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Abstract—In this paper, an approach to design a fractional-
order integral operator s where -1 < λ< 0, using an analogue 
technique, is presented. The integrator with a constant phase 
angle -80.1 degree (i.e. order l = -0.89), bandwidth greater than 
3 decades, and maximum relative phase error 1.38% is designed 
by cascade connection of first-order bilinear transfer segments 
and first-order low-pass filter. The performance of suggested 
realization is demonstrated in a fractional-order proportional-
integral (FOPI) controller described with proportional constant 
1.37 and integration constant 2.28. The design specification 
corresponds to a speed control system of an armature controlled 
DC motor, which is often used in mechatronic and other fields of 
control theory. The behavior of both proposed analogue circuits 
employing two-stage Op-Amps is confirmed by SPICE 
simulations using TSMC 0.18 μm level-7 LO EPI SCN018 CMOS 
process parameters with ±0.9 V supply voltages.  

Keywords—fractional calculus, fractional-order integrator, 
FOPI controller, DC motor, two-stage Op-Amp 

I. INTRODUCTION 

Proportional-integral-derivative (PID) controllers are used 
for more than 90 % of control applications in the industry, 
because many simple auto-tuning methods and realization 
techniques for PID controllers are available [1][8]. In recent 
years, the survey [9] indicates fractional-order (FO) controllers 
become an emerging research topic since they provide many 
benefits in the control area. This is because the fractional 
calculus describes the dynamic characteristics of plant more 
precisely than integer-order description [10]. As Fig. 1 
illustrates, the traditional PIDs are a particular case of 
fractional-order PIλDµ (FOPIλDµ) controllers. Hence while 
design, FO controllers have an additional degrees of freedom 
and thus offer potential reduction of the control effort, which  
 

 
Fig. 1. Generalization of FOPIλDµ controller from points to plane 

also results in reduction of wasted energy. Utilization only 
proportional-integral (PI) controllers is sufficient in wide range 
of industrial control problems. Although digital controllers are 
used more often, the role of controllers designed via analogue 
technique should not be underestimated [8][14]. Our brief 
literature survey indicates various implementation techniques 
for the fractional-order integral operator sl, where -1 < l < 0 
realization in the Laplace domain [15], [16]. A polymer 
composites or ferroelectric materials-based solid-state elements 
[17][20], approximating impedance with fractional-order 
character of using passive ladder RC structures [21], emulators 
using active building blocks [22], or cascade of so-called 
bilinear transfer segments (BTSs) [23] are among them. 
Considering the last approach, most often first-order BTS is 
used, which is a two-port network with a single pole and a 
single zero. As it is known, the cascade of BTSs creates so-
called constant phase block, which generates desired 
magnitude and phase response by proper setting of both 
polynomial roots (zero and pole frequencies) of each BTS [24], 
[25]. Hence, this approach ensures direct emulation of the 
behavior of a fractional-order integrator (Il), which is very 
beneficial for FOPIl design.  

The main objective of this work is to introduce a new 
analogue implementation of a FOPIl controller employing Op-
Amps. Two-stage Op-Amp implemented in CMOS technology 
is used, which is a fundamental building block and widely used 
in analogue integrated circuits and systems. The proposed  
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Fig. 2. (a) Block diagram of a control system, (b) an implementation of an analogue fractional-order PIl controller and the mathematical model of a DC motor 

controller can be advantageous for the speed and position 
control of an armature controlled DC motor without the 
requirement of its interfacing with computer [26], [27] for 
instance. The behavior of proposed integrator and controller 
was verified by AC and transient analyses via SPICE software. 

The paper is organized as follows: Section II briefly 
describes preliminary considerations of a general control 
system and DC motor. Section III presents a new FOPIl 
controller design. The simulation results are shown in Section 
IV, while the last section includes the conclusions. 

II. DESCRIPTION OF A CONTROL SYSTEM AND 

PRELIMINARY CONSIDERATIONS 

A general block diagram of a single loop feedback control 
system is depicted in Fig. 2(a). Transfer function of the system 
can be expressed as [28]: 
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where G(s) is a plant, C(s) is a controller, R(s) is a reference 
input signal, Y(s) is an output signal, Td(s) is an external 
disturbance, U(s) is a control signal, and E(s) is an error signal, 
which is given by E(s) = R(s) − Y(s).  

An implementation of a control system used to control the 
speed and position of an armature controlled DC motor is 
shown in Fig. 2(b). The system is composed of the proposed 
analogue implementation of a FOPIl controller (C(s)), while 
G(s) is the mathematical model of a DC motor - the plant [26]. 
In brief, assuming the external disturbance, i.e., load torque 
Td(s) is zero, the transfer function (TF) of the motor speed 
control in s-domain can be expressed as [27]: 
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where VPI
l(s) is the applied armature voltage, (s) is the  

 

angular velocity (controlled variable), La is an inductance of 
armature winding, Ra is an armature resistance, Kb is back-emf 
constant, Km is a torque constant, and J is an equivalent 
moment of inertia and b is friction coefficient of motor and 
load referred to motor shaft. As the armature time constant for 
most of DC motors is negligible, the simplified TF of DC 
motors has the form G(s) = KDC/(s + 1), where 
 = RaJ/(Rab + KbKm) is the time constant and 
KDC = Km/(Rab + KbKm) is the gain with Kb = Km. Similarly, the 
TF for armature voltage and position (s) (controlled variable) 
will be G(s) = KDC/[s(s + 1)].  

III. A PROPOSED FOPIl CONTROLLER DESIGN 

In control theory, the gain crossover frequency (cg) 
implies that the modulus of the open-loop transfer function 
follows |C(jcg)G(jcg)| = 1 and phase margin (m) sets a 
condition upon the phase of the open-loop system at the cg, 
which can be expressed as m = arg[C(jcg)G(jcg)] + . 
Considering the setup [27], the TF of the DC motor voltage-
speed with 25% break is: 
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while the performance specification is cg = 1.5 rad/s and 
m = 60 degree. 

The speed (3) of a DC motor can be controlled using 
FOPIl, which TF in general has a form: 
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which corresponds in discrete domain to a TF as follows: 
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Equations (4) and (5) indicate the following three 
parameters, which can be independently set: 

(i)  KP is the proportional constant,  

(ii)  KI is the integration constant, 

(iii)  l (-1 < l < 0) is the fractional order of an integrator  
  in Laplace domain, while in discrete domain it is an  
  arbitrary real number. 

Following [27], the graphical method yields the solution for 
design parameters, which are KP = 1.37, KI = 2.28, and  
l = -0.89. Thus, the FOPIl controller is obtained as: 

 0.89PI

S

( )( )
( ) 1.37 2.28

( ) ( )

V sU s
C s s

E s V s
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The FOPIl controller shown in Fig. 2(b) requires presence 
of a precise Il design. Block diagram of a proposed integrator 
by cascade connection of first-order BTSs and first-order low-
pass filter (LPF) is depicted in Fig. 3 and can be expressed as: 
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where m denotes total number of BTS needed for the design of 
constant phase block and n = m + 1 will be mathematical order 
of the final circuit due to use of an additional LPF. The 
usefulness of LPF is described below. 

Proposed realization of BTS using two ideal Op-Amps 
(assuming open loop gain A  ) and a set of passive 
components is shown in Fig. 4(a), while the non-inverting LPF 
is depicted in Fig. 4(b). Transfer function of each segments are: 
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hence, zero and pole frequencies are: 
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and transfer zero and poles are adjustable by resistors Rzm, Rpm, 
and Rpm+1, respectively. 

Now, TF of cascade of m BTS and LPF in our particular 
case as depicted in Fig. 3 can be expressed as: 
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Fig. 3. Block diagram of a fractional-order integrator using BTSs and LPF 

 
(a) 

 
(b) 

Fig. 4. (a) Realization of a bilinear transfer segment and (b) low-pass filter 
using Op-Amps 
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  (10) 

Generalized TF (10) of a Il has feature to set m pairs of 
zeros and poles independently and an additional pole as our 
design requires. The main advantage of this approach is an 
easy and low-cost realization of Il using discrete passive 
components and on the shelf available Op-Amps. 

Ones the Il is designed, its integration constant KI must be 
also realized. For this purpose the inverting Op-Amp 
configuration was selected, which closed loop voltage gain 
using an ideal Op-Amp can be calculated by ratio of two 
resistors in the path as KI = -RI2/RI1. The minus sign (–) comes 
from the inverting Op-Amp configuration and indicates a 180 
phase shift. Now, the output voltage of the proposed fractional-
order integrator with integration constant (KII

l) in time domain 
can be given as: 

 I2
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while in s-domain its TF is -RI2(ls)l/RI1. Similarly, the 
inverting Op-Amp configuration was used also for proportional 
constant KP realization and its output voltage is:  
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V t V t
R
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Equations (4)-(6) indicate that a summing block is also 
required for FOPIl design. In analogue electronics the Op-
Amp-based summing amplifier is a suitable circuit for this 
purpose, which provides inverting weighted sum of input 
signals. Hence, the minus sign in (11) and (12) will be 
eliminated. Moreover, assuming the input resistors R and RP3 in 
Fig. 2(b) are equal, a unity gain adder will be added without 
affecting KP and KI constants. Finally, summing (11) and (12) 
as indicated in Fig. 2(b), the output voltage of the proposed 
FOPIl in time domain will be: 
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and its equivalent transfer function in Laplace domain can be 
given as: 
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Comparing (4) and (14), the following design equations are 
derived: 
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which will be useful in next section for FOPIl design according 
to parameters as defined by (6). 

IV. SIMULATION RESULTS 

To verify the theoretical analysis, the behavior of the 
proposed Il and FOPIl controller employing Op-Amps have 
been simulated by using SPICE program. DC power supply 
voltages of designed CMOS implementation of two-stage 
Miller compensated Op-Amp, shown in Fig. 5, were set 
+VDD = –VSS = 0.9 V. In [29], discrete components are 
assumed for both Miller resistor and load capacitor. The Op-
Amp structure, shown in Fig. 5, is more favorable for full 
CMOS integration, because both components are realized via 
MOS-only technique, while the Miller capacitor can be 
realized as double poly (poly1-poly2) or metal-insulator-metal 
(MIM) capacitor. In the design, transistors were modeled by 
the TSMC 0.18 μm level-7 LO EPI SCN018 CMOS process  
 

TABLE I.  TRANSISTOR DIMENSIONS OF TWO-STAGE OP-AMP IN FIG. 5 

PMOS Transistors W (m)/L (m) 

M3, M4 10.6 / 0.3 

M8 95.9 / 0.3 

NMOS Transistors W (m)/L (m) 

M1, M2 25.8 / 0.3 

M5 15.4 / 0.3 

M6 16.4 / 0.3 

M7 58 / 0.3 

MR 4 / 0.3 

MC 288 / 3.6 

TABLE II.  BEHAVIOR OF CMOS TWO-STAGE OP-AMP IN FIG. 5 

Parameter Value Unit 

Power supply ±0.9 (V) 

Unity gain bandwidth 230.2 (MHz) 

DC gain 60 (dB) 

Phase margin 60 (degree) 

Slew rate +/- 163 / 121 (V/s) 

PSRR +/- 72.4 / 68.5 (dB) 

CMRR 62.4 (dB) 

Compensation resistor (NMOS MR)  615 () 

Compensation capacitor Cc 0.8 (pF) 

Load capacitor (NMOS MC)  3 (pF) 

Power dissipation 1.39 (mW) 

Total area 1 115.6 (m2)# 
#Sum of products of widths and lengths of each transistors in the CMOS implementation 

TABLE III.  COMPUTED COMPONENT VALUES USED IN BTSS AND LPF 

FOR FRACTIONAL-ORDER INTEGRATOR DESIGN 

Capacitors (F) 

C1 C2 C3 C4 C5 C6 

27  10  12 m 68  1.8 m 150 n 

Resistors () 

Rb Rz1 Rz2 Rz3 Rz4 Rz5 

24 k 49 1.37 k 50.5 k 1.01 k 156 

Rp1 Rp2 Rp3 Rp4 Rp5 Rp6 

14 k 1 k 1.8 k 942 50.5 k 13 k 

 

 
Fig. 5. CMOS structure of two-stage Op-Amp 

parameters (VTHN = 0.3725 V, N = 259.5304 cm2/(Vs), 
VTHP = 0.3948 V, P = 109.9762 cm2/(Vs), TOX = 4.1 nm). 
Following the design procedure described in [29], the 
computed aspect ratios of CMOS transistors and Op-Amp 
main parameters, which were obtained with DC, AC, and 
transient analyses, are listed in Table I and Table II, 
respectively. During all simulations the bias current in the 
structure was set as IB = 130 A.  



   
 (a) (b) 

Fig. 6. Ideal, simulated, and fitted (a) gain and (b) phase responses of  
0.89-order integrator 

 
Fig. 7. Relative phase error and the corresponding normalized histogram for 

phase angle deviation evaluated in full frequency range 

Firstly, the Il of order –0.89 (i.e. the time constant l
l) was 

designed. The five-branch Valsa structure [21] was used, 
which provides a minimum phase angle deviation (PAD). 
Required R and C values were calculated via approach [25] 
implemented in Matlab with the following inputs: pseudo-
capacitance Cl = 20 F·sec–0.11, bandwidth (constant phase 
zone - CPZ) from 30 mHz up to 100 Hz (> 3 decades), constant 
phase angle (CPA) -80.1 degree (i.e. l = –0.89), and 
PAD = ±1 degree. Preliminary calculations showed that five 
BTSs (m = 5) and a LPF are required in the constant phase 
block shown in Fig. 3 in order to achieve the design 
specification. Note that the LPF is used for correction purposes 
of additional pole in Valsa structure. As the next step, zero and 
pole frequencies were recalculated and corresponding passive 
component values of Rzm, Rpm, Rpm+1, Cm, and Cpm+1 obtained 
via Matlab algorithm and optimized using modified least 
squares quadratic method. Component values used in BTSs 
and LPF for Il design are listed in Table III. Ideal and 
simulated gain and phase responses in frequency domain are 
given in Fig. 6. Selected zooms and equivalent equations for 
fitting the gain and phase in CPZ 45 mHz - 115 Hz via natural 
logarithm and linear regressions, respectively, are provided 
inside Figures. Simulated value of the unity-gain frequency of 
the Il was 34.6 Hz. As it can be seen in Fig. 7, in CPZ the 
maximum relative phase error is 1.38% and corresponding 
absolute PAD about 1 degree. Monte Carlo (statistical) analysis 
was performed with capacitors 5% tolerance, resistors 1% 
tolerance, and 200 runs to observe effects of deviations due to 
manufacturing processes. The histogram, shown in Fig. 8, 
demonstrates the variation of the phase of Il at 3 Hz. The mean 
value is -80.2389 degree, which is very close to theoretical 
value -80.1 degree, confirming that the proposed Il shows low 
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n samples = 200 
n divisions = 10 
mean = -80.2389 
sigma = 0.558949 
minimum = -81.8069 

10th %ile = -81.0287 
median = -80.2636 
90th %ile = -79.4817 
maximum = -78.9441 
3*sigma = 1.67685 

 
Fig. 8. Monte Carlo analysis: Variation of the phase of Il at 3 Hz 

 

 

Fig. 9. Ideal and simulated gain and phase responses for the proposed FOPIl 
controller 

   

 (a) (b) 

Fig. 10. Time-domain responses of proposed (a) Il and (b) FOPIl controller 
with applied square wave input voltage signal with frequency 100 mHz 

sensitivity for deviations of passive components. Equation (6) 
indicates the following design parameters of the FOPIl 
controller depicted in Fig. 2(b): KP = 1.37, KI = 2.28, and  
l = –0.89. As the Il is designed, the remaining design 
parameters can be recalculated using (15), which are the 
following: R = RP1 = RP3 = 10 k, RP2 = 13.7 k, 
RPI1 = 27.4 k, RPI2 = 1.3 k, and RPI3 = 24.9 k. An ideal and 
simulated gain and phase responses of the FOPIl are given in 
Fig. 9. The results in the figure confirm the accurate operation 
of the controller. Moreover, in order to illustrate the time-



domain performance of Il and FOPIl controller, transient 
analyses were performed, and results are depicted in Fig. 10. A 
square wave input signal with amplitude 150 mV and 
frequency 100 mHz with the following setup was applied to 
both circuits: TD = 0, TR = 1 ms, TF = 1 ms, TPW = 10 s, 
TPER = 20 s, i.e., 12 time constants l

l. Hence, complying with 
the theory of fractional calculus, in Fig. 10(a) the simulated 
output signal of the Il has triangular waveform, while Fig. 
10(b) indicates increasing gain in the proposed FOPIl 
controller as the effect of the KP. From obtained results it can 
be seen that it is in very close agreement with the theory 
proving good performance of propose Il and FOPIl controller. 

V. CONCLUSION 

The paper proposed an analogue realization of a Il and 
FOPIl controller based on design specification corresponding 
to a speed control system of an armature controlled DC motor. 
The main advantage of this approach is an easy and low-cost 
realization using discrete components. For the Il, SPICE 
simulations using two-stage CMOS Op-Amps showed an 
absolute phase angle deviation about 1 degree in constant 
phase zone from 45 mHz to 115 Hz. Statistical analysis proved 
its low sensitivity characteristic for passive components. 
Simulated gain and phase responses of the FOPIl confirmed 
accurate operation of the controller. 

REFERENCES 

[1] J. Tenreiro-Machado, A. M. Lopes, D. Valério, and A. M. Galhano, 
Solved Problems in Dynamical Systems and Control. The IET, 2016. 

[2] C. Yeroglu and N. Tan, “Note on fractional-order proportional-integral-
differential controller design,” IET Control Theory & Applications, vol. 
5, no. 17, pp. 1978–1989, 2011. 

[3] A. Dumlu and K. Erenturk, “Trajectory Tracking Control for a 3-DOF 
Parallel Manipulator Using Fractional-Order PIλDµ Control,” IEEE 
Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3417–3426, 
2014. 

[4] A. A. Dastjerdi, N. Saikumar, and S. H. HosseinNia, “Tuning guidelines 
for fractional order PID controllers: Rules of thumb,” Mechatronics, vol. 
56, pp. 26–36, 2018. 

[5] B. B. Alagoz, “Fractional order linear time invariant system stabilization 
by brute-force search,” Transactions of the Institute of Measurement and 
Control, vol. 40, no. 5, 1447–1456, 2018. 

[6] P. Ko and M. Tsai, “H Control Design of PID-Like Controller for 
Speed Drive Systems,” IEEE Access, vol. 6, pp. 36711-36722, 2018. 

[7] H. Ren, J. Fan, and O. Kaynak, “Optimal Design of a Fractional-Order 
Proportional-Integer-Differential Controller for a Pneumatic Position 
Servo System,” IEEE Transactions on Industrial Electronics, vol. 66, 
no. 8, pp. 6220–6229, 2019. 

[8] S. Razvarz, C. Vargas-Jarillo, R. Jafari, and A. Gegov, “Flow Control of 
Fluid in Pipelines Using PID Controller,” IEEE Access, vol. 7, pp. 
25673-25680, 2019. 

[9] A. Tepljakov, B. B. Alagoz, C. Yeroglu, E. Gonzalez, S. H. HosseinNia, 
and E. Petlenkov, “FOPID controllers and their industrial applications: a 
survey of recent results,” IFAC-PapersOnLine, vol. 51, pp. 25–30, 2018. 

[10] R. Magin, B. Vinagre, and I. Podlubny, “Can Cybernetics and Fractional 
Calculus Be Partners?: Searching for New Ways to Solve Complex 
Problems,” IEEE Systems, Man, and Cybernetics Magazine, vol. 4, no. 
3, pp. 23–28, 2018. 

[11] I. Podlubny, B. Vinagre, P. O’leary, and L. Dorcak, “Analogue 
realizations of fractional-order controllers,” Nonlinear Dynamics, vol. 
29, pp. 281–296, 2002. 

[12] A. Charef, “Analogue realisation of fractional-order integrator, 
differentiator and fractional PIλDµ controller,” IEE Proceedings - 
Control Theory and Applications, vol. 153, no. 6, pp. 714–720, 2006. 

[13] D. Sierociuk, I. Podlubny, and I. Petras, “Experimental Evidence of 
Variable-Order Behavior of Ladders and Nested Ladders,” IEEE 
Transactions on Control Systems Technology, vol. 21, no. 2, pp. 459–
466, 2013. 

[14] H. Nezzari, A. Charef, and D. Boucherma, “Analog Circuit 
Implementation of Fractional Order Damped Sine and Cosine 
Functions,” IEEE Journal on Emerging and Selected Topics in Circuits 
and Systems, vol. 3, no. 3, pp. 386–393, 2013. 

[15] K. Biswas, G. Bohannan, R. Caponetto, A. M. Lopes, and J. A. T. 
Machado, Fractional-Order Devices. Springer, 2017.  

[16] A. K. Gilmutdinov, P. A. Ushakov, and R. El-Khazali, Fractal Elements 
and their Applications. Springer, 2017. 

[17] A. M. Elshurafa, M. N. Almadhoun, K. N. Salama, and H. N. Alshareef, 
“Microscale electrostatic fractional capacitors using reduced graphene 
oxide percolated polymer composites,” Applied Physics Letters, vol. 
102, pp. 232901–232904, 2013.  

[18] A. Kartci, A. Agambayev, A. H. Hassan, H. Bagci, and K. N. Salama, 
“Experimental Verification of a Fractional-Order Wien Oscillator Built 
Using Solid-State Capacitors,” In Proc. of 2018 IEEE 61st International 
Midwest Symposium on Circuits and Systems (MWSCAS), Windsor, ON, 
Canada, 2018, pp. 544-545. 

[19] A. Kartci, A. Agambayev, N. Herencsar, and K. N. Salama, “Series-, 
parallel-, and inter-connection of solid-state arbitrary fractional-order 
capacitors: theoretical study and experimental verification,” 
IEEE Access, vol. 6, pp. 10933–10943, 2018. 

[20] D. A. John, S. Banerjee, G. W. Bohannan, and K. Biswas, “Solid-state 
fractional capacitor using MWCNT-epoxy nanocomposite,” Applied 
Physics Letters, vol. 110, 163504, 2017. 

[21] J. Valsa, P. Dvorak, and M. Friedl, “Network model of the CPE,” 
Radioengineering, vol. 20, pp. 619–626, 2011. 

[22] G. Tsirimokou, A. Kartci, J. Koton, N. Herencsar, and C. Psychalinos, 
“Comparative study of discrete component realizations of fractional-
order capacitor and inductor active emulators,” Journal of Circuits 
Systems and Computers, vol. 27, no. 11, pp. 1850170-1–1850170-26, 
2018. 

[23] J. Petrzela, “Fundamental analog cells for fractional-order two-port 
synthesis,” In Proc. of 23rd Conference Radioelektronika, Czech 
Republic, 2013, pp. 182–187. 

[24] R. Sotner, J. Jerabek, N. Herencsar, J. Petrzela, T. Dostal, and K. Vrba, 
“First-order adjustable transfer sections for synthesis suitable for special 
purposes in constant phase block approximation,” AEU - International 
Journal of Electronics and Communications, vol. 69, pp. 1334–1345, 
2015. 

[25] R. Sotner, J. Jerabek, A. Kartci, O. Domansky, N. Herencsar, 
V. Kledrowetz, B. B. Alagoz, and C. Yeroglu, “Electronically 
Reconfigurable Two-Path Fractional-Order PI/D Controller Employing 
Constant Phase Blocks Based on Bilinear Segments Using CMOS 
Modified Current Differencing Unit,” Microelectronics Journal, vol. 86, 
pp. 114-129, 2019. 

[26] I. Petras, “Fractional-Order feedback control of a DC motor,” Journal of 
Electrical Engineering, vol. 60, no. 3, pp. 117–128, 2009. 

[27] C. Copot, C. I . Muresan, and R. De Keyser, “Speed and position control 
of a DC motor using fractional order PI-PD control,” In Proc. of 3rd Int. 
Conference on Fractional Signals and Systems, Ghent, Belgium, 2013, 
pp. 1–6. 

[28] B. B. Alagoz, A. Tepljakov, C. Yeroglu, E. Gonzalez, S. H. HosseinNia, 
and E. Petlenkov, “A numerical study for plant-independent evaluation 
of fractional-order PID controller performance,” IFAC-PapersOnLine, 
vol. 51, pp. 539–544, 2018. 

[29] Y. Guo, “An accurate design approach for two-stage CMOS operational 
amplifiers,” In Proc. of IEEE Asia Pacific Conf. on Circuits and Systems 
(APCCAS), Jeju, Korea, 2016, pp. 563–566. 

 


	Analogue Implementation.pdf
	PID5882831.pdf

