relation to the accuracy 
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Currently raw Illumina data quality scores are expected in the range 0-40 [18].  

Phred scores are stored as ASCII printable characters to make the file more human readable 

and easily edited. 

 

Figure 11: ASCII characters corresponding to Phred quality scores 

 

1.5 Application and perspective of the NGS 

The application of the NGS has already been described above together with every single 

technology of the NGS. The 2
nd

 and 3
rd

 generation sequencing technologies lead to more 

comprehensive understanding of the living systems and the phenotypes (like human disease), 

that emerge from this system. The 2
nd

 generation sequencing technologies have already a 

huge impact on DNA sequencing. They are used to identify many rear variations in tumor 

tissues associated with different cancer types, as for example; the pancreatic cancer, the 

glioblastoma or the colon cancer [20, 21, 22]. The huge perspective of the NGS is in the 

personalized medicine, where the scientists are developing and using diagnostic tests based on 

the genetics or the other molecular mechanisms to better predict patients' responses to 

targeted therapy [23]. Finally, the NGS is very useful tool in the analysis of differential gene 

expression.  

1.6 Negative Binomial model 

The Negative Binomial Distribution is the distribution of the number of trials needed to 

get the r
th

 success and to get the fixed number of successes. We suppose there are independent 

trials and each trial results in one or two possible outcomes, which are labeled success and 

failure. 

Notation: NB(r, ) 

Negative Binomial Distribution has two parameters: 

  : Is the success probability in each experiment, 0 <  < 1 

 r: Is the number of failures until the experiment is stopped, r > 0 

The probability mass function of the Negative Binomial distribution is: 

 

    (1) 
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We are usually interested in two characteristics of the Negative Binomial distribution: 

 Mean defined as   

 Variance defined as  

 The Figure 12 illustrates the graph of the Negative Binomial distribution for the growth of 

the variable r. 

 

 

Figure 12:   Negative Binomial distribution. The graphs show that  for increasing r, negative 

binomial distribution is approaching normal distribution  

(http://www.eistat.cz/teorie/rozdeleni/diskretni/negbinomic/index.htm) 
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1.7 Prostate Cancer 

Prostate cancer is a form of cancer developing in the prostate; a gland in the male 

productive organ. Prostate cancer is one of the most frequently diagnosed malignant tumor 

affecting men around the whole world. Most of the tumors are growing slowly, but there are 

also cases of aggressive prostate cancer [35]. The rates of detection of prostate cancers vary 

across the world, in South and East Asia is the rate lower than in Europe and in the United 

States [36]. The therapeutic success rate for the prostate cancer is higher if the disease is 

diagnosed in early stage. The successful therapy for this disease depends on the clinical 

biomarkers for early detections of the presence and progression of the disease, as well as the 

prediction after the clinical intervention. [37] 

 

Signs a symptoms 

The prostate cancer in initially stage causes often no symptoms, but in later stages causes 

pain, frequent urination, problems during sexual intercourse, erectile dysfunction and death 

[38]. Advanced prostate cancer can metastasize to other parts of the body and metastasis can 

cause new additional symptoms. The most common symptom is pain in bones (vertebrae, 

pelvis or ribs). The prostate cancer can also compress the spinal cord and cause leg weakness 

and urinary and fecal incontinence [39]. 

Risk factors 

A complete epidemiology of prostate cancer is still not clear [40]. The most important risk 

factors are obesity, age and genetic. Men younger than 45 years, usually don´t suffer from this 

disease, the prostate cancer is more common with advancing age. The average age of men 

diagnosed with prostate cancer is 70 [41]. Men who have family members with prostate 

cancer appear to have a double risk to get this disease compared to men without prostate 

cancer in family. Men suffering from higher blood pressure have also higher risk [42].  

Diagnosis 

Prostate cancer can be diagnosed using less invasive methods or invasive biopsy, which 

can fully confirm the diagnosis of prostate cancer. The less invasive method is measuring the 

Prostate Specific Antigen (PSA) in blood samples. It is recommended to undergo a rectal 

examination to detect the prostate abnormalities to all men older than 45 years. Another non-

invasive method is the prostate imaging. Ultrasound and Magnetic Resonance Imaging (MRI) 

are the most common methods used for prostate cancer detection. Ultrasound is less used for 
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its poor tissue resolution, the magnetic resonance imaging has better resolution [43]. For the 

evaluation of prostate cancer is important to determine the stage. Determining the stage helps 

to define the prognosis and to choose suitable therapy. The most common system is the four-

stage system (Figure 13), which takes in account the size of the tumor, the number of the 

involved lymph nodes and the presence of another metastases [44]. 

 

Figure 13: The four-stage system for diagnosis of prostate cancer.  

 

Treatment 

There are many options of prostate cancer treatment, the choose of the right one or the 

combination of few of them depends on age and expected life span of the patient, any other 

serious health conditions, the stage of the cancer, and the feelings of the patient about the side 

effects from each treatment. Treatment usually involves surgery, radiation therapy, proton 

therapy, and less commonly; cryotherapy, hormone therapy and chemotherapy, which are 

usually recommended for advanced stages of the disease. All treatments can have significant 

side effects (erectile dysfunction or urinary incontinence), it is important to find the balance 

between the goals of the therapy and the risks of lifestyle alternations. Doctors usually 

recommend the combination of treatment methods [45]. Androgen deprivation therapy (ADT) 

plays major role in the treatment of prostate cancer, but needs accurate timing. Overuse of 

ADT is helpful to avoid the side effects of castration, which are the effects on sexual function, 

bone mineral density, lipid metabolism and insulin sensitivity that influence increasing 

morbidity and decreasing quality of life [46]. There is no evidence of the benefit from ADT 

for localized cancer, but studies have reported an increased use of castration as a primary 

treatment for localized disease [46].  
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2 PRACTICAL APPLICATION 
 

In this part, we use the open access available RNA-seq data, and analyze them by 

MATLAB environment (version R2013b) with the support of Bioinformatics Toolbox and the 

Statistics Toolbox functions. Then we test the differential gene expression using a negative 

binomial model. 

2.1 The Prostate Cancer Data Set 

The data was downloaded from Web Sites of Sanford Consortium for Regenerative 

Medicine ([24], http://yeolab.ucsd.edu/yeolab/Papers.html) 

Li et al. published the prostate cancer study, where the prostate cancer cell line LNCap 

was treated with androgen/DHT. They used a double-random priming method for deep 

sequencing to profile double poly(A)-selected RNA from LNCaP cells before and after 

androgen stimulation. In this study, they uncovered 71% (from 20 million sequence tags) of 

annotated genes and identified hormone-regulated gene expression events that are 

significantly correlated with the quantitative real time PCR measurement. A fraction of the 

sequence tags were mapped to constitutive and alternative splicing events to detect known or 

new mRNA isoforms expressed in the prostate cancer cell. In the end, they used curve fitting 

to estimate the number of tags necessary to reach a saturating discovery rate among individual 

applications [24]. 

Mock-treated and androgen-stimulated LNCap cells were sequenced using the Illumina 1G 

Genome Analyzer. Analysis of ~10 million sequence tags generated from both mock-treated 

and hormone-treated cells indicates that this tag density was sufficient for quantitative 

analysis of gene expression [24].  

For the mock-treated cells, there were four lanes totaling ~10 million reads. For the DHT-

treated cells, there were three lanes totaling ~7 million reads. All replicates were technical 

replicates. Samples labeled s1 through s4 are from mock-treated cells. Samples labeled s5, s6, 

and s8 are from DHT-treated cells. The reads sequence are stored in FASTA format.  

 

2.2 Mapping the reads 

SAM/formatted files for each of the seven FASTA files were produced by mapping the 

reads to the human genome, version hg19, GRCh37 using a Bowtie aligner on Linux. The 

human genome was downloaded from the UCSC Genome Browser website.  

http://yeolab.ucsd.edu/yeolab/Papers.html
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2.2.1 The UCSC Genome Browser 

As the vertebrate genome sequences become complete and research refocuses to their 

analysis, the issue of effective genome annotation display becomes problematic. There is 

mature web tool for rapid and reliable display of any requested portion of the genome at any 

scale, together with several dozen of aligned annotation tracks at http://genome.ucsc.edu. This 

provides displaying assembly contigs and gaps, mRNA and expressed sequence tags 

alignment, multiple genes prediction, cross-species homologies, single nucleotide 

polymorphisms, sequence-tagged sites, radiation hybrid data, transposon repeats, and more as 

a stack of co-registered tracks. Text and sequence-based investigations provide quick and 

precise access to any region of specific interest. Secondary links from individual features lead 

to sequence details and supplementary of other off-site databases. One-half of the annotation 

tracks are computed at the University of California, Santa Cruz from publicly available 

sequence data; collaborators worldwide provide the rest. Users can stably add their own 

custom tracks to the browser for educational or research purposes. [30]  

To use a browser, follow the “browser” link at http://genome.ucsc.edu. This will take you to a 

page where you can search for a gene by name, author, keyword, and so forth. Or directly 

specify the region to view as either a chromosome band or a chromosome and range of bases. 

It is also possible to enter the browser via a search for homologous regions to a DNA or 

protein sequence using the “BLAT” link. The BLAT search takes typically only a few 

seconds, it is big advantage. The main browser contains three main parts (Figure 14). On the 

top is a series of controls for searching and for zooming and scrolling across a chromosome. 

In the middle is a dynamically generated picture that graphically displays genome 

annotations. On the bottom is another series of controls that fine-tune the graphic display [30].  

The UCSC Genome Browser provides many options; you can use the drop-down control to 

alter the displayed tracks, for example: Mapping and Sequencing, Genes and Gene 

Predictions, mRNA and EST, Expression, Regulation and many others. Tracks of interest will 

be displayed automatically in more compact modes.  

The UCSC Genome Browser is very useful tool for exploring the human genome. There is 

a possibility to download the whole human genome and work with it. 
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Figure 14: Part of the human chromosome 17 in the UCSC Genome Browser. This region contains gene PRAC 

(Homo sapiens prostate cancer susceptibility candidate). The spliced EST track indicates that there is active 

transcription. The Rhesus Blat track indicated a high level of conservation between Rhesus and human in this 

region.      
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2.2.2 hg19 

Human genome projects have generated an unexpected amount of knowledge about 

human genetics and health. There is always a need to map the new knowledge to the whole 

human genome, which must be continuously updated. We use the human genome hg19, 

version GRCh37, which was produced on February 2009 by the Genome Reference 

Consortium [30]. 

 

Detailed information about the human genome GRCh37 is in Table 3. 

Organism name Homo sapiens 

Submitter Genome Reference Consortium 

Date 27. 2. 2009 

Synonyms hg19 

Assembly type Haploid-with-alt-loci 

Assembly level Chromosome 

Genome representation full 

 

Table 3: Detailed information about the human genome version GRCh37 (NCBI Assembly 

database) 

 

Global statistics for this version are in Table 4. 

Number of regions with alternate loci or patches 7 

Total sequence length 3,137,144,693 

Total assembly length 239,852,888 

Gaps between scaffolds 271 

Number of scaffolds 258 

Scaffolds N50 46,395,641 

Number of contigs 461 

Contig N50 38,440,852 

Total number of chromosomes and plasmids 24 

 

Table 4: Global statistics of hg19 (NCBI Assembly database) 
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2.2.3 SAM/BAM file 

The Sequence Alignment/Map-SAM format is a generic alignment text format for storing 

read alignments against a reference sequences, it supports both short and long reads, which 

are produced by different sequencing platforms [25]. With the revolution of next/generation 

sequencing methods (Illumina, SOLiD, 454), many of new alignment tools have been 

developed to realize read mapping to large reference genome, including the human genome. 

SAM format has become a common alignment format that supports all sequence types and 

creates a well-defined interface between alignment and post-processing analysis. The SAM 

tools provide utilities to manipulate alignments in the SAM format.  

The SAM format consists of header section and alignment section. The header section starts 

with ‘@’. In this format, each alignment line has 11 mandatory fields and variable number of 

optional fields [25]. (Table 5) 

 

Number Name Description 

1 QNAME Query name of the read 

2 FLAG Bitwise FLAG (pairing, strand…) 

3 RNAME Reference sequence name 

4 POS 1-Based leftmost POSition of clipped alignment 

5 MAPQ MAPping Quality (Phred Score) 

6 CIGAR Extended CIGAR string (operations: MIDNSHP) 

7 MRNM Mate Reference NaMe (‘=’ if same as RNAME) 

8 MPOS 1-Based leftmost Mate POSition 

9 ISIZE Inferred Insert SIZE 

10 SEQ Query SEQuence on the same strand as the reference 

11 QUAL Query QUALity (Phred Score) 

 

Table 5: Mandatory fields in the SAM format (modified from [25]) 

 

CIGAR is standard defining pairwise alignment. It is important to know where the changes in 

the sequence are. It defines following operation (Table 6): 
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Operation Description 

M Alignment match (can be match or mismatch) 

I Insertion to the reference 

D Deletion from the reference 

N Skipped region from the reference 

S Soft clipping (clipped sequence present in SEQ) 

H Hard clipping (clipped sequence NOT present in SEQ) 

P Padding (silent deletion from padded reference) 

= Sequence match 

X Sequence mismatch 

 

Table 6: CIGAR operations (modified from [26]) 

 

BAM file is binary SAM. BAM uses compression scheme (BGZF-Blocked GNU Zip Format) 

to make alignments more compact. BAM files can be sorted and indexed, it makes accessing 

data very fast. SAMtools enables to view a content of BAM formatted file. BGZF is block 

compression implemented on top of the standard gzip file format [25]. The aim of using 

BGZF is to provide good compression while allowing efficient random access to the BAM 

file for indexed issues. [25] 

2.2.4 SAMtools 

SAMtools provide various opportunities for manipulating with short DNA sequence read 

alignments in the SAM or BAM format including sorting, merging, indexing. [25] 

SAMtools provides the following commands: view, sort, index, tview and mpileup. 

view:      the view command converts the SAM format to BAM format 

sort:        the sort command sorts a BAM file based on position in the reference, as     

               determined by its alignment. 

index:     the index command creates a new index file that allows fast look-up of data in a   

               sorted a SAM or BAM file.  

tview:     the tview command starts an interactive viewer based on ascii that can be used to  

               visualize how reads are aligned to specified regions of the reference genome.  

mpileup: the mpileup command produces pileup format file. 

SAMtools is open source, it is available at http://sourceforge.net/projects/samtools/files/. 

  

 

http://sourceforge.net/projects/samtools/files/
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2.2.5 BowtieBuild 

Bowtiebuild is a function implemented in Bioinformatics Toolbox in Matlab. It generates 

index using Burrows-Wheeler transform.  

 

Burrows-Wheeler transform 

Burrows-Wheeler transform (BWT) is a method used for the lossless data compression. In 

general, it is a reversible permutation of the characters in a text [27]. BWT is also called as 

block-sorting data compression. Previously, BWT was used for text compression algorithms. 

However, as the high-throughput sequencing methods exploded, the BWT was used in 

programs for alignment NGS reads to whole genomes. The aim of using BWT in bowtie is 

reducing the memory consuming.  

 

Syntax 

bowtiebuild(input,indexBaseName)builds an index using the reference 

sequence(s) in input an saves it to the index file indexBaseName. 

Usage: 

To build an index of human genome hg19 we were using this command: 

bowtiebuild('hg19.fas', 'hg19') 

 

The indexes hg19.1.ebwt, hg19.2.ebwt, hg19.3.ebwt and hg19.4.ebwt were produced.  

2.2.6 Bowtie 

Bowtie is an ultrafast, memory-efficient short read aligner. It aligns short DNA sequences 

(reads) to the human genome at a rate of over 25 million 35-bp reads per hour. Bowtie 

indexes the genome with a Burrows-Wheeler index to keep its memory footprint small: 

typically about 2.2 GB for the human genome (2.9 GB for paired-end). [27] Bowtie can 

output alignments in SAM format, it allows us interoperation with other tools supporting 

SAM formatted files, for example SAMtools.  

Bowtie runs on command line under Windows, Mac OS X, Linux and Solaris. 

Bowtie is open source. It is available at http://bowtie.cbcb.umd.edu. [27] 

 

Bowtie usage:  

 bowtie [options]* <ebwt> {-1 <m1> -2 <m2> | --12 <r> | <s>} [<hit>] 

http://bowtie.cbcb.umd.edu/
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Bowtie options: 

  <m1>    Comma-separated list of files containing upstream mates (or the sequences    

     themselves, if -c is set) paired with mates in <m2> 

  <m2>    Comma-separated list of files containing downstream mates (or the sequences                  

                themselves if -c is set) paired with mates in <m1> 

  <r>        Comma-separated list of files containing Crossbow-style reads. Can be a mixture of   

                paired and unpaired.  Specify "-" for stdin. 

  <s>        Comma-separated list of files containing unpaired reads, or the sequences      

                themselves, if -c is set.  Specify "-" for stdin. 

  <hit>      File to write hits to (default: stdout) 

Input: 

  -q                   query input files are FASTQ .fq/.fastq (default) 

  -f                   query input files are (multi-)FASTA .fa/.mfa 

  -r                   query input files are raw one-sequence-per-line 

  -c                   query sequences given on cmd line (as <mates>, <singles>) 

  -C                  reads and index are in colorspace 

  -Q/--quals <file>   QV file(s) corresponding to CSFASTA inputs; use with -f -C 

  --Q1/--Q2 <file>    same as -Q, but for mate files 1 and 2 respectively 

  -s/--skip <int>     skip the first <int> reads/pairs in the input 

  -u/--qupto <int>    stop after first <int> reads/pairs (excl. skipped reads) 

  -5/--trim5 <int>    trim <int> bases from 5' (left) end of reads 

  -3/--trim3 <int>    trim <int> bases from 3' (right) end of reads 

  --phred33-quals     input quals are Phred+33 (default) 

  --phred64-quals     input quals are Phred+64 (same as --solexa1.3-quals) 

  --solexa-quals      input quals are from GA Pipeline ver. < 1.3 

  --solexa1.3-quals   input quals are from GA Pipeline ver. >= 1.3 

  --integer-quals     qualities are given as space-separated integers (not ASCII) 

Alignment: 

  -v <int>            report end-to-end hits w/ <=v mismatches; ignore qualities 

    or 

  -n/--seedmms <int>  max mismatches in seed (can be 0-3, default: -n 2) 

  -e/--maqerr <int>   max sum of mismatch quals across alignment for -n (def: 70) 

  -l/--seedlen <int>  seed length for -n (default: 28) 
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  --nomaqround        disable Maq-like quality rounding for -n (nearest 10 <= 30) 

  -I/--minins <int>   minimum insert size for paired-end alignment (default: 0) 

  -X/--maxins <int>   maximum insert size for paired-end alignment (default: 250) 

  --fr/--rf/--ff      -1, -2 mates align fw/rev, rev/fw, fw/fw (default: --fr) 

  --nofw/--norc       do not align to forward/reverse-complement reference strand 

  --maxbts <int>      max # backtracks for -n 2/3 (default: 125, 800 for --best) 

  --pairtries <int>   max # attempts to find mate for anchor hit (default: 100) 

  -y/--tryhard       try hard to find valid alignments, at the expense of speed 

  --chunkmbs <int>    max megabytes of RAM for best-first search frames (def: 64) 

Reporting: 

  -k <int>            report up to <int> good alignments per read (default: 1) 

  -a/--all            report all alignments per read (much slower than low -k) 

  -m <int>            suppress all alignments if > <int> exist (def: no limit) 

  -M <int>            like -m, but reports 1 random hit (MAPQ=0); requires --best 

  --best              hits guaranteed best stratum; ties broken by quality 

  --strata            hits in sub-optimal strata aren't reported (requires --best) 

Output: 

  -t/--time           print wall-clock time taken by search phases 

  -B/--offbase <int>  leftmost ref offset = <int> in bowtie output (default: 0) 

  --quiet             print nothing but the alignments 

  --refout            write alignments to files refXXXXX.map, 1 map per reference 

  --refidx           refer to ref. seqs by 0-based index rather than name 

  --al <fname>        write aligned reads/pairs to file(s) <fname> 

  --un <fname>        write unaligned reads/pairs to file(s) <fname> 

  --max <fname>       write reads/pairs over -m limit to file(s) <fname> 

  --suppress <cols>   suppresses given columns (comma-delim'ed) in default output 

  --fullref           write entire ref name (default: only up to 1st space) 

Colorspace: 

  --snpphred <int>    Phred penalty for SNP when decoding colorspace (def: 30) 

     or 

  --snpfrac <dec>     approx. fraction of SNP bases (e.g. 0.001); sets --snpphred 

  --col-cseq          print aligned colorspace seqs as colors, not decoded bases 

  --col-cqual         print original colorspace quals, not decoded quals 

  --col-keepends      keep nucleotides at extreme ends of decoded alignment 
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SAM: 

  -S/--sam           write hits in SAM format 

  --mapq <int>       default mapping quality (MAPQ) to print for SAM alignments 

  --sam-nohead       supppress header lines (starting with @) for SAM output 

  --sam-nosq         supppress @SQ header lines for SAM output 

  --sam-RG <text>    add <text> (usually "lab=value") to @RG line of SAM header 

Performance: 

  -o/--offrate <int> override offrate of index; must be >= index's offrate 

  -p/--threads <int> number of alignment threads to launch (default: 1) 

  --mm               use memory-mapped I/O for index; many 'bowtie's can share 

  --shmem            use shared mem for index; many 'bowtie's can share 

Other: 

  --seed <int>       seed for random number generator 

  --verbose          verbose output (for debugging) 

  --version          print version information and quit 

  -h/--help          print this usage message 

2.2.7 Map and sort the reads  

We were using Bowtie version 1.0.0 on Linux. To make mapping and sorting the reads 

faster and efficient, following script containing more steps in one was written and let run on 

command line: 

 

file=s1 

 

bowtie -f -p 2 -v 2 -m 1 --best -S hg19 $file.fa > $file.sam 

samtools view -Sb $file.sam > $file.bam 

samtools sort $file.bam $file.sort 

samtools view $file.sort.bam > $file.sort.sam 

 

The variable file was changed every cycle from s1 to s8. 

The bowtie aligner was instructed to: 

 Input files were FASTA, .fa (-f) 

 Report one best valid alignment. (--best) 

 No more than two mismatches were allowed for alignment. (-v 2) 

 Reads with more than one reportable alignment were suppressed, i.e. any read that 

mapped to multiple locations was discarded. (-m 1) 
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First, the alignment output was seven SAM files (s1.sam, s2.sam, s3.sam, s4.sam, s5.sam, 

s6.sam, s8.sam). We converted these seven files to BAM files using samtools. Then sorted 

these BAM files and the output was seven sorted BAM files (s1.sort.bam, s2.sort.bam, 

s3.sort.bam, s4.sort.bam, s5.sort.bam, s6.sort.bam, s8.sort.bam). In the end we converted the 

sorted BAM files to SAM files and the output was again seven SAM files (s1.sort.sam, 

s2.sort.sam, s3.sort.sam, s4.sort.sam, s5.sort.sam, s6.sort.sam, s8.sort.sam). 

 

2.3 Creating an annotation object of target genes 

  

Using Ensembl´s BioMart service (http://www.ensembl.org/biomart), we can download a 

tab-separated-value (TSV) table with all protein encoding genes to a text file, 

ensemblmart_genes_hum37.txt. We are using Ensamble release 74. The table contains 

following attributes: chromosome name, gene biotype, gene name, gene start/end, and strand 

direction.  

2.3.1 Ensembl BioMart  

The Ensembl project was started in 1999, few years before the human genome was 

completely sequenced in the frame of Human Genome Project. The aim of this project was to 

automatically annotate the genome, integrate this annotation with other available biological 

data and make it all publicly available. The website was launched in July 2000 and many 

more genomes have been added, the range of available data has expanded, it includes 

comparative genomics, variation and regulatory data [28]. 

BioMart Project is Bio Portal including 46 databases located in 4 continents and it is still 

growing. This project provides free software and data services to the international scientific 

community. Ensemble supports downloading many correlation tables using highly 

customizable BioMart data mining tool [29].  

 

After downloading a TSV table with all protein encoding genes, we used function 

ensemblmart2gff to convert the TSV file to a GFF formatted file. The GFF (General 

Feature Format) consists of one line per feature, each one contains 9 columns of data. The 

GFF file was loaded to MATLAB using function GFFAnnotation. 

 

GFFfilename = ensemblmart2gff('ensemblmart_genes_hum37.txt'); 

genes = GFFAnnotation(GFFfilename) 

http://www.ensembl.org/biomart
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genes = 

 

  GFFAnnotation with properties: 

 

    FieldNames: {1x9 cell} 

    NumEntries: 22836 

 

We created a subset of the genes presented in the chromosomes only. The GFFAnnotaion 

object contains 20327 annotated protein-coding genes in the Ensembl database. 

 

chrs = 

{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','

16','17','18','19','20','21','22','X','Y','MT'}; 

genes = getSubset(genes,'reference',chrs) 

 

genes = 

 

  GFFAnnotation with properties: 

 

    FieldNames: {1x9 cell} 

    NumEntries: 20327 
 

 

The gene information is now in a structure, we can display the first entry. 

 

getData(genes,1) 

 

ans = 

 

     Reference: '15' 

         Start: 20737094 

          Stop: 20747114 

       Feature: 'GOLGA6L6' 

        Source: 'protein_coding' 

         Score: '0.0' 

        Strand: '-' 

         Frame: '.' 

    Attributes: '' 

 

The annotation object of targeted genes is now ready for the following tasks.  
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2.4 Importing Mapped Short Read Alignment Data 

The size of the sorted SAM files in our data-set is in the range of 250-360 MB. We can 

access the mapped and sorted reads in s1.sort.sam by creating a BioMap. It is a class that has 

an interface, and provides direct access to the mapped and sorted short reads in SAM-

formatted file, it is minimizing the amount of data that is actually loaded into the memory. 

BioMap includes headers, read sequences, quality scores of the sequences and information 

about how each sequence aligns to a given reference. 

 

bm1 = BioMap('s1.sort.sam') 

 

bm1 =  

 

  BioMap with properties: 

 

    SequenceDictionary: {1x25 cell} 

             Reference: [458367x1 File indexed property] 

             Signature: [458367x1 File indexed property] 

                 Start: [458367x1 File indexed property] 

        MappingQuality: [458367x1 File indexed property] 

                  Flag: [458367x1 File indexed property] 

          MatePosition: [458367x1 File indexed property] 

               Quality: [458367x1 File indexed property] 

              Sequence: [458367x1 File indexed property] 

                Header: [458367x1 File indexed property] 

                 NSeqs: 458367 

                  Name: '' 

 

After creating the BioMap object, we used the getSummary method to obtain a list of the 

existing references and the actual number of the short read mapped to each one. We observed 

that the order of the references is equivalent to the previously created cell string chrs. 

 

getSummary(bm1) 

BioMap summary: 

                                  Name: '' 

                        Container_Type: 'Data is file indexed.' 

             Total_Number_of_Sequences: 458367 
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    Number_of_References_in_Dictionary: 25 

 

             Number_of_Sequences    Genomic_Range       

    chr1     39037                    564571  249213991 

    chr2     23102                     39107  243177977 

    chr3     23788                    578280  197769619 

    chr4     16273                     56044  190988830 

    chr5     20875                     50342  180698591 

    chr6     16743                    277774  170892222 

    chr7     17022                    146474  158834423 

    chr8     12199                    162668  146284742 

    chr9     13988                     21790  141067447 

    chr10    15707                    179281  135500747 

    chr11    37506                    203411  134375386 

    chr12    21714                     79745  133785475 

    chr13     6078                  19335895  115091858 

    chr14    14644                  19123810  107260517 

    chr15    13199                  20145084  102501644 

    chr16    15423                     92212   90143169 

    chr17    22089                     56680   81014350 

    chr18     5986                    111538   77957293 

    chr19    17690                     63006   59093541 

    chr20    10026                    119233   62906673 

    chr21     6119                   9421584   48085597 

    chr22     7366                  16150315   51216589 

    chrX     12939                   2774622  154563685 

    chrY      2819                   2711686   59032821 

    chrM     66035                        12      16570 
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2.5 Determining Digital Gene Expression 

We determined the mapped reads associated with each Ensembl gene.  

The reference names in the SAM files are different to those provided in the annotations, we 

found a vector with the reference index for each gene: 

geneReference =  seqmatch(genes.Reference,chrs, 'exact',true); 

 

Then we counted the mapped reads that overlap any part of the gene for each one. The reads 

count for each gene is the digital gene expression of that gene. We used the getCounts 

method of a BioMap to compute the reads count within a specified range. 

 counts1 = 

getCounts(bm1,genes.Start,genes.Stop,1:genes.NumEntries,geneReference); 

 

Levels of gene expression can be better represented by a DataMatrix, where each row 

represents a gene, and each column represents a sample. We created a DataMatrix with 

seven columns, one for each sample. Using these commands, we copied the counts of the first 

sample to the first column. 

filenames = {'s1.sort.sam', 's2.sort.sam', 's3.sort.sam', 

's4.sort.sam', 's5.sort.sam', 's6.sort.sam', 's8.sort.sam'}; 

samples =  {'Mock_1', 'Mock_2', 'Mock_3', 'Mock_4', 'DHT_1', 'DHT_2', 

'DHT_3'}; 

 

lncap_counts = 

bioma.data.DataMatrix(NaN([genes.NumEntries,7]),genes.Feature,samples) 

lncap_counts(:,1) = counts1 

 

We displayed ten counts of genes from 190 to 200: 

lncap_counts(190:200,:) 

ans =  

 

               Mock_1    Mock_2    Mock_3    Mock_4    DHT_1    DHT_2    DHT_3 

    FAM217B     20       NaN       NaN       NaN       NaN      NaN      NaN   

    PTPRA       75       NaN       NaN       NaN       NaN      NaN      NaN   

    PPP1R3D      1       NaN       NaN       NaN       NaN      NaN      NaN   

    SNRPN      269       NaN       NaN       NaN       NaN      NaN      NaN   

    NR6A1        8       NaN       NaN       NaN       NaN      NaN      NaN   

    CDH26       43       NaN       NaN       NaN       NaN      NaN      NaN   

    RGL4        21       NaN       NaN       NaN       NaN      NaN      NaN   

    CTSA         6       NaN       NaN       NaN       NaN      NaN      NaN   
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    OLFML2A      0       NaN       NaN       NaN       NaN      NaN      NaN   

    USP16       32       NaN       NaN       NaN       NaN      NaN      NaN   

    ESCO1       16       NaN       NaN       NaN       NaN      NaN      NaN 

 

Then we determined the number of genes that have counts greater or equal to 50 in 

chromosome 1: 

lichr1 = geneReference == 1;  % logical index to genes in chromosome 1 

sum(lncap_counts(:,1) >= 50 & lichr1) 

 

ans = 

 

   189 

In the end, we repeated this step for other six samples in the data-set to get their gene counts 

and copy the information to the previously created DataMatrix.  

for i = 2:7 

    bm = BioMap(filenames{i}); 

    counts = 

getCounts(bm,genes.Start,genes.Stop,1:genes.NumEntries,geneReference); 

    lncap_counts(:,i) = counts; 

end 

Now the DataMatrix is completed, we can again display the genes from 190 to 200. 

>> lncap_counts(190:200, :) 

ans =  

 

               Mock_1    Mock_2    Mock_3    Mock_4    DHT_1    DHT_2    DHT_3 

    FAM217B     20        18        34        31        24       25       21   

    PTPRA       75        87       106       109       110      130       38   

    PPP1R3D      1         3         1         2         3        8        4   

    SNRPN      269       315       366       364       422      447      138   

    NR6A1        8         8        15        18         7       13        2   

    CDH26       43        34        47        53         3        3        0   

    RGL4        21        20        31        28        24       22       13   

    CTSA         6         5         8         7         8        5        0   

    OLFML2A      0         0         0         0         0        0        0   

    USP16       32        42        33        55        86       94       29   

    ESCO1       16        22        35        40       100      107       39   

 

The DataMatrix “lncap_counts” contains counts of samples from two different 

biological conditions: mock-treated and DHT-treated. 

cond_Mock = logical([1 1 1 1 0 0 0]); 

cond_DHT  = logical([0 0 0 0 1 1 1]); 
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We can easily plot the counts for a chromosome along the genome coordinate. We created a 

plot of the counts for chromosome 1 for mock-treated sample Mock_1 and DHT-treated 

sample DHT_1. We added the ideogram for chromosome 1 to the plot using the 

chromosomeplot function. 

 

ichr1 = find(lichr1);  % linear index to genes in chromosome 1 

[~,h] = sort(genes.Start(ichr1)); 

ichr1 = ichr1(h);      % linear index to genes in chromosome 1 sorted by  

                       % genomic position 

 

figure 

plot(genes.Start(ichr1), lncap_counts(ichr1, 'Mock_1'), '.-r',... 

     genes.Start(ichr1), lncap_counts(ichr1, 'DHT_1'), '.-b'); 

ylabel('Gene Counts') 

title('Gene 'Gene Counts on Chromosome 1') 

fixGenomicPositionLabels(gca)  % formats tick labels and adds datacursors 

chromosomeplot('hs_cytoBand.txt', 1, 'AddToPlot', gca) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can already see in Figure 15, that some of the genes are up-regulated and some of them 

are down-regulated. 

 

 

 

Figure 15: Plot of the counts for chromosome 1. The counts of DHT-treated sample are shown  

in blue, and the counts of Mock-treated sample are shown in red. 
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2.6 Inference of Differential Signal in RNA Expression 

The reads counts for RNA-seq experiments have been found to be linearly related to the 

abundance of the targeted transcripts [31]. It is interesting to compare the reads counts 

between different biological conditions. Current references suggest that typical RNA-seq 

experiments have quite low background noise; the gene counts are discrete and can follow the 

Poisson distribution. It was noted that the presumption of the Poisson distribution often 

predicts smaller variation in count data by ignoring the extra variation due to the actual 

differences between replicate samples [32]. Anders et. al., (2010) designed an error model for 

statistical inference of differential signal in RNA-seq expression data that could cause the 

overdispersion problems [33]. Their model uses the negative binomial distribution to model 

the null distribution of the reads counts. The variance and mean of the negative binomial 

distribution are linked by local regression, these two parameters can be well estimated even if 

the number of replicates is small [33]. 

In our project, we applied the Negative Binomial distribution to process the data count and 

test for the differential expression. The model we are following, the Anders´s model has three 

sets of parameters that need to be estimated from the data-set: 

1. Library size parameters; 

2. Gene abundance parameters under each experimental condition; 

3. The smooth functions that model the dependence of the raw variance on the expected 

mean. 

 

2.7 Estimating Library Size Factor 

The values of all genes counts from a sample that we are expecting are proportional to the 

sample´s library size. The effective library size was estimated from the data count. 

We computed the geometric mean of the gene counts (rows in lncap_counts) across all 

samples in the experiment as a pseudo-reference sample: 

geoMeans = exp(mean(log(lncap_counts), 2)); 

 

Then we computed each library size parameter as the median of the ratio of the sample´s 

counts to those of the pseudo-reference sample: 

ratios = dmbsxfun(@rdivide, lncap_counts(geoMeans >0, :), 

geoMeans(geoMeans >0)); 

sizeFactors = median(ratios, 1); 
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The counts were transformed to a common scale using size factor adjustment: 

base_counts = dmbsxfun(@rdivide, lncap_counts, sizeFactors); 

 

Now we can use the boxplot function to inspect the count distribution of the mock-treated 

and DHT-treated samples and the size factor adjustment: 

figure 

subplot(2,1,1) 

maboxplot(log2(lncap_counts), 'title', 'Raw Read Counts',... 

                             'orientation', 'horizontal') 

subplot(2,1,2) 

maboxplot(log2(base_counts), 'title', 'Size Factor Adjusted Read   

                                                    Counts',... 

                             'orientation', 'horizontal') 

 

Figure 16: The box-plot is showing the count distribution of the mock-treated and DHT-treated 

samples and the size factor adjustment. 
  



 

 46 

2.8 Estimating Negative Binomial Distribution Parameters 

The counts values of a gene that we are expecting are also proportional to the gene 

abundance parameter. We estimated the gene abundance parameter of the counts average 

from samples corresponding to an experimental condition. We computed the counts mean and 

samples variance of the mock-treated samples. 

base_mean_mock = mean(base_counts(:, cond_Mock), 2); 

base_var_mock = var(base_counts(:, cond_Mock), 0, 2); 

 

We used estimateBaseParams function to avoid code duplication in this experiment for 

computing parameters for samples from different conditions. This function computes the 

mean, the variance, and the diagnostic variance residual distribution from replicates under the 

same condition. For example, we computed the base means and variances for DHT-treated 

samples. 

[base_mean_dht, base_var_dht] = estimateBaseParams(lncap_counts(:, 

cond_DHT),...                                             

sizeFactors(cond_DHT),... 

'MeanAndVar'); 

 

In this model, the full variances of the Negative Binomial distribution of the counts of a gene, 

are considered as a sum of a shut noise term and raw variance term. The shut noise term 

means the reads counts of the gene, the raw variance can be predicted from the mean, i.e. 

genes with a similar expression level have similar variance across the replicates (samples of 

the same biological condition). The smooth function models the dependence of the raw 

variance on the mean and it is obtained by fitting the sample mean and variance within 

replicates for each gene using the local regression function malowess. We got the smooth 

fit data from the sample mean and variance of the mock-treated samples. 

[rawVarSmooth_X_mock, rawVarSmooth_Y_mock] = ... 

                                estimateBaseParams(lncap_counts(:, 

cond_Mock),...                                                   

sizeFactors(cond_Mock),... 

'SmoothFunc');  

 

After that, we found the raw variances for each gene from its base mean value by 

interpolation:   
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raw_var_mock_fit = interp1(rawVarSmooth_X_mock, 

rawVarSmooth_Y_mock,... 

                           log(base_mean_mock), 'linear', 0); 

 

We added the bias correction term to get the raw variances: 

zConst = sum(1 ./sizeFactors(cond_Mock), 2) / 

length(sizeFactors(cond_Mock)); 

raw_var_mock = raw_var_mock_fit - base_mean_mock * zConst; 

 

In the end, we were able to plot the sample variance and the raw variance data to check the fit 

of the variance function: 

[base_mean_mock_sort, sidx] = sort(log10(base_mean_mock)); 

raw_var_mock_sort = log10(raw_var_mock_fit(sidx)); 

 

figure 

plot(log10(base_mean_mock), log10(base_var_mock), '*') 

hold on 

line(base_mean_mock_sort, real(raw_var_mock_sort), 'Color', 'r', 

'LineWidth',2) 

ylabel('log10(base variances) of mock-treated samples') 

xlabel('log10(base means) of mock-treated samples') 

 

 

Figure 17: Sample variance and the raw variance data of the mock-treated samples 
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The red line in Figure 17 represents the fit, it follows well the single-gene estimates, even 

though the spread of the latter is considerable given that each raw variance value is estimated 

from only four values (four mock-treated replicates). 

 

RNA-seq experiments have usually few replicates, sometimes the single-gene assessment of 

the base variance deviates wildly from the fitted value. We calculated the cumulative 

probability for the ratio of single-gene assessment of the base variance to the fitted value from 

the chi-square distribution [33] to see if the deviation is too wild.  

 

We computed the cumulative probabilities of the variance ratios of mock/treated samples. 

df_mock = sum(cond_Mock) - 1; 

varRatio_mock = base_var_mock ./ raw_var_mock_fit; 

pchisq_mock = chi2cdf(df_mock * varRatio_mock, df_mock); 

 

Then we computed the empirical cumulative density functions (ECDF) stratified by base 

count levels and plotted the ECDFs curves. We divided the counts into seven levels. 

count_levels = [0 3; 3.1 12; 12.1 30; 30.1 65; 65.1 130; 130.1 310; 

310.1 2500]; 

figure; 

hold on 

cm = jet(7); 

for i = 1:7 

   [Y1,X1] = ecdf(pchisq_mock(base_mean_mock>count_levels(i, 1) &... 

                              base_mean_mock<count_levels(i,2))); 

   plot(X1,Y1, 'LineWidth',2,'color',cm(i,:)) 

end 

plot([0,1],[0,1] , 'k', 'linewidth', 2) 

set(gca, 'Box', 'on') 

legend('0-3', '3-12', '12-30', '31-65', '65-130', '131-310', '311-

2500',... 

      'Location','NorthWest') 

xlabel('Chi-squared probability of residual') 

ylabel('ECDF') 

title('Residuals ECDF plot for mock-treated samples') 

 



 

 49 

 

Figure 18: ECDF curves for mock-treated samples 

 

In Figure 18 we can see that the curves of counts levels greater than 3 and below 130 follow 

the diagonal (black line) well. If the ECDF curves are below the diagonal, the variance is 

underestimated. If the ECDF curves are above the diagonal, the variance is overestimated 

[33]. For very low counts (below 3), the deviations becomes much more stronger, but at these 

levels dominates the shot noise. For the high counts (above 311), the variance is 

overestimated. It might be because there are not enough genes with high counts. We 

computed the number of genes in each of the counts levels. 

num_in_count_levels = zeros(1, 7); 

for i = 1:7 

    num_in_count_levels(i) = sum(base_mean_mock>count_levels(i, 1) & 

... 

                                 base_mean_mock<count_levels(i,2)); 

end 

num_in_count_levels 

num_in_count_levels = 

 

        4045     3365     3549     2493     1219      435      116 
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Increasing the sequence depth, which in turn increases the number of genes with higher 

counts, improves the variance estimation. 

 

We produced the same ECDF plot for the DHT-treated samples. 

pchisq_dht = estimateBaseParams(lncap_counts(:, cond_DHT),... 

                                                sizeFactors(1, 

cond_DHT),... 

                                               'Diagnostic'); 

figure; 

hold on 

for i = 1:7 

   [Y1,X1] = ecdf(pchisq_dht(base_mean_dht>count_levels(i, 1) & ... 

                             base_mean_dht<count_levels(i,2))); 

   plot(X1,Y1, 'LineWidth',2,'color',cm(i,:)) 

end 

plot([0,1],[0,1] , 'k', 'linewidth', 2) 

set(gca, 'Box', 'on') 

legend('0-3', '3-12', '12-30', '31-65', '65-130', '131-310', '311-

2500',... 

      'Location','NorthWest') 

xlabel('Chi-squared probability of residual') 

ylabel('ECDF') 

title('Residuals ECDF plot for DHT-treated samples') 

 

We can see the ECDF plot in Figure 19. In both cases, mock-treated and DHT-treated 

samples, most of the ECDF curves follow well the diagonal. The fits are soundly good. 
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Figure 19: ECDF curves for DHT-treated samples 

 

2.9 Testing for Differential Expression 

After we estimated and verified the mean-variance dependence, we can start to test for 

differentially expressed genes between the samples in different biological conditions – mock-

treated and DHT-treated. We used the function estimateNBParams to estimate the mean 

and full variance of the Negative Binomial distribution with two parameters for each gene 

from the three sets of parameters mentioned above. 

[mu_mock, full_var_mock, mu_dht, full_var_dht] =... 

          estimateNBParams(lncap_counts, sizeFactors, cond_DHT, cond_Mock); 

 

Then we computed the p-values for the statistical significance of the change from DHT-

treated condition to mock-treated condition. We used the function computePVal for 

implementing the numerical computation of the p-values presented in the reference [33]. We 

used another function nbinpdf to compute the Negative Binomial probability density.  

We got the genes counts for each condition: 

k_mock = sum(lncap_counts(:, cond_Mock), 2); 

k_dht = sum(lncap_counts(:, cond_DHT), 2); 

pvals =  computePVal(k_dht, mu_dht, full_var_dht, k_mock, mu_mock, 

full_var_mock); 
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We adjusted the p-values from the multiple tests for false discovery rate (FDR) with the 

Benjamini-Hochberg [34] procedure using the mafdr function: 

p_fdr = mafdr(pvals, 'BHFDR', true); 

 

We determined the fold change estimated from the DHT-treated to the mock-treated 

condition: 

foldChange = base_mean_dht ./ base_mean_mock; 

 

We determined the base 2 logarithm of the fold change: 

log2FoldChange = log2(foldChange); 

 

We determined the mean expression level estimated from both conditions: 

base_mean_com = estimateBaseParams(lncap_counts, sizeFactors, 

'MeanAndVar'); 

And assumed a p-value cutoff of 0.01: 

de_idx = p_fdr < 0.01; 

 

Now we were able to plot the log2 fold changes against the base means and color those genes 

with p-values less than the cutoff value red: 

figure; 

plot(log2(base_mean_com(~de_idx, :)), log2FoldChange(~de_idx,:), 'b.') 

hold on 

plot(log2(base_mean_com(de_idx, :)), log2FoldChange(de_idx, :), 'r.') 

xlabel('log2 Mean') 

ylabel('log2 Fold Change') 

 

We can see the result in Figure 20. 
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Figure 20: Plot of the log2 fold changes against the base means 
 

In the end, we could identify up- or down-regulated genes for the base mean of the counts 

levels over 3: 

up_idx = find(p_fdr < 0.01 & log2FoldChange >= 2 & base_mean_com > 3 ); 

numel(up_idx) 

ans = 178      

 

down_idx = find(p_fdr < 0.01 & log2FoldChange <= -2 & base_mean_com > 3 

); 

numel(down_idx) 

ans = 284 

 

This analysis identified 462 genes (out of 20 327 genes) that were differentially up-or down-

regulated by hormone treatment. 178 genes were up-regulated and 284 genes were down-

regulated. 
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DISCUSSION 

In this master thesis, we used a statistical test for assessing differential gene expression 

using RNA sequencing data. The aim was to figure out how androgen, DHT affects gene 

expression of the prostate cancer cells.  

The analysis is based on parameters of the Negative Binomial distribution. It is extension of 

the Poisson model where the variance is larger than the mean. Another distribution, such as 

binomial or Poisson is not recommended for model the count variability in RNA-Seq data 

because of the overdispersion [48]. 

Important task before the analysis was to align the reads to human genome version hg19, 

GRCh37 using a Bowtie aligner on Linux. The aligner was instructed to report one of the best 

valid alignment and no more than two mismatches were allowed for alignment.  Next, the 

annotation object of target genes was created using Ensembl´s BioMart service and 

MATLAB's functions. We got the structure of protein coding genes including chromosome 

name, gene name, gene start/end, and strand direction. After importing mapped short read 

alignment data into MATLAB creating a BioMap and determining digital gene expression, we 

estimated the library size factor. The size factor was successfully adjusted to be the same for 

mock-treated and DHT-treated samples.  

The Negative Binomial model parameters were estimated using functions included in 

statistical toolbox, whereas the distribution parameters of the single-gene were estimated well.  

We tested the differential gene expression between the mock and DHT-treated samples after 

estimating and verifying the mean-variance dependence. The high density of the mapped 

reads to annotated genes allows both qualitative and quantitative measurement of the 

transcription in response to the hormone treatment. To determine DHT-regulated genes in our 

prostate cancer model, we enumerated the number of the mapped reads to exons in individual 

transcripts before and after DHT stimulation. We compared the number of the reads mapped 

to specific transcripts to the total number of the reads mapped to all other transcripts to 

identify the DHT-regulated genes. We identified 462 genes that were differentially up- or 

down-regulated by the hormone treatment. Figure 20 shows the scatter plot of the gene 

expression in mock-treated and DHT-treated samples, differentially expressed genes were 

labeled red based on p<0.01. Qualitative analysis shows that 178 genes were up-regulated and 

284 genes were down-regulated by DHT-treatment. 
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CONCLUSION 
 

The main aim of this master thesis was to create a theoretical basis dealing with RNA-

sequencing and next-generation sequencing and carry out the differential gene expression 

using a Negative Binomial model.  

The first chapter discusses DNA sequencing in general including its importance. The next 

chapter focuses on RNA-sequencing, which provides a view of the whole transcriptome. 

Several RNA-sequencing methods were described, such as mRNA-Seq, Total RNA-Seq or 

Paired- End RNA-Seq. One of the important benefits of RNA-Seq is the possibility to capture 

all changes in gene expression.  

The following chapter introduces the Next-Generation Sequencing, the revolutionary 

technology, that allows scientists to study the differential gene expression much more faster 

and cheaper than the original Sanger method. The basic principles of the NGS methods were 

described such as: 454 (Roche), Illumina, SOLIiD System (Applied Bioscience), Ion Torrent 

(Life Technologies) and Oxford Nanopore (Oxford NANAPORE Technologies). The systems 

have their characteristics, they vary in the length of read, the speed, the need of amplification 

or the price, that should be considered during the selection of the right system for a given 

project. 

The prostate cancer data set was chosen and downloaded as a studied interested set of genes. 

The reads had to be mapped to the whole human genome version GRCh37 before the analysis 

that was later realized using MATLAB (version R2013b). Bowtie mapper based on Burrows-

Wheeler transform was used for this task, it was proved as very fast short reads aligner, and it 

took few minutes on command line under Linux. The aligned reads in SAM format were then 

sorted using SAMtools, another useful tool for manipulation with SAM and BAM-formatted 

files. 

The next task of this thesis was to create an annotation of target genes. The TSV table with all 

protein encoding genes was downloaded using Ensembl´s BioMart Service. The annotation of 

target genes was created in MATLAB environment as well as all the other tasks. The mapped 

short reads were imported into MATLAB creating a BioMap. After that, the created BioMap 

objects were used for determining digital gene expression, where the bioinformatics toolbox 

and its function was useful for this task. In the end, we estimated the library size factor and 

the Negative Binomial distribution parameters for the inference of the differential signal in 

RNA expression. The results of the gene expression were available after testing the data for 

differential gene expression. As output of this analysis, 462 genes (out of 20 327 genes) were 
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differentially up-or down-regulated by hormone treatment. 178 genes were up-regulated and 

284 genes were down-regulated. 

Differential gene expression is the most recent topic. Discoveries in differential gene 

expression may have significant outcomes of deep impact for the whole society. In my 

opinion, the differential gene expression will be more and more important in the research, 

where the scientists are inventing new methods of biological treatment. They need to know 

how the biological or chemical substance affects the gene expression. It could bring 

considerable progress in treatment especially of cancer´s diseases, if the doctors could change 

the gene expression in the cells.  
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SUPPLEMENT – MATLAB CODE 
 
% Master thesis: 

% Differential Gene Expression using a negative binomial model 

% Tereza Janakova 

% 2014 

  

% creating bowtie indexes 

bowtiebuild('hg19.fas', 'hg19') 

 

% mapping the reads to the human genome using Bowtie mapper 

 

% Ordered the SAM-formatted files by reference name first, then by 

genomic position using SAMtools. 

 

%% Creating an annotation object of target genes 

  

GFFfilename = ensemblmart2gff('ensemblmart_genes_hum37.txt'); 

genes = GFFAnnotation(GFFfilename) 

  

% Create a subset with the genes present in chromosomes only. 

chrs = 

{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','

16','17','18','19','20','21','22','X','Y','MT'}; 

genes = getSubset(genes,'reference',chrs) 

  

%% Importing Mapped Short Read Alignment Data 

  

bm1 = BioMap('s1.sort.sam') 

getSummary(bm1) 

  

%% Determining Digital Gene Expression 

  

 geneReference =  seqmatch(genes.Reference,chrs,'exact',true); 

  

 counts1 = 

getCounts(bm1,genes.Start,genes.Stop,1:genes.NumEntries,geneReferenc

e); 

  

filenames = 

{'s1.sort.sam','s2.sort.sam','s3.sort.sam','s4.sort.sam','s5.sort.sa

m','s6.sort.sam','s8.sort.sam'}; 

samples =  

{'Mock_1','Mock_2','Mock_3','Mock_4','DHT_1','DHT_2','DHT_3'}; 

  

lncap_counts = 

bioma.data.DataMatrix(NaN([genes.NumEntries,7]),genes.Feature,sample

s) 

lncap_counts(:,1) = counts1 

  

lncap_counts(190:200,:) 

  

lichr1 = geneReference == 1;% logical index to genes in chromosome 1 

sum(lncap_counts(:,1) >= 50 & lichr1) 
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% Repeat this step for the other six samples (SAM files) in the data 

set to get their gene counts and copy the information to the 

previously createdÂ DataMatrix. 

for i = 2:7 

    bm = BioMap(filenames{i}); 

    counts = 

getCounts(bm,genes.Start,genes.Stop,1:genes.NumEntries,geneReference

); 

    lncap_counts(:,i) = counts; 

end 

  

% Inspect the first 10 rows in the count table. 

lncap_counts(190:200, :) 

  

% The DataMatrixÂ lncap_countsÂ contains counts for samples from two 

biological conditions: mock-treated and DHT-treated. 

cond_Mock = logical([1 1 1 1 0 0 0]); 

cond_DHT  = logical([0 0 0 0 1 1 1]); 

  

ichr1 = find(lichr1);  % linear index to genes in chromosome 1 

[~,h] = sort(genes.Start(ichr1)); 

ichr1 = ichr1(h);      % linear index to genes in chromosome 1     

                       % sorted by genomic position 

  

figure 

plot(genes.Start(ichr1), lncap_counts(ichr1,'Mock_1'), '.-r',... 

     genes.Start(ichr1), lncap_counts(ichr1,'DHT_1'), '.-b'); 

ylabel('Gene Counts') 

title('Gene Counts on Chromosome 1') 

fixGenomicPositionLabels(gca)  % formats tick labels and adds 

datacursors 

chromosomeplot('hs_cytoBand.txt', 1, 'AddToPlot', gca) 

   

%% Inference of Differential Signal in RNA Expression 

% 1. Library size parameters; 

% 2. Gene abundance parameters under each experimental condition; 

% 3. The smooth functions that model the dependence of the raw 

variance on the expected mean. 

  

% 1. Estimating Library size factor 

geoMeans = exp(mean(log(lncap_counts), 2)); 

  

ratios = dmbsxfun(@rdivide, lncap_counts(geoMeans >0, :), 

geoMeans(geoMeans >0)); 

sizeFactors = median(ratios, 1); 

  

base_counts = dmbsxfun(@rdivide, lncap_counts, sizeFactors); 

  

figure 

subplot(2,1,1) 

maboxplot(log2(lncap_counts), 'title','Raw Read Counts',... 

                              'orientation', 'horizontal') 

subplot(2,1,2) 

maboxplot(log2(base_counts), 'title','Size Factor Adjusted Read 

Counts',... 

                             'orientation', 'horizontal') 
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% Estimating Negative Binomial Distribution Parameters       

  

base_mean_mock = mean(base_counts(:, cond_Mock), 2); 

base_var_mock = var(base_counts(:, cond_Mock), 0, 2); 

  

[base_mean_dht, base_var_dht] = estimateBaseParams(lncap_counts(:, 

cond_DHT),... 

                                                   

sizeFactors(cond_DHT),... 

                                                   'MeanAndVar'); 

                                                

[rawVarSmooth_X_mock, rawVarSmooth_Y_mock] = ... 

                                estimateBaseParams(lncap_counts(:, 

cond_Mock),... 

                                                   

sizeFactors(cond_Mock),... 

                                                   'SmoothFunc');    

% Find the raw variances for each gene from its base mean value by 

interpolation. 

raw_var_mock_fit = interp1(rawVarSmooth_X_mock, 

rawVarSmooth_Y_mock,... 

                           log(base_mean_mock), 'linear', 0); 

                        

% ...Add the bias correction term to get the raw variances            

zConst = sum(1 ./sizeFactors(cond_Mock), 2) / 

length(sizeFactors(cond_Mock)); 

raw_var_mock = raw_var_mock_fit - base_mean_mock * zConst; 

  

% Plot the sample variance and the raw variance data to check the 

fit of the variance function. 

[base_mean_mock_sort, sidx] = sort(log10(base_mean_mock)); 

raw_var_mock_sort = log10(raw_var_mock_fit(sidx)); 

  

figure 

plot(log10(base_mean_mock), log10(base_var_mock), '*') 

hold on 

line(base_mean_mock_sort, real(raw_var_mock_sort), 'Color', 'r', 

'LineWidth',2) 

ylabel('log10(base variances) of mock-treated samples') 

xlabel('log10(base means) of mock-treated samples') 

  

% Compute the cumulative probabilities of the variance ratios of 

mock-treated samples. 

df_mock = sum(cond_Mock) - 1; 

varRatio_mock = base_var_mock ./ raw_var_mock_fit; 

pchisq_mock = chi2cdf(df_mock * varRatio_mock, df_mock); 

  

% Compute the empirical cumulative density functions (ECDF) 

stratified by base count levels, and show the ECDFs curves. Group 

the counts into seven levels. 

count_levels = [0 3; 3.1 12; 12.1 30; 30.1 65; 65.1 130; 130.1 310; 

310.1 2500]; 

figure; 

hold on 

cm = jet(7); 

for i = 1:7 
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   [Y1,X1] = ecdf(pchisq_mock(base_mean_mock>count_levels(i, 1) &... 

                              base_mean_mock<count_levels(i,2))); 

   plot(X1,Y1,'LineWidth',2,'color',cm(i,:)) 

end 

plot([0,1],[0,1] ,'k', 'linewidth', 2) 

set(gca, 'Box', 'on') 

legend('0-3', '3-12', '12-30', '31-65', '65-130', '131-310', '311-

2500',... 

       'Location','NorthWest') 

xlabel('Chi-squared probability of residual') 

ylabel('ECDF') 

title('Residuals ECDF plot for mock-treated samples') 

  

num_in_count_levels = zeros(1, 7); 

for i = 1:7 

    num_in_count_levels(i) = sum(base_mean_mock>count_levels(i, 1) & 

... 

                                 base_mean_mock<count_levels(i,2)); 

end 

num_in_count_levels 

  

% produce the same ECDF plot for DHT-treated samples 

pchisq_dht = estimateBaseParams(lncap_counts(:, cond_DHT),... 

                                                sizeFactors(1, 

cond_DHT),... 

                                                'Diagnostic'); 

figure; 

hold on 

for i = 1:7 

   [Y1,X1] = ecdf(pchisq_dht(base_mean_dht>count_levels(i, 1) & ... 

                             base_mean_dht<count_levels(i,2))); 

   plot(X1,Y1,'LineWidth',2,'color',cm(i,:)) 

end 

plot([0,1],[0,1] ,'k', 'linewidth', 2) 

set(gca, 'Box', 'on') 

legend('0-3', '3-12', '12-30', '31-65', '65-130', '131-310', '311-

2500',... 

       'Location','NorthWest') 

xlabel('Chi-squared probability of residual') 

ylabel('ECDF') 

title('Residuals ECDF plot for DHT-treated samples') 

  

%% Testing for Differential Expression 

  

[mu_mock, full_var_mock, mu_dht, full_var_dht] =... 

          estimateNBParams(lncap_counts, sizeFactors, cond_DHT, 

cond_Mock); 

       

k_mock = sum(lncap_counts(:, cond_Mock), 2); 

k_dht = sum(lncap_counts(:, cond_DHT), 2); 

pvals =  computePVal(k_dht, mu_dht, full_var_dht, k_mock, mu_mock, 

full_var_mock); 

                       

p_fdr = mafdr(pvals, 'BHFDR', true); 

  

foldChange = base_mean_dht ./ base_mean_mock; 
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log2FoldChange = log2(foldChange); 

  

base_mean_com = estimateBaseParams(lncap_counts, sizeFactors, 

'MeanAndVar'); 

  

de_idx = p_fdr < 0.01; 

  

figure; 

plot(log2(base_mean_com(~de_idx, :)), log2FoldChange(~de_idx,:), 

'b.') 

hold on 

plot(log2(base_mean_com(de_idx, :)), log2FoldChange(de_idx, :), 

'r.') 

xlabel('log2 Mean') 

ylabel('log2 Fold Change') 

  

% identify up- or down- regulated genes for mean base count levels 

over 3. 

  

up_idx = find(p_fdr < 0.01 & log2FoldChange >= 2 & base_mean_com > 3 

); 

numel(up_idx) 

  

down_idx = find(p_fdr < 0.01 & log2FoldChange <= -2 & base_mean_com 

> 3 ); 

numel(down_idx)  

 

 

 

 


