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TOPOLOGICAL SOLUTIONS OF η-GENERALIZED VECTOR
VARIATIONAL-LIKE INEQUALITY PROBLEMS

SATISH KUMAR, ANKIT GUPTA, PANKAJ KUMAR GARG and RATNA DEV SARMA

Abstract. In this paper, we discuss several variants of the η-generalized vector
variational-like inequality problem and provide existence theorems for their solu-
tions via a topological approach. Several topological concepts like compactness,
closedness, net theory and admissibility of function space topology are used for ob-
taining the main results. Finally, we give some topological properties of the solution
set so obtained.

1. Introduction

In 1980, F. Gianessi [4] extended the concept of classical variational inequality
(introduced by Stampacchia [23]) to vector variational inequality (VVI, in short)
for vector valued functions in the setting of finite-dimensional Euclidean spaces.
Further, VVI has been extended in various directions, in particular, the vector
variational-like inequalities (VVLI, in short) [3,8,9,18,20]. VVI and their general-
izations have been used extensively to solve vector optimization problems. Several
researchers have established various relations between vector variational inequali-
ties and vector optimization problems [12,14,24,28].

In one direction, the concept of variational inequality was extended by Han-
son [7] by introducing invex function (a generalization of convex function). Weir
and Mond [25] and Noor [19] have studied some basic properties of preinvex and
α-preinvex functions, respectively, along with their role in variational-like inequal-
ity problems and optimization problems. By assuming the condition of pseudo-
invexity, Ruiz-Garzon et al. [20] have established some relations between vector
variational-like inequality problems and optimization problems. In [8–10], Khan
and others studied several variants of vector variational-like inequalities in the
framework of Banach spaces. In 2017, Salahuddin [21] provided existence results
for the solution of general set-valued vector variational inequalities. In the same
year, Li and Yu [16] introduced a class of generalized invex functions, namely
(α-ρ-η)-invex functions and provided the existence results for two types of vector
variational-like inequalities. On the other hand, in 2018, Salahuddin [22] obtained
the existence results for the solution of vector variational inequality problems by
using sequentially continuous mapping. Recently, Gupta et al. [5] provided ex-
istence theorems for the solution of generalized non-linear vector variational-like

MSC (2020): primary 49J40, 54H99 ; secondary 58E35.
Keywords: η-Generalized vector variational-like inequality, KKM mapping; set-valued func-

tion, topological vector space, compactness.
115



116 S. KUMAR, A. GUPTA, P. K. GARG and R. D. SARMA

inequality problems by using topological approach.
Variational-like inequalities have a wide range of applications, making it an

interesting discipline for research. The flow equilibrium problem on a network
using vector variational inequality has been discussed in [29]. Further, applica-
tion of variational-like inequality in fuzzy setting for the optimization problem is
discussed in [26]. Similar studies are available in the literature [17, 27, 30]. Moti-
vated by these studies, here we study a generalized form of a vector variational-like
inequality problem.

In [13], Lee et al. discussed the solvability of generalized weak vector variational-
like inequalities (GWVVLI) in Banach spaces (reflexive Banach spaces) by using
the Browder fixed point theorems and monotonicity of mappings and, in [15], Li
et al. introduced a class of η-generalized vector variational-like inequalities (η-
GVVLI) for Hausdorff topological vector spaces and gave two existence results for
solution to the η-GVVLI problem under the assumption of η-hemicontinuity; in
one result the compactness of K is considered, while in the other it is not so.

In the present paper, we consider a couple of η-GVVLI problems and prove the
existence results for these problems in topological vector spaces using topological
approach. We use the concept of closedness, compactness, and net theory along
with the admissibility of a function space to obtain our results. The authors
have found so far that the concept of admissibility of function spaces is not used
extensively in the existing literature to obtain such results.

In the following, we will define two variants of the η-GVVLI problem:
Let X and Y be two topological vector spaces and C(X, Y ) be the space of

all continuous linear mappings from the space X to the space Y . Let K ⊆ X
be nonempty, closed and convex. Further, let T : K × K × [0, 1] → C(X, Y ) be
a single-valued map defined by T (x, z, λ) = Tλx+(1−λ)z and η : K × K → X,
f : K × K → Y be two bifunctions.
• η-generalized vector variational-like inequality problem I (η-GVVLIP (I)): If C

is a closed convex pointed cone in Y with intC ̸= ∅, then η-GVVLIP (I) is to
find x0 ∈ K such that there exist z ∈ K, λ ∈ [0, 1] satisfying

T (x0, z, λ)(η(y, x0)) + f(y, x0) /∈ −int C ∀y ∈ K.

• η-generalized vector variational-like inequality problem II (η-GVVLIP (II)): If
C : K ⇒ Y is a set-valued map such that for each x ∈ K, C(x) is a closed
convex pointed cone in Y with int C(x) ̸= ∅, then η-GVVLIP (II) is to find
x0 ∈ K such that there exist z ∈ K, λ ∈ [0, 1] satisfying

T (x0, z, λ)(η(y, x0)) + f(y, x0) /∈ −int C(x0) ∀y ∈ K.

By considering a mapping T : K × K × (0, 1] → C(X, Y ) instead of T : K ×
K × [0, 1] → C(X, Y ) as in the above problems, we define two other variants of the
η-GVVLI problem:
• η-generalized vector variational-like inequality problem III (η-GVVLIP (III)): If

C is a closed convex pointed cone in Y with intC ̸= ∅, then for some fixed
λ ∈ (0, 1], η-GVVLIP (III) is to find x0 ∈ K such that there exist z ∈ K
satisfying

T (x0, z, λ)(η(y, x0)) + f(y, x0) /∈ −int C ∀y ∈ K.
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• η-generalized vector variational-like inequality problem IV (η-GVVLIP (IV): If
C : K ⇒ Y is a set-valued map such that for each x ∈ K, C(x) is a closed
convex pointed cone in Y with int C(x) ̸= ∅, then for some fixed λ ∈ (0, 1],
η-GVVLIP (IV) is to find x0 ∈ K such that there exist z ∈ K satisfying

T (x0, z, λ)(η(y, x0)) + f(y, x0) /∈ −int C(x0) ∀y ∈ K.

The rest of the paper is organized in the following way: In Section 2, we recall
some preliminaries required in the paper. In Section 3, we prove existence theorems
for solutions to the η-GVVLIP (I) and η-GVVLIP (II). We then give an example
to illustrate our results. Finally, we provide some properties of the solution sets
so obtained.

2. Preliminaries

In this section, we recall some definitions and basic results which will be used later
to obtain the main results.

Definition 2.1. Suppose F : X ⇒ Y is a set-valued map from X to Y . The
graph of F , denoted by G(F ), is

G(F ) = {(x, y) ∈ X × Y | x ∈ X, y ∈ F (x)} .

Definition 2.2. ([2]) Let U be a nonempty subset of a topological vector space
X. A set-valued map F : U ⇒ X is called a KKM-mapping if for every nonempty
finite set {u1, u2, . . . , un} of U , we have

co{u1, u2, . . . , un} ⊆
n⋃

i=1
F (ui),

where co{u1, u2, . . . , un} denotes the convex hull of u1, u2, . . ., un.

The following result is taken from [2].

Lemma 2.3. (KKM-Theorem) If U is a nonempty subset of a topological vec-
tor space X and F : U ⇒ X is a KKM-mapping such that for every u ∈ U ,
F (u) is a closed subset of X and for at least one u ∈ U , F (u) is compact, then⋂

u∈U F (u) ̸= ∅.

Definition 2.4. ([1, 6]) Let(Y, µ1) and (Z, µ2) be two topological spaces. Let
C(Y, Z) be the space of all continuous mappings from Y to Z. A topology τ on
C(Y, Z) is called admissible, if the evaluation map e : C(Y, Z) × Y → Z, defined by
e(f, y) = f(y), is continuous.

Lemma 2.5. ([6]) A function space topology on C(X, Y ), the collection of con-
tinuous mappings from the space X to the space Y , is admissible if and only if, for
any net {fn}n∈D1 in C(X, Y ), the convergence of {fn}n∈D1 to f implies the contin-
uous convergence of {fn}n∈D1 to f . That is, if {fn}n∈D1 converges to f in C(X, Y )
and {xm}m∈D2 is any net in X converging to x ∈ X, then {fn(xm)}(n,m)∈D1×D2

converges to f(x) in Y.

The above characterization of admissibility remains valid for the family of con-
tinuous linear mappings from X to Y , where X and Y are topological vector
spaces.
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Throughout the paper, 0X and 0Y denote the zero vectors in the space X and
in the space Y , respectively.

3. Existence theorems for η-GVVLIP (I) and η-GVVLIP (II)

Theorem 3.1. Let (X, τ1) and (Y, τ2) be any two topological vector spaces. Let
C(X, Y ) denote the space of all continuous linear mappings from X to Y, equipped
with an admissible topology. Let K ⊆ X be a nonempty closed convex compact
subset of X. Let C ⊆ Y be a closed convex pointed cone with int C ̸= ∅. Further,
let T : K × K × [0, 1] → C(X, Y ) be a single-valued continuous mapping. Suppose
the maps η : K × K → X and f : K × K → Y are affine maps such that both are
continuous in the second argument with η(x, x) = 0X , f(x, x) = 0Y for all x ∈ K.
Then, the η-GVVLIP (I) has a solution. That is, there exists x0 ∈ K such that,
for some z0 ∈ K and for some λ0 ∈ [0, 1], the following holds

T (x0, z0, λ0)(η(y, x0) + f(y, x0)) /∈ −int C ∀y ∈ K.

Proof. Consider a set-valued map F : K ⇒ K defined as
F (y) = {x ∈ K : ∃z ∈ K, ∃λ ∈ [0, 1] s.t. T (x, z, λ)(η(y, x)) + f(y, x) /∈ −int C}.

Clearly, for each y ∈ K, F (y) is nonempty as at least y ∈ K. For convenience, we
divide the proof into two steps:
(i) F is a KKM-map on K: Let U = {u1, u2, . . . , um} be any finite subset of

K. Let v ∈ co{u1, u2, . . . , um} but v /∈
⋃m

i=1 F (ui). Therefore, there exist
λ1 ≥ 0, λ2 ≥ 0, . . . , λm ≥ 0 with

∑m
i=1 λi = 1 and v =

∑m
i=1 λiui. Since

v /∈ F (ui), for each i = 1, 2, . . . , m, therefore ∀z ∈ K, ∀λ ∈ [0, 1], we have
T (v, z, λ)(η(ui, v)) + f(ui, v) ∈ −int C, for each i = 1, 2, . . . , m. Since −int C
is a convex set and λi ≥ 0 with

∑m
i=1 λi = 1, therefore

m∑
i=i

λi[T (v, z, λ)(η(ui, v)) + f(ui, v)] ∈ −int C, ∀z ∈ K, ∀λ ∈ [0, 1].

Since η and f are affine, therefore

T (v, z, λ)(η(
m∑

i=1
λiui, v)) + f(

m∑
i=1

λiui, v) ∈ −int C, ∀z ∈ K, ∀λ ∈ [0, 1],

which implies
T (v, z, λ)(η(v, v)) + f(v, v) ∈ −int C, ∀z ∈ K, ∀λ ∈ [0, 1].

But we have η(v, v) = 0X and f(v, v) = 0Y , therefore 0Y belongs to −int C,
then 0Y belongs to int C, which is a contradiction as C is a pointed cone in
Y .

(ii) F (y) is closed for each y ∈ K: Let {xα}α∈D be a net in F (y) with {xα}
converging to x̄ in X. As K is closed, x̄ ∈ K. We have to show that x̄ ∈ F (y),
that is, there exist z̄ ∈ K, λ̄ ∈ [0, 1] such that T (x̄, z̄, λ̄)(η(y, x̄) + f(y, x̄)) /∈
−int C. Since xα ∈ F (y), therefore, there exist nets {zα}α∈D, {λα}α∈D such
that T (xα, zα, λα)(η(y, xα)) + f(y, xα) /∈ −int C. Since zα ∈ K and K is
compact, therefore there exists a subnet {zαl

}αl∈D1 of {zα} such that {zαl
}

converges to some z in K. As λα ∈ [0, 1], by Bolzano–Weierstrass Theorem,
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there exists a subnet {λαm
}αm∈D2 such that {λαm

} converges to some λ ∈
[0, 1]. Without loss of generality, suppose z = z̄ and λ = λ̄.

Now, we form a directed set D3 ⊆ D in the following manner: By the virtue
of the order property of the directed set D, for each pair αl, αm ∈ D, there
exists some αδ ∈ D such that αδ ≥ αl, αδ ≥ αm. Let D3 be the compilation
of such αδ’s. It is easy to verify that D3 is a directed set under the induced
ordering of D.

Thus, we have subnets {xαδ
}αδ∈D3 , {zαδ

}αδ∈D3 and {λαδ
}αδ∈D3 of {xα},

{zα} and {λα}, respectively, such that {xαδ
}, {zαδ

}, {λαδ
} converge to x̄ ∈ K,

z̄ ∈ K and λ̄ ∈ [0, 1], respectively. As T is continuous, T (xαδ
, zαδ

, λαδ
) →

T (x̄, z̄, λ̄). Also, as η(y, ·) and f(y, ·) are continuous in second argument,
η(y, xαδ

) → η(y, x̄) and f(y, xαδ
) → f(y, x̄). Since the function space has

admissible topology, therefore

T (xαδ
, zαδ

, λαδ
)(η(y, xαδ

)) → T (x̄, z̄, λ̄)(η(y, x̄)).
Thus,

T (xαδ
, zαδ

, λαδ
)(η(y, xαδ

)) + f(y, xαδ
) → T (x̄, z̄, λ̄)(η(y, x̄)) + f(y, x̄).

Now, if
T (x̄, z̄, λ̄)(η(y, x̄)) + f(y, x̄) ∈ −int C,

then
T (xαδ

, zαδ
, λαδ

)(η(y, xαδ
)) + f(y, xαδ

) ∈ −int C

eventually, which leads to a contradiction. Hence,
T (x̄, z̄, λ̄)(η(y, x̄)) + f(y, x̄) /∈ −int C,

that is, x̄ ∈ F (y).
Now, F (y), being a closed subset of a compact set K, is compact. Therefore,

by KKM-Theorem,
⋂

y∈K F (y) ̸= ∅. Hence, there exists x0 ∈ F (y) for all y ∈
K, that is, there exist z0 ∈ K, λ0 ∈ [0, 1], such that T (x0, z0, λ0)(η(y, x0)) +
f(y, x0) /∈ −int C, for every y ∈ K.

□

In the next theorem, we provide the existence condition for the solution of
η-GVVLIP (II).

Theorem 3.2. Let (X, τ1) and (Y, τ2) be two topological vector spaces and
C(X, Y ) be the space of all continuous linear mappings from X to Y, equipped with
an admissible topology. Let K be a nonempty closed convex compact subset of X.
Let C : K ⇒ Y be a set-valued map such that, for every x ∈ K, C(x) is a closed
convex pointed cone with int C(x) ̸= ∅. Suppose the set-valued map W : K ⇒ Y
defined by W (x) = Y \ (−int C(x)) has a closed graph G(W ) in X × Y . Let
T : K × K × [0, 1] → C(X, Y ) be a single-valued continuous mapping. Suppose the
maps η : K × K → X and f : K × K → Y are affine mappings such that both are
continuous in the second argument with η(x, x) = 0X , f(x, x) = 0Y , for all x ∈ K.
Then, the η-GVVLIP (II) has a solution. That is, there exists x0 ∈ K such that,
for some z0 ∈ K and for some λ0 ∈ [0, 1], the following holds

T (x0, z0, λ0)(η(y, x0)) + f(y, x0) /∈ −int C(x0) ∀y ∈ K.
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Proof. For each y ∈ K, we define a set-valued map F : K ⇒ K as
F (y) = {x ∈ K : ∃z ∈ K, ∃λ ∈ [0, 1] s.t. T (x, z, λ)(η(y, x)) + f(y, x) /∈ −int C(x)}.

Clearly, for each y ∈ K, F (y) is nonempty as at least y ∈ K. The proof of the
theorem is divided into two steps:

(i) F is a KKM-map on K;
(ii) F (y) is closed for each y ∈ K.

We are avoiding the proof of step (i) as it is similar to that of Theorem 3.1.
Let {xα}α∈D be a net in F (y) converging to some x̄ ∈ X. As K ⊆ X is closed,

x̄ ∈ K. We have to show x̄ ∈ F (y), that is, there exist some z̄ ∈ K, λ̄ ∈ [0, 1] such
that

T (x̄, z̄, λ̄)(η(y, x̄)) + f(y, x̄) /∈ −int C(x̄).
Since xα ∈ F (y), therefore there exist nets {zα}α∈D in K and {λα}α∈D in [0, 1]
such that T (xα, zα, λα)(η(y, xα)) + f(y, xα) /∈ −int C(xα), which implies

T (xα, zα, λα)(η(y, xα)) + f(y, xα) ∈ W (xα),
which gives

{(xα, T (xα, zα, λα)(η(y, xα)) + f(y, xα))} ∈ G(W ).
Now, following the lines of the proof of Theorem 3.1, we get subnets {xαδ

}αδ∈D3 ,
{zαδ

}αδ∈D3 and {λαδ
}αδ∈D3 of {xα}, {zα} and {λα}, respectively, such that {xαδ

},
{zαδ

}, {λαδ
} converge to x̄ ∈ K, z̄ ∈ K and λ̄ ∈ [0, 1], respectively.

As T is continuous, T (xαδ
, zαδ

, λαδ
) → T (x̄, z̄, λ̄). Since the functions η and f

are continuous in the second argument, therefore
η(y, xαδ

) → η(y, x̄), f(y, xαδ
) → f(y, x̄).

As the function space C(X, Y ) is admissible,
T (xαδ

, zαδ
, λαδ

)(η(y, xαδ
)) → T (x̄, z̄, λ̄)(η(y, x̄)).

Thus,
T (xαδ

, zαδ
, λαδ

)(η(y, xαδ
)) + f(y, xαδ

) → T (x̄, z̄, λ̄)(η(y, x̄)) + f(y, x̄).
The graph G(W ) of W is closed, therefore

(x̄, T (x̄, z̄, λ̄)(η(y, x̄)) + f(y, x̄)) ∈ G(W ),
which implies

T (x̄, z̄, λ̄)(η(y, x̄)) + f(y, x̄) ∈ W (x̄),
which leads to

T (x̄, z̄, λ̄)(η(y, x̄)) + f(y, x̄) /∈ −int C(x̄).
Hence, x̄ ∈ F (y).

Thus, for each y ∈ K, F (y) is a closed subset of a compact set K, so F (y) is
compact. Now, by KKM-Theorem, we have

⋂
y∈K F (y) ̸= ∅. Hence, there exists

x0 ∈ K such that x0 ∈ F (y), for all y ∈ K, that is, there exist z0 ∈ K, λ0 ∈ [0, 1]
such that T (x0, z0, λ0)(η(y, x0)) + f(y, x0) /∈ −int C(x0), for every y ∈ K. □

Remark 3.3. The existence results for the solution of problems η-GVVLIP (III)
and η-GVVLIP (IV) can be proved along similar lines to those of Theorem 3.1
and those of Theorem 3.2, respectively.
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Remark 3.4. If we take η(x, y) = x−y, f(x, y) = 0Y for all (x, y) ∈ K×K, z =
0X and λ = 0, then the η-generalized vector variational-like inequality problems
reduce to the vector variational inequality problems discussed in [11]. Also, we
have

(i) Theorem 3.1 reduces to Theorem 3.1 of [11];
(ii) Theorem 3.2 reduces to Theorem 3.2 of [11].

Here, we provide an example to illustrate our results as well as to show that
our results are independent of the result obtained by Li et al. [15].

Example 3.5. Consider X = R2, Y = R, K = [0, 1] × [0, 1]. Clearly, K is
closed convex and compact. Let C : K ⇒ Y be defined by C(x) = R+ ∪ {0}, for
every x ∈ K. Then, C(x) is a closed convex pointed cone with intC(x) ̸= ∅, and
−int C(x) = (−∞, 0), for each x ∈ K. Let η : K × K → X and f : K × K → Y be
defined by η(y, x) = y − x and f(y, x) = 3(∥y∥ − ∥x∥), respectively. Further, let
T : K × K × [0, 1] → C(X, Y ) be defined by Tx(u) = −⟨x, u⟩, where x = (x1, x2)
and u = (u1, u2) are in K. That the induced topology of C(X, Y ) is admissible
can be verified by the fact that if {xn} converges to x in X and {hn} converges to
h in C(X, Y ), then we have

∥hn(xn) − h(x)∥ = ∥hn(xn) − hn(x) + hn(x) − h(x)∥
≤ ∥hn(xn) − hn(x)∥ + ∥hn(x) − h(x)∥
≤ ∥hn∥∥xn − x∥ + ∥hn(x) − h(x)∥.

Hence, hn(xn) → h(x).
We take x0 = (0, 0). Then, for any y = (y1, y2), z = (z1, z2) in K, and λ ∈ [0, 1],

we have

Tλx0+(1−λ)z(η(y, x0)) + f(y, x0) = −⟨λx0 + (1 − λ)z, η(y, x0)⟩ + f(y, x0)
= (λ − 1)(z1y1 + z2y2) + 3∥y∥ ≥ 0,

for z = ( 1
2 , 1

2 ), λ = 1
2 and for all y ∈ K. Therefore,

Tλx0+(1−λ)z(η(y, x0)) + f(y, x0) /∈ −int C(x0).

Hence, x0 is a solution for the η-generalized vector variational-like inequality prob-
lem.

T is not η-monotone in C : Let T : K → C(X, Y ) and η : K × K → K be two
mappings and suppose C =

⋂
x∈K C(x) ̸= ∅. T is called η-monotone in C ([15]) if

and only if, for every pair x, y ∈ K, we have ⟨T (x) − T (y), η(x, y)⟩ ∈ C.
Now,

⟨T (x) − T (y), η(x, y)⟩ = Tx−y(η(x, y)) = −⟨x − y, x − y⟩ = −∥x − y∥2 < 0.

Thus, Tx−y(η(x, y)) /∈ C. Hence, T is not η-monotone in C.

In the following result, we discuss some topological properties of the solution
sets obtained above.

Theorem 3.6. The solution set for the η-GVVLIP (I) (or η-GVVLIP (II))
obtained in Theorem 3.1 (or Theorem 3.2) is closed as well as compact.
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Proof. Let F : K ⇒ K be the set-valued map defined by
F (u) = {x ∈ K : ∃z ∈ K, ∃λ ∈ [0, 1] s.t. T (x, z, λ)(η(u, x)) + f(u, x) /∈ −int C}.

Then, by Theorem 3.1, the solution set S of the η-GVVLIP (I) is given by S =⋂
u∈K F (u). As shown in Theorem 3.1 (or Theorem 3.2), F (u) is closed for every

u ∈ K. Therefore,
⋂

u∈K F (u) is closed, that is, S is closed. Also, S, being a closed
subset of a compact set K, is compact. □

Conclusion

In this study, we have provided existence theorems for the solution of two variants
of the η-generalized vector variational-like inequality problem by adopting a topo-
logical approach, a significantly different one from those in the existing literature
so far. The admissibility of function space topology and net theory are the major
tools of achieving the main results. These tools have not been extensively used
earlier in literature to obtain such results. It would be interesting to see whether
this approach may be used for other variants of variational inequality problems.

Acknowledgement. The authors sincerely thank the referee for his/her valu-
able suggestions, which helped improve the quality of the paper.
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