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Abstract 
Neural networks are electronic systems which can 

be trained to remember behavior of a modeled struc-
ture in given operational points, and which can be 
used to approximate behavior of the structure out of 
the training points. These approximation abilities of 
neural nets are demonstrated on modeling a frequen-
cy-selective surface, a microstrip transmission line and 
a microstrip dipole. Attention is turned to the accuracy 
and to the efficiency of neural models. The association 
of neural models and genetic algorithms, which can 
provide a global design tool, is discussed. 
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1. Introduction 
An artificial neural network (ANN) is an electronic 

system of a hardware or software nature, which is built in 
accordance with the human brain. Therefore, an ANN 
consists of many simple non-linear functional blocks of a 
few types, which are called neurons. Neurons are organi-
zed into layers, which are mutually connected by highly 
parallel synaptic weights. The ANN exhibits a learning 
ability: synaptic weights can be strengthened or weakened 
during the learning process, and by that way, information 
can be stored in the neural network [1], [2]. 

Due to the non-linearity of neurons, the ANN is able 
to solve even such types of problems that are unsolvable by 
linear systems. Due to the massive parallelism, the ANN 
exhibits a very high operational speed (when multi-proces-
sor systems or hardware implementation are elected). Due 
to the learning ability, the ANN can behave as adaptive 
systems, which automatically react on changes in its sur-
rounding. Also, due to the presence of a few types of func-
tional blocks in the structure only, the ANN is suitable for 

hardware implementation (VLSI circuits) or software one 
(object-oriented approach) [1], [2]. 

ANNs have been intensively exploited since the eigh-
ties in electrical engineering, when sufficient computati-
onal power of processors and sufficient capacity of compu-
ter memories were at their disposal. ANNs have been ap-
plied in pattern recognition systems, and have been explo-
ited for input-output mapping, for system identification, for 
adaptive prediction, etc. 

Dealing with the antenna applications, ANNs have 
been used as adaptive controllers in adaptive antenna 
arrays [3], have been applied in direction-finding arrays [4] 
and have been exploited for modeling and optimization. 

Concentrating on neural modeling of antennas and 
microwave structures, ANNs have been applied to the 
calculation of resonant frequencies of microstrip antennas 
[5], to the computation of complex resonant frequencies of 
microstrip resonators [6], to the modeling of microwave 
circuits [7], [8], to the reverse modeling of microwave de-
vices [9], to the calculation of effective dielectric constants 
of microstrip lines [10], etc. Moreover, neural networks 
have been applied to the optimization of microwave struc-
tures and antennas [11], [12]. 

Exploitation of neural network techniques in electro-
magnetics is even described in a few monographs. In [13], 
ANNs are shown being applied in RF and mobile commu-
nication techniques, in radar and remote sensing, in scat-
tering, antennas, and computational electromagnetics. In 
[14], ANNs are applied to modeling interconnects and 
active devices, for circuit analysis and optimization, etc. 

Moreover, matlab users can obtain a neural network 
toolbox, which is ready for the immediate exploitation of 
ANNs for modeling, optimization, etc. [15]. 

In the paper, the neural modeling of a selected frequ-
ency-selective surface, of a selected transmission line and 
of a selected microwave antenna is discussed in Section 2. 
These structures are modeled using numerical methods 
first. In the second step, obtained numerical results are 
exploited as teachers, which can train neural nets. Finally, 
neural models are in detail compared with numerical ones. 

In Section 2, an original description of the influence 
of a number of training patterns and their position in the 
modeling space to the model accuracy is presented. 

Section 3 deals with the exploitation of ANNs for the 
optimization of the above three structures. The presented 
approach combines neural models and genetic algorithms 
in order to reveal regions suspected of containing a global 
minimum. The revealed regions might be further examined 
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using Newton's method in order to find the global mini-
mum as accurately as possible. 

The conclusion is a detailed discussion of the results 
obtained during the neural modeling and optimization of a 
selected frequency-selective surface (FSS), of a selected 
transmission line (TL), and of a selected microstrip antenna 
(MA), when artificial neural networks are used. Generali-
zed conclusions should answer the question when ANNs 
can help us and how; what is the most efficient way of 
building a neural model; when replacing a numerical model 
by a neural one gives sense and when not; etc. 

2. Neural modeling of EM structures 
When a neural model of an EM is going to be deve-

loped, a proper architecture of an ANN, a proper type of 
neurons, and a proper training algorithm shall be chosen. 

Dealing with the architecture of ANNs, we are going 
to concentrate on the feed-forward structures because feed-
forward ANN statically map input patterns to output ones. 

Dealing with learning, back-propagation ANNs, dri-
ven by quasi-Newton algorithm (Levenberg-Marquardt) or 
by the Bayesian regularization that are implemented in the 
neural network toolbox of matlab, are the most suitable. 

Dealing with the types of neurons, back-propagation 
ANNs require adaptive-non-linear neurons, which modify 
setting of weights and biases in order to minimize the lear-
ning error of an ANN [1]. 

Attention is now turned to building neural models of 
selected EM structures, which are as accurate as possible 
and whose preparation takes as short a time as possible. 

2.1 Frequency-selective surface 
The modeled frequency-selective surface (FSS) is de-

picted in Fig. 1. The FSS consists of equidistantly distri-
buted identical rectangular elements, which are assumed to 
be perfectly electrically conductive (PEC). The conductive 
rectangles are positioned in the center of a discrete cell of 
the infinite plane of the same electrical parameters as the 
surrounding. The height of the conductive element is fixed 
at a = 11 mm, and even the height of the cell is assumed to 
be constant A = 12 mm. The width of the conductive ele-
ment is changed within the interval b ∈ <1 mm, 7 mm>, 
cell width can intervene between B ∈ <10 mm, 22 mm>. 

The described FSS is numerically modeled by the 
spectral-domain method of moments [24] utilizing harmo-
nic basis and weighting functions. As a result, frequency f2 
of the first maximum of the reflection coefficient module 
of the Floquet mode (0,0), and frequencies f1 and f3 for 3-
dB decrease of reflection coefficient module (f1 < f2 < f3) 
are obtained. The analysis is performed for the perpendicu-
lar incidence of linearly polarized EM wave, whose electric 
intensity is oriented in the direction of axis x (see Fig. 1). 

The neural model of the FSS consists of 2 input neu-
rons (doublets [b, B] form the input patterns), and the out-
put layer of 3 neurons (respective triplets [f1, f2, f3] are the 
desired responses). Since output quantities (f1, f2, f3) are 
positive numbers, output neurons should contain unipolar 
sigmoid as the non-linear activation function (i.e., opposite 
type of non-linearity is used at the output neurons instead 
of at the hidden ones). 

a
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Fig. 1 Frequency-Selective Surface (FSS) consisting of perfectly 
electrically conductive (PEC) rectangles. Rectangles are 
assumed to be equidistantly placed on an infinite plane of 
the same electrical parameters as the surrounding. 

Before the training of an ANN is started, the number 
of training patterns, and their position in the training space, 
and the number of hidden neurons is determined. 

In discussing the training patterns, two contradictory 
requests are stated: the building process should consume as 
short a time as possible (i.e., number of training patterns 
should be minimized), and the developed neural model is 
to be as accurate as possible (i.e., the number of training 
patterns should be high). Therefore, some compromise has 
to be found in order to get a relatively accurate model 
which can be quickly developed. 

Therefore, the input space of the ANN is sampled 
with a constant sampling step first. The sampling step is 
relatively long in order to obtain an initial notion about the 
behavior of the structure with the minimal effort. Second, 
the sampling is refined in order to reach a desired accuracy. 

In discussing the number of hidden neurons, initial 
architecture has to be estimated. Then, Bayesian regula-
rization is run, and the number of hidden neurons is chan-
ged until the number of efficiently used parameters does 
not intervene between 60 % and 90 %. 

Initially, both b ∈ <1 mm, 7 mm> and B ∈ <10 mm, 
22 mm> are changed with the step ∆b = ∆B = 3.0 mm, and 
the output responses [f1, f2, f3] are computed for all the 
combinations of [b, B]. I.e., 3 × 5 = 15 analyses have to be 
performed. The complete training set is stored in the Excel 
file fss.xls1. 

                                                           
1 All the Excel files and all the m-files, which are described in 

the paper, can be downloaded via the web site 
http://www.fee.vutbr.cz/UREL/present/ann/ann.html. 

The m-files were developed using the neural network toolbox 
of matlab 5.3. 
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Using Bayesian regularization (fss_br_30mm.m), a 
proper structure of an ANN is estimated: if ANN contains 
2 hidden layers consisting of 5 neurons each, then 60 % 
parameters is efficiently used (after 500 iteration steps). 
When the proposed ANN is trained using the Levenberg-
Marquardt algorithm (fss_lm_30mm.m), the training error 
reaches the level 10-7 within 98 iteration steps (the best 
result from 5 performed training processes). 

The accuracy of the neural model (fss_lm_3.mat) 
over the training area is tested comparing results of the 
numerical analysis and respective simulation results of the 
ANN. For every input pattern, relative errors are computed 
and averaged. The result is called the cumulative error 
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Here, b is the width of the metallic element and B denotes 
the width of the cell, fn is the frequency obtained by the 
numerical analysis and f~

n is the frequency produced by the 
neural model (n = 1, 3 are associated with the 3-dB decre-
ase of module of reflection coefficient, n = 2 corresponds 
with its maximum). 

The cumulative error of the model fss_lm_3.mat is 
depicted in Fig. 2A. It is obvious that points corresponding 
with training patterns exhibit negligible error (e.g. points 
[b, B] = [1,10], [4,10], [7,10]). Whereas the cumulative er-
ror for B > 16 mm might be considered as sufficiently 
small, for B < 16 mm the error is very high. 

In order to increase accuracy of the model, the part of 
the input space corresponding with an unacceptably high 
error (B < 16 mm for all b) is re-sampled with smaller dis-
cretization step (∆b = ∆B = 1.5 mm). Therefore, 35 training 
patterns (5 × 7) have to be prepared in this case. 

The new ANN consists of 3 hidden layers containing 
6, 3 and 6 neurons. Performing the Levenberg-Marquardt 
training (fss_lm_15mm.m), the training error reaches the 
level 10-6 within 606 iteration cycles2 (the best result from 
5 performed processes). Observing the accuracy of the new 
model (fss_lm_15c.mat) in Fig. 2B, very low error is 
reached except for the area near the point [b, B] = [7,10]. 
Even finer re-sampling of the surroundings of this point 
can again reduce the error in the respective area. 

In practical neural modeling, distribution of appro-
ximation error is unknown because the modeled structure 
is analyzed for the training patterns only. Therefore, a 
different criterion for pattern refinement has to be found. 

Observing training patterns in fss.xls, the approxima-
ted function fn = fn(b, B), n = 1, 2, 3, is very steep in the 
                                                           

2 The training error is rapidly decreasing down to level 10-6. 
Then, the minimization process exhibits very poor conver-
gence, and the level 10-7 is not reached even within 5000 
steps. From the economical point of view, reducing demands 
on the training error is the best solution. 

area of the highest error (i.e. ∆fn is high for 2 neighboring 
learning patterns). If sampling in this area is refined, then 
∆fn is reduced for neighboring patterns. Therefore, we can 
practically conclude that ∆fn should be similar for all the 
neighboring patterns in the training set. 

 
Fig. 2 Cumulative error of neural model of FSS: A) constant sam-

pling ∆b = ∆B = 3.0 mm, B) finer one ∆b = ∆B = 1.5 mm in 
B ∈ <10.0 mm, 16.0 mm> and b ∈ <1.0 mm, 7.0 mm>, C) 
initial sampling refined to reduce relative variation of f2. 

Let us verify the above conclusion. In fss.xls, we 
compute the relative variation of the n-th approximated 
(output) quantity with respect to the i-th input one 
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where i is an index of the respective input parameter in the 
training set. If the relative variation exceeds a prescribed 
level, then a new training pattern is inserted between two 
already existing ones. 

In our case, we require the relative variation to be lo-
wer than 10 % for the central frequency f2. This condition 
is not met for pairs [b, Bi - Bi+1] and [bi - bi+1, B] indicated 
in Tab. 1. Therefore, we have to insert 8 new patterns into 
training set: p1 = [4 mm, 11.5 mm], p2 = [4 mm, 14.5 mm], 



Radioengineering Neural Networks in Antennas and Microwaves: A Practical Approach 27 
Vol. 10, No. 4, December 2001 Z. RAIDA 

 

p3 = [4 mm, 17.5 mm], p4 = [7 mm, 11.5 mm], p5 = [7 mm, 
14.5 mm], p6 = [7 mm, 17.5 mm], p7 = [5.5 mm, 10 mm], 
and p8 = [5.5 mm, 13 mm]. 

A 10 - 13 13 - 16 16 - 19 19 - 22 

1.0 9.9 9.4 8.5 8.4 

4.0 14.7 10.6 10.1 9.3 

7.0 29.5 18.9 13.5 9.9 
 

B 10 13 16 19 22 

1 - 4 8.4 3.7 2.4 0.9 0.0 

4 - 7 30.1 15.3 6.9 3.5 2.9 

Tab. 1 Percentage variation of the frequency f2: A) for neighboring 
widths of cells (first row), B) for neighboring widths of ele-
ments (first column). Unacceptable variations highlighted. 

A new training set containing 15 + 8 = 23 patterns is 
used to learn the ANN (three hidden layers consisting of 
5-3-5 neurons, training error lower than 10-6 within 530 ite-
ration steps, the best result from 5 performed training pro-
cesses considered). The cumulative error of the neural mo-
del (fss_lm_xe.mat) is depicted in Fig. 2C. The error is 
lower than 1.5 % all over the output space, and even the 
number of training patterns is lower (23 versus 35). More-
over, no information about the error distribution over the 
input space is desired. Electing for a lower admissible error 
than 10 %, the number of training patterns have to be in-
creased on one hand, and the approximation error can be 
reduced on the other hand. 

In the following paragraph, the described procedure 
of building neural models is applied to a transmission line. 

2.2 Transmission line 
The modeled microstrip transmission line (TL) is de-

picted in Fig. 3. The TL is assumed to be longitudinally 
homogeneous. TL is shielded by a rectangular waveguide 
of PEC walls at fixed dimensions A = B = 12.7 mm. At the 
bottom of the shielding waveguide, a lossless dielectric 
substrate of the dielectric constant εr1 ∈ <1.0, 5.0> and of 
the height h = 1.27 mm is placed. At the center of the sub-
strate, a PEC microstrip of a negligible thickness t ≈ 0 and 
of the fixed width w = 1.27 mm is placed. The microstrip 
can be covered by another dielectric layer of a dielectric 
constant εr2 ∈ <1.0, 5.0> and of height h = 1.27 mm. 
Above the second layer, a vacuum is assumed. 

The described transmission line is numerically mode-
led by a finite-element method exploiting hybrid nodal-ed-
ge finite elements [30]. As a result, propagation constants 
of the dominant mode on frequency f1 = 20 GHz (β1) and 
on f2 = 30 GHz (β2) are obtained. 

The neural model of the TL consists of 2 inputs, be-
cause doublets [ε1, ε2] form the input patterns. The output 
layer again contains 2 neurons because respective doublets 

of propagation constants [β1, β2] form the desired output 
responses. Since the propagation constants are positive 
numbers, a unipolar sigmoid is used as the activation func-
tion in the output layer. 
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Fig. 3 Microstrip transmission line on the substrate (εr1, h), which 

might be covered by another dielectric layer (εr1, h). Longi-
tudinal homogeneity is assumed. Losses in dielectrics and 
metal are neglected. 

Constructing the neural model of the TL, both the di-
electric constant of a substrate εr1 ∈ <1.0, 5.0 > and the 
dielectric constant of the second layer εr2 ∈ <1.0, 5.0> are 
changed with a discretization step ∆ = 2 in the initial stage. 
The desired output responses [β1, β2] are computed for all 
the combinations of [εr1,εr2]. Hence, 3 × 3 = 9 numerical 
analyses have to be done. The resultant training set can be 
found in the Excel file tl.xls. 

As described in paragraph 2.1, the initial training set 
is tested from point of view of relative variations among 
output patterns. In Tab. 2, relative variation is computed 
for propagation constants at f = 20 GHz. For 30 GHz, re-
sults are similar. If variation is required to be lower than 10 
%, then training set shall be completed by additional 8 pat-
terns p1 = [2.0, 1.0], p2 = [4.0, 1.0], p3 = [1.0, 2.0], and 
p4 = [3.0, 2.0], p5 = [5.0, 2.0], p6 = [1.0, 4.0], p7 = [3.0, 
4.0], and p8 = [5.0, 4.0]. In the brackets, 1st value is asso-
ciated with εr2, and 2nd one with εr1. 

When above patterns are included into the training 
set, new testing of relative variations is performed. As a 
result, other two patterns p9 = [2.0, 2.0], and p10 = [4.0, 2.0] 
are included into the training set. 

A 1 - 3 3 - 5 

1.0 23.6 19.8 

3.0 8.6 8.1 

5.0 5.0 4.4 
 

B 1.0 3.0 5.0 

1 - 3 44.3 29.6 18.1 

3 - 5 24.6 21.1 17.4 

Tab. 2 Percentage variation of propagation constant on 20 GHz: 
A) neighboring dielectric constants of cover (first row), B) 
neighboring dielectric constants of substrate (first column). 
Unacceptable variations are highlighted. 
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In total, the training set contains 9 + 8 + 2 = 19 pat-
terns. Exploiting our experience with building the neural 
model of a FSS, we initially used an ANN consisting of 5 
neurons in each of the 2 hidden layers. The Bayesian regu-
larization tells us that 60 % of parameters is efficiently 
used (296 iteration cycles, desired error 10-7). Since the 
result seems to be all right, we run the same learning using 
the Levenberg-Marquardt algorithm. Within 141 cycles, 
the network is trained (tl_lm_55a.mat). Verifying accu-
racy of the neural model (Fig. 4A), the cumulative error up 
to 4 % can be observed. 

Let us try to interpret the relatively high cumulative 
error corresponding to non-training patterns as an over-
training of the ANN. If the ANN is over-trained then the 
approximation at the output of the ANN oscillates among 
training patterns. Therefore, the training error is very small 
but the approximation error is relatively high. 

In order to solve the above problem, the number of 
hidden neurons is reduced to 4 in each of the hidden layers 
(70 % of efficiently used parameters). If the maximal trai-
ning error is set to 10-7, the learning process is finished wit-
hin 1531 cycles and the value of the maximal cumulative 
error is about 1 % (tl_lm_44a.mat). If the desired train-
ing error is reduced to 10-6, then the training is over within 
872 cycles and the cumulative error is lower than 0.6 % 
(tl_lm_44b.mat) as depicted in Fig. 4B. 

If the number of hidden neurons is further reduced to 
3 in each hidden layer (80 % of efficiently used 
parameters) then the ANN is trained within 150 cycles, 
both for the desired error 10-6, 10-5 (tl_lm_33a.mat, 
tl_lm_33b.mat). In both cases, cumulative error again 
reaches the value 1 %. The result is caused by the fact that 
ANN contains an insufficient number of free parameters to 
be trained well. 

Keeping the above results in mind, we can postulate 
the validity of following conclusions: 

• The number of efficiently used parameters should be 
within the interval <65 %, 75 %>. 

• Training should be finished within a reasonable num-
ber of iteration steps (below 1000 in our case). 

• The value of the desired training error has to be selec-
ted such way so that both reasonable number of lear-
ning cycles and the quality training are reached (10-6 
or 10-7 in our case). 

The above practical conclusions can be verified on 
the final neural model of FSS (Fig. 2C, 5-3-5 hidden neu-
rons, the training error lower than 10-6, 530 iteration steps). 
Although the number of efficiently used parameters is 
about 60 %, over-training is eliminated here using bottle-
neck (a narrow central layer consisting of 3 neurons). 

The processes of building neural models of the FSS 
and the TL are similar: approximated unipolar output quan-
tities monotonously change when changing continuous in-
put parameters. In the next paragraph, a different situation 

appears: output quantity (input impedance of a microstrip 
dipole, Fig. 5) is bipolar (reactance can be both positive 
and negative), and it is not of a monotonous nature (impe-
dance characteristics of a microstrip dipole exhibits a reso-
nance). Moreover, two input parameters can be changed 
continuously (length of the dipole, width of the dipole) and 
two can acquire discrete values only (height of a substrate, 
dielectric constant of a substrate). Therefore, the developed 
procedure of building neural models has to be modified. 

 
Fig. 4 Cumulative error of neural model of TL: A) 5 neurons in 

each of 2 hidden layers, desired training error 10-7, B) 4 ne-
urons in each of 2 hidden layers, desired training error 10-6. 

2.3 Microstrip antenna 
The modeled microstrip antenna (MA) is depicted in 

Fig. 5. An MA consists of a microstrip dipole of the length 
A ∈ <1.0 mm, 4.0 mm> and the width B ∈ <0.05 mm, 0.10 
millimeters> that is supplied by a symmetric transmission 
line. The metallic ground plane plays the role of the planar 
reflector. The MA can be fabricated from dielectric sub-
strates of a dielectric constant εr = [ 1.0, 1.6, 2.0] and of a 
height h = [ 1.0 mm, 1.5 mm]. Losses, both in the dielec-
trics and in the metal, are neglected. The antenna is assu-
med to operate on the frequency f = 30 GHz. 

A

B

h ε r

 

Fig. 5 Microstrip dipole on the dielectric substrate of the dielectric 
constant εr and of the height h. Both the dipole and the ref-
lector (the ground plane) are perfectly conductive. No los-
ses in dielectrics are assumed. 
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The described antenna is numerically modeled by the 
method of moments [27] - [29] using a piece-wise constant 
basis functions and Dirac weighting. The analysis results 
are created by the value of the input impedance of the an-
tenna Zin = Rin + j Xin on the frequency f = 30 GHz.  

The neural model of an MA consists of 4 inputs, be-
cause quadruplets [A, B, εr, h] form the input patterns. Out-
put layer contains 2 neurons because respective doublets 
[Rin, Xin] form output responses. Since input reactance of 
antenna Xin can be both positive and negative, output neu-
rons should contain bipolar sigmoid as the non-linearity. 

Dealing with proper discretization of the input space, 
only ∆A and ∆B have to be determined because the discre-
tization of h and εr is prescribed. Although the dimension 
of the input space is 4, we operate on the two-dimensional 
input spaces [A, B] organized into relatively independent 
planes, which are associated with doublets [h, εr]. The des-
cribed training set is at one's disposal in the file ma.xls. 

A proper choice of the discretization steps ∆A and ∆B 
should differ from the above described procedure. 

Whereas the output quantities of neural models of the 
FSS and the TL are positive and change monotonously, the 
input impedance of an MA exhibits a non-monotonous be-
havior due to the resonance of the antenna and the input 
reactance is of a bipolar nature. 

Whereas the dynamics of the output quantities (the 
ratio of the lowest output value and the highest one) of the 
FSS and the TL is relatively low 
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the output data of the MA are of a very high dynamics 
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Considering both non-monotonous nature and high dyna-
mics of approximated quantities, the initial sampling step is 
set as very short: ∆A = 0.25 mm, ∆B = 12.5 µm. Then, 
training set has NA × NB × Nh × Nε = 13 × 5 × 2 × 3 = 390 
training patterns as shown in ma.xls. 

For the described discretization, the relative variation 
among training patterns is computed. Due to bipolar nature 
of the input reactance of the MA, the denominator of (2) 
might approach zero, and the relative variation is very 
high, although the output quantity does not change drama-
tically between the respective sampling points. In order to 
eliminate this phenomenon, we modify relations (2) for the 
MA the following way 
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where f1 ≡ Rin is input resistance and f2 ≡ Xin is input reac-
tance of the MA. In addition, A denotes the length of the 
MA, B is the width of the MA, and i is an index of a res-
pective input parameter in the training set. 

In evaluating training set, variations of the input resis-
tance with respect to dipole length A are δ Rin

(A) ∈ <17 %; 
49 %>, and relative variations of the input reactance inter-
vene within δ Xin

(A) ∈ <12 %; 197 %>. The highest values 
of δ Rin

(A) are dominantly at A ∈ <1.00 mm, 1.25 mm> for 
all B. Other hand, the highest values of δ Xin

(A) is found at 
A ∈ <2.50 mm, 2.75 mm> and at A ∈ <3.00 mm, 3.25 
mm> for all B. 

Dealing with relative variations with respect to B, va-
riations of input resistance, δ Rin

(B) ∈ <0.01 %; 9.5 %>, are 
in all the cases lower than 10 %, and variations of input 
reactance, δ Xin

(B) ∈ <0.02 %; 79.6 %>, exceeds 10 % do-
minantly for A = 2.50 mm and A = 3.00 mm for all B. 

Considering the location of the highest relative vari-
ations, a high approximation error of the input resistance 
can be expected for A < 1.50 mm, and a high error of input 
reactance can be supposed at A ∈ <2.50 mm, 3.50 mm>. 

In order to verify the validity of our expectations, a 
neural model of the MA consisting of 17-7-17 hidden ne-
urons is developed (ma_lm_17_7_17a.mat). An ANN is 
trained within 133 iteration cycles with the training error 
lower than 10-7. The neural model exhibits the cumulative 
error of the input resistance 
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as depicted in Fig. 6A, and the cumulative error of input 
reactance 
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as depicted in Fig. 6B. In (4), A is the length of the micro-
strip dipole, B is its width, h = [1.0 mm, 1.5 mm] denotes 
the height of the substrate, and εr = [1.0, 1.6, 2.0] is the di-
electric constant of the substrate. In addition, R~

in is the in-
put resistance of the MA provided by a neural model, and 
Rin is the same quantity provided by a numerical analysis. 
Similarly, X~

in and Xin denote the input reactance. 

Fig. 6A confirms our hypothesis that the highest error 
of modeling input resistance is located at A < 1.50 mm. De-
aling with input reactance, the relative error over 150 % at 
the position [3.125 mm, 0.075 mm]3 makes the rest of the 
                                                           
3 The position of the highest approximation error of the input 

reactance Xin is identical with the position of the highest rela-
tive variance of Xin with respect to the dipole length A. 
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figure unreadable. Suppressing this error, Fig. 6C is obtai-
ned. In this figure, the relative error of input reactance re-
aches up to 20 % for A ∈ <2.50 mm, 3.50 mm>. Therefore, 
our hypothesis is confirmed. 

 
Fig. 6 Cumulative error of the neural model of MA: A) input resis-

tance, B) input reactance, C) input reactance when error 
maximum eliminated. ANN consists of 17-7-17 neurons, the 
desired training error 10-7. 

If very high approximation error of the neural model 
of the MA is required to be reduced, discretization steps 
∆A, ∆B have to be shortened in regions where high relative 
variations were revealed. Unfortunately, refinement of the 
training set significantly increases the number of training 
patterns (i.e., the number of numerical analyses which have 
to be performed), and consequently, the ANN has to con-
tain more neurons (i.e., the training process consumes more 
CPU time). 

Therefore, instead of refining the training set, we try 
to approach the problem of modeling the MA to the situ-
ation when modeling the FSS and the TL, which provided 
satisfactory results with minimal effort. 

In the first step, we decrease the dynamics of output 
patterns by applying the natural logarithm to all of the out-
put set. Since the input reactance of the MA might be nega-
tive, we add a constant to every reactance in order to get 
positive numbers higher than one. If even every input resis-

tance of the MA is increased in order to be higher than one, 
then all the logarithms are positive. In our case 

( ) ( )[ ]1,ln, += BARBAr inin
 ( 5a ) 

( ) ( )[ ]1065,ln, += BAXBAx inin
 ( 5b ) 

where Rin and Xin are the input resistance and the input re-
actance of the MA from the original training set, respecti-
vely. Symbols rin and xin denote input resistance and input 
reactance of MA from the transformed set. Constant 1065 
is derived from min{Xin} = -1063 Ω. 

 
Fig. 7 Cumulative error of the neural model of MA exploiting loga-

rithmic transform: A) input resistance, B) input reactance. 
The ANN consists of 17-8-17 neurons, the desired training 
error 10-6, the Bayesian regularization applied. 

The transformed data set contains positive numbers 
only, and therefore, the unipolar sigmoid can be used in the 
output layer of an ANN. Moreover, the dynamics of the 
original data set is reduced from the value ρMA = 4 ⋅ 10-4 to 
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Further, we have to investigate the relative variations 
in the transformed training set (see ma.xls). Variations of 
the input resistance with respect to the antenna length 
δ rin

(A) exceeds 30 % for small value of A, and it is about 10 
% for the high value of A. Variations of input resistance 
with respect to the antenna width δ rin

(B) are lower than 2 % 
in all cases. Variations of input reactance δ xin

(A), and 
δ xin

(B) are lower than 10 %, except for singular cases for 
A ∈ <1.00 mm, 1.50 mm>, B ∈ <0.050 mm, 0.075 mm>. 
Therefore, the neural model of the MA might be expected 
to exhibit the highest approximation error for small values 
of A and B. 

In the first step of verifying the above hypothesis, the 
proper structure of hidden layers is estimated to be 17-8-17 
neurons. The Bayesian regularization tells us that 87 % pa-
rameters of the ANN is efficiently used (500 steps, a train-
ing error lower than 10-6). 
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The Bayesian regularization produces a neural model 
of the MA which is stored in ma_br_17_8_17a.mat. The 
approximation error of this model is depicted in Fig. 7. As 
shown, the highest approximation error (0.8 % for rin, 1.3 
% for xin) is really associated with the smallest values of A 
and B as we had predicted. 

In the second step, the same ANN is trained using the 
Levenberg-Marquardt algorithm. When testing results of 
the training, approximation oscillations are observed. The-
refore, the number of neurons in hidden layers is consecu-
tively reduced to 16-6-16 (further reduction increases the 
approximation error). Within 260 iteration steps, the neural 
model of the MA (ma_lm_16_6_16b.mat) is trained with 
the error lower than 10-7. The approximation error is lower 
than 3 % both for rin and for xin. 

In this case, the Bayesian training provides better re-
sults than the Levenberg-Marquardt algorithm. Higher 
CPU-time demand of the Bayesian training is the price we 
have to pay for a more accurate neural model of the MA. 

Finally, we have to investigate the transformation of 
the approximation error (natural logarithm of input resis-
tance and reactance) to the deviation of obtained input im-
pedance from the numerical model. The highest approxi-
mation error is located in the area where A, B are small. In 
that region, rin < 1.15, which converts the approximation 
error 0.8 % to  

( )[ ] ( )[ ]
( )[ ] %3

115.1992.0exp
115.1992.0exp115.1008.1exp100 ≈

−⋅
−⋅−−⋅

=rδ
 

Similarly, deviation of the input reactance of the MA can 
reach in the region of the highest error where xin < 6.77 and 
the approximation error is maximally 1.3 %, the value 

( )[ ] ( )[ ]
( )[ ] %50
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Therefore, the region of the highest error has to be re-
sampled and a new ANN has to be trained. 

In the rest of the training space, the approximation 
error is lower than 0.2 % which causes the highest error of 
rin, xin lower than 5 %. 

In summarizing our experience with building a neural 
model of the MA, following conclusions can be done: 

• If the ANN is asked to approximate non-monotonous 
bipolar quantities, then the discretization step has to be 
short. Attention has to be paid to the relative variations 
of approximated quantities (computed according to the 
modified relations in the case of bipolar output values) 
and to the dynamics of the approximated quantities. 

• If the approximated quantities exhibit very high dyna-
mics (more than 10-2 in our case), then the dynamics 
have to be properly reduced. As shown in our paper, 
exploring the natural logarithm for this purpose is not 
the best solution (the error 5% is much higher than in 
the case of neural models of the FSS and TL). 

• If the approximated quantities exhibit high relative va-
riations, then the discretization has to be refined in the 
respective area. The refinement is performed in the 
same way as described in paragraphs 2.1 and 2.2. 

• If even the optimal architecture4 of an ANN does not 
perform with satisfactory results when trained by the 
Levenberg-Marquardt algorithm, then the Bayesian 
regularization can be used to achieve better results. 

Now, we are familiar with the techniques used for 
building neural models of electromagnetic systems. In the 
next paragraph, we are going to discuss in depth CPU-time 
demands of building neural models so that we can determi-
ne whether neural modeling provides more advantages or 
disadvantages. 

2.4 CPU-time demands of neural 
modeling 
In this section, we utilize our experience with develo-

ping neural models of the FSS, TL, and MA in order to 
evaluate CPU-time demands of this development. CPU-
time demands consist of time necessary for building train-
ing patterns and of time used for training an ANN. 

Time demands of numerical modeling of our struc-
tures are concentrated in Tab. 3. The total time used for 
computing a single training pattern is obtained by multi-
plying the time of a single analysis by the number of its 
executions. A single pattern of the FSS requires 19 execu-
tions (on average) because the maximum of the reflection 
coefficient and 3-dB decrease shall be numerically found. 
A single pattern of the TL needs 4 executions because the 
structure is analyzed in two frequencies, both for electric 
intensity and magnetic one (in order to minimize the error 
of the analysis). A single pattern of the MA is equivalent to 
the single analysis. 

 analysis repeated total 

fss 24.7 s  19 469.0 s 

tl 5.6 s  4 22.4 s 

ma 16.6 s  1 16.6 s 

Tab. 3 CPU-time demands of the preparation of a single training 
pattern: analysis: time of a single numerical analysis of the 
structure, repeated: the number of single analysis repeti-
tions needed for completing the training pattern, total: time 
necessary for building a single training pattern. 

CPU-time demands of training are given in Tab. 4. In 
this Table, we concentrate on those neural models that 
were elected as optimal in previous paragraphs. 

                                                           
4 We consider such an architecture of an ANN as optimal, 

which provides the lowest approximation error. Both incre-
asing and decreasing the number of hidden neurons causes the 
increase of the approximation error. 
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A neural model of the FSS (fss_lm_xe.mat) was 
developed using a training set which consisted of 23 pat-
terns (the initial training set of 15 patterns was completed 
by the additional 8 patterns in order to reduce very high 
relative variations). Since the numerical computation of a 
single pattern took approximately 469 seconds, building of 
the whole training set was finished within 180 minutes. 
Due to the small size of the respective ANN (5-3-5 hidden 
neurons), the training process was over within 1 minute 
using the Levenberg-Marquardt algorithm. 

 patterns 
[min] 

train 
[min] 

total 
[min] 

FSS  23×469.0  180  1  181 

TL  19×  22.4  7  1  8 

MA-LM  390×  16.6  108  30  138 

MA-BR  390×  16.6  108  75  183 

Tab. 4 Total CPU-time needed for developing a neural model of 
FSS (5-3-5 neurons, 530 epochs), TL (4-4 neurons, 872 
epochs), and MA (16-6-16 neurons and 260 epochs for the 
Levenberg-Marquardt (LM) training, 17-8-17 neurons and 
500 epochs for the Bayesian (BR) training): patterns: total 
time needed for computing whole training set, train: total 
duration of training, total: addition of patterns and learning. 

A neural model of the TL (tl_lm_44b.mat) was ba-
sed on a training set of 19 patterns (the initial training set 
consisting of 9 patterns was completed by 8 patterns in the 
1st step and by additional 2 patterns in the 2nd step because 
the 1st step did not satisfactorily reduce the relative vari-
ations). The numerical computation of a single pattern was 
completed within approximately 22.4 seconds, and there-
fore, the whole training set was prepared within 7 minutes. 
The size of the respective ANN was again very small, and 
therefore, the training took only 1 minute when the Leven-
berg-Marquardt algorithm was used. 

Due to the non-monotonous nature of the input impe-
dance, a neural model of the MA had to be trained on a 
training set consisting of 390 patterns. Since the numerical 
analysis of a single pattern took 16.6 seconds, the whole 
training set was built within 108 minutes. A huge amount 
of the training data corresponded with relatively large size 
of the respective ANN (16-6-16 hidden neurons for Leven-
berg-Marquardt training, ma_lm_16_6_16b.mat, 17-8-17 
neurons for Bayesian, ma_br_17_8_17a.mat). Therefore, 
the training time is much longer now (30 minutes, and 75 
min., respectively) than in the previous cases. 

Unfortunately, the time needed for the development 
of neural models does not consist only of CPU time. In ad-
dition, we have to consider the time used for refining train-
ing set, for testing approximation error, for optimizing the 
architecture of an ANN, etc. Moreover, training is perfor-
med on the multi-start basis because the random starting 
values of weights and biases lead to different results for the 
same training patterns and neural networks. 

In our validation, we respect the above described ad-
ditional time requirements by multiplying CPU-time from 

Tab. 4 by a coefficient cE. The value of cE strongly depends 
on the experience of the person developing a neural model, 
and on good fortune (sometimes, very good model is obtai-
ned from the 1st training, other times, we have to repeat tra-
ining many times to get a good approximation). 

 cE = 1 
[min] 

cE = 5 
[min] 

analyses 

FSS  181  908  120 

TL  8  40  110 

MA (LM)  138  690  2500 

MA (BR)  183  915  3300 

Tab. 5 The number of numerical analyses equivalent to the CPU-
time demands of building a neural model. 

In Tab. 5, we selected cE = 5 and computed the num-
ber of numerical analyses where CPU-time demands are 
equivalent to the time needed for building a neural model. 

The good efficiency of the development of the neural 
model of the FSS is caused by the fact that the numerical 
analysis is relatively time-consuming with respect to the 
MA (469 seconds versus 16.6 seconds). Moreover, an ac-
curate neural model of the FSS is based only on 23 training 
patterns (versus 390 patterns to the MA), and the training is 
finished within 1 minute (vs. 30 min./75 min.5 for the MA). 

The development of the neural model of the TL is ef-
ficient too. Although the CPU time of a single numerical 
analysis of the TL is comparable to the MA (22.4 versus 
16.6 seconds), even less patterns than for FSS is needed 
(19 versus 23), and training takes the same time (1 min.). 

Obviously, low efficiency of building a neural model 
of MA is caused by extensive training set, which is neces-
sary due to the non-monotonous nature of approximated 
quantities, and consequently, by a CPU-time demanding 
training process. Moreover, these long-time periods are 
compared with short duration of single numerical analysis. 

Nevertheless, the final answer, whether building a ne-
ural model makes any sense or not, can only give us an op-
timization. If an optimization of a given structure can be 
completed within a lower number of steps equivalent to 
building a neural model, then neural modeling does not 
make any sense, and vice versa. 

In the following chapter, we use genetic algorithms in 
conjunction with neural models in order to optimize the 
FSS, TL, and MA. Then we compute the number of nume-
rical analyses needed, and we compare it with Tab. 5. 

3. Neural design 
In this chapter, we are going to utilize neural models 

of the FSS, TL, and MA in conjunction with a genetic al-

                                                           
5 The first value corresponds with the Levenberg-Marquardt 

training, the second one with the Bayesian regularization. 
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gorithm in order to reveal regions, which are suspected of 
containing a global minimum of a cost function. The reve-
aled localities can be efficiently examined using numerical 
models and local optimization techniques. 

For all three structures of interest, the same genetic 
algorithm is used. As a selection strategy, population deci-
mation is exploited. Every generation consists of 20 indivi-
duals, probability of cross-over is set to 90%, and probabi-
lity of mutation equals to 10%. Continuous parameters are 
binary encoded using 8 bits. 

Genetic optimization is stopped when a prescribed va-
lue of the cost function is reached (a successful realization) 
or when 500 iteration steps are passed (an unsuccessful re-
alization). The optimization of every structure is performed 
over 5 successful realizations (unsuccessful realizations are 
not considered). 

FSS is optimized using the model fss_lm_xe.mat. 
During optimization, the width of a conductive element b, 
and the width of a discretization cell B is searched so that 
the module of reflection coefficient of Floquet mode (0,0) 
is maximal at the frequency: f2 = 12.0 GHz, and its 3-dB 
decrease appears at f1 = 9.0 GHz, and f3 = 15.0 GHz. The 
optimization is stopped when the value of the cost function 
is lower than eFSS ≤ 0.050 GHz2. 

Successful realizations of the optimization process are 
listed in Tab. 6. The results indicate a potential global 
minimum of the cost function in the region b ∈ 〈3.27 mm, 
4.04 mm〉, and B ∈ 〈16.38 mm, 16.65 mm〉. A numerical 
analysis of the FSS with optimal widths bopt, and Bopt (co-
lumns numeric analysis of Tab. 6) confirms vicinity to de-
sired frequency properties. 

  optimum numeric analysis 

 steps 
[-] 

cost 
GHz2

b 
[mm] 

B 
[mm] 

f1 
[GHz] 

f2 
[GHz]

f3 
[GHz]

#1 10 0.050 3.27 16.38 9.03 12.20 14.97

#2 17 0.047 3.58 16.47 8.97 12.12 14.97

#3 1 0.044 4.04 16.65 8.97 12.12 14.97

#4 6 0.049 3.51 16.56 8.97 12.12 14.88

#5 4 0.044 3.86 16.61 8.97 12.12 14.94

Tab. 6 Genetic optimization of an FSS using the neural model. 
Desired frequency course of the module of reflection 
coefficient: f1 = 9.0 GHz, f2 = 12.0 GHz, and f3 = 15.0 GHz. 
Stopping value of the cost function: eFSS ≤ 0.050 GHz2. 

The average number of iteration steps of the genetic 
optimization is approximately equal to 8 generations (see 
column cost of Tab. 6). Since every generation consists of 
20 individuals, 160 triplets [f1, f2, f3] is computed. On the 
contrary, CPU-time demands of development of a neural 
model are equivalent to computing 120 triplets (Tab. 5). 

We can therefore conclude that the neural model of 
the FSS replaces the numerical one in an effectual way. 

TL is optimized using the model tl_lm_44b.mat. 
The optimization is aimed to estimate such dielectric con-

stants of substrate εr1 and of dielectric cover layer εr2 so 
that phase constant of the dominant mode is β1 = 800 m-1 
on 20 GHz and is equal to β2 = 1200 m-1 on 30 GHz. The 
optimization is stopped when the value of the cost function 
is lower than eTL ≤ 25 m-2. 

  optimal numeric anal. 

 steps
[-] 

cost
[m-2] 

ε2 
[-] 

ε1 
[-] 

β1 
[m-1] 

β2 
[m-1] 

#1 16 25.0 3.52 3.77 796.9 1201.1 

#2 7 18.4 3.91 3.68 799.0 1203.2 

#3 22 25.0 4.44 3.50 798.3 1203.9 

#4 7 18.9 4.38 3.54 799.9 1205.7 

#5 24 19.2 3.83 3.70 798.7 1202.8 

Tab. 7 Genetic optimization of a TL using the neural model. Desi-
red phase constant on 20 GHz: β1 = 800 m-1, on 30 GHz: β2 
= 1200 m-1. Stopping value of cost: eTL ≤ 25 m-2. 

Successful realizations of the optimization process are 
listed in Tab. 7. The results show that a potential global 
minimum of the cost function can be located in the region 
εr1 ∈ 〈3.50, 3.77〉, and εr2 ∈ 〈3.52, 4.44〉. A numerical ana-
lysis of the TL with optimal dielectric constants ε1opt, and 
ε2opt (columns numeric analysis of Tab. 7) confirms vicinity 
to the desired dispersion characteristics. 

The average number of iteration steps of the genetic 
optimization is equal approximately to 15 generations (see 
column cost of Tab. 7). Since every generation consists of 
20 individuals, 300 doublets [ε1, ε2] is computed. On the 
contrary, CPU-time demands of development of a neural 
model are equivalent to computing 110 doublets (Tab. 5). 

We can therefore conclude that the neural model of 
TL replaces the numerical one in an effectual way again. 

The MA is optimized using the logarithmic neural 
model ma_br_17_8_17a.mat. The optimization proce-
dure is asked to estimate the length of the dipole A, the 
width of the dipole B, the dielectric constant of the sub-
strate ε, and the height of the substrate h so that the input 
impedance on 30 GHz is equal to Zin = (25 + j0) Ω. In the 
genetic optimization, dielectric constant is binary coded 
using 2 bits (three possible values), and the height of the 
substrate is binary coded using 1 bit (two possible values). 
The optimization is stopped when the value of the cost 
function is lower than eMA ≤ 0.001 Ω2. 

Successful realizations of the optimization process are 
listed in Tab. 8. The results show that a potential global 
minimum of the cost can be in A ∈ 〈3.17 mm, 3.20 mm〉, 
B ∈ 〈0.055 mm, 0.093 mm〉, ε = 1.6, and h = 1.5 mm. A 
numerical analysis of the MA with optimal parameters (co-
lumns of numeric analysis of Tab. 8) shows that the input 
resistance is very close to the desired value, and the input 
reactance deviates desired value for 20 Ω. Nevertheless, 
the results can be considered sufficiently close to the opti-
mum so that the local optimization routine can be applied. 
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  optimal numeric a. 

 step 
[-] 

cost 
mΩ2

A 
[mm] 

B 
[mm] 

h 
[mm] 

ε 
[mm] 

Rin 
[Ω] 

Xin

[Ω] 

#1 5 0.44 3.20 0.060 1.5 1.6 25.1 +21.4

#2 7 0.35 3.17 0.093 1.5 1.6 25.1 +20.5

#3 6 0.73 3.17 0.071 1.5 1.6 24.4 +16.7

#4 4 0.47 3.19 0.073 1.5 1.6 25.2 +21.6

#5 4 0.36 3.20 0.055 1.5 1.6 25.0 +20.4

Tab. 8 Genetic optimization of an MA using the neural model. De-
sired input impedance on 30 GHz: Zin = 25 Ω, Xin = 0 Ω,. 
Stopping value of the cost function: eMA ≤ 0.001 Ω2. 

The average number of iteration steps of the genetic 
optimization is equal approximately to 5 generations (see 
column cost of Tab. 14). Since every generation consists of 
20 individuals, 100 quadruples [A, B, ε, h] is computed. 
Other hand, CPU-time demands of the development of a 
neural model are equivalent to compute 3300 quadruplets. 

We can therefore conclude that building the neural 
model of the MA does not make any sense in our situation. 

Finally, our experience can be summarized in the fol-
lowing items: 

• Neural models that are intended to approximate mo-
notonous quantities, can be developed efficiently (a 
small number of training patterns, rapid training, good 
accuracy), and therefore, they can successfully replace 
numeric models of EM structures. 

• If neural models are asked to approximate quantities 
on non-monotonous, oscillatory-like nature, then their 
development is rather laborious, and their building for 
a single use is inefficient. On the other hand, these mo-
dels can be included with CAD tools instead of appro-
ximate mathematical models, and then, their develop-
ment makes sense. 

In the last chapter, we are going to briefly summarize 
all the conclusions from the paper and to end by making a 
few comments on the topic. 

4. Conclusions 
In the paper, we have discussed the exploitation of 

artificial neural networks in relation to the modeling of EM 
structures. We used an ANN in the role of a transformer, 
which statically maps physical parameters of modeled 
structures (dimension, permittivity, permeability, etc.), to 
the technical parameters (reflection coefficient, phase con-
stant, input impedance). For this purpose, feed-forward 
neural networks can be used. 

ANN can contain neurons called ADALINE (back-
propagation networks completed by local training routi-
nes). As an activation function, we use a tangential sigmoid 

(hidden layers, bipolar output quantities) or a logarithmic 
one (unipolar output quantities). 

In our situation, the best results are obtained using 
professionally programmed ANNs from the neural network 
toolbox of matlab. As training algorithms, we exploit local 
training routines by reordering training patterns and with 
multi-starting in order to avoid convergence at the local 
minimum of the error surface. 

First, a proper training set has to be prepared. In order 
to accomplish this aim, we equidistantly sample the input 
space (physical parameters) with the relatively long samp-
ling step. For all samples of input parameters, we perform 
numerical analysis to obtain corresponding output respon-
ses (technical parameters). That way, initial set is built. 

In order to achieve a good accuracy of the neural mo-
del, the training set has to be refined. Computing relative 
variations of the output responses, we add new patterns to 
the initial training set in order to reduce the relative vari-
ations below the prescribed level (e.g., 10 %). If the appro-
ximated quantities exhibit very high dynamics then the 
dynamics have to be properly reduced (a suitable transform 
should be used). As shown in our paper, exploring the na-
tural logarithm for this purpose is not the best solution. 

In the second step, a proper architecture of the ANN 
has to be estimated. According to the number of training 
patterns, the number of hidden layers and the number of 
their neurons are guessed. Then, the Bayesian regulariza-
tion is used in order to estimate the number of efficiently 
used parameters, whose value should be from 70% to 90%. 
If the number of efficiently used parameters is not within 
this interval, architecture has to be modified. 

In the third step, the ANN of the proposed architec-
ture has to be trained using the Levenberg-Marquardt al-
gorithm. Training should be finished within a reasonable 
number of iteration steps (200 to 1000) and with suffici-
ently low training error (from 10-5 to 10-7). Since the tra-
ining error describes deviation between the numeric and 
neural models in the sampling points, the quality of the 
neural model should be tested even for the inter-lying 
points (e.g., a certain number of randomly located samples 
is generated, and the error is evaluated for those samples). 
If significant deviations are revealed, then the ANN has to 
be re-trained with a lower number of neurons, with intro-
duced bottleneck, or with the Levenberg-Marquardt pro-
cedure replaced by the Bayesian regularization (over-
training is prevented). 

By performing the above-described steps, an accurate 
model of an EM structure can be efficiently built. 
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