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Abstract
This thesis deals with the topic of identifying devices based on their behaviour. With the
increasing number of devices on the network, it is becoming more and more important to
be able to identify these devices based on their behaviour, due to the increased security
risks. General networking concepts and multiple methods that have been used in the
past to identify devices are discussed throughout the work. Subsequently, machine learning
algorithms and their advantages and disadvantages are introduced. Finally, this thesis tests
two traditional machine learning algorithms and proposes two new approaches to network
device identification. The resulting final algorithm achieves the accuracy of 89% on a real
life data-set with over 10,000 devices using a set of only eight features.

Abstrakt
Táto práca sa zaoberá problematikou identifikácie sieťových zariadení na základe ich chova-
nia v sieti. S neustále sa zvyšujúcim počtom zariadení na sieti je neustále dôležitejšia
schopnosť identifikovať zariadenia z bezpečnostných dôvodov. Táto práca ďalej pojednáva
o základoch počítačových sietí a metódach, ktoré boli využívané v minulosti na identifiká-
ciu sieťových zariadení. Následne sú popísané algoritmy využívané v strojovom učení a
taktiež sú popísané ich výhody i nevýhody. Nakoniec, táto práca otestuje dva tradičné
algorithmy strojového učenia a navrhuje dva nové prístupy na identifikáciu sieťových zari-
adení. Výsledný navrhovaný algoritmus v tejto práci dosahuje 89% presnosť identifikácii
sieťových zariadení na reálnej dátovej sade s viac ako 10000 zariadeniami.
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Rozšírený abstrakt
S rastúcim počtom zariadení pripojených k počítačovej sieti je neustále dôležitejšie pre
sieťových administrátorov schopnosť identifikovať zariadenia na ich sieťach. Dôvodom na
identifikáciu zariadení je zvyšujúci sa počet útokov na počítačové siete, ktorý rastie každým
dňom [17]. Z toho dôvodu je potrebné vyvíjať metódy, ktoré identifikujú sieťové zariade-
nia len na základe ich správania sa v sieti. Na základe týchto algoritmov je potom možné
porovnávať aktuálne správanie sa zariadenia oproti vzorom v minulosti a následne rozhod-
núť, či daný model správanie korešponduje so zariadením, alebo je zariadenie podvrhnuté
a je potrebné túto komunikáciu ukončiť.

Cieľom tejto práce je navrhnúť algoritmus za použitia algoritmov strojového učenia,
ktoré jednoznačne identifikujú sieťové zariadenia len na základe ich správania sa v sieti,
bez znalosti jednoznačných identifikátorov ako je MAC adresa. Následne je potrebné,
aby navrhovaný algoritmus neustále udržiaval uchovávané modely zariadení aktuálne, bez
potreby veľkých pamäťových požiadaviek. Poslednou požiadavkou je schopnosť identifikácie
nových zariadení a potreba minimálneho pretvárania modelu alebo modelov pri pridávaní
nových zariadení do siete. Táto práca otestuje dva tradičné algoritmy strojového učenia
ako sú Naivný Bayesovský Klasifikátor a Rozhodovacie Stromy. Následne sú navrhnuté dva
nové algoritmy inšpirované algoritmami bežne používanými na kontrolu podobnosti tex-
tov. Tieto algoritmy sú nakoniec najúspešnejšími metódami na identifikáciu a sledovanie
sieťových zariadení.

Prvým z algoritmov inšpirovaným podobnosťou textov je metóda s názvom Nearest
Neighbor Combined Model. Táto metóda počas trénovacej fáze algoritmu agreguje toky
na základe ich MAC adresy a používateľského mena. Následne je na tieto agregované dáta
aplikovaná frekvenčná analýza, ktorej výstupom je vysokodimenzionálny vektor frekvencii
jednotlivých elementov. Tieto vektory sú nazývané profilmi zariadení. Po uplynutí tréno-
vacej fáze, ktorá trvá jednu hodinu následuje klasifikačná fáza. V tejto fáze sú profily agre-
gované v 5 minútových intervaloch na základe zdrojovej IP adresy a používateľského mena.
Táto kombinácia reflektuje neznalosť MAC adresy a zároveň je dostatočná na rozlíšenie
zariadení od seba navzájom, avšak nie je dostatočná na jednoznačnú identifikáciu daného
zariadenia, keďže zdrojová IP adresa sa môže s časom zmeniť a používateľ môže vlastniť viac
zariadení. Nakoniec je používaná kosínusová podobnosť na nájdenie najbližšieho “veľkého”
profilu k aktuálne klasifikovanému profilu zariadenia. Po priradení profilu k zariadeniu sú
tieto dáta pridané k “veľkému” profilu na spresnenie predpovedí v budúcnosti. Nevýhodou
tejto metódy je však jej neschopnosť identifikovať nové zariadenia a zároveň neustále naras-
tajúca veľkosť profilu, ktorý by sa časom nezmestil do pamäti RAM, hlavne pri sledovaní
zariadení na univerzitách alebo vo veľkých firmách. Z toho dôvodu bola navrhnutá druhá
metóda, ktorá rieši nedostatky aktuálne popísanej metódy.

Druhou navrhovanou metódou na identifikáciu a sledovanie zariadí sieti je metóda s
názvom k-NN with Segmented Profiles Model. Tento model je inšpirovaný algoritmom
popísaným v predošlom odseku. Jeho hlavným rozdielom je, že unifikuje dĺžku časového
okna počas trénovania aj počas klasifikácie. Podobne ako predošlý algoritmus agreguje toky
z NetFlow na základe zdrojovej IP adresy a používateľského mena, ale už v trénovacej fáze.
Trénovacia fáza trvá tiež hodinu a v pamäti sa uchováva len posledných 12 profilov daného
zariadenia. Následne je aplikovaná frekvenčná analýza na jednotlivé profily. Niektoré stĺpce
sú však analyzované zvlášť ako napríklad zdrojová a cieľová IP adresa. Tieto stĺpce sú ana-
lyzované oddelene z dôvodu, že by mohli mať rovnaké hodnoty, avšak ich význam je úplne
odlišný a bežnou frekvenčnou analýzou by sa stratil ich sémantický význam. Tento jav môže
nastať v prípade, že dve zariadenia komunikujú medzi sebou a ich lease IP adresy by vypršal



v rovnakom čase. Následne je možné, že DHCP server priradí IP adresy v opačnom po-
radí ako v predošlom prípade a teda by sa stratila smerovosť následnej komunikácie. Po už
popísaných krokoch následuje fáza klasifikácie. V tejto fáze sú rovnakým spôsobom agregov-
ané toky a je aplikovaná aj frekvenčná analýza ako v trénovacej fáze. Avšak pre klasikovanie
daného zariadenia je použitý algoritmus k Najbližších susedov. Po klasifikácii je nahradený
najstarší z profilov identifikovaného zariadenia v prípade dvanástich profilov uchovaných v
pamäti. V opačnom prípade je najnovší profil len pridaný k danému zariadeniu. Týmto
spôsobom sa profily zariadení neustále obnovujú avšak pamäťová náročnosť s časom až tak
radikálne nerastie ako pri predošlom algoritme. Profily zariadení sú uchovávané dočasne
a po určitej dobe neaktivity sú zmazané, pre zamedzenie skladovania už neaktívnych zari-
adení v danej sieti. Tento algoritmus tiež implementuje detekciu odľahlých bodov pomocou
k-NN algoritmu a z-skóre. Tieto metódy umožňujú navrhovanému algoritmu detekovať
nové zariadenia. Jednotlivé modifikácie tohto algoritmu sú postupne testované a pomocou
dosiahnutých výsledkov boli navrhované nové modikácie.

Posledný navrhovaný algoritmus dosiahol priemernú presnosť predikcie 89% počas testo-
vaných 8 hodín z exportovaných dát poskytnutými spoločnosťou Cisco systems obsahujú-
cou cez 10000 zariadení. Nakoniec je táto metóda porovnaná s už existujúcimi metódami
na jednoznačnú identifikáciu zariadení a sú porovnané ich výhody i nevýhody. Výsledky
tejto práce môžu byť využité sieťovými administrátormi na automatizovanú identifikáciu
sieťových zariadení na základe ich správania bez znalosti jednoznačných identifikátorov ako
je MAC adresa.



Behaviour-Based Identification of Network De-
vices

Declaration
I, Michael Adam Polák, hereby declare that this thesis is entirely my work prepared under
the supervision of Ing. Libor Polčák, Ph.D. All relevant sources of information are duly
cited and included in the list of references.

. . . . . . . . . . . . . . . . . . . . . . .
Michael Adam Polák

June 1, 2020

Acknowledgements
I would like to sincerely thank my supervisor Ing. Libor Polčák, Ph.D. for his valuable
advice and guidance. Furthermore, I would like to thank Mgr. Jan Kohout for his advice
and patience during the development of the proposed algorithms. Lastly, I would like to
give my sincere thanks my parents for their continuous support during my studies.



Contents

1 Introduction 3

2 Network Device Identification 5
2.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 NetFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 HTTP Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 TLS Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Clock-skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Classification Methods and Model Validation 15
3.1 Decision Tree Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 k-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Naive Bayes Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Term Frequency and Inverse Document Frequency . . . . . . . . . . . . . . 18
3.5 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 z-score Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5.2 Outlier Detection Using k-NN . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Proposed Algorithmic Solutions 23
4.1 Nearest Neighbor Combined Model . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 k-NN with Segmented Profiles Model . . . . . . . . . . . . . . . . . . . . . . 25

5 Implementation and Design of the Tool 28
5.1 Statistical Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Input Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Application Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Technical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Experimental Results 34
6.1 Naive Bayes Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Decision Tree Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Nearest Neighbor Combined Model . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 k-NN with Segmented Profiles Model . . . . . . . . . . . . . . . . . . . . . . 40

6.4.1 Evaluation of the Impact of k Using the k-NN Algorithm . . . . . . 43
6.4.2 Evaluation of the Impact of the Time-Window Size . . . . . . . . . . 43
6.4.3 Evaluation of the Impact of Stored Profiles . . . . . . . . . . . . . . 44
6.4.4 Evaluation of the Impact of the Sliding Window . . . . . . . . . . . 45

1



6.4.5 New Device Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.5 Comparison with Existing Methods . . . . . . . . . . . . . . . . . . . . . . . 49

7 Conclusion 51

Bibliography 53

A Data-set Description 57
A.1 Data-set 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.2 Data-set 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

B k-NN with Segmented Profiles Model Summary 60

C Excel@FIT Conference 61

D Application Design Diagram 63

E Contents of the Attached DVD 65

2



Chapter 1

Introduction

With the constantly increasing number of devices that are connected to the network, it is be-
coming more and more important for network administrators to be able to identify devices
on the network. The root of this necessity lies in the increasing number of attacks that are
performed per day [17]. Therefore, methods that identify devices based on their behaviour
are being developed to identify and verify whether the behaviour of a device is similar
to the already existent user profile, or the device is malicious, and the communication
needs to be blocked. This thesis tests two traditional machine learning algorithms and
proposes two new approaches to network device identification and tracking. The methods
described in this thesis can be used by network administrators for automated identification
of devices on their network in contexts where unique identifiers such as the MAC addresses
are not available.

In the past methods such as HTTP or TLS fingerprinting have been used to reliably
identify devices [2, 13]. However, with the increase in network traffic loads and significant
increase in database sizes of these fingerprint databases, new approaches to identify devices
need to be explored [2]. Furthermore, research that has been done up to this point ex-
plores only methods that measure similarity with previously seen behaviour, as described
in the thesis of Kumpost [20]. This approach, however, has high spatial and time demands
over large data-sets, which renders these methods impractical in a production environment.
Another example of a unique device identification method proposed by Kohno et al. is by
using the clock-skew measurement [19]. However, in some cases the use of clock-skew mea-
surement requires synchronized sampling, which is an active method of finding the unique
identifier. The goal of this thesis is to develop a method that passively tracks devices.
Therefore, this work explores new approaches with better performance using artificial in-
telligence.

This thesis describes networking fundamentals and methods that have been used to
identify devices in the past such as clock-skew, TLS and HTTP fingerprinting in Chapter 2.
The advantages along with disadvantages of the aforementioned methods are also discussed
in this chapter. The following Chapter 3 introduces concepts that are used in machine
learning that are suitable for device identification. Methods include the Decision Tree
Classifier, Naive Bayes Classifier, k-Nearest Neighbors, and Term Frequency and Inverse
Document Frequency that is often used in text analysis. Lastly, this chapter introduces
methods used for outlier detection, which in the case of this thesis are used for new device
detection.

The next Chapter 4 contains a detailed description of the two newly proposed algorithms
for device tracking. Both of these algorithms are inspired by methods for text analysis.
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The first proposed algorithm, described in the Section 4.1, analyzes and creates large de-
vice profiles where the closest neighbor is found using the cosine similarity distance metric.
While this algorithm performs well, it has multiple downfalls, such as low precision and
recall, which are caused by incorrect classifications. Another problem is that this algorithm
is not capable of detecting new previously unseen devices that have appeared in the data-set
after the training phase has been completed. Therefore, the following Section 4.2 describes
a modification of the aforementioned algorithm that overcomes its deficiencies. The mod-
ification consists of the segmentation of the large profile into multiple smaller ones and
introduces the k-Nearest Neighbors algorithm with cosine similarity as the distance metric.
Further modifications have been done to the algorithm including methods of updating de-
vice profiles, which significantly improve the memory efficiency. Lastly, methods used for
outlier detection such as the z-score and k-NN outlier detection are introduced to the al-
gorithm to improve the detection of new devices. This final algorithm achieves the best
performance from all of the tested methods in this thesis.

The final product of this thesis is an application that enables the user to easily create
experiments and vary the parameters of the aforementioned methods. The tool is highly
configurable and modular, which enables easy additions of new device identification meth-
ods in the future. The tool description, design and used technologies are described in
the Chapter 5.

Afterwards, in Chapter 6, methods described in this thesis are tested on two real life
data-sets provided by Cisco Systems. These data-sets provide a wide variety of user be-
haviours and availability of features, which thoroughly test the already existing and the two
newly proposed algorithms. The parameters of the algorithm with the best performance
based on the experiments performed in this chapter are summarized in the Appendix B.
Lastly, this chapter compares the achieved results with already existing algorithms and
points out their advantages and disadvantages.

Chapter 7 is the conclusion to this thesis and proposes further improvements to this
work.
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Chapter 2

Network Device Identification

This chapter serves as an introduction to networking concepts and user behaviour pat-
terns that are going to be used as a base for behaviour based network device identification
in this thesis. The beginning of this chapter describes networking fundamentals in Sec-
tion 2.1, and attributes provided by protocols such as HTTP or TLS. The second half
of this chapter examines methods that have been used for device identification in a simi-
lar context, such as clock-skew measurements or user agent re-identification. Furthermore,
techniques regarding fingerprint creation from the HTTP and TLS protocols are discussed
in Sections 2.3 and 2.4 respectively. Lastly, the NetFlow protocol is discussed in Section 2.2,
which provides essential information about the behaviour of network devices.

2.1 Network Architecture
The TCP/IP model is a collection of protocols that describe mechanisms used in network
communication. Functions that the model provides are broken up into layers, where lower
layers provide services to the layers above them [22]. This approach prevents protocols from
implementing the same functionality repeatedly and introduces a hierarchy to the protocols.

The top layers handle data encoding, session management and application specific re-
quirements. The lower layers handle routing and sending the data across the network.
Before a packet traverses the network several steps are taken, in a process called encapsu-
lation, that add necessary information for each of the layers to the data [32]. The process
of encapsulation is described by Figure 2.1. The reverse process is called decapsulation
and is performed when a packet is received. Layers and their functions in the TCP/IP stack
are described as follows:

Application layer – This layer provides functionality for a specific application that
is running on the computer. It does not define the application itself, but mechanisms
that the application needs to function in a networking context. Essentially, this layer
creates a bridge between the application and the network in the lower layers. Typical
representatives of protocols at this layer are HTTP, POP3 and IMAP [32].

Transport layer – The transport layer includes multiple protocols, however, the ma-
jority of the traffic uses the TCP and UDP protocols. They provide error recovery
or best effort delivery to the application layer respectively. The TCP protocol also
provides congestion control by breaking up longer messages into shorter segments, so

5



that the transmission speeds can be adjusted accordingly when the network is con-
gested [22].

Network layer – This layer includes different protocols; the most commonly used pro-
tocols are IPv4 and IPv6, that are used for addressing the traffic by devices called
routers. In order to deliver a packet to the correct recipient, it is necessary for each
device to have a unique IP address. However, the address space of the IPv4 and IPv6
protocols is limited. Therefore, the IPv4 address space, which is still the most com-
monly used protocol on layer 3, is almost depleted and new IP addresses are assigned
in a limited manner [36]. Since the problem of the address space depletion has been ap-
parent years in advance, a mechanism to remap multiple IP addresses into one, called
Network Address Translation (NAT), has been implemented. However, by imple-
menting NAT the uniqueness of the IP address of a device has been lost, and multiple
devices are using the same IPv4 address.

Data link layer – The data link layer describes protocols and hardware necessary for net-
work communication. This layer introduces a unique address to networking interface
cards (NICs) that is burned into the hardware. Addresses comprise of two parts -
the first 24 bits is the manufacturer identifier, with the remaining 24 bits comprising
the serial number of the NIC [32]. In theory each of the MAC addresses is unique,
however, there exist duplicates due to the possibility to rewrite them in the operating
system, or failures of manufacturers to assign unique MAC addresses.

Physical layer – The first layer is comprised of standards defining the transportation
medium such as connectors, pins, light modulations and procedures on how to use
the physical medium [32].

Based on the aforementioned paragraphs, it is possible to use the combination of the MAC
addresses and the IP addresses as a unique identifier of a device on a network. Examples
of these addresses can be seen in Table 2.1.

Address Name Example Address
IPv4 address 192.168.1.1
IPv6 address 2001:0db8:85a3:0000:0000:8a2e:0370:7777
MAC address 00:0a:95:9d:68:aa

Table 2.1: Examples of addresses used in networking.

2.2 NetFlow
NetFlow is a Cisco proprietary protocol that was originally designed for network billing
and accounting, however nowadays, is mostly used by network administrators to monitor
network traffic. In recent years, this protocol has seen a rise in providing anomaly detection
and investigative capabilities [38] that are often used by network administrators.

NetFlow can be utilized on all layers of the network and used for network data collection
in various deployment scenarios. However, the best practice dictates that NetFlow should
be enabled as close to the wide area network as possible. The implementation of the protocol
relies on three different components [38, 4]:
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∙ NetFlow Collector – Is a physical or virtual device that collects data from infras-
tructure devices. The Collector is also responsible for storing flow records.

∙ NetFlow Exporter – Is a physical or virtual device that is responsible for collection
and pre-processing of NetFlow data.

∙ NetFlow Analyzer – Is a web-based or a desktop application used for analyzing
NetFlow data and creating statistics of network traffic.

Data

Data

Data

Data

TCP/UDP

IP TCP/UDP

Data linkData link IP TCP/UDP

5. Application

4. Transport

3. Network

2. Data link

1. PhysicalTransmit bits

Figure 2.1: Steps taken in data encapsulation. Each new field represents additional headers
that contain necessary information for each of the layers [32].

All of the packets flowing through a NetFlow enabled interface, also called an observation
point, with the same identifiers are grouped together into a flow. “A flow is a unidirectional
series of packets between a given source and destination. Flows share the same source
and destination IP addresses, source and destination ports, and IP protocol. This is often
referred to as the five-tuple.” [35] All of these flows are then aggregated to a database
of NetFlow information that is also called the NetFlow cache. There are two types of cache:

∙ Temporary cache – Timers are used to keep track of the age of the data stored
within the cache. Contents of the cache are sent to the Exporter after the timer ex-
pires. This type of cache is usually used to keep track of partial flows that can be used
to detect threats on the network.

∙ Permanent cache – This type of cache is used to store flows permanently and is usu-
ally used for billing and accounting.
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A set of observation points that can be aggregated into a single set of flow information
is called an observation domain. A typical example of an observation domain is a set
of interfaces on a router that are connected to the local area network (shortly LAN).

NetFlow has been implemented using the UDP protocol for efficiency, since a loss
of packets does not have a large impact on the statistics provided by the protocol. However,
this protocol is not a congestion-aware protocol, thus in a congestion-sensitive environment
the Exporter and Collector have to use a dedicated link between each other. In the case that
the link between the Exporter and Collector is not within one hop, it is necessary to ensure
that the link is able to handle the maximum bursts of network traffic from the Exporter.

There have been several versions of the protocol since its initial release in 1996 and var-
ious versions are used on devices depending on the model and the version of the operating
system. The most commonly used version of NetFlow is Version 9. This version is based
on templates that provide a flexible design for future enhancements that are discussed later
in this section. The header, which is of a constant size, is specified in Figure 2.2.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Version = 9 | Count = 7 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sysUpTime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| UNIX Secs |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 2.2: NetFlow Version 9 packet header format [4].

∙ Version – NetFlow version and export format. Currently version 9 is used.

∙ Count – Number of flows exported within this packet.

∙ sysUpTime – Time since the device was booted in milliseconds.

∙ UNIX Secs – Time of the export packet leaving the Exporter in seconds since
January 1st 1970.

∙ Sequence Number – A counter of Export Packets sent by the Exporter from an Ob-
servation Domain. This value is cumulative, and is used by the Collector to identify
if any of the Export Packets have been missed or not [4].

∙ Source ID – A 32-bit identifier of the Exporter Observation Domain. NetFlow
Collectors use the combination of the source IP address and the Source ID field
to separate different export streams originating from the same Exporter [4].
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One of the major advantages of NetFlow Version 9 compared to the previous generations,
is the flexibility of the flow record format. In the past, any changes in data collection
or field additions to the protocol required a new version to be released. With the addition
of templates, new types of flow records can be defined without any changes to the structure
of the export format. However, the most important template, FlowSet, from which the data
is used in this thesis, is specified in Figure 2.3.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| FlowSet ID = 0 | Length = 28 bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Template ID 256 | Field Count = 5 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP_SRC_ADDR = 8 | Field Length = 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP_DST_ADDR = 12 | Field Length = 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP_NEXT_HOP = 15 | Field Length = 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IN_PKTS = 2 | Field Length = 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IN_BYTES = 1 | Field Length = 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 2.3: NetFlow Version 9 template FlowSet format [4].

∙ FlowSet ID – FlowSet ID is a 16-bit unsigned integer used to distinguish different
types of FlowSets. FlowSet IDs from 0 up to 255 are reserved for special FlowSets;
IDs greater than 255 are Data FlowSets.

∙ Length – Total length of the data of the FlowSet.

∙ Template ID – Unique template ID for each new Template Record. The template
ID is unique only to the observation domain.

∙ Field Count – Number of fields in a template.

∙ IP_SRC_ADDR – IPv4 source address of the flow.

∙ Field length – Length of the previous field.

∙ IP_DST_ADDR – IPv4 destination address of the flow.

∙ IP_NEXT_HOP – IPv4 next hop address of a flow.

∙ IN_PKTS – Number of packets associated with a specific flow.

∙ IN_BYTES – Number of bytes in a flow.
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2.3 HTTP Fingerprinting
Devices often show a certain deviation from one to another even within the same model,
which makes each of these devices unique. This unique set of attributes is called a de-
vice fingerprint. Fingerprinting is a common practice in network security, as it facilitates
the collection of network device fingerprints.

Similarly to these devices, each web browser contains a certain degree of uniqueness
and research has proven that it is possible to identify users with a degree of certainty [13].
The most commonly used method to re-identify users revisiting a website is through cook-
ies. However, cookies pose a threat to privacy, as an attacker can abuse this information
and authenticate as their victim. Nowadays, users are more aware of the threat cookies
pose to privacy and users often delete or block the access of cookies. When a user blocks
cookies and the server wants to set a cookie, the resulting error is detectable by the server
and can be used as a parameter in the fingerprint.

However, users are very rarely aware of super-cookies [33] that are used by Internet
service providers or other companies to track visited websites along with the number of their
visits. These cookies can also access information contained within traditional tracking
cookies, such as login information and cached images.

Among the most common headers used to identify the application type, operating sys-
tem, language, software version and other information, is the User Agent header. This header
contains information about the types of content that are understood by the client, which
are described by MIME types. MIME types need to be set by the browser differently for
each context. Data regarding the use of an Ad blocker or plugins to prevent tracking con-
tained within the Do Not Track HTTP header can also be used to create a unique set
of attributes to form a fingerprint. However, these attributes are not stable and change
quite frequently, but algorithms such as the one in the paper from Eckersley [13] are able
to track these changes.

Information about the browser can be collected not only from HTTP headers but also
using AJAX. AJAX is based on JavaScript and runs within the browser. It is used to send
information from the user to the server and back asynchronously. Information, such as in-
stalled fonts and screen resolution, can be obtained using this method.

Based on the information that was mentioned in the previous paragraphs, we can create
a matrix where all of the aforementioned information is aggregated. Each row of this ma-
trix corresponds to one flow of communication in one direction and in combination with
the source, destination IP addresses and ports from flows that are described in Section 2.2.
However sometimes, some of the information is not available and the data in these fields
needs to be added, or the entry needs to be entirely removed from the data-set in order
to produce accurate results. Techniques that are used for data preparation are described
in Section 5.2.

In order for the HTTP protocol to work correctly, it is necessary to use the domain name
service protocol as well. The main goal of domain names is to provide easy to remember
names for the users to associate with different hosts, networks and administrative organiza-
tions. The domain name service (shortly DNS) is a service that provides translations from
domain names to IP addresses [22]. Thus, if a user asks for the host IP address or email
information of a server, an appropriate query is passed to the resolver with the requested
domain name. Programs usually interact with the domain name space using a resolver,
where a typical use case scenario is described by the Figure 2.4.
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Attribute Example Values
Mozilla/5.0 (X11; Linux x86_64)

User-agent AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/77.0.3865.120

Safari/537.36
Cookies enabled True/False

Do Not Track/Ad Blocker True/False
Screen resolution 3840x2160@60Hz

AdBlock
Browser plugins Google Docs Offline

WIS Floating Clock
video/webm;codecs=h264,vp9,opus

video/x-matroska;codecs=avc1
MIME types audio/webm

audio/webm;codecs=opus
application/pdf

Language en-us,en;q=0.5
Fonts Times New Roman

Timezone CET(GMT +1)

Table 2.2: Fingerprint examples.

Local Host | Foreign
|

+---------+ +----------+ | +--------+
| | user queries | |queries | | |
| User |-------------->| |---------|->|Foreign |
| Program | | Resolver | | | Name |
| |<--------------| |<--------|--| Server |
| | user responses| |responses| | |
+---------+ +----------+ | +--------+

| a~ |
cache additions | | references |

V | |
+----------+ |
| cache | |
+----------+ |

Figure 2.4: An example of a DNS resolver scenario [30]. The user program requests an IP ad-
dress using a domain name, and the resolver either sends the query to another DNS server
or sends a response from its cache.

The behavior described in the Figure 2.4 enables network administrators to collect data
and create user profiles that become more accurate over time. The user re-identification
of Kumpost [21] uses HTTP(S) and SSH connections in combination with DNS queries
to re-identify users. Kumpost’s user profiles are based on sparse access frequency vectors
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combined with the number of connections to each destination IP address. The proposed
method has been tested on aggregated monthly NetFlow logs and achieves an accuracy
of 78.3% with SSH traffic.

2.4 TLS Fingerprinting
Transport Layer Security protocol (shortly TLS) provides a secure channel between two
communicating applications. The protocol itself provides authentication, confidentiality
and integrity [37]. Authentication is always guaranteed from the server side and is optional
from the side of the client application. Authentication is provided using asymmetric crypto-
graphic algorithms, such as RSA, ECDSA and PSK. Confidentiality is guaranteed by using
the channel that is established before data is sent and is only visible to the endpoints.
Lastly, integrity is guaranteed by the use of an encrypted channel, where any changes
by the attacker can be detected by the server or the client, depending on the direction
of the traffic.

TLS is composed of the handshake protocol and the record protocol. The handshake
protocol handles authentication, cryptographic mode negotiation and establishes keys.
The TLS handshake consists of the three steps described in Figure 2.5. The record protocol
provides security by splitting the traffic into a series of records that are protected using
individual keys [37].

Client Server

ServerHello
+ key_share*
+ pre_shared_key*

Key
Exch

{EncryptedExtensions}
{CertificateRequest*}

Server
Params

{Certificate*}
{CertificateVerify*}
{Finished}

Auth

[Application Data*]

ClientHello
+ key_share*
+ signature_algorithms*
+ psk_key_exchange_modes*
+ pre_shared_key*

Key
Exchange

{Certificate*}
{CertificateVerify*}
{Finished}

Auth

[Application Data] [Application Data]

Figure 2.5: Scheme of the TLS handshake taken from [37]. + denotes extensions to the mes-
sages. * denotes optional or situation dependent fields. {} and [] denote messages pro-
tected by keys derived from the handshake_traffic_secret and handshake_traffic_secret_N
respectively.
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Handshakes are resistant to tampering, however, fingerprints can be created by inspect-
ing the ClientHello messages. By aggregating this information to a database it is possible
to collect fingerprints of malicious software and vulnerable applications [2]. This informa-
tion can be used in combination with the information collected by the NetFlow or IPFIX
protocols, described in Section 2.2, to identify network devices. This approach has been
proven to be very effective by Anderson et al. by achieving an accuracy of over 90%, de-
pending on the technique used [3]. The information collected from the TLS handshake
is stored in the JSON format and the meaning of the fields is explained in Table 2.3.

Field Description
id ID of TLS fingerprint.
desc Description of the TLS fingerprint. Usually in the form of an ap-

plication name or URL.
record_tls_version Version of the TLS record protocol.
tls_version Version of the TLS protocol ranging from the now deprecated

SSLv2 to the newest TLSv1.3
session_id ID of TLS session
ciphersuite_length Length of key used in the cryptographic algorithm.
ciphersuite Type of cryptographic algorithm used.
compression_length Size of compressed data in bytes.
compression Type of compression algorithm used. Since TLS version 1.3

no compression is used, however, older versions of the protocol
are still widely used.

extensions Extensions used by the TLS protocol. For further information see
Figure 2.5.

e_curves Ephemeral Elliptic Curve Diffie-Hellman key agreement.
sig_alg Type of signature algorithm used.
ec_point_fmt Ephemeral Elliptic Curve Diffie-Hellman key format.

Table 2.3: Table describing the fields that are collected in the process of TLS fingerprint-
ing [6].

2.5 Clock-skew
Computers measure time using crystal oscillators that use mechanical resonance of a vi-
brating crystal in a piezoelectric material to create a signal with a precise frequency. Fre-
quencies of these oscillators depend on the cut angle and type of the crystal. Manufacturing
of the crystals has some tolerances that introduce differences to the produced crystals result-
ing in slightly different frequencies. Differences in frequencies create a phenomenon called
clock-skew that provides a method to reliably identify devices [23]. Clock-skew is commonly
given as a measure in parts per million (shortly ppm), which means that per every mil-
lion time units the error is n-time units. Clock-skew is unique and reported to be reliable
for identifying users in TCP sessions according to Kohno et al [19].

Each packet that is sent over the network is delayed by n time units from the time
the packet was sent and consequently received by another device. These delays 𝜀(𝑡)
are caused by the time needed for processing the packet by the sender and observer. Delays,
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however, are not constant and are dependent on many factors. The following Figure 2.6
depicts the delay between the hosts.

Device

Observer
ε(t)

Time (ms)

Time (ms)

Figure 2.6: Clock-skew caused by the delays during processing and sending the data.

Kohno et al. proposed to estimate clock-skew by using the slope of the offset points,
which is the difference from the beginning of the measurement (e.g., packet transmission)
until the observer receives the packet. They have shown that the slope of the upper bound
is similar to the slopes of the offsets.

Most of the timestamps used in the aforementioned research are from TCP and ICMP
traffic. However, TCP traffic is not the only possible source of timestamps. HTTP servers
can also generate timestamps, which show when the web page has been generated. The res-
olution of this timestamp is lower - only 1 second [34]. In order to compensate for this error,
it is necessary to perform synchronized sampling [31].

Synchronized sampling is a process where the observer attempts to synchronize its clock
to the clock of the HTTP server by sending HTTP requests in sync to the server. Some
other application layer protocols can also send timestamps, however, their resolution is low
as well and needs to be compensated for using synchronized sampling.
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Chapter 3

Classification Methods and Model
Validation

Classification is a process where each object is assigned to a class based on its attributes, also
called features. Before any object is assigned to a class, a model needs to be created. These
models describing the data are called classifiers. Prior to a classifier being able to make
predictions, it needs to be trained. Training is performed on input data that contains
labels of which class a feature vector belongs to. Afterwards, classifiers are able to make
predictions on previously unseen unlabeled data. This approach provides more flexibility in
the creation and evaluation models, which proves to be more robust compared to traditional
tracking algorithms. Robustness provided by the models is a significant plus, since the data-
sets can vary in quality and availability of features. The first part of this chapter is dedicated
to machine learning algorithms that are going to be used in the process of identifying
network devices based on their behaviour. The second part of this chapter (Section 3.6)
describes methods that verify the accuracy of created models by training models on a subset
of data and verifying the results on another disjoint set of data.

3.1 Decision Tree Classifier
Decision trees are simple to understand models that used for partitioning the input space
into regions, where a different model can be applied to each of these regions [5]. The division
of regions can be interpreted as a sequence of binary decisions that are applied to the input
features. Each leaf subsequently corresponds to a class. An example of a decision tree
which decides whether to go on a hike or not can be seen in Figure 3.1.

During the training phase, it is essential to determine the features, and the threshold
values of these features, that will be used to create the structure of the tree. Training starts
with choosing the feature which is used to split the data into regions with the lowest cost
to accuracy. Afterwards, the algorithm continues in the same manner for the newly created
leaf nodes recursively until the process of building the decision tree is finished.

One of the major advantages of this model compared to others, is the simplicity to vi-
sualize and understand the model. Decision trees can handle numerical and categorical
data as well. However, one of the disadvantages is the susceptibility to over-fitting. Over-
fitting manifests itself by creating nodes that lower the accuracy of the classifier. In order
to prevent over-fitting, methods such as prepruning and postpruning are introduced [46, 16]:
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∙ Prepruning – Nodes are not created during the process of building the tree. In case
of the branch not reducing the error of predictions significantly, that branch is removed
and replaced by a leaf node corresponding to the largest number of samples in that
specific branch of the tree. The advantage compared to other methods is the low
computational complexity.

∙ Postpruning – “Unnecessary” nodes are removed after the creation of the tree.
This method makes the model more accurate compared to prepruning, however,
the computational cost is higher.

Outlook

Temperature WindOvercast

Yes YesYes No No

Warm Cold Strong Weak

Sunny Rain

Figure 3.1: Example of a decision tree deciding whether to go on a hike or not.

3.2 k-Nearest Neighbors
The k-Nearest Neighbor (k-NN) is a supervised machine learning algorithm that is simple
to understand and can be used for either classification or regression. This algorithm belongs
into the category of lazy learning algorithms, or local learners, which work under the as-
sumption that similar classes of data lie in a close proximity to each other [40]. This means
that the algorithm does not need to create a model to predict data, meaning there is no
training phase. The algorithm calculates distances based on different metrics depending
on the use case.

The most commonly used distance metric is Euclidean distance [12], defined by Equa-
tion 3.1. However, Euclidean distance is not an appropriate distance metric in a high dimen-
sional space, since it provides a poor contrast between the furthest and nearest neighbor [1].
Among other examples of distance metrics used in this thesis are the Minkowski distance [14]
defined by Equation 3.2, Dice similarity coefficient [48] defined by Equation 3.3, and cosine
similarity [44] defined by Equation 3.4. Cosine similarity is a metric that is most often used
in text similarity and plagiarism detection, where it performs well in a high dimensional
space. The process of classification using the k-NN algorithm can be summarized into three
steps [40, 15]:

1. Given a query point 𝑥*, find k nearest neighbors from the data-set D = {(𝑥𝑖, 𝑦𝑖},
where 𝑥𝑖 is the input data and 𝑦𝑖 is the label
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2. Calculate the distances between 𝑥* and 𝑥𝑖

3. Return the mode of the k labels chosen based on the closest distance between 𝑥*

and 𝑥𝑖

𝑑𝑛(𝑥, 𝑦) =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2 (3.1)

𝑑(𝑖, 𝑗) = ℎ

√︁
|𝑥𝑖1 − 𝑥𝑗1|ℎ + |𝑥𝑖2 − 𝑥𝑗2|ℎ + ...+ |𝑥𝑖𝑝 − 𝑥𝑗𝑝|ℎ (3.2)

𝐷𝑆𝐶 =
2|𝑋 ∩ 𝑌 |
|𝑋|+ |𝑌 |

(3.3)

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠(𝜃) =

∑︀𝑛
𝑖=1𝐴𝑖𝐵𝑖√︁∑︀𝑛

𝑖=1𝐴
2
𝑖

√︁∑︀𝑛
𝑖=1𝐵

2
𝑖

(3.4)

The choice of the correct value for k is data dependent. It is recommended to test
various values to find the suitable k for the given data-set. In cases where the value of k
is too small, the predictions are susceptible to noise. On the other hand, when k is too
large, the boundaries between classes become less distinct [15].

The major advantage of this algorithm is its simplicity and ease of implementation. How-
ever, the memory requirements are large since the entire data-set needs to be in the memory
in order to classify, which makes it complicated to work on large data-sets.

3.3 Naive Bayes Classifier
The Naive Bayes classifier belongs to the family of probabilistic classifiers. This algorithm
uses the counts of individual features and their combinations from which it subsequently cal-
culates probabilities of occurrences. However, this algorithm also assumes that each and ev-
ery one of the features is independent, which is rare in a real-world setting. Even though
the assumptions for this method are not always true, the Naive Bayes classifier performs
well in various supervised classification settings. The basis of the classifier is the Bayes the-
orem described by Equation 3.5, where A, B are events, P(A|B) is the probability of A given
B is true, P(B|A) is the probability of B given A is true and P(A), P(B) are independent
probabilities of A and B [40].

𝑃 (𝐴|𝐵) =
𝑃 (𝐵|𝐴)𝑃 (𝐴)

𝑃 (𝐵)
(3.5)

Depending on the application there are three different variants of the algorithm avail-
able:

∙ Binomial Naive Bayes Classifier – This variant of the classifier assumes a binomial
distribution over the data-set. It is mostly used in a context where it is necessary
to classify between two classes, which is most often used for spam detection.

∙ Multinomial Naive Bayes Classifier – This variant of the classifier assumes
a multinomial distribution over the data-set. It is used when there are multiple classes
for classification. The inputs are feature vectors, where the probabilities for each
of the classes are increased with each observation.
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∙ Gaussian Naive Bayes Classifier – The Gaussian Naive Bayes classifier assumes
a Gaussian distribution over the data-set. This version is used mostly when continuous
values are distributed according to the normal distribution.

The training phase consists of deriving the conditional probabilities from the data-set.
This proves to be a big advantage compared to other methods, since it is not necessary
to add any other parameters during the training phase. However, this type of classifier
is sensitive to imbalanced data-sets, so it is necessary to provide an appropriate data-set
to achieve best possible results [25].

3.4 Term Frequency and Inverse Document Frequency
Term frequency and inverse document frequency (shortly tf-idf) is a statistical method de-
signed to evaluate the relevance of a term in a document, or multiple documents. This method
is most commonly used in text mining, text similarity and clustering.

The weights of terms for a document are determined by the number of occurrences
of the given term in a document, and is considered to be a quantitative representation
of a document [26]. From this point of view, a document is called a bag of words model, since
the order of the terms does not play a role in the model. Therefore, the semantic difference
between the sentences The fox has eaten the rabbit and The rabbit has eaten the fox are lost
and the model for these two sentences is identical. However, this shortcoming of the method
plays a role in this thesis, as the order of the features influences their semantic meaning.

There is a low chance that the source and destination IP address might be the same when
aggregating flows from a certain time window, however, their semantic meaning is different.
This phenomenon might be caused by a simultaneous DHCP lease termination by two net-
work devices, and afterwards, their leased IP addresses are exchanged. If these two devices
communicate within the same time window as their IP addresses change, these values would
appear to have a similar weight, however, their semantic meaning is different. Therefore,
these two features are analyzed separately and appended at the end of the analysis phase
to the rest of the term frequency vector.

A major downfall of term frequency is that all of the terms are considered to be equally
important across all of the documents. Therefore, document frequency is introduced in or-
der to be able to discriminate between the relevance of two documents to a query. The docu-
ment frequency expresses the number of documents that contain a given term from the entire
set.

Lastly, the inverse document frequency (shortly idf) is introduced. This value expresses
how common or rare a term is in the document. The idf is a logarithmically scaled function
defined by the following Equation 3.6, where df represents the document frequency.

𝑖𝑑𝑓 = log
𝑁

𝑑𝑓
(3.6)

Lastly, the value tf-idf is calculated using the following Equation 3.7:

𝑡𝑓_𝑖𝑑𝑓 = 𝑡𝑓 * 𝑖𝑑𝑓 (3.7)
The values that are assigned to each of the terms can be summarized into the following

points [26]:

1. Highest values of tf_idf is assigned to the terms, when the given term has many
appearances in a short document
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2. Lower values of tf_idf are assigned to terms that are contained in many documents
or are rarer within one document

3. The lowest values are assigned to terms that appear often in a large majority of doc-
uments, therefore, do not have a high informational value

3.5 Outlier Detection
This section describes methods used to detect outliers. Outliers are data points that are
distant from the overall pattern of observations of one class. These data points are under
normal circumstances considered as values that negatively impact the accuracy of the cre-
ated model and skew the results towards incorrect predictions [42]. Therefore, in statistics
these data points are often removed from the data-set to increase the accuracy of the model.
However, in the case of this thesis, outlier detection can be used to detect previously un-
seen devices, since the calculated similarities, or distances, described in Section 3.2 will
be outside of the pattern of the rest of the data points. This section describes two methods
used for outlier detection used in this work. The first one is outlier detection using z-score
values described in Section 3.5.1 and the second is new device detection using the k-Nearest
Neighbors algorithm described in Section 3.5.2.

3.5.1 z-score Outlier Detection

The normal distribution or the Gaussian distribution, also known as the bell curve, is one
of the most important distributions that copies many natural phenomena. A graphical
representation of the normal curve can be seen in Figure 3.2. Parameters that are commonly
used to describe the normal distribution are the mean 𝜇 and standard deviation 𝜎 [42].
These values represent the center of the distribution and how much the data varies (eg.,
the spread of the distribution).

A common practice when comparing multiple different distributions is through stan-
dardization. A standardized variable has a mean 𝜇 = 0 and a standard deviation 𝜎 = 1.
To calculate the standardized normally distributed variable (e.g., the z-score), the follow-
ing Equation 3.8 is used. The z-score essentially represents how many standard deviations
the given point is from the mean 𝜇.

𝑧 =
𝑥− 𝜇

𝜎
(3.8)

From empirical observations when a distribution is roughly under the normal curve,
it is true that [42] (graphical representation can be seen in Figure 3.2):

∙ Approximately 68% of all observations of a variable lie within one standard deviation
(𝑧 = ±1) from the mean 𝜇

∙ Approximately 95% of all observations of a variable lie within two standard deviations
(𝑧 = ±2) from the mean 𝜇

∙ Approximately 99.7% of all observations of a variable lie within three standard devi-
ations (𝑧 = ±3) from the mean 𝜇

However, this empirical observation can also be used as a method to detect outliers.
Based on the aforementioned empirical rule, all of the data belonging to this distribution
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should be located within three standard deviations from the mean. The data points that
are further than 3 standard deviations from the mean 𝜇 (e.g., 𝑧 = ±3) are considered
to be outliers [39]. These data points, in the case of this thesis, do not skew the data
and introduce interference, however, they are considered to be a previously unseen device.
The details in how this fact is used are further discussed in Section 4.2.

μμ-σμ-2σμ-3σ μ+σ μ+2σ μ+3σ

68% of observations

95% of observations

99.7% of observations

Figure 3.2: Graphical representation of the empirical 68-95-99.7% rule. The depiction
of the empirical rule is inspired by the book [42].

3.5.2 Outlier Detection Using k-NN

The algorithm described in Section 3.2 can also be used for outlier detection, among other
use cases. This approach belongs into the family of supervised methods, which are good
at detecting data points that are located in regions with low density of data [47]. Figure 3.3
illustrates the case where data is clustered into one area and the rest of the data points
outside of this region are considered to be outliers.

The algorithm uses the Minkowski distance defined by Equation 3.2 by default, how-
ever, the distance metric can be changed. After the distances are calculated, the val-
ues are remapped to the range [0, 1]. Lastly, the algorithm introduces a constant called
contamination. This is the value which represents what proportion of data are outliers.

3.6 Model Validation
Over-fitting has many faces and is difficult to detect by simply evaluating the model’s
results. Therefore, there is a need for mechanisms that prevent over-fitting and create
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Figure 3.3: Illustration of data points of a phenomenon clustered in the circle in red. All
the rest of the data points outside the marked area are considered to be outliers.

a better basis for the model to perform well on data that is different from the training
data-set. This section introduces techniques used for model evaluation. The first part
describes re-sampling algorithms that are used in this thesis to break up and evaluate
the accuracy of the model on the data-set. Furthermore, this section describes methods
of training to prevent over-fitting or under-fitting the model to the training data [11, 7, 40].

Over-fitting refers to either capturing the noise of the data-set, or fitting the model
extremely well to the training data, and performing poorly on unseen data. Under-fitting
refers to the case when the model does not recognize patterns of the training on unseen
data and yields poor results.

k-Fold Cross-validation

Cross-validation is a procedure used to re-sample a data-set to yield more accurate results
on unseen data on a limited data sample. This approach in return reduces the impact
of over-fitting and under-fitting. k-Fold cross-validation is mostly used in a context where
a model predicts classes into which the data belongs.

The procedure starts with randomly shuffling the data. Afterwards, the data is sepa-
rated into k equally sized folds. Subsequently, the model is trained on k-1 folds of data.
The last fold is then used for evaluation of the accuracy of the used model. This process
is repeated until each of the folds has been used as a validation and training fold [40].
A graphical representation of this algorithm with k = 5 folds can be found in Figure 3.4.
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Figure 3.4: Graphical representation of the k-Fold cross-validation algorithm with k = 5.
In each of the iterations a part of the data-set is used for training, and a part is used
for validation to find the best model representing the data-set.

This method of verifying the model accuracy is used due to its simplicity, and results
in a less optimistic and/or less biased estimate of the model. Empirically it has been shown
that k = 5 or k = 10 yield the lowest test error estimates, suffering from neither excessively
high bias nor high variance [11].

Bootstrapping and Bagging

Bootstrapping is a method commonly used in statistics for re-sampling a data-set. This tech-
nique samples the data with replacement of the data points. It is also commonly used
in machine learning for evaluating the accuracy of a model on data that was not included
in the data set [8, 40].

Samples of the data-set are chosen one at a time and returned back to the overall set to be
chosen again. This allows a specific data point to appear multiple times within one data-
set. These training sets are also called bootstrap samples. Afterwards, models 𝑓𝑚(𝑥) using
methods mentioned in Section 3.3 are trained on the sampled data-set x and the process
is repeated M times. Lastly, after all the models of the same type have been created,
the average of these models is taken using the Equation 3.9. The averaging process is also
called bagging.

𝑓(𝑥) =
1

𝑀

𝑀∑︁
𝑚=1

𝑓𝑚(𝑥) (3.9)
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Chapter 4

Proposed Algorithmic Solutions

This chapter describes two proposed approaches to network device identification that use
a combination of machine learning algorithms and concepts used in networking. The al-
gorithms proposed in this thesis are designed to overcome the limitations of fingerprinting
methods, and provide a robust model for each of the devices using statistical methods and
machine learning algorithms. The usage of these methods is essential since the data-sets do
not always contain all of the features, therefore, the methods need to be able to overcome
the lack of their availability. The initial Section 4.1 contains the the first algorithm that
is inspired by text similarity methods and plagiarism detection. However, this algorithm
has multiple downfalls that are described in the section. The following Section 4.2 contains
a modified version of the aforementioned algorithm that overcomes the predecessor’s limi-
tations. The algorithm uses a sliding window to update the device profiles and is capable
of detecting previously unseen devices appearing for the first time after the training phase.
This method is the final and best performing algorithm to identify and track network de-
vices based on their behaviour, and does not require to be retrained after a device is added
to the network. It allows network administrators to reliably track the devices without
the necessity of knowing any of the unique identifiers, such as the MAC address.

4.1 Nearest Neighbor Combined Model
Since the data-set contains tens of millions of flows, it becomes computationally difficult
to classify each flow by itself. Therefore, it is necessary to aggregate the flows into a profile
that will be stored and later compared to the current device behavior. As it is necessary
to aggregate multiple flows into one profile, the nature of the data-set (and aggregated
profiles) resembles written text.

One of the most common methods used to analyze text and compare similarity of texts
is using frequency analysis in combination with a similarity measure, such as Jaccart or co-
sine similarity. Due to the resemblance of the aggregated flows to text, it is possible to create
profiles using frequency analysis for these devices. Therefore, the exported data in the ini-
tial learning phase (the first hour) is aggregated into one large profile based on their MAC
addresses and usernames. Afterwards, the profiles are aggregated in 5-minute time-windows
based on the combination of the source IP address and username, since the goal of this the-
sis is to design an algorithm capable of identifying devices based on their behaviour, and
MAC addresses are rarely available in a production environment. They are, however, used
as labels for the purposes of this thesis. This combination of features (source IP address
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and username) to create device profiles has been chosen, since it provides a very simple
and effective way to distinguish devices in a given time-window. However, this combina-
tion of features is not sufficient to identify a specific device, since a user can own multiple
devices and the source IP address of a given device may change over time. An illustration
of flow aggregation and frequency analysis on the data can be seen in Tables 4.1 and 4.2.
The shorter time-window during the classification phase has been chosen due to the fact
that networks that contain a large array of devices with a lot of movement of users, such as
school networks, have a shorter DHCP lease, usually 5 minutes [18]. Therefore, the shorter
time-window lowers the probability that the source IP address is shared with a different de-
vice, which could happen in a longer time-window and aggregate multiple devices into one
profile for classification, which would result in an incorrect classification. An illustration
of the method of how profiles are segmented can be seen in Figure 4.1.

Time [h]

10 2

P S S S S S S S S S S S S S S S S S S S S

Figure 4.1: Illustration of timeline segmentation. P represents the initial profile that is cre-
ated during the training phase. S represents profiles that are scored during the classification
phase.

Flow 1 Flow 2 Flow 3 Flow 4
User 1 User 1 User 1 User 1

src IP A src IP A src IP A src IP A
dst IP B dst IP B dst IP C dst IP D
port 1 port 1 port 1 port 2

google.com google.com - facebook.com
TLS 1 TLS 1 TLS 2 -

- HTTP f 1 - -

Table 4.1: Example of a 5-minute aggregated profile for a device based on its source IP
address and username.

After the initial training phase is completed, the classification phase follows. Classifi-
cation is performed by finding the closest neighbor to the previously created large device
profile using cosine similarity. When a device is classified as one of the devices, the data from
the aggregated 5 minute time window is added to the large profile to extend the features
and increase the prediction accuracy in the future.

However, the approach described in the previous paragraphs does not take into the ac-
count new, previously unseen devices. Therefore, a method such as z-score outlier detec-
tion is necessary to detect a newly connected device, however, it is not explored due to
the algorithms deficiencies described in Section 6.3. Another disadvantage of this approach
is the size of the profiles. With every classification the size of the large profiles increases
and over time the device profiles will not be able to be stored in the ram, mainly in large
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Term Frequency
src IP A 4
dst IP B 2
dst IP C 1
dst IP D 1
port 1 3
port 2 1

google.com 2
facebook.com 1

TLS 1 2
TLS 2 1

HTTP f 1 1
- 5

Table 4.2: Example of frequency analysis including only the features used in classification.
The column frequency represents the vector used in similarity comparison.

corporate networks, which might contain over 10,000 devices. Therefore, the following
Section 4.2 contains a description that is designed to overcome these challenges.

4.2 k-NN with Segmented Profiles Model
Similarly to the proposed algorithm in the previous section, the method described in the fol-
lowing paragraphs uses flow aggregation to create device profiles. However, this approach
unifies the length of the time-windows and improves memory efficiency along with accuracy
over a longer time period.

The algorithm proposed in this section segments the timeline into n-minute time win-
dows called device profiles. Since these time-windows are shorter (less than 10 minutes),
it enables the algorithm to aggregate flows in multiple approaches, based on the combina-
tion of the source IP address and username, or MAC address and username, even during
the training phase, due to the fact that the probability of aggregating multiple devices
into one profile due to the DHCP lease termination is lowered significantly. An illustration
of the timeline segmentation can be seen in the Figure 4.2. The length of the n-minute
time-window is evaluated in the Section 6.4 along with experiments with the rest of the pa-
rameters introduced in the algorithm described in this section.

10 2
Time [h]

P P P P P P P P P P P P S S S S S S S S S S SS S S S S S S S S S

Figure 4.2: Illustration of how the timeline is segmented. P represents the initial pro-
files that are stored from the training phase. S represents profiles that are scored during
the classification phase.
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After the flow aggregation in a given n-minute time-window is completed, frequency
analysis is performed using the same methodology as described in the previous Section 4.1,
with an example in Tables 4.1 and 4.2.

Since it is necessary to be able to efficiently search for the usernames and their cor-
responding devices and their profiles, cascading hash tables have been chosen to improve
searching efficiency. The following Figure 4.3 describes the system how device profiles are
stored.

User 1
Device 1

[Profile 1, Profile 2, ...]
Device 2

[Profile 1, Profile 2]
User 2

Device 1
[Profile 1, ...]

...

Figure 4.3: Hierarchy describing the structure of profiles stored in memory.

Some of the features in specific cases might contain duplicates of the same value but
in a different context (such as source and destination IP addresses). This unlikely event
in the case of a short time-window might occur when two devices that communicate among
each other during the training phase terminate the DHCP lease in the same time window.
Afterwards, they might be reassigned their IP addresses in reverse, which would cause
the loss in directionality of the communication, which would not be detected by a traditional
frequency analysis method. Therefore, the features source IP address and destination IP
address are analyzed separately, and then appended to the vector containing frequencies
of all of the features (an example of flow aggregation based on source IP address of a
device can be seen Table 4.1 and Table 4.2). This approach enables the creation of user
profiles that are memory efficient and accurate for the given n-minute window. Afterwards,
it is possible to compare the similarity of these vectors in any of the following time-frames.

However, the behaviour of users on their devices might change over time in the cases
such as administrative jobs with a wide array of responsibilities. Therefore, the proposed
algorithm needs to take into the account these changes over time. A solution to this problem
is a method called sliding window, where m device profiles are stored in the memory and
the oldest profile is replaced by a newer one obtained when a device is classified as said
device. In the case that there are fewer than m profiles stored in the memory the newest
device profile is added to the array.

Classification and device tracking is performed using the k-NN algorithm with cosine
similarity as the distance metric, which proved to be an efficient method of tracking devices
for the algorithm described in the previous Section 4.1. Currently classified user profiles
are evaluated only with the ones that correspond to the given username based on which
the profile is aggregated to reduce the time of classification.

Lastly, the proposed method needs to be capable of identifying new, previously unseen
devices in the data-set, create profiles for them and introduce the device profiles into a state
where they could be identified by the k-NN algorithm. Therefore, the z-score and k-NN
outlier detection algorithms are introduced. These algorithms enable the proposed method
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to identify previously unseen devices, however, this approach creates only one device profile
for the new device which is not sufficient for the minimal 𝑘 = 3 in k-NN to identify a device
as said device. To overcome this limitation, similarity values have been analyzed and
a threshold has been determined, that is considered to be a high enough similarity to
classify the current profile as the device with the highest similarity. Therefore, devices with
exactly one similarity obtained from the k-NN algorithm above said threshold are classified
as said device. In cases where all of the similarity values are below the threshold, the outlier
detection algorithms are applied. In all other cases the traditional k-NN algorithm is used
for the classification. After the introduction of this last improvement, even devices with only
one profile created for them can be re-identified and tracked using the method described
in this section.

Experimental evaluation with differing values of parameters of the algorithm are dis-
cussed in the Section 6.4. The values of the parameters with the best results are summarized
in the Appendix B.
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Chapter 5

Implementation and Design
of the Tool

This chapter contains a detailed description of the tool containing two existing machine
learning algorithms (descriptions in Sections 3.1 and 3.3) and two newly proposed network
device identification methods described in Sections 4.1 and 4.2. This tool was created
to encapsulate all of the tested methods throughout this thesis and provide an easy method
to create experiments. The knowledge gained from the experiments using this tool can be
transferred into a real life application, such as network device tracking at a university or
a company. Each of the following sections describes a part of the design and explains its
functionality.

Since the data-sets contain a vast amount of information, it is necessary to gain insight
into the data. Therefore, the first part of this tool contains a statistical module that
analyzes the behaviour of the devices and the variability of the fields. A detailed description
of this module can be found in Section 5.1. Afterwards, it is necessary to remove any
outliers - such as devices that change their source IP address over 490,000 times over
an eight hour period. Methods used for filtering the data are explained in Section 5.2.

This thesis introduces multiple types of network device identification methods. They
can be separated into two categories. The first one are methods that are trained beforehand
and are used to identify devices that have already appeared in the training data-set. How-
ever in return, these methods classify new devices as one of the devices that has already
appeared in the data-set beforehand. Therefore, this thesis proposes multiple methods
that overcome this problem and do not need to be retrained when a new device is added
to the network. However, these methods compare the similarity of behaviour of the cur-
rently classified device to previously created user profiles. Both of these types of methods
are marked into which category they belong in Section 5.3. Their technical details are
described in Chapter 4, and Chapter 6 contains their performance and tested settings.

Users have their own habits of visiting certain websites or using specific services dur-
ing the day. Since these habits have a tendency to be repetitive in an office environment,
it is possible to notice patterns in user behaviour as can be seen in Figure 5.1 [20]. Fur-
thermore, these patterns can be tracked for each device using identifiers introduced in Sec-
tion 2.1.
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Figure 5.1: Scatter plot representing the source IP address on the X-axis and destination
IP address on the Y-axis. The points show whether communication between two given
IP addresses has taken place. Multiple dots located in one row indicate that there is a service
running on the given destination IP address which can be seen in the case of destination
IP address 4 (marked green).
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5.1 Statistical Module
Statistics1 is a very powerful tool in gaining knowledge about large data-sets, for example,
the frequencies of changes, but also for detecting data points that are outliers and only
introduce noise into the data-set. Since the data-set provided by Cisco Systems contains
a large array of data it is necessary to analyze the provided data, separate the data into data-
sets of manageable size, and remove any outliers within the data-set based on the statistical
knowledge provided by this module.

Some of the attributes within the data-set can have a unique value in each instance,
however, others should have a low variability or remain constant. Therefore, multiple
statistical indicators are printed during the analytical phase such as the count, average,
median, standard deviation, and the five-number summary [42]. The Table 5.1 summarizes
the statistical data provided by the tool. Lastly, this tool creates a histogram of ports used
by the devices within the data-set.

Column Name Statistical Information [Units]
Average changes per device [Count]

Maximum changes of a device [Count]
Minimum changes of a device [Count]

Median changes per device [Count]
Source IP address 25𝑡ℎ percentile changes [Count]

75𝑡ℎ percentile changes [Count]
Average time between changes of a device [s]
Median time between changes of a device [s]

Maximum time between changes of a device [s]
Destination IP address Unique destination visited by devices [Count]

MAC address Unique devices [Count]
URL Availability [%]
Port Histogram [Count]

TLS Fingerprint Availability [%]
HTTP Fingerprint Availability [%]

Table 5.1: Statistical information given by the proposed tool about the columns in their
respective units.

Based on the aforementioned information, it is possible to infer what values do the data
points acquire and create a picture about the behaviour of devices within the data-set.
Afterwards, it is possible to identify what devices in the data-sets are outliers from the ex-
pected behaviour and filter them out to reduce the noise contained within the data. Tech-
niques that are used in this thesis for filtering the data and further transformations are
introduced in Section 5.2. The data-set descriptions that are used in this thesis to evaluate
the proposed methods are available in Appendix A.

5.2 Input Pre-processing
Large data-sets that have different origins have a higher risk of containing missing fields,
inconsistencies or interference. This type of data, however, leads to a lower quality model

1https://www.britannica.com/science/statistics
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and lower quality predictions. Therefore, it is important to ensure the data-set is of a high
quality before it is used for training, and later, evaluation of new data points.

Before any filtering takes place, it is necessary to gain insight into the data. Tech-
niques that are used to acquire the knowledge to prepare the data for the training phase
are described in Section 5.1. From this statistical knowledge it is possible to identify out-
liers. Devices that change their source IP address more than a couple of times a second
are considered outliers, since the expected time to change the source IP address should
be in the magnitude of minutes or hours. Fortunately, there are not many devices exhibit-
ing this type of behaviour, therefore, these devices are removed from the data-set. Another
example of a device that is removed from the data-set is a device that has very few flows
associated to it (less than 5), since too few flows are not sufficient to create a relevant device
profile.

The next modification that is done to the data-set is the extraction of domain names
from the URLs. This step is necessary, since the dimensionality of the URLs is very high
and essentially each URL is unique by itself due to its structure. The structure of the URL
can be seen in Figure 5.2. The URLs also often contain tokens that are only used for one
session, usually located in the query parameters, which would be different in the following
session even for the same activity on the given website. To reflect this fact, the domain
needs to be extracted, which extracts the informational value from the feature. Therefore,
the extracted value from the example in Figure 5.2 is domain-name.example-domain.com.
Some information contained within the URL, such as the port, is also an important feature,
however, the port number is represented as a separate column in the data-set, so it does
not need to be extracted, since it is redundant information.

Protocol

https://domain-name.example-domain.com:8080/path/index.html?search=abcd&condition=true

Subdomain Domain Top-level Domain

Port Path to file

Filename Query Parameters

Figure 5.2: Illustrative structure of a URL.

After the aforementioned steps are applied to the data, the data-set is separated into
multiple smaller sets with various compositions of available data fields, and sizes to evaluate
the accuracy of the proposed methods.

5.3 Application Design
This section contains a detailed description of the internal structure of the tool for iden-
tifying network devices based on their behaviour. The goal of this thesis is to explore
the efficiency of classification algorithms on a wide variety of data, since some of the fields
are not always available. Therefore, the application is designed as a tool that is highly
configurable and modular to facilitate any additions of methods in the future.

As mentioned before, the tool is highly modular and can be separated into three dis-
tinct parts. The first is the statistical module that provides insight into the data-set used
in the experiments. For further details regarding this module see Section 5.1. The second
part is the module encapsulating all of the proposed methods and their training functions,
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if the method requires it. Specifics regarding each of the proposed methods are discussed
in the Chapters 3 and 4. The final part is a module that provides validation functionality
to the tool and evaluates the accuracy of the Naive Bayes and Decision Tree classification
methods. The class diagram describing the internal structure of the tool can be found in
the Appendix D.

Since this tool is able to handle multiple device identification methods, it is necessary
to provide information to the tool regarding the configuration of the methods, and also
the meanings of the columns, since the data does not have a given structure and columns
might need to be added in the future. Lastly, the configuration file contains an array of ex-
periments that are going to be performed with different columns, since not all columns are
always available and might worsen the predicted results. YAML has been chosen as the file
format describing the parameters for the set of experiments due to legibility and the ease
of parsing. The configuration files that are used to test the proposed methods are available
on the attached DVD, the contents of which are described in Appendix E. An example
configuration file is in Figure 5.3. The following paragraphs contain specifics regarding
each of the proposed methods:

Naive Bayes Classifier – This classifier can be operated in only one mode, where it re-
identifies devices that have been seen during the training phase. However, the dis-
advantage is that devices that did not appear in the training data-set are classified
as one of the known devices, which is incorrect.

Decision Tree Classifier – The decision tree classifier requires the entire data-set to be
within the memory, thus the limit of the size of the training data-set needs to be set
according to the size of the installed RAM, the rest of the set will be ignored due
to spacial constraints. Configurable parameters are following: the criterion based
on which splits are measured and the maximum depth of the decision tree. This clas-
sifier identifies already seen devices, therefore, it is identifies new devices incorrectly.
A solution to this problem would be to retrain the classifier after a period of time has
passed. The length of the time-frame would be determined based on the frequency
at which new devices appear in the data-set.

k-Nearest Neighbors Classifier – This classifier is very simple, however, it has the same
limitations with memory size as the decision tree classifier. The only configurable
value for this classifier is the variable k and the distance metric as described in Sec-
tion 3.2. However, this method is very flexible in the way the data can be presented
to it. This thesis proposes multiple approaches to flow aggregation described in Sec-
tions 6.3 and 6.4.

5.4 Technical Implementation
This section describes the technical implementation and the libraries that are used to create
this tool. Furthermore, the benefits of the configurability of the tool are discussed within
this section.

Python 3.7 has been chosen as the programming language for the implementation
of this tool due to its simplicity and wide availability of machine learning libraries. It
is a dynamic interpreted language that provides automatic garbage collection. Another ad-
vantage of using this language is the cross-platform compatibility between Windows, Mac
OS and Linux.
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1 columns:

2 timestamp: 0

3 companyID: 1

4 MACaddress: 2

5 srcIP: 3

6 dstIP: 5

7 url: 4

8 port: 6

9 TLSfingerprint: 7

10 HTTPfingerprint: 8

11 delimiter: '\t'

12 createStats: true

13 classify: true

14 classificationMethod: NaiveBayes

15 classifierConfig: empty

16 label: MACaddress

17 experiments: [[companyID, srcIP, dstIP, port, url]]

1

Figure 5.3: Example of a configuration file for the Naive Bayes Classifier.

The proposed tool is using multiple libraries that provide a wide range of functionality
such as machine learning classifiers or functions to create plots. The following libraries are
going to be used in the implementation:

NumPy – NumPy is a community project that is specifically designed for scientific com-
puting, that is nowadays essential in the field of machine learning [41]. It is used
as an efficient high dimensional container for vectors of various types throughout
this work.

Scikit Learn – This module is an open source project that provides a variety of supervised
and unsupervised machine learning algorithms. It provides a standardized API which
is easy to use and takes into account that data-sets can be larger than the installed
memory in the computer. The library is built on top scipy and numpy [9].

PyOD – PyOD is a recognized toolkit in the machine learning community designed for
outlier detection. This library contains a large variety of anomaly detection meth-
ods such as outlier detection using Neural Networks, Principal Component Analy-
sis (shortly PCA), Isolation Forests and many others [47]. This work uses the k-NN
outlier detection algorithm from this library described in Section 3.5.2.

Pandas – Pandas is also an open source project that aims to aid in data analysis and
modeling. It specializes in data structures and operations for manipulating data
tables [29].

Matplotlib – Matplotlib is a plotting library that provides the ability to create his-
tograms, scatter plots and bar charts. This library is going to be used throughout
the statistical and for creation of all of the graphs within this thesis.
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Chapter 6

Experimental Results

This chapter contains a detailed description of the experiments performed, their settings and
achieved results. The goal of this chapter is to find the optimal settings of the device iden-
tification methods and evaluate their overall accuracy on the tested data-sets. A detailed
description of the data-sets used in the experiments is located in Appendix A. Experiments
are focused on accuracy and not on speed, since there is a lot of overhead introduced into
the tool, that in return enables easy creation of experiments, setting different parameters,
and creation of statistics, while hindering the classification speeds of the algorithms.

This chapter of the thesis can be separated into two parts. The first part contains
the evaluation of algorithms in Sections 6.1 and 6.2 that would need to be retrained
with any addition of new devices. The second part evaluates two new approaches in Sec-
tions 6.3 and 6.4 to methods that are able to continuously update and track network de-
vices. From the aforementioned algorithms, the latter method is the most successful from all
of the tested methods. Therefore, this method is compared in Section 6.5 with the already
existing tracking algorithms and analyzed in regard of accuracy and their limitations.

The initial step in each of the classification methods is to evaluate their accuracy with
a varying number of available data fields (features). This step is necessary to rule out
features that reduce the accuracy of the model. Since these experiments are going to be
the same for all of the proposed methods, a standardized approach towards testing can be
taken. Therefore, Table 6.1 provides details about the initial experiments, and the names
for the experiments are used in all of the following sections. The rest of the experiments are
varying parameters that are specific to the classifier, therefore, are evaluated individually
with each of the device identification methods.

Experiment Name Features Used
feature_exp1 srcIP, dstIP, port, TLSfingerprint, HTTPfingerprint, domain
feature_exp2 srcIP, dstIP, port, TLSfingerprint, HTTPfingerprint
feature_exp3 srcIP, dstIP, port, HTTPfingerprint, domain
feature_exp4 srcIP, dstIP, port, TLSfingerprint
feature_exp5 srcIP, dstIP, port, domain

Table 6.1: Table containing the naming scheme for the initial experiments varying the used
features for the classifier that is identical for all of the methods in this thesis.
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6.1 Naive Bayes Classifier
The Naive Bayes Classifier (see description in Section 3.3) is a very simplistic classification
method that does not have many options in fine tuning the parameters of the model.
The only parameters that can be varied are the features that are used in the classification
and the distribution. Since there are multiple devices in the data-set, only the multinomial
and Gaussian distributions can be used. Tables 6.2 and 6.3 describe the achieved results
of the Multinomial Naive Bayes Classifier and the Gaussian Naive Bayes Classifier with
varying features respectively. These methods are tested using Data-set 1 and validated
using k-Fold cross-validation algorithm with k=5.

Experiment Accuracy Precision Recall F1
feature_exp1 0.05215 0.13331 0.08349 0.09426
feature_exp2 0.05184 0.13308 0.08406 0.09430
feature_exp3 0.05477 0.13091 0.08325 0.09331
feature_exp4 0.05192 0.13345 0.08341 0.09425

Table 6.2: Experimental results with varying features (description in Table 6.1) using
the Naive Bayes Classifier using the multinomial distribution. Best result is marked in green.

The best accuracy achieved in this set of experiments with the multinomial distribution
is 5.477% in the experiment feature_exp3. This is due to the fact that the classifier does
not take any of the features into consideration, and merely categorizes the device based
on the distribution of data within the training data-set [43]. Thus, this type of classifier
is not efficient enough to be considered as a solution, but merely as the simplest model
baseline.

Experiment Accuracy Precision Recall F1
feature_exp1 0.55300 0.65513 0.68471 0.60043
feature_exp2 0.55954 0.65631 0.68785 0.60395
feature_exp3 0.65855 0.73311 0.83833 0.74111
feature_exp4 0.55998 0.65917 0.69457 0.60737

Table 6.3: Experimental results with varying features (see Table 6.1) using the Naive Bayes
Classifier using the Gaussian distribution. Best result is marked green.

In the second set of experiments, similarly to the first set, the best accuracy of 65.855%
is achieved in the experiment feature_exp3. The improvement in accuracy is attributed
to the fact, that the model employs the Gaussian distribution. This draws the speculation,
that the data has a distribution that is close to the normal curve, since this model achieves
better results than the aforementioned multinomial distribution. However, the achieved
accuracy is not satisfactory for the production environment, and further methods need
to be explored.

To summarize, neither of the Naive Bayes classifiers perform to a degree that would
be considered a successful method for network device identification. Thus, other device
identification methods are explored in the following sections.
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6.2 Decision Tree Classifier
Decision Trees provide a simple and efficient representation for classification. Similarly
as the Naive Bayes Classifier, it does not have many parameters to vary in order to find
the model with the best performance. Parameters that can be varied include the metrics
based on which splits are made and the depth of the tree. This section describes all
of the experiments performed using the Decision Tree Classifier. Depths of the trees are
not tested, since these are dependent on the data-sets and the number of devices within
them. Therefore, only the split metrics are tested. The tested metrics include the Gini
impurity and entropy, and their performance is located in Tables 6.4 and 6.5 respectively.
All of the tests using this classifier are performed on the Data-set 1. The results are
cross-validated with 𝑘 = 5, and the results in the tables contain the mean values from all
of the iterations.

Accuracy Precision Recall F1
0.96963 0.93392 0.93454 0.93261

Table 6.4: Experimental results using the Descision Tree Classifier with the Gini impurity
quality of the split measure.

Accuracy Precision Recall F1
0.96964 0.93400 0.93439 0.93252

Table 6.5: Experimental results using the Decision Tree Classifier with the Entropy quality
of the split measure.

Based on the results (see Tables 6.4 and 6.5), the decision tree classifier achieves a high
prediction accuracy using both metrics. The difference in accuracy between the two metrics
is statistically insignificant (only 0.001%), therefore, both metrics are considered to provide
accurate models for the tested data-set.

On the other hand, this classifier, similarly as the Naive Bayes Classifier, would need
to be retrained with any newly appearing devices. Another disadvantage of this classifier
is that the splits are made based on the feature that provides the best accuracy, and those
features, such as the source IP address, might change over time, which will yield a lower
prediction accuracy in the future. A solution to this challenge would be to retrain the model
after a certain period of time, which requires time and memory resources. The time between
retraining the model might also vary based on the variations in user behaviour, and in cases
of an unexpected problem within a company, where users search for solutions, the model
would need to be retrained more often than the scheduled re-training time.

Based on the aforementioned disadvantages, this model could only be used in a scenario
where the devices have statically assigned IP addresses and their user behaviours do not
vary much over time, which is true in a factory context. On the other hand, in cases
where IP address are assigned statically, they also serve as a unique identifier of a device,
therefore, device tracking algorithms are not necessary. However, the goal of this thesis is
to find a universal algorithm that would be able to track devices in any type of network
varying from a private network, up to a large university or corporate network. Therefore,
other methods for device identification need to be evaluated, which could be used without
any limitations to the network architecture.
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6.3 Nearest Neighbor Combined Model
The Nearest Neighbor Combined Model, described in the Section 4.1, is model inspired by
text similarity methods. It features a simple approach to identifying devices by searching
for the closest neighbor to the currently classified device profile. As with the previous
approaches to network tracking, the first step during the evaluation phase is the process
to determine features that achieve the highest accuracy on the tested Data-set 2 (see
description in Appendix A). The first hour of the exported data is used to create the initial
profiles for the devices. Profiles are aggregated based on the combination of the MAC
address and username. Classification is performed on the following hour, where the timeline
is segmented into 5-minute time windows, with the classification profiles being aggregated
based on the source IP address and username. The Table 6.6 summarizes the achieved
accuracy with varying feature sets. Based on the results from the table it has been concluded
that all of the features are necessary to achieve the best results even in the cases where
the value of the feature is sparsely available.

Experiment Accuracy
feature_exp1 0.94580
feature_exp2 0.87164
feature_exp3 0.83752
feature_exp4 0.08327
feature_exp5 0.00001

Table 6.6: Experimental results with varying features (description in Table 6.1) using
the Nearest Neighbor Combined Model. The best performing combination of features is
highlighted green.

After the combination of features for best performance is found, it is necessary to eval-
uate the behaviour of profiles in a high dimensional space. Therefore, the t-SNE algorithm
to reduce dimensionality is used to visualize the profiles created during the training phase.
Visual output from the dimensionality reduction algorithm can be seen in the Figure 6.1.
The graph shows that most of the device profiles do not create clusters and have a distinct
space between one another. Since the profiles are separated, the devices that are being
classified will have a lower probability of being mistaken for another device, which in return
yields a higher accuracy.

One of the major challenges when analyzing vectors with high dimensionality is choos-
ing the correct distance metric. Among the most commonly used similarity metrics in text
similarity analysis is the cosine similarity. When performing similarity measures between
profiles, it is expected that devices with the same and different MAC addresses are repre-
sented by two roughly disjoint normal distributions. The following Figure 6.2 represents
the distributions of similarities between profiles. The mean and standard deviations for
the same MAC addresses have the values of 𝜇 = 0.8901 and 𝜎 = 0.0363 respectively.
The similarity values for profiles with different MAC addresses follow the normal distri-
bution as well, with the mean 𝜇 = 0.7243 and standard deviation 𝜎 = 0.0497. These
distributions are not disjoint, however, achieve a high performance in distinguishing and
identifying network devices.

The last experiment performed using this algorithm is the analysis of its performance
over a longer time period. As in the previous experiment, the first hour of the exported data
is used to create the initial profiles and the following 8 hours are used for the evaluation
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Figure 6.1: Graphical output obtained using the t-SNE algorithm to reduce dimensionality.
Each one of the data points represents one of the profiles that are used in the Nearest
Neighbor Combined Model.
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Figure 6.2: Histogram illustrating the distribution of similarity values (cosine similarity)
for devices with the same MAC addresses (in blue) and different MAC addresses (in red)
in the Nearest Neighbor Combined Model. This graph shows that the distribution of simi-
larities for the devices with the same and different MAC addresses roughly follow the normal
distribution.
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of the performance of the algorithm. The Table 6.7 contains the achieved results during
the tested time-period. The algorithm achieves an average tracking accuracy of 82.652%
over the tested time-period. However, the precision, recall and F1 score have a low value,
which indicates that the algorithm classifies many devices as false positives or false neg-
atives. Low values of these scores and accompanying incorrect classifications make these
models for devices unsuitable for a production environment. Therefore, a modification
to this approach has been proposed in the Section 4.2, and subsequently tested. The per-
formance of the modified algorithm is described in the Section 6.4.

Hour Accuracy Precision Recall F1
2 0.94580 0.42925 0.43485 0.43208
3 0.90306 0.29024 0.29417 0.29131
4 0.87882 0.24661 0.25009 0.25002
5 0.84952 0.24536 0.24917 0.24949
6 0.80218 0.24717 0.25088 0.25053
7 0.76183 0.21728 0.23205 0.22611
8 0.74765 0.20992 0.21289 0.21135
9 0.72384 0.19367 0.19614 0.19483

Table 6.7: Experimental results for the algorithm over time using the Nearest Neighbor
Combined Model.

6.4 k-NN with Segmented Profiles Model
In the initial stages during the design of this algorithm it is necessary to evaluate the be-
haviour of profiles in a high dimensional space in order to find methods that efficiently
identify devices. Therefore, similarly as in the previous section, the t-SNE algorithm to re-
duce dimensionality is applied to the profiles. Profiles are created by aggregating flows
in a 5-minute time-window based on their source IP address and username. The visual
output of the algorithm is located in the Figure 6.3. This graph illustrates that almost all
of the device profiles have a tendency to create clusters that are disjoint. The fact that
the device profiles have a tendency to create clusters is a beneficial property as k-NN tends
to perform better under these conditions [28].

The performance of k-NN in regard to time complexity is high 𝒪(𝑛2), therefore, classi-
fying network devices assigned to only one username is a beneficial reduction time instead
of testing all of the device profiles stored in the memory [10]. This reduction in time is
significant since the maximum of profile vectors assigned to a username is 51 in the tested
data-sets. Furthermore, this form of clustering can be used for outlier detection.

Since device profiles create clusters that are disjoint, new devices will have a tendency
to lie elsewhere in the high dimensional space. Therefore, methods for outlier detection
that are introduced in Sections 3.5.1 and 3.5.2 are used for new device detection. The effect
on accuracy of these methods is explored further in this section.
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Figure 6.3: Graphical output obtained using the t-SNE algorithm to reduce dimensionality.
The numbered labels and colors represent devices and data points represent device profiles.
This graph illustrates how almost all of the device profiles create disjoint clusters.

The following step after the analysis of the device profile behavior is to determine
an appropriate distance metric for the k-NN algorithm. In order for the metric to achieve
the desired result, it is necessary for the similarities of device profiles with the same and
different MAC addresses to follow two separate, ideally disjoint, distributions. The following
Figure 6.4 describes the distribution of values between the same and different devices.
The device pairs that are used for the comparison of similarity have been chosen at random
to get the best representation of the distribution. The histogram draws the conclusion
that the distribution of similarities for devices with the same MAC address follows roughly
the normal distribution with the mean 𝜇 = 0.978 and standard deviation of 𝜎 = 0.0199.
Since the similarity values follow the normal distribution it is possible to use the z-score
outlier detection described in Section 3.5.1 to detect new devices in the data-set. Therefore,
devices that have all of the similarity scores of the closest neighbors further than three
standard deviations from the mean 𝜇 = 0.978 of the same device similarity, are considered
new previously unseen devices.
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Figure 6.4: Histogram illustrating the distribution of similarity values for devices with
the same MAC addresses (in blue) and different MAC addresses (in red). This graph shows
that the distribution of similarities for the devices with the same MAC address roughly
follows the normal distribution.

All of the experiments that are described in this section are performed on Data-set 2.
Due to the nature of the tested Data-set 2 with many missing values, it is first necessary
to determine how do the available or unavailable features influence the accuracy of the pro-
posed algorithm. Therefore, the first experiment evaluates the accuracy of the algorithm
where the first hour is used for profile creation based on the MAC address and username in
5-minute time-windows. The second hour is used for scoring the accuracy without the de-
tection of new devices or profile updates, where k-NN is used with k equal to 3. Similarly
to the training phase, a 5-minute time-window is used and the profiles are aggregated
based on their source IP address and username. Subsequently, the MAC addresses are used
as the labels to evaluate the accuracy of the prediction. The following Table 6.8 describes
the accuracy of the algorithm. The experiment with the features feature_exp1 achieves
the highest accuracy and it is concluded that even features that are often not available,
such as TLS or HTTP fingerprints, improve the accuracy of the proposed method. There-
fore, from this point on-wards in this section the most successful combination of features
feature_exp1 is used in all of the experiments.
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Experiment Accuracy Precision Recall F1
feature_exp1 0.93562 0.89324 0.93020 0.89503
feature_exp2 0.93610 0.87732 0.91992 0.89811
feature_exp3 0.92905 0.86941 0.89356 0.88132
feature_exp4 0.13229 0.10482 0.08649 0.09473
feature_exp5 0.00001 0.00001 0.00001 0.00001

Table 6.8: Experimental results with varying features (description in Table 6.1) using the k-
NN algorithm with segmented profiles.

6.4.1 Evaluation of the Impact of k Using the k-NN Algorithm

After the evaluation of accuracy using various combination of features, it is necessary to de-
termine the optimal value for k for the k-NN algorithm. Therefore, the following experiment
is performed, where the first hour is used for training the model and the following hour
is used for accuracy evaluation. Profiles are aggregated using the same strategy as in the pre-
vious experiment based on the username and MAC address during the training phase, and
username and source IP address during the classification phase. In this experiment the
sliding window or the outlier detection are not used. The Table 6.9 contains the achieved
results.

The achieved results signify that the value 𝑘 = 3 achieves the highest accuracy. This is
true due to the fact that the lower value of 𝑘 enables the classifier to identify devices
that have not communicated often during the training phase. Since the low 𝑘 achieves
the best results, this enables the algorithm to classify new devices correctly earlier than
the higher values of 𝑘, due to the fact that a lower 𝑘 requires fewer created profiles to
classify the current profile as said device. This fact is then further exploited in the section
describing new device detection.

k Accuracy Precision Recall F1
3 0.93562 0.89324 0.93020 0.89503
5 0.92588 0.87880 0.91502 0.87991
7 0.92131 0.87709 0.90421 0.87772
9 0.89471 0.83954 0.87209 0.83830
11 0.85238 0.79540 0.82673 0.79345

Table 6.9: Experimental results for various values for k in the k-NN algorithm. The exper-
iment that has achieved the best results is highlighted green.

6.4.2 Evaluation of the Impact of the Time-Window Size

With the optimal 𝑘 along with the set of features decided, it is necessary to find the best
performing size of the time-window used for segmentation. The window needs to be short
enough to minimize the probability of aggregating multiple devices into one profile, however,
the length also needs to be as long as possible to minimize the number of classifications
within one hour. In order to determine the optimal length in seconds, multiple experiments
are performed evaluating the accuracy of the proposed algorithm. The following Table 6.10
summarizes the results of the experiments varying the size of the time-window. The profiles
have been aggregated using the same method as described in the previous experiments based
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on the username and source IP address, with 𝑘 = 3 without the use of the sliding window
to update profiles nor algorithms for new device detection. Based on the experimental
results, it has been concluded that the best performing time-window length of segmentation
is equal to 5 minutes (e.g., 300 seconds). This time-window is also short enough to reflect
short DHCP leases that are used in networks with a lot of movement of users.

Window Length [s] Accuracy Precision Recall F1
180 0.90179 0.85646 0.88769 0.85768
300 0.93733 0.89287 0.92646 0.89529
480 0.93562 0.89324 0.93020 0.89503
600 0.93279 0.88289 0.92130 0.88614

Table 6.10: Experimental results for various lengths of the time window using the k-NN
algorithm. The experiment that has achieved the best results is highlighted green.

6.4.3 Evaluation of the Impact of Stored Profiles

When the optimal value of 𝑘 and the length of the time-window have been determined, it is
required to find the optimal number of profiles stored in the memory. Since the number
of devices contained within a large corporate network can be pretty high (in excess of 10,000
devices), the algorithm requires the number of stored profiles to be as low as possible, since
memory is a limited resource. However, the trade-off for lower memory requirements also
hinders the accuracy of new device detection that is used further in this section. Therefore,
a compromise needs to be done between spatial complexity and the ability to detect new
devices, since algorithms such as k-NN perform better in circumstances where more data
points are available. The following Table 6.11 evaluates accuracy with varying number
of profiles stored in the memory. The methodology behind this experiment is the same
as in the previous experiments, the length of the time window is 5 minutes, and 𝑘 = 3
without profile updates. Neither of the algorithms for profile updates nor new device
detection are used.

Profiles Size [MB] Accuracy Precision Recall F1
6 1937 0.93544 0.89308 0.92999 0.89486
8 2357 0.93562 0.89319 0.93021 0.89499
10 2986 0.93562 0.89322 0.93022 0.89501
12 3242 0.93560 0.89321 0.93020 0.89503

Table 6.11: Experimental results with varying number of profiles per device stored
in the memory and their spatial complexity.

Based on the results from the Table 6.11, the number of stored profiles does not have
a significant influence on the accuracy of the proposed algorithm. From further exploration
of the results, this was caused by the higher similarities of the newer profiles (e.g., the last
2 or 3), and it does not seem to be important to store a higher number of profiles, however,
updating the profiles with newer ones during the classification phase will have a positive
impact on the accuracy of the algorithm over time. Even though the number of profiles
does not have a significant influence on the accuracy of the algorithm, outlier detection
will benefit from the availability of more profiles. Therefore, from this point on-wards
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the algorithm stores 12 profiles in the memory that are going to be available later in this
thesis and used for outlier detection. Another reason why more profiles in the memory
are not a big issue is that the increase in memory complexity is not linear as it might be
expected. This is caused by devices not communicating every 5-minute time window, which
results in less profiles created for said device compared to other devices that communicate
more often over time.

6.4.4 Evaluation of the Impact of the Sliding Window

As it has already been mentioned in the previous section, due to the higher similarities
in newer profiles of devices, the algorithm benefits from regular updates over time. This
is caused by the change of behaviour of users and devices over time, therefore, the previously
created profiles need to be updated and the older profiles need to be replaced by newer ones.

Device users tend to change the context of their work approximately every hour, there-
fore, the number of 5-minute profiles that are stored in the memory is limited to 12. If
there are 12 profiles, each time a device is classified as a specific device, the oldest pro-
file is deleted and the current one is added into the profile pool. In the case that there
are less than 12 profiles, the newest profile is directly added to the profile pool. The Ta-
ble 6.12 summarizes the achieved accuracy over time without the use of the sliding window
method. Afterwards, the following Table 6.13 contains the performance of the algorithm
using the sliding window for comparison. The Figure 6.5 compares the accuracy achieved
over the tested time period of 8 hours.

Hour Accuracy Precision Recall F1
2 0.91304 0.88956 0.92931 0.89126
3 0.87210 0.84849 0.90754 0.84961
4 0.85226 0.80795 0.88912 0.80919
5 0.84592 0.77872 0.87426 0.78037
6 0.82762 0.75254 0.86017 0.75481
7 0.80510 0.73703 0.85142 0.73946
8 0.78574 0.72752 0.84426 0.72963
9 0.75068 0.72366 0.84124 0.72577

Table 6.12: Experimental results representing the accuracy over time of the base algorithm
without the sliding window.

Based on the aforementioned Tables 6.12 and 6.13, a conclusion is drawn that the sliding
window improves the accuracy significantly over time. This improvement is mainly seen
in the last hour (hour 9) of the classification, where the extended algorithm represents
an improvement of over 8% in accuracy compared to the base algorithm without the use
of the sliding window. Therefore, in conclusion, the sliding window improves the overall
accuracy of the proposed algorithm in the worst case scenario, where no labels are present
in the classification phase.

6.4.5 New Device Detection

Previous experiments do not identify newly appearing devices and are only capable of re-
identifying devices learned during the training phase. Therefore, algorithms such as z-score
outlier detection and k-NN outlier detection are introduced to counteract this challenge,
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Hour Accuracy Precision Recall F1
2 0.92855 0.89815 0.93714 0.90031
3 0.90696 0.86116 0.91963 0.86295
4 0.88689 0.81799 0.89923 0.82030
5 0.87956 0.79107 0.88519 0.79327
6 0.86123 0.76723 0.87079 0.76893
7 0.84820 0.75270 0.86247 0.75451
8 0.83831 0.74328 0.85536 0.74492
9 0.83319 0.74001 0.85298 0.74167

Table 6.13: Experimental results representing the accuracy over time of the base algorithm
with the sliding window.

since devices have a tendency to appear and disappear due to movement of users, irregularly
scheduled meetings, lectures, etc.

The first tested outlier detection algorithm is the z-score outlier detection due to its
simplicity and ease of implementation. Since the distribution of profile similarities for
the same MAC addresses roughly follows the normal distribution, as it is seen in Figure 6.4,
it is possible to apply the empirical 68-95-99.7% rule as described in Section 3.5.1 to detect
new devices. The distribution for the similarities of devices with the same MAC addresses
has the mean 𝜇 = 0.978 and standard deviation of 𝜎 = 0.0199. Based on these values any
device whose similarities are below the threshold 0.9183 should be considered outliers or
in the case of this thesis new devices. The following Table 6.14 contains the experimental
results for the threshold 0.9183. Devices which have all similarities obtained from the k-NN
algorithm below this threshold are considered new, previously unseen devices. Devices that
have exactly one similarity above this threshold are classified as said device. With multiple
device similarities above this threshold the k-NN algorithm is applied.

In this experiment, the algorithm is trained on the first hour of the exported data, and
is run on the following 8 hours of the data-set. The algorithm is using the sliding window
to update the device profiles. The summary of the settings of this experiment can be seen
in the Appendix B.

Hour Accuracy Precision Recall F1
2 0.93363 0.88963 0.92914 0.89127
3 0.91280 0.84907 0.90806 0.85019
4 0.89284 0.80849 0.88994 0.80995
5 0.87682 0.77940 0.87509 0.78123
6 0.85854 0.75320 0.86085 0.75569
7 0.84619 0.73784 0.85210 0.74048
8 0.83695 0.72849 0.84509 0.73089
9 0.83199 0.72843 0.84221 0.72726

Table 6.14: Experimental results for the base algorithm using the sliding window and z-score
outlier detection over time.

The results in the Table 6.14 indicate that the accuracy is improved in the initial hours
of the classification (hour 2 through 4) compared to the base algorithm with the sliding
window (see Table 6.13) by approximately 2%, however, in the later hours of the export,
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Figure 6.5: Comparison of the accuracy over time of the base algorithm vs. the modification
with the sliding window to update device profiles.

the accuracy slightly deteriorates by about 0.2%. This decrease is insignificant and will
not play a role in a real world application of this algorithm since it represents a worst case
scenario, where none of the labels are available after the training phase. The effect will
be mitigated by the occasional availability of labels, which would cause a correct update
of device profiles, therefore, achieving results that are in the neighborhood of the results
achieved in hour 2 or 3.

Lastly, the k-NN outlier detection algorithm is tested using the library PyOD. Outlier
detection algorithms implemented in this library require the 𝑘 = 5 to achieve the best
results. Therefore, new device detection using this method is performed only on device
profiles assigned to a username that has at least 5 profiles overall, which can span across
multiple devices. However, this approach does not take into the account the devices that
have only one profile created for them after being classified as a new device. Therefore,
similarly to the previous outlier detection algorithm, devices whose exactly one distance
obtained from the k-NN algorithm is above the aforementioned threshold of 0.9183 are
classified as said device. In the rest of the cases the k-NN algorithm is used to decide
whether the device is new or not.

The first hour of the export is used for training, profiles are aggregated based on their
username and MAC address during the training phase, afterwards based on their source IP
address and username, with 5-minute time-windows, 𝑘 = 3, with the sliding window and
the following 8 hours are classified. Table 6.15 summarizes the achieved results in the last
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hour of the classification e.g., hour 9 with varying distance metrics to detect previously
unseen devices.

Distance Metric Accuracy Precision Recall F1
Minkowski distance 0.81945 0.71152 0.84222 0.72032

Dice coefficient 0.81979 0.71132 0.84173 0.72007
Cosine similarity 0.81911 0.72025 0.81036 0.71265

Table 6.15: Results of the experiment with varying distance metrics used for the k-NN out-
lier detection algorithm. Results in this table are cumulative for the last hour of the clas-
sified time period. The best performing metric for detecting outliers is highlighted green.

Experimental results from the Table 6.15 show that the distance metrics do not have
a significant impact on the accuracy of new device detection, however, the Dice similarity
coefficient achieves the best results by an insignificant margin. Furthermore, the achieved
accuracy is worse compared to either the base algorithm with the sliding window or the z-
score outlier detection with sliding window algorithms. The graph in Figure 6.6 summarizes
and compares the achieved results of the base algorithm with the sliding window, z-score
outlier detection with sliding window and k-NN outlier detection with profile updates al-
gorithms.
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Figure 6.6: Final comparison of the achieved accuracy with varying modification to the seg-
mented profiles using k-NN algorithm. This graph contains the initial version of the al-
gorithm with the sliding window, then the base algorithm with the sliding window with
z-score outlier detection, and finally, the k-NN outlier detection with Dice similarity coef-
ficient to detect outliers with updates to the profiles.
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To conclude, this section performed experiments varying the parameters of the algo-
rithm proposed in Section 4.2. The experiments are performed in the worst case possible,
where none of the labels are available during the classification phase, which rarely happens
in a production environment. The best performing variant of the algorithm is the variant
with the z-score outlier detection combined with the sliding window used to update device
profiles. A summary of the settings of the best performing proposed algorithm is in Ap-
pendix B. This algorithm achieves the average accuracy of 89% over the tested 8 period
and provides a reliable method of identifying and tracking devices without the knowledge
of unique identifiers such as the MAC address.

6.5 Comparison with Existing Methods
The last section of this chapter serves as a comparison of the achieved performance of the
proposed algorithm in Section 4.2 with already existing methods described in the Chapter 2.
The methods are compared in regards to their accuracy, speed, universality of use, and their
specific nuances compared to the proposed algorithms in this work.

The initial comparison is made with the clock-skew device identification method pro-
posed by Kohno et al. described in the Section 2.5. This method relies on the uniqueness
of the frequency of the crystal that is used to measure time in computers. Clock-skew pro-
vides a reliable method of identifying specific devices achieving the accuracy of 98% [45].
Therefore, this method could be used to identify the set of IPv6 addresses assigned to any
given device in future research. Even though the proposed algorithm achieves a lower accu-
racy of 89%, it provides a passive approach to identification, and does not require additional
data outside of the data generated by the users.

HTTP and TLS fingerprinting, similarly to the algorithms proposed in this work, rep-
resent passive device tracking techniques. However, the major disadvantage of the afore-
mentioned mechanisms is that they require a large database of fingerprints to be stored
for each device and website the devices visit [2]. Furthermore, it becomes a challenge
to search among this database for the correct fingerprints, which consumes a significant
amount of time. The last disadvantage of fingerprinting is the constant changes in these
identifiers, which are a challenge to keep up to date in the database [13]. On the other
hand, the HTTP fingerprinting method deems to be accurate in contexts such as techni-
cally apt users who have specific add-ons and fonts installed on their browsers, achieving
the accuracy of 96.23% [27, 24]. However, in the context of general public users HTTP
fingerprinting achieves the accuracy of only 65% [13]. This discrepancy in results does not
provide a reliable method to identify network devices, however, very few devices share the
same fingerprint, which can be used to reduce the set of possible devices significantly [24].
Therefore, HTTP and TLS fingerprinting are used in this thesis as one of the features to
track devices based on their behaviour.

The last method compared to the algorithm designed in this thesis is proposed by
Kumpost [20], who reduces the dimensionality of the source IP address feature, and after-
wards uses cosine similarity to find the closest neighbor to the current vector. Kumpost’s
method achieves an accuracy of 78.3%, however, has high spatial and time demands over
large data-sets, which renders this method impractical in an environment with many net-
work devices. Another disadvantage of his approach is that the aforementioned method
has only been tested on SSH traffic where all of the features are always available, which is
rarely the case in a corporate environment with varying configurations of routers.
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To conclude this section, the proposed k-NN with Segmented Profiles Model provides
a universal and reliable technique to identify network devices by using a combination of the
previously discussed algorithms, such as HTTP and TLS fingerprinting, and removing their
disadvantages, such as their spatial complexity. It achieves an average accuracy of 89% over
the tested eight hour time-period. One of the major advantages compared to the previous
approaches is its universality and independence on a specific protocol. Furthermore, profile
representation is memory efficient compared to TLS and HTTP fingerprinting methods.
The proposed method of device identification is suitable for network administrators, who
need to track the devices on the network when unique identifiers such as the MAC address
are not available.
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Chapter 7

Conclusion

The goal of this thesis is to design methods of identifying network devices based on their
behaviour. Two traditional machine learning methods have been tested, and two algorithms
have been proposed to identify and track network devices without the necessity to retrain
them after each new device is added to the network.

This thesis can be divided into four parts. The first part in Chapter 2 is an introduction
to networking concepts used throughout this thesis. Methods, along with research and
their results that have been used in the past for device identification are described within
this chapter as well. The following Chapter 3 describes machine learning algorithms such
as the Naive Bayes Classifier, Decision Trees and methods used to measure similarity of text
in great detail. The following Chapter 4 contains the description of two newly proposed
algorithms for network device tracking and identification that do not require to be retrained
with the addition of any new devices. Chapter 5 elaborates on the design of the tool
for experimenting with device identification algorithms. Afterwards, these methods are
thoroughly tested and tuned for best performance in Chapter 6.

The analysis revealed the strengths and weaknesses of the tested algorithms. These
results have then been used to further improve the accuracy of the algorithms. Experiments
are listed in the order in which they have been performed, to show how the algorithms
improved with each of the modifications.

All of the proposed algorithms are aggregated into a tool that enables easy experiment
creation and evaluation of accuracy and other metrics. The best performing algorithm for
network device detection is one of the newly proposed algorithms, the k-NN with Segmented
Profiles Model. This method achieves an overall average accuracy of 89% on the tested data-
set with over 10,000 devices. Therefore it is concluded, that this algorithm provides an ef-
ficient and reliable method of tracking, identifying, and detecting newly appearing devices
without the knowledge of unique identifiers such as the MAC address. Lastly, the k-NN
with Segmented Profiles Model is compared to already existing device identification meth-
ods in Section 6.5. The intended use of this algorithm is to provide network administrators
the ability to automatically identify devices based on their behaviour without the necessity
of features being always available.

Possible improvements to the proposed algorithms include parallelization, and better
forms of outlier (new device) detection. Parallelization is a necessary improvement in
the cases of large networks with a lot of movement of users to improve the performance
of the algorithm. More outlier detection algorithms also need to be tested, since the im-
provement compared to the technique without new device detection is only 2% and could
still be enhanced, due to the fact that most of the incorrect classifications are devices with
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no profiles created for them. Further research in this field could be performed by adding
methods such as clock-skew, which could be used to determine the set of IPv6 addresses
assigned to a given device, therefore, eliminating multiple profiles created for one device,
since profiles are aggregated based on their source IP address and username [34].

An article about the proposed algorithm has been published as a part of the Excel@FIT
2020 conference. The poster in the Appendix C has been used to present the paper during
the participant exhibition of their work.
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Appendix A

Data-set Description

This chapter contains a detailed description of the data-sets used in this thesis. The data
used throughout this thesis is provided by Cisco Systems and is collected using NetFlow
(described in Section 2.2), DNS queries (described in Section 2.3), and lastly, HTTP and
TLS fingerprinting methods (described in Sections 2.3 and 2.4 respectively).

The data-set contains real life data, therefore, the data itself cannot be published.
The data-set is stored in a tab separated format (shortly .tsv), where columns are separated
by the symbol “\t” and each new entry is on a new line. This format has been chosen over
the comma separated value (shortly .csv) format, since the HTTP fingerprint can contain
the character “,”, which would create additional columns and break the pattern of the data
in which the features are saved.

Since network administrators have different goals at what information they want to col-
lect about their devices and users, some of the information such as HTTP and TLS fin-
gerprints are not always available. Missing fingerprints and other features might also be
caused by the use of different protocols, such as TACACS+ or RADIUS, which do not
generate a HTTP fingerprint. Therefore, this thesis proposes a method that is robust and
is able to overcome the shortcoming of unavailable features. Information about how often
and what features are available in the data-sets are described in Sections A.1 and A.2.
Features, such as the TLS fingerprint, are represented by hashes of their real fingerprints
to reduce their size.

There are two data-sets used within this thesis, differing in the availability of one feature
and the length of the export. Another difference is the number of devices. The first, shorter,
data-set was used in the initial stages of the experiments to evaluate the feasibility of the
newly proposed method. Afterwards, when the proposed method seemed to yield useful
results, the larger and more comprehensive data-set was tested. A fictional example of the
data can be found on the attached DVD, whose contents are described in the Appendix E.

A.1 Data-set 1 Description
This section contains a description of the first data-set used in this thesis. The following
Tables A.1 and A.2 describe the general information and available features respectively
regarding Data-set 1. This data-set contains a wide variety of available data and provides
good starting point for network device identification methods.
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Total flows 4,828,868
Length of export [h] 8
Total devices 4,555
Availability of URL [%] 3.6
Availability of TLS fingerprint [%] 3.5
Availability of HTTP fingerprint [%] 0.3

Table A.1: Basic information regarding Data-set 1.

Feature Total unique values
Timestamp 28,800

MAC address 4,555
Source IP address 4,768

Destination IP address 26,459
Port 15,747
URL 23,691

TLS fingerprint 166,867
HTTP fingerprint 230

Table A.2: Basic information regarding features of Data-set 1.

A.2 Data-set 2 Description
This section contains a detailed description of Data-set 2. Unlike the first data-set,
this one contains a larger array of devices and an additional feature – username. This feature
has been added to emulate users owning multiple devices on the network, which correlates
to the real world application of the proposed algorithm. The following Tables A.3 and A.4
summarize the general information and available features respectively regarding Data-set
2. The use of the additional feature is described in Section 6.4.

Total flows 64,806,407
Length of export [h] 16
Total users 7,385
Total devices 10,737
Availability of URL [%] 0.159
Availability of TLS fingerprint [%] 0.170
Availability of HTTP fingerprint [%] 0.0

Table A.3: Basic information regarding data-set 2.
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Feature Total unique values
Timestamp 57,600
Username 7,385

MAC address 10,737
Source IP address 4,768

Destination IP address 26,459
Port 15,747
URL 23,691

TLS fingerprint 166,867
HTTP fingerprint 230

Table A.4: Basic information regarding features of Data-set 2.
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Appendix B

k-NN with Segmented Profiles
Model Summary

The following Table B.1 summarizes the settings of the best performing algorithm proposed
in this thesis.

Used Features feature_exp1
Distance Metric Cosine similarity

Time-window length [s] 300
Training time [s] 3600

Aggregation based on (training) MAC address, username
Aggregation based on (classification) Source IP address, username

k 3
Number of Stored Profiles 12

Sliding window Yes
Outlier Detection z-score outlier detection

New Device Threshold 0.9183

Table B.1: Summary of the settings of the best performing algorithm proposed in this
thesis.
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Appendix C

Excel@FIT Conference

An article about the proposed algorithm has been published as a part of the Excel@FIT
2020 conference. The following poster has been used to represent the paper during the
participant exhibition of their works.
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8. Behavior-Based Network Device Tracking
Michael Adam Polák

Faculty of Information Technology, Brno University of Technology, Czech republic
xpolak31@stud.fit.vutbr.cz

• Identification of network devices based on their behavior
• Tracking devices with sparse availability of features
• Passive approach with low time and spatial complexity
• High accuracy compared to currently used methods

What is it?

Is your device is anonymous?

• Profile distribution created with t-SNE, illustrating the
clustering of device profiles

Device Profile Distribution

• Similarity scores of devices with the same MAC ad-
dresses in blue and different MAC addresses in red

• Distinct separation of similarities between devices

Device Profile Similarity

Achieved Accuracy over Time

• Better Outlier Detection
• Parallelization

Further Improvements

Author: SIMON PRADES



Appendix D

Application Design Diagram

The following Figure D.1 contains the class diagram describing the internal structure of the
tool containing the network identification algorithms.
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Figure D.1: Class diagram describing the internal structure of the tool.
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Appendix E

Contents of the Attached DVD

The following directory tree describes the hierarchy and the contents of the attached DVD
to this thesis.

/ ...................................................... Root directory of the DVD
source .................................... Source code of the implemented tool

install.sh ....................................Installs all necessary libraries
text .........................................Text and source code of the thesis

thesis.pdf ................................................Text of the work
latex .............................Source code of this thesis written in LATEX

config_examples ............Configuration file examples for each of the methods
dataset_example ..........Fictional data-set representing the format of the data
experiments ......YAML files and anonymized confusion matrices of experiments
excel .........................Materials submitted to the Excel@FIT conference
README.txt .................... Description of the contents of the attached DVD
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