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Abstract: When issuing hydrological forecasts and warnings for individual profiles, the aim is
to achieve the best possible results. Hydrological forecasts themselves are burdened by an error
(uncertainty) at the inputs (precipitation forecast) as well as on the side of the hydrological model
used. The aim of the method described in this article is to reduce the error of the hydrological
model using post-processing the model results. Models based on neuro-fuzzy models were selected
for the post-processing itself. The whole method was tested on 12 profiles in the Czech Republic.
The catchment size of the individual profiles ranged from 90 to 4500 km2 and the profiles varied
in their character, both in terms of elevation as well as land cover. After finding the suitable model
architecture and introducing supporting algorithms, there was an improvement in the results for
the individual profiles for selected criteria by on average 5–60% (relative culmination error, mean
square error) compared to the results of re-simulation of the hydrological model. The results of the
application show that the method was able to improve the accuracy of hydrological forecasts and
thus could contribute to better management of flood situations.

Keywords: hydrological forecast; floods; artificial intelligence methods; post-processing

1. Introduction

Short-term hydrological forecasts are an essential part of many early warning systems
today. Based on the forecast, it is possible to adjust the management of reservoirs or
start preparatory measures against floods. The problem of hydrological forecasts is their
accuracy. The forecast itself is affected by uncertainties both on the input side (precipitation,
river basin saturation, etc.) and on the hydrological model side (schematization and
calibration of the model). The errors caused by the above-mentioned uncertainties are
partly systematic (repeated). They can be identified, but often cannot be removed by
modifying the hydrological model, because the model cannot capture the whole complexity
of the runoff process [1]. However, these errors can be eliminated by one of the methods
of adjusting the resulting forecasts—in so-called post-processing. For the above reason,
post-processing is commonly introduced in predictions to reduce prediction error.

In practice, commonly used post-processing methods usually only deal with the
error associated with the precipitation amount or with hydrological uncertainty, but only
with stochastic (ensemble) prediction [2–5]. Other methods that work directly with the
hydrological model error work on the basis of daily flows [6] or longer time periods. In the
case of other methods such as the Kalman filter [7], the methods are usually limited to
repeated correction of the first value and subsequent adjustment of the prediction (shift
of values by the magnitude of the error, time shift). The problem with their use is that
the effect of adjusting the first value decreases with increasing time. In addition, repeated
recalculations of the model are very time consuming. In the case of the Czech Republic,
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the forecast length of 72 h is usually used (Czech Hydrometeorological Institute, CHMI).
For this reason, a method was developed that is able to correct the error of the hydrological
model during a time period of 72 h or more in advance and does not need recalculation
(recalibration).

One of the possibilities of post-processing the outputs of the hydrological model are
trained neuro-fuzzy models [8]. Trained neuro-fuzzy models are an adaptive-network-
based fuzzy inference systems (ANFIS). The advantage of ANFIS is the fact that it represents
a combination of neural networks and a fuzzy set, which ANFIS gives certain advantage
over classic neural network or trained fuzzy models. For further understanding of ANFIS
we recommend a scientific paper of the authors Jang and Sun [8]. The further described
model is based on this theory. The advantage of the above models is their calculation
speed and the ability to approximate even very complex relationships between the in-
dividual factors influencing the resulting course of hydrological forecast. The artificial
intelligence methods themselves are very often used for flood flow forecast or reservoir
management [9–12]. Usage of ANFIS as the post-processing method is what makes this
study unique. The aim of the method described in this paper is to be able to apply a model,
based on the ANFIS method, for post-processing and it is therefore assumed that the reader
has certain understanding of the ANFIS method.

The ANFIS itself could be used for flood flow forecasting, but this application has
some restrictions and usually has a high demand on sufficient training episodes. The major
issue associated with a direct application is related to extrapolation (when forecasted
episodes are outside of the training data matrix). The second problem is that a flood is a
continuous curve, values of which usually do not differ from hour to hour by a certain
difference (results stability problems). The AI method can give rather fluctuating values,
without another algorithm. These problems are solved by using a hydrological model.
The ANFIS is used for post-processing of hydrological model results to enhance their
accuracy. Moreover, the ANFIS is also intended to be used in flood situations only (when it
makes sense to apply the post-processing). The hydrological model forecast is provided on
a daily basis even when flow values are low (drought forecast).

The uncertainty of hydrological modeling is caused, among other things, by the
simplification of reality on a spatial scale (homogenization of river basins into modeled
areas) and on a time scale (same set of parameters for different runoff phases). It can be
assumed that for a specific river basin, this part of the uncertainty of hydrological modeling
will manifest itself by systematic errors, which are repeated in similar runoff situations.
The magnitude of these biases depends on many factors such as saturation, initial flow,
precipitation, season and others. Therefore, a simple mathematical relationship cannot be
established for them. However, trained neuro-fuzzy models can identify (evaluate) these
relationships and use them to make the forecast more accurate.

The aim of the described post-processing models based on trained neuro-fuzzy models
is to reduce the error of the outputs from the hydrological model for events that were
caused by rainfall. In the following text, hydrological forecast will be understood as
the deterministic forecast obtained by the continuous hydrological model for gauged
(forecasting) profile. The presented method focuses on runoff situations in which there is a
risk of floods and thus a considerable pressure to provide the greatest possible reliability of
flow forecasts. At the same time, however, we have to emphasize that the method does
not solve the errors caused by inaccurate predictions of precipitation, which are often the
dominant source of errors during floods. Figure 1 shows a flowchart for the process and
also shows where the post-processing stage comes into play during this process.
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Figure 1. Scheme of important process.

2. Materials and Methods

It is, therefore, clear from the previous text that the use of neuro-fuzzy models as a
post-processing tool could bring the desired improvement of the existing hydrological
forecast methods since the model itself, based on artificial intelligence methods, will be able
to mitigate the prediction error. In the model architecture of the trained neuro-fuzzy model
NFM, sequential aggregation of inputs was used [13] if the model used 3 or more inputs
(Figure 2). Figure 3 depicts the model scheme without sequential aggregation of inputs.
The advantage of a gradual aggregation of inputs is easier construction of the rule matrix.
First, it is necessary to build a model architecture and a matrix of target behavior containing
input-output relationships, because models based on artificial intelligence methods need
patterns for their training (learning). Table 1 below lists the individual inputs that were
used to find a suitable post-processing model architecture. All flow values are modeled
flows by the hydrological model, unless stated otherwise for the flow parameter.
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Table 1. Parameters used for model construction.

Value Marking Unit

Instantaneous flow value Qsim m3/s
Total precipitation amount (1 h) Hs Mm

Previous flow value Qpm m3/s
Next flow value Qfm m3/s

Topsoil saturation indicator UTWZ Mm
Average of the hourly sum of precipitation totals over a

period of time Hspi Mm

Corrected flow (post-procesing flow) Qpost m3/s
Difference between current and previous flow value ∆Qmodp m3/s

Difference between current and next flow value ∆Qmodf m3/s
Average of the flow values over time Qpmodi m3/s

3. Application

The model described in the previous chapter was applied to selected prediction
profiles to test the possibilities of post-processing under various conditions. The area
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of interest was chosen because there are very diverse types of river basins. There are
typical mountain catchments and catchments strongly influenced by agricultural activity
as well as catchments with a high proportion of water areas. The profiles themselves
were selected from a set of forecasting profiles included in the national flood forecasting
service performed by the Czech Hydrometeorological Institute (CHMI). All the selected
profiles are located within the Vltava river basin in the Czech Republic in the region
of south Bohemia. Their positions are shown in Figure 4 and their brief description is
given in Table 2. A total of 12 profiles were selected, which were divided into three
groups according to their location. At the end of each profile name, a number is given in
parentheses, which represents the position of the profile in Figure 3. The first group consists
of the catchments of the Lenora (2), Ličov (3) and České Budějovice (1) profiles. The profile
of České Budějovice is in this application the final profile of the whole first group and the
area of its catchment area represents the whole area of the catchment area of the first group.
The catchments of the Ličov and Lenora profiles are then sub-catchments. The basin of the
Ličov and Lenora profiles mostly consists of forests and mountains. The profile of Lenor
itself lies above the Lipno reservoir. The second group consists of the profiles Bechyně (4)
and Rodvínov (5). The Bechyně profile is the final profile of the whole group. The Bechyně
profile catchment area and its partial part of the Rodvínov catchment area are relatively
flat with a large percentage of agricultural land and include a large number of ponds
and pond systems (5.1% of the catchment area). The third group consists of the profiles
Bohumilice (11), Katowice (7), Modrava (9), Písek (6), Podedvory (12), Stodůlky (10) and
Sušice (8). The Písek profile is the final profile of the entire third group. The catchment area
of the Bohumilice, Modrava, Stodůlky and Sušice profiles is mainly made up of forests.
The catchments of the Bohumilice, Modrava and Stodůlky profiles themselves have a
mountain character.
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Table 2. Profile specification.

Num. Profile River Catchment Area
[km2 ]

Qa
[m3/s]

1. FLD
[m3/s]

2. FLD
[m3/s]

3. FLD
[m3/s]

N1
[m3/s]

N100
[m3/s]

FIP
[%]

1 České Budejovice Vltava 2850 106 244 361 489 172 908 35

2 Lenora Tepla
Vltava 177 3.06 29 53.5 70.8 26 113 78

3 Ličov Cerna 127 1.29 12.7 21.4 29.7 21 188 53
4 Bechyně Luznice 4057 22.2 87.9 140 187 111 577 33
5 Rodvínov Nezarka 297 2.2 18.7 26.9 43.7 20 91 10
6 Písek Otava 2914 23.4 135 214 297 146 837 27
7 Katovice Otava 1134 13.8 118 169 255 133 510 42
8 Sušice Otava 533 10.5 64.2 94.3 127 101 369 77
9 Modrava Vydra 90 3.01 30.5 41.2 54.6 29 120 96

10 Stodůlky Kremelna 135 3.24 24 37 52.4 40 153 89
11 Bohumilice Spulka 105 0.97 24 35.1 47.7 11 84 48
12 Podedvory Blanice 204 2.04 15.3 28.2 38.6 25 165 60

Table 2 shows the catchment area and the average long-term flow Qa. Furthermore, for
the individual profiles, values of flows are given, at which the individual degrees of flood
activity are announced, which are defined by the Water Act of the Czech Republic 254/2001
of the Collection of Laws. The values of the flood level danger (FLD) levels themselves
represent the individual limit values for the declaration of a flood danger (FLD 1—low
level of danger—yellow color; FLD 2—high level of danger-orange color; FLD 3—extreme
level of danger—red color). The particular level of danger usually corresponds with this
color set in a global warning system. The individual values of flows in the FLD columns
were determined according to the measurement curve valid at the time of validation of the
post-processing model. Column N1 shows the one-year flood flow rate value and column
N100 shows the 100-year flood flow rate value. The last column of the table shows the
percentage of forest area with respect to the total catchment area FIP. The FIP parameter is
used for better understanding of the basin.

Input data of model flow, soil saturation and average precipitation data for each river
basin were obtained by using the Aqualog [14] hydrological model, which is used in this
part of the river basin for operational calculation of the hydrological forecast. The Aqualog
is a hydrological modeling system that integrates the rainfall-runoff model Sacramento
(SAC-SMA) [15], the snow accumulation and melting model Snow17 [16] and the channel
routing model TDR [17]. The spatial structure of modeling techniques is semi-distributed
with an average area of the catchments between 30 and 50 km2. The required inputs are
data on river discharge, precipitation and air temperature in 1-h step. The precipitation
data, which were used for resimulation, were merged with rainfall data (combination of
adjusted radar observation and values measured by automatic weather station). Aqualog
re-simulation data were calculated on the observed data in continuous intervention-free
operation. Deviations of the calculated flow from the observed values therefore represent
the error of the input observed data and hydrological modeling. The re-simulation period
2005–2016 includes a number of significant flood episodes. The data were grouped into
individual months and the tendency of the simulation model compared to the reality in
the individual months was determined. Data from a particular month were selected for
the training of the model for the that particular month, and if the neighboring months
had the same tendency (underestimated, overestimated), the training matrix was extended
by these data. Data of distant months were not considered, even if they had the same
tendency. The reason for this selection was the time variability of the influence of the model
sensitivity on the individual input parameters of the simulation model and the variable
boundary conditions of the simulation model. Data from neighboring months that met the
condition of the same tendency were included only due to the lack of training data during
the individual months.
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During the calibration process, optimal settings and architecture of the individual
models were sought. For the NFM model, it was the shape number of membership
functions further marked mf and sequence of input. The calibration period was chosen
from 2005 to 2010 and was gradually extended by new (past) events. Individual events were
selected for the calibration process on the basis of their peak flow and total precipitation
Hs. The event started when the hourly precipitation Hs exceeded 1 mm and ended 15 h
(35 h catchments exceeding 250 km2) from the last value of the precipitation Hs, which
was higher than 0. From the events defined above, those events were selected in the target
behavior matrix, for which the peak flow exceeded the half the flow value of the FLD 1 of
the given profile basin.

In the first phase of the calibration process, boundaries were sought for the results
obtained by the NFM models, and therefore, the NFM models were trained over the entire
data period and then verified on the validation period. Criterion E was introduced to
assess the success rate of the model:

E =
n

∑
i=1

(Qreal − Qsim)
2 (1)

which is defined as the average sum of squares of the deviations between the simulated
flow Qsim and the actual flow Qreal for the observed period. The results showed that the
NFM models showed a lower error of criterion E by 20 to 50% compared to the results of
unadjusted (without post-processing) outputs of the hydrological model. These results set
the limits that can be achieved in this study when NFM models are used for post-processing.
It is possible to achieve very different values of criterion E for selected episodes.

For the very need of the actual operation and validation, an auxiliary algorithm was
compiled for scenarios where the modified event was outside the limits of the training area.
Commonly used methods for extending the limits of training data in AI methods such as
the addition of white noise have not been able to sufficiently capture the range of future
events being modified. In many cases, the peak flow was more than two times greater than
the peak flows in the training data. This algorithm is referred to in the following text as
EEA (extreme events algorithm). Before starting the post-processing itself (model training
phase), the EEA algorithm verifies whether the modeled culmination (modeled by the
hydrological model) is higher than the historically modeled events. If the first condition
is met, the EEA algorithm finds the event with the highest peak in the calibration data.
The value of the current simulated culmination is then increased by 25%. Such increase
ensures a sufficiently large space for training.

It also calculates the difference between the adjusted current peak value and the
peak value of the selected calibration event. Subsequently, the hourly gradients for the
individual simulated flows for the selected calibration event ∆Qka are calculated and the
culmination value is determined in time. The values of the rising limb (including the peak
flow) are obtained according to the Equation (2) and the values of the falling limb of the
artificial simulated event according to the Equation (3):

Qvvi = Qsim,i +
3i × ∆Qkai

3c
(2)

where i is the element order and c is the value of the peak flow order.

Qsvi = Qsim,i +
2k × ∆Qkai

2c
(3)

where k = c + (c − i) and c is the number of peak members in the time series. (4)

The algorithm then calculates the ratio between the simulated and real values for
each member of the series of the selected calibration event. The real values of the artificial
event are obtained by multiplying the simulated values of the artificial event by the vector
described above. According to the procedure described above, the EEA algorithm is able to
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prevent misleading of the NFM model. Models based on AI are usually not able to provide
sufficient results outside their range of training (they are not appropriate for extrapolation).

The best results in the validation stage were achieved using an architecture that used
the current value of Qsim as input the gradient between the current and previous value
∆Qmodp and the average of hourly precipitation total Hspi for the selected time period Γ
[h]. The architecture described above will hereafter be referred to as the NFM 1 model.
Figure 5 shows a diagram of the NFM 1 model and Figure 6 shows one of the local model
(N-F).
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The learning process itself took place in two phases. In the first phase, the architecture
of the fuzzy model of Sugeno [18,19] type was constructed using the method of fuzzy
C-mean clustering [20]. This step determines the value of the input and output, value
and shape of membership function (mf) of the model and sets rule matrix. Then, training
was performed on selected episodes using the backpropagation method and the use of the
built-in function of the MATLAB anfis program [21]. The best results were obtained when
the value of mf was set to 5 (Gaussian curve) for all local N-F models.

For the NFM model, an analysis of the influence of the length of the selected period of
the Hspi parameter on the results was performed. The results of the analysis are shown in
Table 3. The length of the chosen period for the calculation of Hspi is referred to as Γ in the
following text.

Table 3. Values of Γ, for which the lowest values of the selected criteria were reached.

Num. Basin 1 2 3 4 5 6 7 8 9 10 11 12

Γ [h] 6 2 2 4 3 6 6 5 3 2 2 3
Area [km2] 2848 177 127 4057 297 2914 1134 534 90 135 105 203

It can be seen from Table 3 that the length values used to generate the Hspi parameter
generally reach higher values for larger river basins. This statement corresponds to the
length of the river basin’s reaction time to previous precipitation.
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While testing the effect of length on the Γ parameter, the choice and number of training
events were also tested. Based on the testing results, it was found that better results were
achieved by selecting particular training episodes rather than using all the data. When
choosing whether to use the training episode, two basic criteria were decisive. The first of
these was the simulated peak flow, which should not differ by more than 25% from the
value of the simulated peak flow of the adjusted episode. If the total number of training
episodes was less than three, the 25% limit was gradually increased until at least one
training episode was found. The second criterion was the maximum sum of the moving
average of the total precipitation of a length three. If for the selected training episodes
according to the first selection criterion, the maximum moving average of the three values
differed by more than 60% from the adjusted episode and the total number of episodes
was higher than five, episodes that did not meet the criterion were excluded. Figure 7
shows a comparison between an application of post-processing to a selected episode using
all training episodes and using a selection of training episodes. Figure 8 shows training
results for select episode June 2013 Bechyně (including artificial episode for training made
by EEA).
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Figure 7. Results for the selected episode in the Bechyně profile. Figure 7 shows the course of
the selected episode, where the dashed blue line shows the flow value N1 (period of return = 1)
and the green value N100 (period of return = 100). The measured data are plotted in orange. The
re-simulation of the episode using the Aqualog model is shown in gray. The results are shown in pink
with the use of post-processing without the use of the EEA algorithm and the selection of episodes
was not used during the training. The results of post-processing using the EEA algorithm during
training and without selection of individual episodes are displayed in blue. The yellow color shows
the results using post-processing using the EEA algorithm during training and using the selection
of episodes.
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data (blue) and the result of the trained post-processing model (red). An artificial training episode
provided by the EEA algorithm is also shown (black circles).

4. Results

To better evaluate the results, an Ek criterion was introduced, which is defined as the
average relative deviation between the actual value of the peak flow Qp,i and the predicted
value Qs,i for the entire validation period, where the individual members are averaged in
absolute values.

Ek = abs

(
Qp,i − Qs,i

Qp,i

)
(5)

The Nash–Suctliffe criterion (NSE) was introduced to further evaluate the benefits of
post-processing:

NSE = 1 − ∑n
i=1(Qsim,i − Qreal,i)

2

∑n
i=1
(
Qreal,i − Qreal

)2 (6)

The root mean square error (RMSE) was chosen as the last criterion:

RMSE =

√
∑n

i=1(Qsim,i − Qreal,i)
2

n
(7)

The individual results were further divided according to the N-year culmination into
two groups (N ≤ 1 and N > 1). First, the overall results were evaluated and these were then
evaluated separately for each group, because it was necessary to assess how the model
performs under situations of different level of seriousness. The Ek criterion was introduced
because the issuance of alerts is very often governed by the peak flow value.

Table 4 shows the criteria values for all profiles together for the whole validation period
for the episodes when the above-mentioned post-processing and the values obtained for the
data without post-processing (clean data) were used. The Ek and NSE values are averaged
results for the whole validation period. The criterion E is the sum of the individual results
of the criteria E for whole validation period.
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Table 4. Criteria results for the individual profiles.

Name: České Budějovice (Area = 2850 km2, N1 = 172 m3/s)

Method Post-procesing Clean data
Data set All N > 1 N < 1 All N > 1 N < 1

Ek 0.33 - 0.33 0.63 - 0.63
E 665 - 665 1539 - 1539

RMSE 2.44 - 2.44 3.44 - 3.44
NSE 0.77 - 0.77 0.70 0.70

Num. events 24 0 24 24 0 24

Name: Lenora (Area 177 = km2, N1 = 26 m3/s)
Method Post-procesing Clean data
Data set All N > 1 N < 1 All N > 1 N < 1

Ek 0.23 0.24 0.23 0.38 0.22 0.40
E 559 3092 228 1074 5081 551

RMSE 2.16 4.10 1.79 3.03 5.02 2.93
NSE 0.81 0.86 0.80 0.77 0.81 0.77

Num. events 26 3 23 26 3 23

Name: Ličov (Area = 127 km2, N1 = 21 m3/s)
Method Post-procesing Clean data
Data set All N > 1 N < 1 All N > 1 N < 1

Ek 0.35 0.33 0.36 0.37 0.38 0.37
E 1138 3972 429 1249 4788 364

RMSE 2.31 2.41 2.67 2.54 2.73 2.45
NSE 0.65 0.71 0.63 0.62 0.69 0.60

Num. events 20 4 16 20 4 16

Name: Bechyně (Area = 4057 km2, N1 = 111 m3/s)
Method Post-procesing Clean data
Data set All N > 1 N < 1 All N > 1 N < 1

Ek 0.09 0.07 0.02 0.14 0.14 0.03
E 596,330 715,530 331 952,960 1,143,461 453

RMSE 15.23 24.55 1.55 17.23 26.93 1.79
NSE 0.94 0.93 0.99 0.91 0.89 0.98

Num. events 6 5 1 6 5 1

Name: Rodvínov (Area = 297 km2, N1 = 20 m3/s)
Method Post-procesing Clean data
Data set All N > 1 N < 1 All N > 1 N < 1

Ek 0.31 0.32 0.26 0.39 0.32 0.41
E 2711 5476 2020 3231.02 6476 2420

RMSE 5.21 5.65 4.72 6.07 11.53 5.71
NSE 0.6 0.66 0.56 0.58 0.66 0.52

Num. events 5 1 4 5 1 4

Name: Písek (Area = 2914 km2, N1 = 146 m3/s)
Method Post-procesing Clean data
Data set All N > 1 N < 1 All N > 1 N < 1

Ek 0.10 0.07 0.17 0.12 0.07 0.22
E 18,062 22,748 16,890 21,276 27,573 19,402

RMSE 12.62 11.75 14.13 15.11 14.16 16.78
NSE 0.81 0.94 0.77 0.77 0.87 0.75

Num. events 20 4 16 20 4 16

Name: Katovice (Area = 1134 km2, N1 = 137 m3/s)
Method Post-procesing Clean data
Data set All N > 1 N < 1 All N > 1 N < 1

Ek 0.09 0.12 0.08 0.15 0.18 0.15
E 3806 12,554 1965 6846 14,946 5141

RMSE 6.36 10.54 5.21 9.17 11.94 8.17
NSE 0.83 0.94 0.81 0.81 0.91 0.79

Num. events 23 4 19 23 4 19
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Table 4. Cont.

Name: Sušice (Area = 533 km2, N1 = 101 m3/s)
Method Post-procesing Clean data
Data set All N > 1 N < 1 All N > 1 N < 1

Ek 0.11 0.12 0.09 0.09 0.14 0.08
E 3806 9726 1500 3843 7294 3046

RMSE 7.76 14.39 4.28 7.78 11.58 6.81
NSE 0.80 0.86 0.78 0.61 0.83 0.56

Num. events 16 3 13 16 3 13

Name: Modrava (Area = 90 km2, N1 = 29 m3/s)
Method Post-procesing Clean data
Data set All N > 1 N < 1 All N > 1 N < 1

Ek 0.28 0.27 0.28 0.43 0.30 0.45
E 1096 3839 613 1311 3621 903

RMSE 3.73 8.11 2.95 4.50 7.99 3.88
NSE 0.83 0.71 0.86 0.64 0.7 0.62

Num. events 20 3 17 20 3 17

Name: Stodůlky (Area = 135 km2, N1 = 40 m3/s)
Method Post-procesing Clean data
Data set All N > 1 N < 1 All N > 1 N < 1

Ek 0.31 0.31 0.31 0.36 0.34 0.36
E 732 2889 463 1093 4035 726

RMSE 2.86 6.31 2.43 3.73 7.25 3.29
NSE 0.68 0.74 0.67 0.53 0.63 0.51

Num. events 27 3 24 27 3 24

Name: Bohumilice (Area = 105 km2, N1 = 11 m3/s)
Method Post-procesing Clean data
Data set All N > 1 N < 1 All N > 1 N < 1

Ek 0.57 0.45 0.59 0.96 0.46 1.05
E 177 678 89 176 674 88

RMSE 1.54 3.44 1.20 1.52 3.42 1.19
NSE 0.75 0.63 0.78 0.61 0.61 0.61

Num. events 20 3 17 20 3 17

Name: Podedvory (Area = 204 km2, N1 = 25 m3/s)
Method Post-procesing Clean data
Data set All N > 1 N < 1 All N > 1 N < 1

Ek 0.17 0.14 0.18 0.18 0.21 0.17
E 1681 2902 1070 2598 6141 827

RMSE 3.46 3.69 3.78 3.75 4.50 3.27
NSE 0.75 0.76 0.74 0.62 0.63 0.61

Num. events 15 5 10 15 5 10

The results in Table 4 show that the results obtained using post-processing brought
improvements in the tested profiles in the range of 5–60% for the Ek criterion and 5–45%
for the E criterion. An exception was the Sušice profile, where post-processing results of
the Ek criterion deteriorated by 20% for all data. Furthermore, for the Bohumilice profile,
there was a 0.5% deterioration in the criterion E. In case the deterioration or improvement
rate is below 1%, the results obtained can be considered as the same (i.e., neither improved
nor deteriorated). From the values in the Table 5, it is clear that the aggregated final values
of the criteria when using post-processing are significantly lower than on clean data.
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Table 5. Criteria results over all values.

Criteria Post-Procesing Clean Data

All N > 1 N < 1 All N > 1 N < 1

Ek 0.25 0.22 0.21 0.34 0.26 0.31
E 52,500 71,218 2133 83,099 111,281 2851

5. Discussion

From the previous text, it is clear that the introduction of post-processing brought a
decrease in the values of all the criteria for most profiles. Only the Sušice profile deterio-
rated. A possible reason for this was that the results of the Aqualog model were very good
for the profile, and the training base was very inconsistent in terms of underestimation
(overestimation). The above-mentioned inconsistency is probably due to the area distribu-
tion of the precipitation that caused the flood wave. Part of the catchment area in the top
part of Šumava is very poorly monitored by rain gauges, and therefore, in situations with
orographic intensification of precipitation from the western direction, underestimation of
precipitation is probably a major source of model errors. On the contrary, in the opposite
direction of the air flow, more central parts of the basin are involved in the outflow, which
are monitored very well. From this example, it can be seen that some difficulty with the
success rate of the NFM method can be expected where different flood mechanisms lead to
a different spectrum of sources of uncertainty in the hydrological flow modeling.

The main goal of the post-processing described above does not have to be the forecast
of the flood episode directly, but only to provide information about the flood wave (peak
flow and waveform) on the basis of which the hydrological forecast model settings can be
corrected and the forecast recalculated.

A major limitation of the method described above is that for its use, the hydrological
prediction model must run at all times without interventions and changes in the coefficients.
Only then it is possible to identify certain relationships between the predictions of the
hydrological model and the actual flows (determine the dependence of the model error).
Two directories (settings, programs) of the hydrological forecasting model are needed for
their use under normal operation.

When the peak flow for simulated flood is unknown, all data from the training matrix
for the chosen month are used for the training model by algorithm, until the peak flow is
found. This solution is not ideal, and therefore, it is better to wait until peak flow is known
or (if it is possible) to prolong the length of forecast time when the peak flow is known.
The model is built in a way, which enables post-processing of forecast (simulated flow) of a
desired length.

Different numbers of time period values Γ were used to determine the Hspi parameter.
The size of the number of previous values relatively corresponds to the size of the catchment
area (Table 3) except for Profiles 4 and 9, which deviate significantly from the trend
described above. The deviation from the trend can partly be explained by a more detailed
examination of individual river basins. Profile 4 probably reduces the response time of the
river basin to the previous precipitation due to large pond systems in its catchment, and
therefore its size does not correspond to the trend of the Γ parameter. The entire catchment
area of Profile 9 is located in the first stage of the protection zone of the Šumava National
Park, so it can be assumed that there is a slower outflow of water from the catchment area
compared to common catchments with agricultural areas and roads.

The EEA algorithm was introduced due to a small sample of extreme events. The EEA
algorithm is used only when simulated peak flow (results of hydrological model) sig-
nificantly overpowered values in historical data. The results (Figure 7) improved, but
post-processing was not able to catch up with reality. This is caused by historical size of
systematic error, which in the training set, did not exceed 20% of difference. The error in
this episode (hydrological model) is due to the complex system of ponds, which is able to
water transfer between river basins.
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The algorithm for choosing events with similar peak flow and rainfall for the learning
process was used, because size (tendency) of the systematic error is usually similar for
similar events. When all events are used for learning process results were worse probably
due to differ size or behavior of the systematic error. The hydrological model for certain
values (events) can overestimate (underestimate) the results.

The results presented in Table 4 represent the average for the whole validation period
and thus need to be treated accordingly. During the evaluation of the individual episodes,
there was a significant improvement in some episodes compared to the table values.
A disadvantage of the method described above remains the occurrence of atypical episodes
that behave in the opposite way to the trend. One way to deal with this shortcoming would
be to better categorize training data and find the causes of atypical behavior, but due to
the relatively small database, this shortcoming could not be remedied. If the database was
significantly larger, this shortcoming should be significantly mitigated. In addition, a larger
data set should lead to better selection of events for training, which could lead to even
better results than were achieved in this study.

The method is not suitable if there is a water reservoir (system of reservoirs) in the
upper part of the river basin, which is able to significantly influence the water flow in
the forecast profile. The reason being that the reservoir very often and unsystematically
changes the shape and culmination of the flood wave due to its manipulation and can very
easily disrupt the relationship (conditions) of the forecast error.

The results of all criteria are showed that method is more suitable for larger basins then
smaller one. These results are clearly right and also misunderstanding, because method
itself work with systematic error. The large basins have usually bigger systematic error
due to more complex basin’s system. Small basins have often better schematization and
therefore systematic error is smaller and find out its behavior is more difficult (a larger
data set is needed). The method itself really does not care about parameters of basin (area,
elevation, vegetation cover—only if training data are from similar vegetation period) as
long as these parameters are rather stable, and therefore, do not cause a strong random
error. If the systematic error is over noised by the random error, the method is more difficult
to apply.

6. Conclusions

• The method was successfully applied on 12 profiles (base on chosen criteria).
• Improved forecast can lead to better estimation of risk.
• The method itself is transferable with certain limitation.
• The method has short calculation time and can be used for chosen length of forecast.
• The method is applied directly on hydrological model results (hydrological model do

not have to be recalculated).

The method described in this article is intended for the purposes of post-processing the
results computed by hydrological model. The goal is to further improve the hydrological
prediction in situations of increased flows (flood events) caused by previous rainfall. For the
purposes of testing the method, 12 prediction profiles were selected, for which various
architectures and settings of post-processing models were tested during the validation
period of 2010–2016. The initial results did not reach sufficient quality for some extreme
values in the validation period, and therefore, an EEA algorithm was introduced. After the
introduction of all corrections, there was a significant improvement (decrease) in the values
of all criteria described above. For each prediction profile, the best results were obtained
when only similar events were used during the learning process. Thus, there was no general
assumption that all available data should be used for the learning process. When using
post-processing (NFM model), better values were achieved for most of the tested events
for all selected criteria compared to a classical calculation, i.e., without post-processing.
Based on the achieved results, the contribution of NFM models as a post-processing tool
can be stated.
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The improvement of forecast values can help to lower the risk during the process of
evaluating the danger in a particular basin. The improved forecast could lead to improved
hit/miss/false statistic for particular forecasting profiles. (HIT—flood occurred, warning
issued, MISS—flood occurred, warning not issued, FALSE—flood not occurred, warning
issued). Post-processed values of events also showed lower values of the criterion E,
therefore, the total volume of flood was also improved. This improvement should help to
control the flood by water reservoir, which usually works with wave’s volume and peak.
Profile Numbers 1, 2, 4 and 6 are used as inputs by the water reservoir to control floods.

The method itself is transferable and applicable to most river basins if there is a
sufficient database for training the models. The method was devised as a tool to improve
hydrological forecasts. For this purpose, both the upper and lower river basin were tested
in this article. The river basin, which is located lower to downstream is already burdened
with an error from the previous calculated river basin. The method achieved very good
results even in the downstream river basins.

The main aim of this study was to test a trained neuro-fuzzy model as a tool for
post-processing. The method described in the article does not require recalculation (re-
calibration) of the whole model after or during flood event to function, unlike the most
commonly used post-processing methods. Another benefit of this method is its short
calculation time (few seconds) and the fact it can be used for any length of forecast.
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