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ABSTRACT
Blind deconvolution has spread around multiple technical fields in recent years. Prob-
lems with computational demands are no more its limitations. Blind deconvolution
signal processing techniques are promising solution for enhancement of electron micro-
scope performance. The aim of this work is the problem formulation and proposition
of appropriate solution for blind deconvolution of electron microscope images. The final
goal is to develop Matlab algorithm correcting aberrations arising from imperfections
of image formation and its comparison with built-in Matlab approach implemented in
Image Processing Toolbox. Proposed approach is given by regularization techniques of
blind deconvolution.

KEYWORDS
Blind deconvolution, image restoration, degradation process, blur, electron microscopy,
Bayesian framework, regularization,deconvblind

ABSTRAKT
V posledních letech se metody slepé dekonvoluce rozšířily do celé řady technických a věd-
ních oborů zejména, když nejsou již limitovány výpočetně. Techniky zpracování signálu
založené na slepé dekonvoluci slibují možnosti zlepšení kvality výsledků dosažených zo-
brazením pomocí elektronového mikroskopu. Hlavním úkolem této práce je formulování
problému slepé dekonvoluce obrazů z elektronového mikroskopu a hledání vhodného
řešení s jeho následnou implementací a porovnáním s dostupnou funkcí Matlab Image
Processing Toolboxu. Úplným cílem je tedy vytvoření algoritmu korigujícícho vady vzniklé
v procesu zobrazení v programovém prostředí Matlabu. Navržený přístup je založen na
regularizačních technikách slepé dekonvoluce.
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INTRODUCTION
Digitized images are essential in science and for everyday life. No matter the field,
there is always the true scene we want to observe with its ideal representation by
original (true) image. Since the observation process of true image is never perfect,
output digitized image is degraded by blur and noise. Image restoration techniques
provide approximation of original non-degraded image. Particular approach is cho-
sen with respect to a priori known information. In case of known blur and noise
properties, the classical restoration techniques are used. While the properties of
degradation are not known properly, techniques of blind deconvolution can solve
the problem better.

Theoretically, the better observation procedure would increase the quality of re-
ceived image. But there is always some physical limit or suboptional conditions
that determines quality of obtained images. Moreover, high quality optics and sens-
ing equipment are expensive, therefore software solution becomes valuable tool for
image improvement. Extensive processing power and trend of complex “one but-
ton” solution without complicated calibrations also represents the reason of blind
deconvolution popularity nowadays.

Blind deconvolution methods are commonly used in various technical areas such
as astronomical imaging ([24],[51]), remote sensing [3], microscopy [16], medical
imaging [29], optics ([44],[36]), photography ([55],[65]), super resolution applications
[52] and motion tracking applications [11], among others . The earliest algorithms
identifying known patterns in blur occur in mid-1970s ([6], [54]) with its renaissance
in 1990s (reviews [25],[26]) . Prior image characterization by natural image charac-
teristics (such as gradient) is the key idea of new algorithms converging to a correct
solution in less time.

Purpose of this thesis is to study the ability of blind deconvolution methods
to restore degraded image from electron microscope, chose and implement proposed
technique and to study its advantages and disadvantages in comparison with Matlab
built-in implemented method. Application on real data taken upon commonly used
conditions should reveal the benefits for use in practice.
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1 THEORY OF TRANSMISSION ELECTRON
MICROSCOPY

1.1 General construction of TEM microscope
Common transmission electron microscope system consists of illumination part, part
focusing rays and magnifying observable image of sample placed in a microscope
vacuum chamber and imaging system representing the phosphor screen observed by
camera or camera sensor with solid-state scintillator included.

Fig. 1.1: General construction of TEM microscope [13]

Illumination part represented by gun and condenser electromagnetic lenses
is responsible for beam formation, coherence and beam size and intensity on il-
luminated area of observed sample. Quality of electron gun sources working upon
thermionic or field emission principal determines the achievable resolution by energy
spread of cathode emission.

Primary role of strong objective electromagnetic lens with sample in between
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its upper and lower part is to focus beam onto specimen, form the images and
diffraction patterns that are magnified by other lenses.

Projection system consisting of lenses magnifying and transmitting image or
diffraction to the fluorescent screen or directly to camera sensor. Final magnification
is given by strong projection lens forming the observable image.

Except main lenses, beam is formed and tilted by multiple deflectors and stig-
mators coils. Role of perpendicularly to the beam positioned deflectors according
to its excitation is shifting and tilting the beam to appropriate position. Position
of beam is controlled by gun, beam or image deflectors in the microscope column.
Despite effort to form the ideal shape of the beam, lenses imperfections destroy the
shape therefore it must be corrected several times. Correction factors, stigmators,
are position next to the main lenses compensating astigmatic shape of the beam.

Optimization of electron beam properties is given by fixed or variable circular
shape apertures. They are located along the optical axis of microscope changing
the beam diameter. In special cases, additional image contrast is determined by
aperture position in focal plane.

Contrast of output image created by interactions along the microscope column
is stored in the energy and phase of interacting electrons. To be shown on the
display electrons must be transformed into visible light (by fluorescent screen or
integrated solid-state scintillator next to the camera chip) and detected by photon-
sensitive sensor. Charge coupled device (CCD) and complementary metal oxide
semiconductor (CMOS) image sensors are two different technologies for capturing
images digitally.

Brief introduction of TEM construction is based on study of [23].

1.2 Aberrations of TEM
In general, there is nothing like a perfectly corrected microscope. The more compli-
cated systems with better performance you have, the more can go wrong. Coherency
of electron beam, electron lenses imperfections and axial dependency of ray position
together with used magnification determine the real observable image (the expression
observable will be used for a formed image with full information about amplitude
and phase before entering the camera). The image is consequently transformed by
camera into a digitalized output image with incorporated blur given by this process.

The dependency of parasitic aberrations of the physical nature on magnification
can be illustrated in the following way (Fig. 1.2):

The simplified graph illustrates the general dependency of the aberration mag-
nitude on distance from optical axis (commonly known as off-axis aberrations) and
on the convergence angle of rays entering the aperture of lens (on-axis aberrations).

14



Fig. 1.2: Dependency of parasitic aberrations on magnifications

With respect to the used magnification it is possible to neglect the contribution of
insignificant errors caused by parasitic aberrations with small influence.

In case of small magnifications (approximately up to 30kx) the observable image
is made largely by non-paraxial (further from optical axis) rays. The main contri-
bution to each point element aberration is dependent on distance from the axis and
the convergence angle is usually very low. The influence of axial aberrations can
therefore be neglected. On the other side, working in high magnification (typically
more than 300kx) means the observed area becomes smaller and the convergence
angle increases. This means the observable image will be constructed mostly from
paraxial rays and the error source comes mainly from the convergence angle of the
lens. In this case, off-axis aberrations can be neglected when compared to axial
ones.

Obviously, there is an interval of magnifications where both contributions have
to be taken in an account. Therefore, a formal general expansion of wave aberrations
during imaging is presented. Using Krivanek’s notation [37], the difference between
an ideal and aberrated phase of the wave 𝜒 can be expressed by complex general
formula :

𝜒(𝜃, 𝜑, 𝑟) =
∑︁

𝑝

∑︁
𝑞

∑︁
𝑛

∑︁
𝑚

𝑟𝑝𝜃(𝑛+1)

𝑛 + 1
{︁
𝐶𝑝,𝑞,𝑎

𝑛,𝑚,𝑎 cos (𝑞𝜔) cos (𝑚𝜑)+

+𝐶𝑝,𝑞,𝑏
𝑛,𝑚,𝑎 sin (𝑞𝜔) cos (𝑚𝜑) + 𝐶𝑝,𝑞,𝑎

𝑛,𝑚,𝑏 cos (𝑞𝜔) sin (𝑚𝜑) + 𝐶𝑝,𝑞,𝑏
𝑛,𝑚,𝑏 sin (𝑞𝜔) sin (𝑚𝜑)

}︁
.

(1.1)
where 𝑟 = |𝑤| is a distance from optical axis, 𝜑 complex slope coordinate, 𝐶𝑝,𝑞,𝑎

𝑛,𝑚,𝑏
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Fig. 1.3: Graphical illustration of eq. 1.1 [53]

represents an aberration coefficient of order 𝑛 + 𝑝 and multiplicity 𝑚 defining the
number of maximums of distorted wave with range of 𝜑 in 0 − 2𝜋. 𝑞stands for
field multiplicity index in range of values from 0 to 𝑝, 𝑎, 𝑏 separates orthogonal
contributions to the aberrations. Overall theory above the equation exceeds the
scope of the thesis. Graphical illustration is given by Fig. 1.3 or more to be studied
in [37].

The axial aberrations (dependency on convergence angle) are associated with
magnetic field intrinsic properties (e.g. spherical aberration), mechanical imperfec-
tions of the lens construction (causing asymmetrical parasitic field contributions –
e.g. astigmatism) and also tilt if the beam entering the lens (e.g. coma). The
off-axis aberrations are associated mainly with magnetic field decrease far from the
axis and the lens geometry (e.g. distortion).

∑︁
𝑙,𝑘

𝐶 𝑙,𝑘.𝑟𝑙.𝑟−𝑘
∑︁
𝑛,𝑚

𝐶𝑛,𝑚.𝜙𝑛 =
∑︁

𝑙,𝑘,𝑛,𝑚

𝐶 𝑙,𝑘
𝑛,𝑚.𝑟𝑙.𝑟−𝑘.𝜙

𝑛 (1.2)

In the used notation 𝐶𝑛,𝑚 is an axial aberration coefficient (generally a complex
number), where 𝑛 is the aberration order (dependency on convergence angle 𝜙𝑛 )
and 𝑚 is the aberration symmetry. This number represents the number of axes
which the aberrated shape can be folded on itself, provided the input shape was a
circular beam. Zero means full symmetry with infinite number of axes. An example
of 𝑚 = 0 is the spherical aberration (𝐶3, 0 ) and defocus (𝐶1, 0 ). One axis symmetry
shape is created by coma, two by 2-fold astigmatism and three 3-fold astigmatism.
Explanation illustrated by images (1.5, 1.6, 1.7, 1.8). Aberrations of higher orders
are neglected due to their small influence when compared to lower-order aberrations.
Also in used notation, 𝐶 𝑙,𝑘 is an off-axis aberration coefficient where (𝑙 + 𝑘) is the
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order of aberration and the individual indices 𝑙, 𝑘 do not have a simple interpretation
like the axial ones do. These are the main contributions in non-paraxial (low magni-
fication) imaging. Shift , rotation, linear distortion (1.10) and barrel and pincushion
distortion (1.9) and more have the nature of such geometrical errors, shifting the
projective point from its ideal position by vector 𝑟. In this mathematical description,
even magnification itself (both isotropic and anisotropic due to the field imperfec-
tions) is regarded as “aberration” as it is also a form of geometrical transformation
of image. Even though for our purposes, this is a desired transformation. Another
type of aberration is the one associated with energy dependency of the lens focusing
power. Lower energy electrons with lower velocity will be affected by the magnetic
field in a different way – they will be bent more by the field. Therefore the lens’ focal
length for such electrons will be shorter. Cumulative imaging of more rays created
by different energy electrons will cause the output blur in the image plane. In an
ideal system, the beam extracted from the cathode is monochromatic (i.e. has zero
energy spread), the stability of high tension is infinite and the excitation current of
lenses does not fluctuate. This is not true in a real system. The contributions from
these areas in a real system can be approximated by the following equation:

Δ𝐻 =

⎯⎸⎸⎷(︃Δ𝑈

𝑈

)︃2

+
(︃

Δ𝐸

𝑈

)︃2

+
(︃

Δ𝐼

𝐼

)︃2

(1.3)

This causes a point blur dependent on Δ𝐻 and the convergence angle. Its
characteristic magnitude can be expressed as 𝐶𝑐.𝐻.𝜙, where 𝐶𝑐 is the chromatic
aberration coefficient.

Diffraction, Chromatic aberration
Diffraction error occurs due to the wave nature of electrons and the aperture size of
the final lens.

Fig. 1.4: Comparison of nature of parasitic aberrations
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Astigmatism 𝐶1,2,𝐶2,3,𝐶3,4 ,𝐶4,5, 𝐶5,6

Astigmatism occurs when electrons sense a non-uniform magnetic field and starts
to twist around the optic axis, the effect arises according to the imperfections of
symmetricity of polepieces or of the microstructural inhomogeneity which causes
local variation in magnetic field strength. Even without mechanical imperfections
the problem arises also with introduction of apertures, that may not be perfectly
circular. Astigmatism can be corrected by stigmators (small octupoles lenses) that
compensate the inhomogeneities.

Defocus 𝐶1,2

Optically defocus refers to the distance (Δ𝑧) away from the plane or surface with
best sharpness and contrast (in focus).

Coma 𝐶2,1,𝐶4,1

Coma is caused by a cone of rays passing through the specimen at an angle. There-
fore the centre of imaged circles is shifted up to the angle of illumination.

Spherical aberration 𝐶3,0

Occurring when the rays are bent more strongly away from the axis with respect to
ones closer to the axis. It can be corrected by set of multipole and cylindrical lenses
which introduce a well-defined asymmetry to the beam, spread it, rotate and then
reconverge, so that it compensates the spherical aberration.

Magnification and rotation 𝐶1,0

In the specification given by position from optical axis upon the used magnification
initial point to be imaged is shifted away from optical axis with given enlargemen-
t/reduction of image size. Together with magnification the rotation of optical system
is defined therefore rotation free system does not change the direction of the coor-
dinates with respect to the initial plane. Practically with rotation of pi radians the
element on the left from axis will be transferred into point in the image on the right
while the rotation-n free system preserves rotation.

Linear distortion 𝐶0,1

Linear distortion means the image preserves parallelism but not the proportional
distances in perpendicular directions.

Pincushion and barrel distortion 𝐶2,1

The easiest explanation of the effect of geometrical barrel and pincushion distortion
with its graphical representation.
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For individual aberration effects, the graphical illustration is given below. In-
stead of one point, the input object represents a set of five concentric circles and the
aberrations deform their shape. The simulation have been done by Mgr. Jan Jíša
(System Engineer in FEI company responsible for optics system properties) in the
Excel environment.

Fig. 1.5: Graphical illustration of aberration (2-fold ast.,3-fold. ast.,4-fold
ast.,blue) influence on ideal circular beam (green)

Fig. 1.6: Graphical illustration of aberration (defocus;blue) influence on ideal
circular beam (green)

Fig. 1.7: Graphical illustration of aberration (coma;blue) influence on ideal
circular beam (green)
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Fig. 1.8: Graphical illustration of aberration influence (spherical aberration; blue)
influence on ideal circular beam (green)

Fig. 1.9: Graphical illustration of barrel and pincushion distortion

Fig. 1.10: Graphical illustration of linear distortion

1.3 Theoretical possibility of correction of
aberrations by Blind Deconvolution

It is known that the process of electron imaging using electromagnetic lenses is
not ideal, but multiple alignment techniques can suppress its influence into final
image. The aim of this work is to reconstruct images taken by differently aligned
system, therefore it should be mentioned how strong image degradation caused by
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aberrations in the final digitized image.
Concerning about image processing part of system according to the ability of

blind deconvolution techniques to correct microscope aberrations we would have to
look for specifications that gives information about detectors and cameras perfor-
mance. The most important technical specifications that should be taken in an
account are pixel size, effective pixel size, full well capacity, antiblooming
ability of camera, its binning and exposure time. Some of will be considered as
acquisition parameters for image to be reconstructed.

The pixel is the smallest element in a visual display and behaves as a bucket
(well) collecting electrons to convert them into photons and electrical signal after-
wards. Each CCD or active pixel sensor CMOS has a vertical and horizontal array
of pixels that determines the overall resolution achievable [38]. Pixel size value
and effective pixel size tells us an information about sampling of detector area.
For given size of chip, how big will be single one area associated for signal collection
[38]. Size of pixel element also determines how can be our points of interest spatially
close to each other to be recognised as two elements (point resolution). While the
overall influence of aberrations is smaller in diameter than the camera pixel size
(magnification must be included in the assumption), the blur given by this process
would not affect the output image, Output response of Dirack distribution would
be theoretically just one integrated pixel-value in digital image, assuming the blur
would be given just by lenses aberrations in real but it is not fully true.

Specific values of pixel size by various distributors of TEM camera imaging sys-
tems are in range of 6 – 14 𝜇m (Emsis [20], Gatan [21],FEI [22], AMT [19]) and
evaluated diameter of spherical aberration for some of the microscopic would be in
order of tenth of nm . The meaning is that for given pixel size and evaluated aberra-
tions diameter together with best resolution available, considering approximately in
general orders of variables, our initial point in imaged scene would be blurred by the
process and despite that detected afterwards as one pixel value up to magnification
in range of 25 000-120 000. Information above this boundary will be collected from
more than one pixel element even that ideal image has just single value equivalent
to Dirack distribution).

Pixel binning used for an advantage of decreased acquisition time needed is
technique of reading pixel elements information not one-by-one (1x1 binning) but
in integrated groups of pixels, „super-pixels “ [38]. For example, 2x2 pixel binning
integrates 4 pixel elements to be treated as one to increase sensitivity and signal to
noise ratio (SNR), decrease the time for image acquisition, while resolution decreases
by factor 4 [38]. Using the same assumption as above binning increase by factor 4
also the magnification required to the aberration influence necessary to be taken
in an account. For pixel binning 2x2 is then the range 100k-480k, for binning 3x3

21



225k-1080k limit that would not be affected by point spread blur caused by lenses
aberrations.

Explanation of higher SNR illustrates the example of 4x4 binning („on-chip”
sum) in contrast with „off-chip“ summation as an cumulation technique approach
for increasing SNR. Summation could theoretically have been done digitally at the
camera output, the improvement of SNR is more dramatic if all operations are done
within the sensor itself. If a 4×4 neighbourhood of pixels were summed together off-
chip, the signal level would increase by 4×4=16, but the CCD’s inherent noise floor
would simultaneously go up by =4. Thus, the SNR increase obtained by off-chip
summation would be 16/4 = 4x increase. In contrast, if a 4×4 neighbourhood of
pixels is summed on-chip, the signal increases by 16x and the noise stays as it was,
resulting in an increased SNR of 16x. In case we think about the practical use of
blind deconvolution techniques, considering our approaches ideals with best results
available, we can think about practical side of the problem from different point
of view. As has been mentioned mechanical imperfections of round symmetry of
lenses apertures, homogeneity of material or inhomogeneity of emission together with
not perfectly aligned sequence of lenses are responsible for distortion. Parasitical
aberrations called in general. According to physical properties of process chromatic
and spherical aberration and diffraction incorporates other errors and everything
together makes observable blurry image.

The assumption of possible correction is based on the spatial in/dependency of
each aberration. Because the blind deconvolution techniques in general suppose the
PSF to be spatially invariant therefore it does not count with imperfections depend-
ing on the spatial coordinate and aberration with the spatial dependency can not
be suppressed by blind deconvolution unless the variant PSF algorithms are used .
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2 THEORY OF BLIND DECONVOLUTION

2.1 Problem formulation
General model for a linear space invariant degradation caused by blurring and ad-
ditive noise is given by linear degradation system ( LDS) as follows:

Fig. 2.1: General model of degradation

Where 𝑓(𝑥),𝑔(𝑥),ℎ(𝑥) and 𝑛(𝑥) denotes true image, output image, operator of
blur (PSF) and additive noise originated in image acquisition process. In equation
form

𝑓 * ℎ + 𝑛 = 𝑔 (2.1)

Purpose of image registration techniques is to reconstruct the original image
from 𝑔(𝑥) with no or some prior knowledge about 𝑓(𝑥),ℎ(𝑥)or 𝑛(𝑥) therefore to deal
with solving the inverse problem. Issue of inverse problem suffers from extreme
sensitivity of inputs, if one changes slightly, output can be completely different.

Blind deconvolution is considered to be an ill-posed problem, that means the
solution is not unique, is not continuously changing with inputs or may not exists.

2.2 Origin of blur
Blur originated in image formation process given by whole microscope system (from
signal emission to digitalization into image) ca be express by

ℎ = ℎ𝑠𝑦𝑠𝑡𝑒𝑚 * ℎ𝑠𝑐𝑖𝑛𝑡𝑖𝑙𝑙𝑎𝑡𝑜𝑟 * ℎ𝑐𝑎𝑚𝑒𝑟𝑎𝑙𝑒𝑛𝑠 * ℎ𝑠𝑒𝑛𝑠𝑜𝑟 (2.2)

Origin of blur can be divided into to separate sources, first covering entire process
after entering the sensor of camera (with appropriate light optics), and second caused
by the process of observable image formation. Parasitical aberrations resulting from
imperfections of system are discussed above (1.2) representing ℎ𝑠𝑦𝑠 in (2.2). Errors
occurring due to the nature of image formation process are described in section 1.3.

Camera ℎ𝑠𝑐𝑖𝑛𝑡𝑖𝑙𝑙𝑎𝑡𝑜𝑟 * ℎ𝑐𝑎𝑚𝑒𝑟𝑎𝑙𝑒𝑛𝑠 * ℎ𝑠𝑒𝑛𝑠𝑜𝑟 with sensor and light optics represent
the second group of blur origins. Specific parameter pixel well capacity says how
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many electrons can be accumulated in one pixel element, above this capacity the
excess electrons spill out into neighbouring pixels and cause blooming artefact [7].
Prevention of blooming artefact can be realised by additive electronics controlling
the spill. Additional components improve the image quality, otherwise the point in
initial scene can generate signal into multiple pixels, the blur.

2.2.1 Origin of noise degradation
Due to the nature of signal and image generation and in electron microscopy Poisson
noise or its approximation by the Gaussian distribution and Gaussian noise itself are
incorporated in the process of image formation. Theoretical occurrence of impulse
noise is also possible but thanks to the camera´s ability to detect error (dead) pixels
we do not have to concern about. Therefore the influence of impulse noise will not
be included in the general degradation model.

While we have the measurement based on the detection of photons we have to
deal with the uncertainty associated with quantized nature of light and independence
of photon detection, Photon noise, known as Poison, Shot or Schott noise [18].
Photon noise is not considered to be additive nor multiplicative, rather applied
on the input signal (image) depending on signal amplitude. Poison distribution
with given parameter 𝜆 assume that each pixel of an image is drawn from Poison
distribution with 𝜆 = 𝑓0(𝑥), where 𝑓0(𝑥) is the original noise-free image to undergo
reconstruction [12].

𝑃 (𝑓(𝑥)) = 𝜆𝑘𝑒−𝜆

𝑘! (2.3)

Process of image formation as electrons hitting the scintillator could be considered
as the Poison distribution of events too.

Generated photons in scintillator proportionally to amount of the electrons hit-
ting its edge are relatively to the position of the camera and detection process
directed by extra support or surface layer with low atomic number (smaller diffrac-
tion) or by fiberoptics to appropriate side of the scintillator for more accurate and
efficient detection. Low atomic number of layer is required for small ability of gener-
ation of redundant backscattered electrons. That decreases with increasing atomic
number as illustrated where 𝜂 means backscatter coefficient as a function of atomic
number (𝑍) given as ratio of generated backscattered electrons to overall beam elec-
trons incident, in general almost independent of beam energy. In case of camera
mounted below the column and detection based on the scintillator-next to-sensor
system is needed to deliver photons from the scintillator by fibre optics perpendic-
ular to the surface and aluminium layer covers the top of scintillator. The second
approach based on the reflection of photons by mirror onto sensor mounted on side,
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the closer to the edge photons detected the better and aluminium layer is then in
form of support under scintillator.

No matter chosen approach to electron inversion and directioning afterwards
both options handle the generated photons in same way. Photons directed onto chip
(CCD or CMOS) with optional micro lens technology for improvement of quantum
efficiency [38] hits the pixels, interacts and afterwards captured electrons in the
potential traps are assigned to be read. Proportional generation of electrons to
number of incident photons on pixel represents the useful signal for conversion,
related to previously mentioned, well capacity, pixel size and chip characteristics
determines the quality of output image.

In contrast with use of CMOS chip, working with CCD we have to deal with
the read noise that determines effective dynamic range of the useful signal given as
ratio of maximum well capacity to read noise of sensor (ex. 128:1 as signal: noise)
or by level of signal to noise ratio in dB (ex. 42 dB for 128:1 ratio) [38]. CMOS
camera has virtually zero level of read noise originated in the technology of charge
read without no shift and direct analogue to digital (AD) conversion.

In both cases of on-chip or off-chip digitization the very low voltages are treated,
consequently the amplification before entering analogue to digital converter (ADC)
is needed as another not noiseless process [?]. Output signal from AD converter is
determined prior to pre-set of linear working range of the converter, therefore even
the big input range of the signal, narrow linear range of the ADC determines the
output.

Moreover, dark noise is also taken in an account. Dark current measured as the
response for dark frame with no illumination and no signal expected corresponds to
thermal generated electrons of working sensor [7]. To decrease dark current, camera
sensors are cooled, robbing electrons of the thermal energy required to reach an
intermediate state [?].

Noise types mentioned above are responsible for degradation of an image as much
as the blur given by process of generation of image physically in the microscope
column. Processes of noise based on the fluctuation of events occurred (hitting the
pixel by photons) will be modelled by Poison noise applied to the initial image, other
types of noise follow the Gaussian distribution with given mean value and standard
deviation. With appropriate assumption (explanation, source) Poison distribution
can be expressed by Gaussian. Noise degradation in general can be modelled by
white Gaussian additive noise. Its influence on the ability of blind deconvolution
to reconstruct initial image despite noise degradation will be evaluated. Possible
practical assumptions from the results can be discussed as the required properties
of detection electronics for reliable results of the blind deconvolution.
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2.3 Methods of blind deconvolution
According to the broad scope of blind deconvolution techniques across all techni-
cal disciplines it is quite complicated to classify the methods. Several divisions
into groups can be made depending on application, noise statistics, blur kernel
parametrization or proposed estimation method [5].

There are two main approaches o blind deconvolution of images:

1. PSF is identified separately from true image and one of the known
classical images restoration methods is used.

2. PSF identification is done jointly with restoration with incorporated
prior knowledge about image into deconvolution process.

Considering the group of methods treating the blur estimation and the
image restoration independently, there are two approaches, experimental and
theoretical. Determination of PSF can be made directly from the image with known
scenes (stars supposed to be points in astronomy) or weaker prior knowledge of
contours of observed scene (x-ray imaging).

While the property of blur is known correctly (motion blur, out-of -focus lens)
methods expecting the zeros in spectrum corresponding to zeros of transfer function
can be used, therefore the problem is reduced on zeros estimation limited by noise
occurrence. Survey on parametric methods can be found in [5] . Real PSF differs
slightly from its parametric model therefore the finding the solution often fails. De-
spite the helpful concept, algorithms are highly sensitive to noise with computational
requirements.

When PSF identification is done jointly with restoration, because no prior
knowledge of PSF is available or theoretical form is changing while process, the
prior knowledge about image and blur is incorporated in the deconvolution model.
Commonly used models will be introduced. According to the amount of methods
, based on its potential to solve the problem of blind deconvolution of microscope
images, different complexity of description is given.

2.4 Zero sheet separation
Zero sheet explanation of deconvolution is based on the Z-transform, assuming no
additive noise in the process. Therefore the formulation of degradation is reformu-
lated

𝐺(𝑧1, 𝑧2) = 𝐻(𝑧1, 𝑧2)𝐹 (𝑧1, 𝑧2) (2.4)
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And the task is to find convolution factors of blurred image G. While the 𝐺(𝑧1, 𝑧2)
is polynomial in 𝑧1, 𝑧2 the aim is to identify the zeroes belonging to components 𝐻

an 𝐹 .
The method of zero sheet is more helpful in understanding the deconvolution

problem. According to the assumption of no additive noise present and high com-
putational demands, practical applicability is limited.

2.5 ARMA parameter estimation
ARMA parameter estimation is based on the modelling the output blurred image
as autoregressive moving average process (ARMA) while assuming the PSF to be
moving average (MA) process and true image autoregressive (AR).

Fig. 2.2: ARMA parameter estimation degradation model

Finding the solution is based on parameters estimation of degradation and im-
age representing filters. Estimation can be done in many ways by techniques of
second order statistics, such as maximum likelihood estimation [28], generalised
cross-validation (CGV) [42] or neural networks [10]. Concerning about non-Gaussian
models, the techniques of Higher-order spectra (HOS) [41] can be used. Maximum
likelihood and GCV methods are most successful for image processing [26].

2.6 Nonparametric Deterministic Constraints
methods

Class of the methods that do not explicitly represent the PSF and image by model is
represented by methods constraining the image and PSF by deterministic principles
[5]. Methods has limited scope of applications. Including Iterative Blind Deconvo-
lution (IBD) ([35] , [59]), simulated annealing algorithm (SAA) [31],Nonnegativity
And Support constraints with with recursive Image Filtering (NAS-RIF) as most
common among others.

NAS-RIF [27] method minimizing the cost function by updating the FIR restora-
tion filter that is convoled with degraded image, giving the estimation of true image
[5]. potential of methods is limited by need of finite support. Practically the uniform
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black background is needed therefore applications in medical imaging and astronomy
are possible.

IBD early proposed algorithm by Ayers and Dainty [1] is based on same principle.
With addition to nonnegativity and finite support it uses constraint to image and
blur in Fourier domain incorporated in each iteration of algorithm. The application
of method follows the NAS-RIF.

Nonparametric Algorithms based on Higher -order Statistics using non-linear
Gaussian representation are typically applied to images with „spike-like“ nature, for
example deblurring the images of star fields [5].

2.7 Bayesian framework
Standard formulation of image restoration problem can be express by stochastic
approach assuming that images are random vector fields with known prior prob-
ability distribution functions. Bayesian logic describes deconvolution problem as
probabilistic problem. It is a from of statistical analysis that quantifies input by
probability of its occurrence If there is no prior information available, each entry
has the same probability, because of equal possibility. In case of blind deconvolution,
observed image corresponds to the apriori information.

General Bayes formula is based on multiplication of rules for conditional and
unconditional probabilities of occurrence of phenomena A (hypothesis) and B (ex-
pected):

𝑝(𝐴|𝐵) = 𝑝(𝐵|𝐴)𝑝(𝐴)
𝑝(𝐵) (2.5)

where 𝑝(𝐴|𝐵)represents the conditional probability event 𝐴 occurs, assuming
occurrence of 𝐵. Conversely, 𝑝(𝐵|𝐴) represents the probability of event 𝐵 if the
phenomenon occurred 𝐴. 𝑝(𝐴) and 𝑃 (𝐵) are the unconditional probability of the
occurrence of event A and B. The probability hypotheses before performing random
experiment p (𝐵) is called a priori probability and the probability similarity hy-
potheses after the random experiment 𝑝(𝐵|𝐴) is termed the likelihood 𝐴 posteriori.

Based on this logic the problem of deconvolution can be described probabilisti-
cally. Substituting the observed image 𝑓(𝑚, 𝑛), and distorted and noisy an image
𝑔(𝑚, 𝑛) , solution is given in form

𝑝(𝑓 |𝑔) = 𝑝(𝑔|𝑓)𝑝(𝑓)
𝑝(𝑓) . (2.6)

The probability 𝑝(𝑓) is called the prior probability of hypothesis (true image
𝑓) and represents the probability of hypothesis before signal observation. If no
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information is available, each hypothesis is equally possible. Conditional probability
density 𝑝(𝑔|𝑓) represents the similarity measure of a test results on data 𝑔 assuming
hypothesis 𝑓 . 𝑝(𝑔) is considered as evidence (complete) probability because degraded
image is known and conditional probability density 𝑝(𝑓 |𝑔) is determined by degraded
image and apriori information. Formula (rov) indicates how probable is hypothesis
𝑓 (one of all theoretically possible) after observed image 𝑔. Blind deconvolution
with unknown PSF and true image requires modification of formula as follows

𝑝(𝑓, ℎ|𝑔) = 𝑝(𝑔|𝑓)𝑝(𝑓)𝑝(ℎ)
𝑝(𝑔) . (2.7)

Where 𝑝(ℎ) denotes apriori probability density of PSF hypothesis.

2.7.1 Maximum aposterior estimation (MAP)
MAP deconvolution method uses the Bayesian approach for solution of bind image
deconvolution maximizing the formula

𝑓𝑀𝐴𝑃 = 𝑎𝑟𝑔 {𝑚𝑎𝑥 𝑝(𝑓 |ℎ, 𝑔)} (2.8)
That maximizes posterior probability density with respect to unknown values of

𝑓 and ℎ. Many deconvolution methods can fit into this Bayesian formulation. The
main differences among these algorithms come from the form of the likelihood, the
particular choice of priors on the image, blur and the optimization methods used to
find the solutions [5].

2.7.2 Maximum likelihood estimation (MLE)
Method based on the statistical model of noise restores the image deciding which
of the hypothesis of image 𝑓 is the most likely according to known distribution of
observed image 𝑔. Like MAP method maximizes the probability

𝑓𝑀𝐴𝑃 = 𝑎𝑟𝑔 {𝑚𝑎𝑥 𝑝(𝑔|𝑓, ℎ)} (2.9)

The right side of formula (rov) 𝑝(𝑔|𝑓, ℎ) is distribution of 𝑔 for given 𝑓 and
𝑘. Assuming 𝑛 = 𝑔 − ℎ * 𝑓 , it is exactly the distribution of noise measurement,
while the noise follows zero-mean Gaussian distribution (2.10), probability density
function (PDF) can be rewritten

𝑝(𝑛) = 𝑝(𝑔|𝑓, ℎ) ∼ 𝑒
1

2𝜋

∑︀
𝑖
(𝑔𝑖−(ℎ*𝑓)𝑖)2

, (2.10)
Therefore the maximization problem becomes minimization as follows

𝑓𝑀𝐿 = 𝑎𝑟𝑔
{︁
𝑚𝑖𝑛 ‖𝑔 − 𝑓 * ℎ‖2

2

}︁
(2.11)
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The above maximization of the likelihood is typically seen as a non-Bayesian
method, although it is identical to the MAP solution with uninformative (flat) prior
distributions [5].

2.8 Regularization
The linear image restoration problem is recovering the original brightness distri-
bution from blurred and noisy observation. Typically ill-posed inverse problem.
Conventional method to stabilize the problem introduce the constraints (regular-
ization term) into designed cost function (E), the reconstruction is then the image
minimizing the cost (energy) function [14].

Solving the ill-posed problem by introduction additional information in the form
of extra constrains on image overcome the problem of sensitivity to noise degrada-
tion. Regularization terms also determine the preservation of image properties as
sharpness of edges [29].

Problem of deconvolution can be express by finding the minimization of energy
[2] representing the technique of data fitting with the form

𝐸(𝑓)) = ‖𝐻𝑓 − 𝑔‖2
𝑝 , (2.12)

where ‖.‖2
𝑝 denotes the 𝐿𝑝 norm of the vector, 𝐻 degradation operator, 𝑢 and

𝑓 represent observed and real image. In case of 𝑝 = 2 the problem reduces to
finding the estimate of 𝑓 satisfying ̂︀𝑢 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑢𝐸(𝑓) equivalent to least-square
fit. Solving the minimization problem by regularization is given by additive terms.
Regularization terms conveys additional prior knowledge of the image in the energy
function. Prior formulation and rule is highly application dependant. Image statistic
studies reveal the image gradient to be a useful feature that can distinguish between
edges and smooth regions. Therefore the regularization terms are often functions of
Δ𝑓 while the regularized energy function becomes

𝐸(𝑓)) = ‖𝐻𝑓 − 𝑔‖2
2 + 𝜆𝑛 ‖▽𝑓‖𝑝

𝑝 (2.13)

2.8.1 Tikhonov-like regularization
Tikhonov regularization proposed by Russian mathematician Andrey Tikhonov,
fixes the issue arising from least square method by adding the constraints in form

𝐸(𝑓)) = ‖𝐻𝑓 − 𝑔‖2
2 + 𝜆𝑛 ‖▽𝑓‖𝑝

𝑝 (2.14)
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𝜆 is regularization parameter, constant representing non -negative weighting fac-
tor to control the importance of the regulation term. While the first part of equa-
tion forces the solution to be close to observed data, gradient norm guarantees the
smoothness of regions but sharpness of edges.

Weighting factor in mathematical sense multiply each coefficient of image in
frequency domain according to the value of corresponding blur degradation operator
(PSF) coefficients [29]. Therefore, small values in PSF are introduced as weighting
by value close to zero to prevent amplification of noise.

2.8.2 Total variation (TV)
Another class of regularization terms is based on total variation (TV) that was first
presented for techniques of image denoising. TV can better preserve shapr edges
and object boundaries that are in general features of image to concern about the
most. Added constrains are in the form

𝐸(𝑓)) = ‖𝐻𝑓 − 𝑔‖2
2 + 𝜆𝑛 ‖▽𝑓‖ . (2.15)
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3 PROPOSED METHOD
Practical aim of electron microscopy are images with high resolution and low noise
level. From the nature of real images, the robust method insensitive to additive noise
preserving the edges is required. Most methods require to constrain both image and
blur in different ways. However, such constraints are often application-specific and
could not be used across multiple fields. Any general approach to solve this double
ill-posed problem can not be found. Therefore, it is required to develop specific
method to process microscope image effectively.

Therefore regularization methods using the total variation (2.15) will be imple-
mented with model function (3.1) to be minimized. Equation describes discrete form
evaluating discrete gradient 𝐷 for each pixel 𝑖 for 𝑛 x 𝑛 image size.

𝑚𝑖𝑛

⎧⎨⎩‖𝐻𝑓 − 𝑔‖2
2 +

𝑛2∑︁
𝑖=1

‖𝐷𝑖𝑓‖

⎫⎬⎭ (3.1)

Simultaneous estimation of variables 𝐻 and 𝑓 is a major problem. Solving
the optimization problem minimizing both variables simultaneously is not effective.
Minimizing problem over the one variable while keeping the other fixed (constant) if
analytically possible, is considered to be better approach. Commonly used approach
is alternating minimization (AM). AM algorithm with respect to variables 𝑝,𝑞 then
proceeds in two steps:

1. 𝑚𝑖𝑛 {𝑓 (𝑝, 𝑔𝑛)} over p to get 𝑝 = 𝑝𝑛+1

2. 𝑚𝑖𝑛 {𝑓 (𝑝𝑛+1, 𝑔)} over p to get 𝑞 = 𝑞𝑛+1

Various numerical methods are developed to solve the (3.1) via AM . Including
the classical Euler, Newton or Runge Kutta or recently developed time-marching
[45], primal-dual methods [9], lagged diffusivity fixed point schemes [60], and half-
quadratic regularization ([13] , [64]). Reviews on different approaches revealed the
pros and cones of its performance. Methods excellent in image deblurring suffers
the bad contrast preservation. Time marching method equivalent to the steepest
descent is easy to implement but with poor convergence rate. Others yields to highly
accurate solutions able to became golden standard for solution qualities but requires
excessive memory.

Alternating minimization algorithm for total variation image reconstruction with
half-quadratic regularization in case of image deblurring has been proposed in [64].
Potential fast and robust algorithm is described with strong convergence. Algorithm
for deblurring is defined for given PSF form, therefore the iterative procedure based
on alternating minimization coupled with single channel blind deconvolution based
on [56] could fulfil desired conditions. Both methods show good functionality on
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model and photography images. Since the blind deconvolution techniques
in general are image-specific methods neither of this assumption do not
guarantee the functionality in case of microscope images.

3.1 Solution structure
Defining the working image deconvolution algorithm consists of model images testing
and processing of sample images acquired by TEM. Each subsolution has it specifics
that will be introduced in following sections.

General structure :

1. Model images
• Degradation of model image
• Blind deconvolution algorithm

2. Real images
• Definition of initial PSF guess
• Blind deconvolution algorithm

3.1.1 Simulation of degradation model
(MATLAB© implementation)

Blur origin degradation of image is modelled by Gaussian function. Although the
function is one-parameter-dependent, with parameter of standard deviation (𝜎) the
case of using the Gaussian as the PSF to model the process and verify the function
of proposed algorithm is the property of reducibility:

𝐺𝜎 = 𝐺𝜎1 ⊗ 𝐺𝜎2 = 𝜎2
1 + 𝜎2

2 (3.2)

Even without noise, the problem is well known as the ill-posed problem to re-
construct the reducible function. Assuming ill-posed problem means the solution
either does not exist, is not unique nor the solution´s behaviour does not change
continuously with the inputs, therefore the Gaussian simulated PSF´s are the most
common models for reconstruction. Blurr of the image is obtaine by convolution
with Gaussian function dependant on two parameters, area size and standart devi-
ation. General Gaussian process is of the form:

𝑓(𝑥) = 𝑎𝑒
(𝑥−𝑏)2)

2𝑐2 (3.3)

While 𝑎 donates the height of symmetric “bell” curve, 𝑏 specifies the position
of center of the peak and 𝑐 controls the width. For normalized Gaussian curve

33



with mean value and expected variance 𝑎 = 1/(𝛿
√

2𝜋) , 𝑏 = 𝜇 and 𝑐 = 𝜎 . For
our purpose, Gaussian matrix convoled with image works as the smoothing filter,
removing higher frequencies from the original image. The bigger kernel the more
smoothening is done by the filter 3.2.

Fig. 3.1: Simulation of degradation kernel size

According to the property of Gaussian matrix to be summed up to unit (∑︀ = 1)
to preserve image energy, the size of the kernel gives the property of discretization
of Gaussian distribution in each direction. For practical size of kernel 3x3,5x5 or
7x7 is given by quantization into 3,5 or 7 discrete values of blur matrix in 𝑥 or 𝑦

direction ( 3.1).
The blurring factor (PSF) is convoled with the original (model) image in fre-

quency domain, while Fourier transform of blurring kernel represents frequency
response of Gaussians smoothing filter modelled by this mask and its product in
frequency domain the spectrum of output image formed by convolution. Therefore
𝑖𝑓𝑓𝑡2 function is used to transform back to time domain.

Blurred image is afterwards donated by additive Gaussian and applied Poisson
noise.

The level of noise degradation of additive noise is given by formula for evalua-
tion of noise standard deviation (variance) from given value of standard deviation
(variance) of image and wanted SNR.

𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10

(︃
𝜎2

𝑠

𝜎2
𝑛

)︃
(3.4)

𝜎2
𝑛 = 𝜎2

𝑠

10𝑆𝑁𝑅
10

(3.5)

For purpose of evaluation the degradation level (combination of noise level, blur-
ring function size/standard deviation) and effectivity of applied method of blind
deconvolution to reconstruct original image from the degraded variant, mean square
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Fig. 3.2: Comparison of original and blurred image amplitude;
Gaussian kernel 3x3,5x5,7x7,9x9(𝜇 = 0,𝜎 = 2)

error (MSE) is evaluated as factor of success of algorithm. Expecting the MSE de-
creases with increasing efficiency of algorithm with comparable degradation of initial
images. From the definition, it is an average of the squares of the difference between
the actual observations and those predicted. The squaring of the errors tends to
heavily weight statistical outliers, affecting the accuracy of the results.

3.1.2 Definiton of initial PSF guess
Initial guess of bluring function allows the algorithm to proceed more accurate re-
sults. Optimizing from zero position (Dirack distribution) comparing to estimated
initial guess should clearly demonstrate the importance of accurate approximation
of PSF. Even the partial information about the system can provide visible improve-
ment. In this case the blind deconvolution framework is necessary, the obtained
guess defines proximity of desired minimum but needs to be optimized.

Mentioned before, blur is originated in camera part of microscope or image for-
mation parts of system in general (lenses,apertures,...). Lenses caused distortion
for given aberration coefficients can be calculated and simulated but hardly con-
verted into PSF form moreover in case of multiple combinations of lenses (stigma-
tor,deflectors,objective lens...). Therefore the blur originated in camera part offers
better options to be estimated.

Indirect electron detection is performed by using the camera coupled to scin-
tilator screen, converting electron signal to photons. Characterization of electron
detectors can be performed qualitatively by observation of Thone rings [58] or more
quantitatively by detective quantum efficiency (DQE) estimation. Estimation of
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DQE is subject to modulation transfer function (MTF) definition, that measures
the response of an imaging system in the frequency domain. While the PSF measure
the system response in image domain, defining the Dirack distribution transforma-
tion by system for each point, PSF can be easily obtained by MTF inverse Fourier
transform

Determination of MTF approaches are based on single electron events observa-
tion [15] if detectors are sufficiently sensitive. Holographic fringes from crystalic
structures providing the periodic pattern to be measured [33] can be evaluated if
experimental complexity is not limiting or knife-edge method can be used to trans-
form line spread function (LSF) into MTF[49]. Disadvantage of the method is the
requirement of sharp straight-edged object to be placed into microscope.

Since all of the mentioned methods has limitations preventing its implementa-
tion, different approach to PSF definition has been performed using silhouette of a
beam stop [4] . The silhouette method is based on estimating the input image before
detection by converting the detected image into a black-and-white by thresholding.
In order to simulate the effects of aliasing, the output image is up-sampled four times
using bilinear interpolation and then thresholded to generate the black-and-white
beam stop image [47]. A blurring kernel is applied to this image to simulate the
MTF before pixel integration, and pixel integration is then performed by replacing
each group of 4 x 4 by average value. Procedure expressed by equation:

𝐼𝑚𝑎𝑔𝑒
𝑠𝑖𝑚

(𝑟) = 𝐷𝑂𝑊𝑁(𝐹𝑇 −1 [𝑘𝑒𝑟𝑛𝑒𝑙.𝐹𝑇 (𝑇𝐻 [𝑈𝑃 (𝐼𝑚𝑎𝑔𝑒𝑜𝑢𝑡(𝑟))])]) (3.6)

Therefore the simulated image is obtained and blurring kernel (PSF) optimized
to minimize squared difference between simulated and detected image 3.6. Blurring
kernel is of the sum of five Gaussian functions form 3.7, where the sigma and each
function weight stands as optimization parameter 3.8.

Δ = (𝐼𝑚𝑎𝑔𝑒𝑜𝑢𝑡 − 𝐼𝑚𝑎𝑔𝑒
𝑠𝑖𝑚

)2 (3.7)

𝑘𝑒𝑟𝑛𝑒𝑙(𝑤) =
5∑︁

𝑖=1
𝑊𝑖.𝑒

− 𝜔2

2𝜎𝑖
2 (3.8)

Estimated kernel profile (Fig. 3.5) simulates the PSF function obtained,ongoing
transformation into 2D with given matrix size (7x7,9x9 etc.) afterwards.
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Fig. 3.3: Detected ups. image Fig. 3.4: Thresholded ups. image

Fig. 3.5: Detected image profile Fig. 3.6: Thresholded image profile

Fig. 3.7: Simulated image profile Fig. 3.8: Detected image profile

3.1.3 Blind deconvolution algorithm
A prominent weakness of the regularization approach is the difficulty in recovering
the discontinuities.The sharp discontinuities in images are edges and object bound-
aries, often the most important features to keep. Assuming the prior smoothness
constraints (given by regularizaton term-Tichonov, Total variation etc.) , the impor-
tant constraint atributes are concavity and its finite asymptotic behaviour. Shortly,
the existing maximum of the condition and attribute of convergency. Such lin-
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ear constraints permit the recovery of discontinuities without introducing auxiliary
variables [14].

Regularization approach of total variation, eventhough more accurate, suffers by
introducing non-linearity and non-differentiability in the problem.

Using the TV regularizer with respect to the image writes as :

𝑚𝑖𝑛
𝛾

2 ‖𝐻𝑢 − 𝑔‖2 + Φ(𝐷𝑥𝑢, 𝐷𝑦𝑢) (3.9)

So called Rudin-Osher-Fatemi [45]functional with non-differentiable term repre-
sented by TV ‖∇𝑢‖ ( Φ(𝐷𝑥𝑢, 𝐷𝑦𝑢)) has proved to be very difficult to minimize
despite the simple form.

Penalty function/continuation method represents the algorithmic framework not
requiring modification to non-differentiable term Φ(𝐷𝑥𝑢, 𝐷𝑦𝑢) . The problem of non-
linearity of TV ()rewritten by ‖∇𝑢‖) has solution by introducing auxiliary variable
and converting the non-differentiable form into an unconstrained problem simple to
solve as follows:

1. gradient ∇𝑢 is replaced by a new variable 𝑤

2. the discrepancy between 𝑤 and ∇𝑢 is penalised
by quadratic term 𝛽

2
∑︀

𝑖 ‖𝑤𝑖−𝐷𝑖𝑢‖2

3. update of 𝑢, 𝑤 with increasing penalty parameter 𝛽 until "convergence"

Bregman iteration technique represent a better method solving the variety of
constrained optimization without need of continuation scheme with fast conver-
gence attribute [17]. Even better formulation for regularized problems represents
split Bregman method. The decoupling of 𝑙1 (TV) and 𝑙2 (quadratic norm) is the
key of the method. Then the problem is reduced to a sequence of unconstrained
optimization problems and Bregman updates[17].

Minimizing the given formula
Objective function to be minimized becomes half-quadratic term:

𝑚𝑖𝑛𝑤,𝑢

∑︁
𝑖

‖𝑤𝑖‖2 + 𝛽

2
∑︁

𝑖

‖𝑤𝑖−𝐷𝑖𝑢‖2
2 + 𝜇

2 ‖𝐾𝑢 − 𝑓‖2
2 (3.10)

Half-quadratic term,quadratic in 𝑢 ,separable in 𝑤 . Minimizing the function
with respect to one of the variables has formula with low computational complexity
and high numerical stability [64] . Since the split of components 𝑙1 (TV) and 𝑙2

(quadratic norm), minimization can be performed efficiently.Time consumption of
the method is highly dependant on how fast the subproblems are solved.

TV model approximation and resulting alternating minimization algorithm were
first proposed without a convergence analysis [63]. Similar split method using Breg-
man iterations has been proposed recently. Augmented Lagrangian method (ALM)
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equivalent to the split Bregman iterative method applies therefore to solve the sub-
problem for our purpose [56].

Optimization process
According to [56] the alternating minimization consists of minimization with

respect to image (u-step) and respect to blur(h-step). For our purpose, the blur reg-
ularizer is not used (the correctness of the assumption has been consulted with Prof.
RNDr. Miloslav Druckmuller, CSc., Faculty of Mechanical Engineering, Institute of
Mathematics ).PSF matrix is updated in each step with respect to image minimiza-
tion. The property of positivity and unit energy is preserved while algorithm.

Overall steps shows the diagram Fig. 3.9. Image regularization and minimization
step (u-step) given by formula 3.9 applying the variable splitting becomes :

𝑚𝑖𝑛𝑢,𝑣𝑥,𝑣𝑦

𝛾

2 ‖𝐻𝑢 − 𝑔‖2 + Φ(𝑣𝑥, 𝑣𝑦) (3.11)

𝐿 (𝑢, 𝑣𝑥, 𝑣𝑦) = 𝛾

2 ‖𝐻𝑢 − 𝑔‖2 + 𝜑(𝑣𝑥, 𝑣𝑦) + 𝛼

2 ‖𝐷𝑥𝑢 − 𝑣𝑥 − 𝑎𝑥‖2 + 𝛼

2 ‖𝐷𝑦𝑢 − 𝑣𝑦 − 𝑎𝑦‖2

(3.12)
while the ALM (Split Bregman Iterations equivalent ) solves this 3.11 con-

strained problem considering functional 3.12 solved by iterative algorithm explained
on 3.10(or more detail explanation found in [56])

Fig. 3.9: Flowchart of
AM algorithm

Fig. 3.10: Steps of u
optimization

Constants Crucial part of the algorithm represents the constants 𝛼 and 𝛾 set-
tings. According to [56] ideal values corresponds to estimated noise degradation
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level (𝑆𝑁𝑅 = 50𝑑𝐵 then 𝛾 = 105,𝑆𝑁𝑅 = 20 𝑑𝐵 then 𝛾 = 102, etc. [56] ).
Initial PSF Input to the algorithm is the blurred image (real or model) with

initial form of PSF. In case of blind deconvolution for model images the Dirack
distribution is created. For purpose of proper approximation odd and even-sized
matrices are treated differently.

Iteration steps According to [56] the convergence of the algorithm has been
successful in less then 10 steps per step-part (u-step,h-step).The fixed value of 10
has been implemented.

Mentioned algorithm above has been implemented with fixed iteration steps (10),
the convergence check is not performed. Equivalent solution, the quality assessment
of output images according to used constants combinations has been proposed.
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4 EVALUATION OF RESULTS
As a part of semestral thesis, the evaluation of degradation and consequently effec-
tiveness of built in Matlab blind deconvolution algorithm have been tested on model
images. Given data from microscope are degraded by degradation model based on
Gaussian blur origin process and added (Gaussian) noise.

Theoretically efficiency of blind deconvolution technique in image degradation
reconstruction will be evaluated by the results of the algorithm on known images
and the estimated mean square root works as simple tool for calculation of blind
deconvolution ability to reach the initial original image. This approach works for
given model data, but in case of the real images we do not have any information
except blurred and noisy image and in ideal case also the initial guess of PSF of the
system, that is dependent on used microscope system and works as its “fingerprint”.

But it is still needed evaluate somehow the results in way of quality of recon-
struction therefore analogy of modelled image degradation parameters with real
acquisition parameters should be explained. For purpose of this study the focus,
intensity, magnification, exposure time and binning will be analysed and its analogy
with model properties will be explained.

Focus poorly explained as the state of the best sharpness achievable. In words
of degradation model parameters focus represents the blur with circular shape of
PSF. Focus as the distance in mm from the chosen focal plane upon z-axis is can
be set by user of microscope. Moves up to axis by opposite directions (positive and
negative direction from 0) represent overfocus and underfocus state. Practically, the
exciting current of the strongest main objective lens current adjusts while focusing.
Needs to be mentioned with its arising parasitic aberrations (chromatic aberration).

Intensity controlled by weak condenser (𝐶2) lens together with set spot size
represent illuminated area to be imaged. Intensity in terms of degradation model
represents the amount of noise incorporated into image. The lower intensity the
higher possibility of photon (Poison) noise to occur. Over-limit high intensity ex-
ceeding the well pixel capacity can results in blooming artefact and image blur. For
practical purposes, can be intensity limited by used sample. Life science samples
are highly sensitive to beam intensity compare to material science samples.

Magnification represents how original point size will be projected on the screen.
Magnification is not the microscope optics property only. Camera light optics itself
can demagnify formatted image from microscope column to be imaged on sensor.
Magnification determines aberration error to be transferred into output image (??).
With lower magnification, some errors can be suppressed by the nature of digital-
ization. Practically exciting currents differs across numerous magnification modes
with arising occurrence of aberration.
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Exposure time limits achieved SNR of image. Amount of collected signal arises
with higher time that lowers the possibility of (photon) noise occurrence. Limitation
of duration results from required time resolution and minimization of thermal drift.

Hardware version of cumulative techniques is represented by Binning. Deter-
mines achieved SNR while higher binning denotes higher SNR but decreases theo-
retical resolution of system by factor of “superpixel” size quadrate.

Specific techniques of electron microscopy techniques are used among all different
technical fields. Therefore different properties of output image are essential for
particular application. Considering multiple user purposes used there is no general
approach how to objectively compare numerous images.

The efficiency of proposed algorithm is tested on model data with objective eval-
uation. The similarity criterion (MSE) or noise degradation (SNR) ability assuming
the input image noiseless has been proposed and tested in semestral thesis with
built-in Matlab function (deconvblind 5.1. Evaluation given by formulas:

𝑀𝑆𝐸 = 1
𝑛

𝑛∑︁
𝑖=1

(︁ ̂︀𝑌 − 𝑌𝑖

)︁2
, (4.1)

𝑆𝑁𝑅 = 𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒

𝑜𝑟 (4.2)

𝑆𝑁𝑅𝐷𝐵 = 10 𝑙𝑜𝑔10
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒

𝑤ℎ𝑒𝑟𝑒 (4.3)

𝑃 = 1
𝑁

𝑁−1∑︁
𝑛=0

𝑥2
𝑛 (4.4)

MSE evaluation has revealed the insensitivity to image properties according to
image contrast,numerical better values of MSE do not correspond to image quality.
MSE represents the simplest implementation of the error sensitivity concept which
objectively quantifies the strength of the error signal . Therefore the proper result
can not be estimated upon this criterion. New evaluation criterion for diploma thesis
is proposed and estimated. Similarity structural index (SSIM) is based on three
terms corresponding to image properties.The luminance, contrast and structural
information quantified by following equations:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙 (𝑥, 𝑦)]𝛼 . [𝑐 (𝑥, 𝑦)]𝛽 . [𝑠 (𝑥, 𝑦)]𝛾 (4.5)

𝑙 (𝑥, 𝑦) = 2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶2
(4.6)

𝑐 (𝑥, 𝑦) = 2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2
(4.7)
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𝑠 (𝑥, 𝑦) = 𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
(4.8)

where 𝜇𝑥,𝜇𝑦,𝜎𝑥,𝜎𝑦 and 𝜎𝑥𝑦 are local means,standard deviations and cross-covariance
for input images 𝑥 and 𝑦 computed with circular-symmetric Gaussian weighting
function to prevent artefacts of windowing [62]. Constants 𝐶1, 𝐶2, 𝐶3 compensates
zero division. 𝛼 >0, 𝛽 >0 and 𝛾 >0 are adjustable parameters determining the
importance of each from components.

Obtained real reconstructed images will undergo subjective quantification of re-
sults quality considering artefacts (ringing artefact, deconvolution artefact), main-
taining contrast, sharpness of edges and suppression (amplification) of noticeable
noise.

4.1 Evaluation of results from model
data reconstruction

Structural similarity index (SSIM)
Blind deconvolution method and algorithm proposed and tested in the thesis

is strongly dependant upon initial set up of constants.According to [56] ideal val-
ues corresponds to estimated noise degradation level (𝑆𝑁𝑅 = 50𝑑𝐵 then 𝛾 =
105,𝑆𝑁𝑅 = 20 𝑑𝐵 then 𝛾 = 102, etc. [56] ). Since the normalizations of images,
noise level estimation and edge-taping can differ while implementation, the vector
of various constants combinations has been tested. Calculation of chosen quality
metrics determines the restoration accomplishment.

The simplest and most widely used full-reference quality metric is the mean
squared error (MSE), computed by averaging the squared intensity differences of
distorted and reference image pixels, along with the related quantity of peak signal-
to-noise ratio (PSNR), useful if images having different dynamic ranges are being
compared. These metrics contain the same information,are simple to calculate,
have clear physical meanings, and are mathematically convenient in the context
of optimization. But they are not very well matched to perceived visual quality,
especially in image processing [62]. 4.1 4.2 reveals the failure of MSE approach.
Images corresponding to same MSE value affected by different image distortions
exhibit strongly different visual quality. Noise degradation becomes quantified by
same value as structure change (4.2) or blur degradation of image, therefore different
metric reference is needed for evaluation by number not the visual sense.

Image quality calculation suffers the problem of complexity. Definition of quality
is not clear, for example some distortions can be visible but not objectionable like
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Fig. 4.1: MSE value failure [61]

Fig. 4.2: Demonstration of MSE errors [61]

scaling the intensities by global factor, that changes classical MSE quality metric but
has no quality importance. PSNR solves the problem of scaling but others remain.

Workflow of SSIM estimation is based on three components and independent
comparisons of luminance, contrast and structure. Luminance of each signal is
compared first as a function of image 𝜇. After mean intensity removal, an unbiased
contrast comparison is made upon image 𝜎 dependency. Final step normalizes the
image (division by its own standard deviation) therefore the structural comparison is
conducted to unit standard deviation images. All components are combined yielding
an general similarity measure (eq. 4.5).

Relative importance of components reveals the characteristic features of the com-
pared images ( 4.4 , 4.5 , 4.7 , 4.9). The brighter the higher similarity according
to preferable component. Demonstration examples reveals the SSIM characteristics,
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blur degradation (4.4 , 4.5) almost does not affect the intensity (SSIM for 𝛼 = 1)
but has the biggest influence on the edges of image, the higher blur deviation 𝜎 the
higher edges degradation. Scaling the image values by given factor (4.7) strongly
affects the luminance component (mean intensity value) while structural informa-
tion remains the same (4.7 SSIM=1 ). Noise degradation (4.9) shows the effect
on constant areas compare to edges. Constant plane suffers the noise degradation
more, while the local characteristics around edges are not that strongly affected by
noise(brighter pixels) since local maps are evaluated in 8-neighbourhood by mask
with Gaussian weighting function to prevent blocking artefact. Image degraded by
gaussian white noise (SNR=26 dB)

Assuming one of images to have perfect quality, the global SSIM can serve as
quantitative measurement of reconstruction. SSIM implementation with equal rel-
ative importance of each (luminance, contrast, structure) component set by 𝛼, 𝛽, 𝛾

=1 represents the quality metric available for comparison.

Fig. 4.3: Demonstration of SSIM meaning, global value of 0.8157 with local map
(right); Original model image (left) blurred by PSF with 𝜎 =2,size=15x15

(middle);MSE=19.5051
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Fig. 4.4: Demonstration of SSIM components meaning;model image blurred by
PSF with 𝜎 =2,size=15x15 with global SSIM = 0.8157, MSE=19.5051; relative
importance of each component set up to 1 for 𝛼 (left;SSIM=0.998) 𝛽 (middle;

SSIM=0.9031) 𝛾 (right;SSIM=0.8969)

Fig. 4.5: Demonstration of SSIM components meaning;model image blurred by
PSF with 𝜎 =4,size=15x15 with global SSIM = 0.7214,MSE=27.8788; relative
importance of each component set up to 1 for 𝛼 (left;SSIM=0.9956) 𝛽 (middle;

SSIM=0.8441) 𝛾 (right;SSIM=0.8386)

Fig. 4.6: Demonstration of SSIM meaning, global value of 0.6953 with local map
(right);model image (left) scaled by factor 2 (right); MSE=266.9503
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Fig. 4.7: Demonstration of SSIM components meaning;model image intensity
scaled by factore of 2 with global SSIM = 0.6953,MSE=266.9503; relative

importance of each component set up to 1 for 𝛼 (left;SSIM=0.8000) 𝛽 (middle;
SSIM=0.8691) 𝛾 (right;SSIM=1.000)

Fig. 4.8: Demonstration of SSIM meaning, global value of 0.5115 with local map
(right);model image (left) degraded by noise (middle; SNR=26 dB;𝜎𝑛 = 0.00252) ;

MSE=25.5

Fig. 4.9: Demonstration of SSIM components meaning;model image degraded by
noise (SNR=26 dB;𝜎𝑛 = 0.00252 ) with global SSIM = 0.5115,MSE=25.5; relative

importance of each component set up to 1 for 𝛼 (left;SSIM=0.9997) 𝛽 (middle;
SSIM=0.7485) 𝛾 (right;SSIM=0.6607)
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4.2 Evaluation of results from real data
reconstruction

Subjectively-objective evaluation of image properties after reconstruc-
tion Since the SSIM index is referred as the full-reference term, the whole image
(reference not degraded) for quantitative comparison is needed. While real image
processing, the reference is not available. In general, for applications in which images
are ultimately to be viewed by human beings, the “correct” method of quantifying
visual image quality is through subjective evaluation [62].

Although the SSIM can not be evaluated, similar philosophy is proposed. Scoring
the image by three different values corresponding to image properties. Maintenance
of image contrast, artefacts occurrence and sharpness of edges/suppression of noise
will be evaluated by reference scale. Constants setting with the highest achieved
score can be considered as the best result.

Fig. 4.10: Demonstration of SSIM meaning, global value of 0.8693 with local map
(right); Original real image blurred by PSF with 𝜎 =2,size=15x15 (middle)

Contrast preservation scale (Fig. 4.11)
Contrast in the meaning of signal processing represents the difference in the values
of luminance (grey scale level). According to the particular contrast definition, the
image can be represented locally of by overall value. One value representing the
image contrast becomes useful in cases of periodic patterns or targets with uniform
background. Local expression works better for complex images. Human contrast
sensitivity is the function of spatial frequency [40], therefore the achieved spatial
resolution (sharpness) of an image goes together and affects the visual perception of
image contrast. The contrast preservation in comparison with initial image is scored
by representing one of the restoration quality attribute.
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Fig. 4.11: Contrast scale

Sharpness of edges/degradation suppression scale (Fig. 4.12)
Sharpness, the amount of higher spatial frequencies in the image, determines amount
of detail an imaging system can produce. The better enhancement of high frequency,
the smaller detail becomes visible.Simple estimation while subjective evaluation of
results follows the area boundaries in the image assuming how sharp/blurred the
boundary between zones of different contrast is. Noise suppression associated with
image restoration suffers the opposite effect. Since the major energy of an image con-
centrates on low frequencies, noise removal effects mainly detail-responsible part of
spectrum. Sensitivity of the deconvolution to noise is crucial for restoration quality.
Preserving edges while blurring the noisy areas is the key atribute of regularization
approach with total variation.

Image artefacts scale (Fig. 4.13)
A challenging problem in image restoration is the presence of wavelike artefacts
called ringing that appear near strong edges/high frequencies There is more then
one origin of this periodical pattern while process of restoration. Assuming the
Image blurring modelled by convolution of original latent image with blurring op-
erator. Field of view of convolution mask hence to observe the image above its
boundaries. Missing information coupled with FFT propagate the effect of bound-
ary pixels throughout entire image. The problem known as boundary value problem
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Fig. 4.12: Sharpeness scale

causing the ringing artefact.
Two possible ways of solving the problem exists, depending whatever the spatial

or Fourier domain restoration filter is used. The missing boundary pixels can be
replaced or extrapolated from image pixels upon Boundary Conditions ([8],[30]) re-
moving discontinuities by remain of continuity of image or image gradient. Assuming
periodic boundary conditions in spatial domain DFT can be performed, under the
Neumann boundary condition two-dimensional Discrete Cosine Transform alterna-
tively. Fourier domain filters adopt the DFT with precondition of data periodicity,
otherwise the high-frequency drop-off on the image edge creates the effect of bound-
ary related ringing. Under the periodicity conditions, missing pixels at the left-side
boundary of image will be taken from right-side and vica versa [30]. Simple im-
plementation of problem solution performs the Matlab built-in function edgetaper.
Removal of high-frequency drop-off is performed by blurring the entire image and
replacing the centre pixels by original image data. The procedure is performed in the
algorithm part responsible for deconvolution as much as in SSIM index calculation
to not to affect the resulting value of similarity.

Mainly neglection of noise in models of deconvolution techniques is responsible
for another ringing artefact origin. Since the deconvolution is the inverse problem,
inevitable presence of zero values is problematic. The solution depends on chosen
restoration filter technique (review [39]). Incorporation of noise models, extra filters
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or increase of weight of regularizer term can suppress the effect. The particu-
lar combination of constants 𝛼 and 𝛾 leads to various image restoration
quality of proposed algorithm.

1 2 3

4 5

Fig. 4.13: Artefacts scale
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5 RESULTS

5.1 Results of model data
Functional test of MATLAB built-in function deconvblind has been part of the pre-
vious semestral thesis therefore bigger amount of simulated images proceeded the
restoration process. Model images are constructed by the implemented degradation
model (explanation in section 3.1.1). Overall results of quality assesment of model
data can be found in an attachment A.9.

5.1.1 Maximum Likelihood
Simulation of results have been done with 16 000 combinations settings of variables
representing number of iterations of algorithm (range 1-20), standard deviation of
Gaussian smoothing filter (range 1-5), achieved SNR (range 1-40) dependant on
variance of input image and size of smoothing filter kernel (3,5,7,9) with evaluation
similarity indexes. Explanation of similarity graph axes is done on example of
relative MSE obtained values (figures 5.2 , 5.3).

MSE NRMSE SSIM

MSE (PSF) NRMSE (PSF) SSIM (PSF)

Fig. 5.1: Different similarity evaluations

Results of simulation reveals the influence of each parameter on reconstruction
success coupled with specific similarity index (Fig. 5.1). MSE absolute values
correspond to the exact values of reconstructed images and its differences. The
higher the MSE value is the smaler the similarity of images. Normalised root mean
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square (NRMSE) of similarity reveals the same dependency. Relative values of MSE
(Fig. 5.2) better represents image quality, converting values into range from 0 to 1.
The meaning of SSIM values is the opposite, the higher the similarity, the higher the
value. Upon the 𝑥 axis meaning (Fig. 5.2), best results correspond to the smallest
PSF kernel sizes and the highest SNR values, so does the relative MSE.

Considering SNR the parameter of the biggest effect, noise corruption will be
discussed with obvious outcomes, the lower noise degradation the higher quality
of reconstruction. Closer look to iterative approach (Fig. 5.4) reveals different
behaviour of similarity of image and PSF to its original form. Ideal number of iter-
ation with respect to achieved quality differs and revealed best settings corresponds
to MATLAB default value of iterations (10).

Interesting fact arises from values dependant upon 𝜎 of blurring function.With
increasing size of the blur kernel (7,9) the significantly different results comes from
smaller 𝜎 (sd=1,2).Effect on similarity indexes also differs, smaller 𝜎 with bigger ker-
nel size represents higher SSIM between images (higher similarity) but higher value
of relative MSE (lower similarity). Same comparison for PSF matrices follows same
value trend, for 𝜎 = 1 are significantly different. However, the similarity indexes
values interpretation is not same like in case of image. Relative MSE and SSIM
evaluated for PSF obtained by the algorithm reveals in both cases less similarity in
favour of small 𝜎 (lower SSIM, higher MSE).Demonstration of the difference on Fig.
5.5 , 5.6 and 5.7 . Subjective visual inspection better confirms the meaning of lower
similarity although the structure of image is proper.

Fig. 5.2: Evaluation of similarity between original and reconstructed image for
different combination of parameters settings ( relative MSE example)
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Fig. 5.3: Evaluation of similarity between original and reconstructed PSF for
different combination of parameters settings ( relative MSE example)

Fig. 5.4: Comparison of MSE values for image and PSF for given parameters
combination

Gaussian filter kernel size in combination with standard deviation of this process
dramatically affects reconstruction quality. The higher kernel size, the better sen-
sitivity of reconstruction to noise. Ability to preserve real intensity and contrast of
image is presented on images below (5.5 , 5.6 , 5.7.) while degradation is determined
by Gaussian filter differing in kernel size with no additional noise.
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Fig. 5.5: Reconstructed image amplitude for blur kernel 3x3,𝜎 = 1

Fig. 5.6: Reconstructed image amplitude for blur kernel 7x7,𝜎 = 1

Comparison illustrates the difference in objective and subjective evaluation. Im-
ages also reveal contrast preserving inability of reconstruction for particular blur
functions (𝜎 = 1, 2). Magnified intensity profiles of images describe the edge ef-
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Fig. 5.7: Reconstructed image amplitude for blur kernel 9x9,𝜎 = 1

fect caused by the algorithm. The origin rises from optimization function used in
algorithm, not following the original intensity profile.

Noise degradation is essential problem associated with deconvolution of image
therefore performance of an algorithm needs to be tested on noise degraded images.
Increasing SNR representing higher level of useful signal affects the reconstruction
quality as follows (Fig. 5.8 , 5.9 , 5.10).

Fig. 5.8: Degradation of image with SNR=5 dB

Increasing noise degradation represented by higher SNR leads to expected better
results. Images degraded by 5, 15 and 20dB of additive noise and model parameters
as follows: 𝜈=0, 𝜎=2, kernel size=9, iterations=1.
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Fig. 5.9: Degradation of image with SNR=10 dB

Fig. 5.10: Degradation of image with SNR=20 dB

5.1.2 Alternating Minimization
According to the test approach proposed for model images, implemented algorithm
of AM has been tested on degraded images with given kernel size, 𝜎 and achieved
SNR. Overall numerical results can be found in an attachment A.9.

Quality of AM algorithm results depends on the constants value. For this purpose
the tested combinations are indexed by numbers from 1 to 15 (5.1). As mentioned
ideal values correspond to estimated noise degradation level (𝑆𝑁𝑅 = 50𝑑𝐵 then
𝛾 = 105,𝑆𝑁𝑅 = 20 𝑑𝐵 then 𝛾 = 102, etc. [56] ) assuming the same normalizations,
iterations settings etc. as implemented by [56]. Since the noise level of real images
and concrete algorithm parameters are unknown, models testing range is 10-50
dB achieved SNR (according to formula 𝑆𝑁𝑅 = 10 𝑙𝑜𝑔 𝜎2

𝑠

𝜎2
𝑛

) with 3 values for
𝛼 and 5 for 𝛾 inspired by article.

Example results are represented by model degradation of image with blur kernel
of 21x21 samples and 𝜎 = 2 and no additional noise (Fig. 5.11). Comparison of
𝛼 and 𝛾 meaning is illustrative Particular combinations of constants responsible
for image constraints weight can generate additional artefacts or burring the image
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Tab. 5.1: Constants combinations indexes

𝛼 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5
𝛾 1 1 1 10 10 10 100 100 100 1000 1000 1000 10000 10000 10000
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

completely. Plot of SSIM index between reconstructed and original latent image
corresponds with visual inspection of images and its quality. Higher SSIM values are
coupled with better image properties, less blurred, without artefacts and preserved
constrast.

Degraded image SSIM index (𝑦 axis) vs constants comb. (𝑥)

𝛼 = 0.01 𝛾 = 1 (i. 1) 𝛼 = 0.01 𝛾 = 10000 (i. 13) 𝛼 = 0.1 𝛾 = 10 (i. 5)

𝛼 = 0.5 𝛾 = 1 (i. 3) 𝛼 = 0.5 𝛾 = 100 (i. 9) 𝛼 = 0.5 𝛾 = 1000 (i. 12)

Fig. 5.11: Demonstration of AM functionality, depending on constant values
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5.1.3 Results discussion
Discussion on results summarizes the conclusions from restoration by both discussed
algorithms, Matlab implemented based on Maximum Likelihood (2.7.2) and alter-
native regularization-based Alternating Minimization with Total Variation regular-
izer(2.8.2) and its function on model data.

Considered degradation of model images combines only the blur (𝜎 = 1−5, 𝑘𝑎 =
7, 9, 21) or SNR (7-50dB) and also its mutual combinations Experimental results
has revealed the logical pattern in behaviour of algorithms in most cases (A.9).
The higher the blur size, the lower quality (similarity of reconstructed to original)
of image. Bigger size of degradation kernel corresponds to higher suppression of
frequencies responsible for detail. Wider convolution mask operator couples more
pixels to produce one output value, causing higher level of blurring and restoration
becoming more difficult.

Comparison of similarity evaluations techniques (5.1) discovered the inability of
ML algorithm to properly reconstruct images with bigger PSF coupled with smaller
𝜎. Inspection on real PSF obtained from beam-stopper of microscope system com-
pared to simulated form illustrates the exact similarity of the problematic matrices
to real blurring kernels (5.12).Middle and the right column are real, left corresponds
to simulated kernels with increasing value of 𝜎. Eventhough the obtained PSF
serves as the initial guess and partial estimate of system degradation, the analogy
of inability can explain worse results.

Fig. 5.12: PSF matrices 7x7 size,
simulated (left) vs. real

Fig. 5.13: PSF matrices 9x9 size,
simulated (left) vs. real

Images corrupted by noise effects fulfils logical assumption on quality of recon-
struction . The higher SNR (less noise) the higher similarity index value. Even
stronger effect performs additive noise coupled with blur kernel, the nearest sim-
ulation of real images. An example of combined degradation show best images
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according to similarity values for both used algorithms (5.14,5.15 ML on the left,
AM on the right side).Pixel intensity profile in the middle reveals the better con-
trast preservation ability of AM by decreased grey-level range especially on the flat
areas. Images reconstructed by ML suffers by ringing artefact and the noise ampli-
fication,that arises from optimization function to be minimized. On the other hand
preservation of strong edges and image sharpness performs better for all images
reconstructed by ML. The assumption is supported by higher values of similarity
for all degraded images. The subjective visual inspection is required to reveal the
artefacts and confirm the quality.

Determination of suitable settings of algorithm parameters for real im-
ages represents one of the aims of the model images assessment, despite
the general assumption of particular-image-dependency of deconvolution
techniques. Quality assessment according to constant setting does not show def-
inite result. Combination indexed by 15 represents often the best choice for noisy
images without blur. So does the combination 13 for just blurred images, however
in case of combined degradation non of the constant values repreats often.

Fig. 5.14: SNR 10dB, 𝑘𝑎 = 7, sd=3 ; ML-left, AM-right

Fig. 5.15: SNR 20dB, 𝑘𝑎 = 9, sd=3 ; ML-left, AM-right
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5.2 Results of real data
For purpose of functionality test on microscope images several real images have been
taken with variable acquisition parameters. PSF determination from calibration
sample representing beam-stop needle has been implemented according to [47] and
tested. Overall approximately 60 images of graphitised carbon samples with various
intensity (nA), magnification (N x)and exposure time (ms) simulated by level of
blur and noise degradation in case of model images.

Results illustrates dependency of proposed reconstruction technique quality on
known authentic PSF of camera system, acquisition parameters and parameters
of reconstruction algorithm. Default MATLAB function (deconvblind, based on
Maximum Likelihood - ML) with same properties was applied to sample images.
Reconstructions has been performed with or without obtained initial guess of PSF
from beam-stop needle. Constant-value matrix (proposed in deconvblind help) or
energy preserving matrix summed up to unit (Dirack distribution proposed for AM)
has been tested as initial guess.

Fig. 5.16: Illustration of beam-stop needle and obtained PSF (9x9)

Theoretical results correspond with meaning of initial guess. Individual micro-
scope system suffers from multiple imperfections and misalignments. Its perfor-
mance is determined by achieved combination of corrected and uncorrected errors.
While properties of system changes during multiple different acquisition so do the
PSF therefore initial guess does not correspond to exact blur specification of indi-
vidual image but should support the algorithm to obtain better results.

5.2.1 Alternating Minimization
Summarization of proposed quality assessment results (5.17) combines the constants
values ( 𝑥 axis) with given indices by 5.1) corresponding quality dependency (𝑦
axis) with acquisition parameters effect comparison, detailed value inspection can
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be found in an attachment (A.3). Three best marked indexes and corresponding
𝛼 and 𝛾 values represents the best average result on group of images with shared
parameter. Results examination reveals the commonly repeated combinations 2,7,
and 12 through various acquisition parameters data sets.

All magnifications Magnification PSF type

Intensity Intensity/Binning Exposure time(1nA)

Fig. 5.17: Results of real images quality assessment after reconstruction with three
best constants combination marked

General outcomes, no significant difference of magnification on quality, aver-
age best results are coupled with the smallest magnification value (92x),where the
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Degraded image Quality (𝑦 axis) vs constants comb.(𝑥)

𝛼 = 0.01 𝛾 = 1 (i. 1) 𝛼 = 0.01 𝛾 = 10 (i. 4) 𝛼 = 0.01 𝛾 = 100 (i. 7)

𝛼 = 0.1 𝛾 = 1 (i. 2) 𝛼 = 0.1 𝛾 = 10 (i. 5) 𝛼 = 0.5 𝛾 = 1 (i. 3)

Fig. 5.18: Demonstration of AM functionality on real data, depending on constant
values

loss of details is theoretically less visible (assuming the subjective visual inspec-
tion, details are easier to overlook). Different choice of binning parameter, where
general ’intensity’ represents binning 2, therefore 4 pixels creates one super-pixel
to be visualised while ’high res’ corresponds to binning 1, affects the quality re-
sult. Average value is significantly higher in case of ’high res’ images supporting the
theoretical assumption. Higher binning used arises in better resolution achievable
Use of best algorithm settings can overcome the disadvantage of higher noise level
coupled with lower binning value. Increasing exposure time physically means the
higher amount of collected signal,therefore higher achieved SNR but with the risk
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of motion of scene arising in the blurring. Theoretically the higher the value, the
better the result if the limits of detection chip are not exceeded. Real results con-
firms the assumption since the 25ms, 50 ms,200 ms and 100 ms represents average
best results sequence. Initial guess of PSF should support better quality of result
images. However, results are different. Deconvolution supported by 7x7 or 9x9 ini-
tial known represents lower average quality of results. In detail, the overall quality
of results is on same level no matter the constants combination (5.17 ’PSF type’)
unlike the similarity character for used initial guess where are significant differencies
and resulting average evaluation is worse.

Finally, two different datasets, one with known acquisition (dataset 1) and
different sample measurement without the knowledge (data set 2) were compared
(5.17 ’all magnification’). Character of the quality assessment values differs, however
the best results are ahieved by same set up of constants.

Images with various constants and AM algorithm represent the support to men-
tioned conclusions (5.18).

5.2.2 Maximum Likelihood
Quality assessment by proposed subjectively-objective evaluation has been imple-
mented for real images in case of Matlab built-in function deconvblind. Summary of
results can be found in 5.2 , 5.3 .

Overview results are mainly corresponding with ML conclusions and acquisition
parameters dependency. Magnification represents the exception, quality outputs
increase with magnification rate increasing, therefore best results in case of 510x.
Binning parameter affects the quality equivalently, higher binning value (2 ’high
res’) produces better quality results as assumed. The sequence of exposure time
best results follows the 25 ms, 50 ms, 200 ms and 100 ms as in case of AM. Available
initial guess of 7x7 and 9x9 matrix is not improving reconstruction quality by result
evaluation. Data set dependency of average quality of outputs has also revealed the
significant difference (5.2 ).

5.2.3 Results discussion
Final demonstration of best results on real data sets comparing both examined tech-
niques is given before conclusion on Fig. 5.19, 5.20.Properties of images are given
by various acquisition parameters. Intensity mainly affects the amount of incorpo-
rated noise, so do the binning and exposure time with possibility of influence on
image blur too. Size of the PSF matrix primary affects the sharpness of image and
achieved contrast.
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Tab. 5.2: Quality results for different conditions (ML)

deconvblind deconvblind deconvblind
data set magnification blur matrix size

set 1 set 2 92 240 510 7 9 dirr
mean mean mean mean mean mean mean mean
7.89 8.63 8.56 8.63 8.89 8.16 8.57 9
min min min min min min min min

7 7 7 7 7 7 7 9
max max max max max max max max

9 10 10 10 10 10 10 10

Tab. 5.3: Quality results for different conditions (ML)

deconvblind deconvblind deconvblind
intensity high res [nA] intensity [nA] exposure time [ms]
1 2 4 8 1 2 4 8 25 50 100 200

men mean mean mean mean mean mean mean mean mean mean mean
9.11 9.11 9.33 8.78 8 8.5 8.17 8.6 7.33 8.67 9.67 9
min min min min min min min min min min min min

9 8 9 8 7 8 7 8 7 8 9 9
max max max max max max max max max max max max
10 10 10 9 9 9 9 10 8 9 10 9

Demonstrative comparison should illustrates the potential of both approaches.
As examined before (5.12), ML method suffers the problem with particular PSF ma-
trices type. Assuming revealed similarity between real and those problematic PSFs,
visually confirmed lower ability of ML to contrast preservation can be explained.
Sharpness of obtained images is comparable, but the level of noise amplification
related to deconvolution artefact is higher in case of ML. Noise reduction sensitiv-
ity is not implemented in optimization function. Based on Lucy-Richardson model
assumes Photon probabilistic occurrence like the random distribution.

Needs to be mentioned that i swell known, Matlab built in function deconvblind
has variable input arguments (NUMIT, DAMPAR, WEIGHT, READOUT ) that
serves to improve the algorithm performance while noise is present and preservation
of image structures needed. NUMIT can change number of iterations of algorithm,
DAMPAR specifies standard deviation of Poison noise while iterations pixels with
lower are suppressed . Created array of WEIGHTs would specify the level of how
corresponding pixels are considered while optimization.READOUT given by an ar-
ray of additive noise noise of camera represents another variable input. Optional
settings of method have not been tested since the robustness and possible simplicity
of use has been prioritized.
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𝐼 = 1 nA 𝑘𝑎 = 7 𝐼 = 1 nA 𝑘𝑎 = 9 𝐼 = 1 nA 𝑘𝑎 = dirr.

𝐼 = 4 nA 𝑘𝑎 = 7 𝐼 = 4 nA 𝑘𝑎 = 9 𝐼 = 4 nA 𝑘𝑎 = dir.

Fig. 5.19: Demonstration of AM functionality on real data,acquisition and
algorithm parameters dependency (magnif.=92x UP, 240x DOWN)

𝐼 = 1 nA 𝑘𝑎 = 7 𝐼 = 1 nA 𝑘𝑎 = 9 𝐼 = 1 nA 𝑘𝑎 = dir.

𝐼 = 4 nA 𝑘𝑎 = 7 𝐼 = 4 nA 𝑘𝑎 = 9 𝐼 = 4 nA 𝑘𝑎 = dir.

Fig. 5.20: Demonstration of ML functionality on real data,acquisition and
algorithm parameters dependency (magnif.=92x UP, 240x DOWN)
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6 CONCLUSION
Blind deconvolution has spread around multiple technical fields in recent years.
Problems with computational demands are no more the limitations. Therefore blind
deconvolution signal processing techniques are considered to be promising solution
for enhancement of electron microscope performance. Multiple techniques have been
studied, by the complexity of range of used methods and its assumptions, the frame-
work of blind deconvolution has been partioned. Main model groups are based on
parametric, Bayesian or regularization approach.

Imperfections of mechanical alignment of construction parts, lens aberrations and
properties of sensor determines the achievable quality of output image. Illustrative
description of lens aberrations, blur and noise corruption has been given. Theoretical
part also discuss practical influence of aberrations on output image.

The simulation of degradation process has been designed representing real situ-
ation. The analogy of model parameters with acquisition parameters such as mag-
nification, beam intensity, exposure time, focus or binning has been discussed.

Crucial part of the work represents the assessment of appropriate method to
be implemented. High sensitivity of noise and computational complexity restricts
the parametric methods to be used as solution of the task. Models based on the
Bayesian probability becomes considered approach. Commonly used and Matlab
implemented maximum likelihood method has been tested in comparison with pro-
posed algorithm of alternating minimization. Incorporation of initial guess into
algorithm has been formulated and implemented representing prior restriction of
optional solution. An empirically obtained PSF reflects system specific aberrations,
both the optical and sensor parts. Slightly visible improvement has been revealed in
case of Matlab function. Since, the maximum likelihood does not include the image
characteristics preservation demands, the improvement is not significant. Theoreti-
cally better results should be obtained by proposed method of alternating algorithm
for total variation regularization.

According to chance of simple variability of an AM algorithm in case of combina-
tions set up, general potential of this technique to be used for the electron microscope
images is higher despite the worse results in model part. Considering the use of AM
algorithm on different data sets of electron microscope images,examination of one
or three best constants combination, according to previous results , should prove
comparable good functionality. High SNR images (photographies) are better to be
restored by Matlab algorithm, like revealed model data. The implemented function
assumes the Photon probabilistic noise occurrence and proved to be sufficient. Data
collected by different technique would need to undergo examination to discover best
parameters combination for group of same type images.
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A RESULTS

Tab. A.1: Quality results for ML 1/2

deconvblind (ML) deconvblind (ML) deconvblind (ML)
data set magnification blur matrix size

set 1 set 2 92 240 510 7 9 dirr
mean mean mean mean mean mean mean mean
7.89 8.63 8.56 8.63 8.89 8.16 8.57 9
min min min min min min min min

7 7 7 7 7 7 7 9
max max max max max max max max

9 10 10 10 10 10 10 10

Tab. A.2: Quality results for ML 2/2

deconvblind (ML) deconvblind (ML) deconvblind (ML)
intensity [nA] intensity high res [nA] exposure time [ms]

1 2 4 8 1 2 4 8 25 50 100 200
men mean mean mean mean mean mean mean mean mean mean mean
9.11 9.11 9.33 8.78 8 8.5 8.17 8.6 7.33 8.67 9.67 9
min min min min min min min min min min min min

9 8 9 8 7 8 7 8 7 8 9 9
max max max max max max max max max max max max
10 10 10 9 9 9 9 10 8 9 10 9
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Tab. A.3: Quality results for different data sets(AM)

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

test_data 1 1 0.01 8.60
1 2 1 0.1 10.00

3 1 0.5 7.80
4 10 0.01 4.80
5 10 0.1 3.00
6 10 0.5 9.00
7 100 0.01 11.40
8 100 0.1 6.20
9 100 0.5 5.60
10 1000 0.01 3.60
11 1000 0.1 9.60
12 1000 0.5 11.00
13 10000 0.01 6.40
14 10000 0.1 6.00
15 10000 0.5 5.40

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

test_data 1 1 0.01 7.62
2 2 1 0.1 9.20

3 1 0.5 9.20
4 10 0.01 8.68
5 10 0.1 8.12
6 10 0.5 7.30
7 100 0.01 9.91
8 100 0.1 9.34
9 100 0.5 9.14
10 1000 0.01 8.97
11 1000 0.1 7.75
12 1000 0.5 9.89
13 10000 0.01 9.36
14 10000 0.1 9.25
15 10000 0.5 9.32
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Tab. A.4: Quality results for different magnification(AM)

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

Magnification 1 1 0.01 7.76
92x 2 1 0.1 9.57

3 1 0.5 9.35
4 10 0.01 8.62
5 10 0.1 8.30
6 10 0.5 7.86
7 100 0.01 10.32
8 100 0.1 9.65
9 100 0.5 9.38
10 1000 0.01 9.14
11 1000 0.1 8.16
12 1000 0.5 10.27
13 10000 0.01 9.73
14 10000 0.1 9.51
15 10000 0.5 9.49

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

Magnification 1 1 0.01 7.53
240x 2 1 0.1 9.27

3 1 0.5 8.97
4 10 0.01 8.43
5 10 0.1 7.60
6 10 0.5 6.77
7 100 0.01 9.60
8 100 0.1 9.10
9 100 0.5 8.70
10 1000 0.01 8.47
11 1000 0.1 7.50
12 1000 0.5 9.63
13 10000 0.01 8.93
14 10000 0.1 8.87
15 10000 0.5 8.97

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

Magnification 1 1 0.1 7.33
510x 2 1 0.01 7.44

3 1 0.5 9.33
4 10 0.01 9.78
5 10 0.1 9.11
6 10 0.5 6.78
7 100 0.01 9.22
8 100 0.1 8.89
9 100 0.5 9.67
10 1000 0.01 10.00
11 1000 0.1 6.89
12 1000 0.5 9.22
13 10000 0.01 9.22
14 10000 0.1 9.44
15 10000 0.5 9.78
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Tab. A.5: Quality results for different intensity(AM)

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

Intensity 1 1 0.01 7.10
1nA 2 1 0.1 9.40

3 1 0.5 9.30
4 10 0.01 8.70
5 10 0.1 10.00
6 10 0.5 8.00
7 100 0.01 9.80
8 100 0.1 9.20
9 100 0.5 9.20
10 1000 0.01 9.00
11 1000 0.1 8.10
12 1000 0.5 9.40
13 10000 0.01 9.40
14 10000 0.1 9.00
15 10000 0.5 9.30

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

Intensity 1 1 0.01 7.67
2nA 2 1 0.1 9.11

3 1 0.5 9.11
4 10 0.01 8.56
5 10 0.1 8.00
6 10 0.5 7.22
7 100 0.01 9.56
8 100 0.1 9.22
9 100 0.5 9.33
10 1000 0.01 9.56
11 1000 0.1 7.67
12 1000 0.5 9.44
13 10000 0.01 9.11
14 10000 0.1 9.56
15 10000 0.5 9.67

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

Intensity 1 1 0.01 7.67
4nA 2 1 0.1 10.00

3 1 0.5 8.83
4 10 0.01 8.83
5 10 0.1 7.83
6 10 0.5 7.33
7 100 0.01 9.83
8 100 0.1 9.50
9 100 0.5 9.00
10 1000 0.01 9.00
11 1000 0.1 7.50
12 1000 0.5 10.00
13 10000 0.01 9.50
14 10000 0.1 9.67
15 10000 0.5 9.50

𝑖 𝑔𝑎𝑚𝑚𝑎 𝛼 𝑚𝑒𝑎𝑛

Intensity 1 1 0.01 7.56
8nA 2 1 0.1 8.44

3 1 0.5 9.56
4 10 0.01 9.33
5 10 0.1 8.67
6 10 0.5 6.78
7 100 0.01 9.67
8 100 0.1 9.33
9 100 0.5 9.44
10 1000 0.01 9.44
11 1000 0.1 7.22
12 1000 0.5 9.44
13 10000 0.01 9.44
14 10000 0.1 9.22
15 10000 0.5 9.33
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Tab. A.6: Quality results for different binning (AM)

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

Intensity 1 1 0.01 7.67
1nA 2 1 0.1 9.83

3 1 0.5 9.67
4 10 0.01 8.83
5 10 0.1 8.00
6 10 0.5 6.83
7 100 0.01 10.67
8 100 0.1 9.67
9 100 0.5 9.33
10 1000 0.01 9.17
11 1000 0.1 8.00
12 1000 0.5 10.50
13 10000 0.01 9.33
14 10000 0.1 9.33
15 10000 0.5 9.33

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

Intensity 1 1 0.01 8.00
2nA 2 1 0.1 9.17

3 1 0.5 9.00
4 10 0.01 8.33
5 10 0.1 7.67
6 10 0.5 7.00
7 100 0.01 9.50
8 100 0.1 9.33
9 100 0.5 9.00
10 1000 0.01 8.50
11 1000 0.1 7.83
12 1000 0.5 10.17
13 10000 0.01 9.67
14 10000 0.1 9.00
15 10000 0.5 9.00

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

Intensity 1 1 0.01 7.67
4nA 2 1 0.1 8.50

3 1 0.5 9.00
4 10 0.01 8.17
5 10 0.1 7.67
6 10 0.5 7.00
7 100 0.01 10.00
8 100 0.1 9.00
9 100 0.5 8.67
10 1000 0.01 8.50
11 1000 0.1 7.50
12 1000 0.5 10.17
13 10000 0.01 9.17
14 10000 0.1 9.00
15 10000 0.5 9.00

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

Intensity 1 1 0.01 7.50
8nA 2 1 0.1 8.83

3 1 0.5 9.33
4 10 0.01 9.00
5 10 0.1 8.67
6 10 0.5 6.83
7 100 0.01 9.83
8 100 0.1 9.50
9 100 0.5 9.33
10 1000 0.01 8.50
11 1000 0.1 7.50
12 1000 0.5 9.83
13 10000 0.01 9.33
14 10000 0.1 9.50
15 10000 0.5 9.50
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Tab. A.7: Quality results for different exposure time(AM)

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

Exposure 1 1 0.01 8.00
25ms 2 1 0.1 9.67

3 1 0.5 8.67
4 10 0.01 8.00
5 10 0.1 7.67
6 10 0.5 8.00
7 100 0.01 9.33
8 100 0.1 8.67
9 100 0.5 8.33
10 1000 0.01 8.00
11 1000 0.1 8.00
12 1000 0.5 9.00
13 10000 0.01 8.33
14 10000 0.1 8.33
15 10000 0.5 9.33

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

Exposure 1 1 0.01 8.00
50ms 2 1 0.1 10.00

3 1 0.5 10.00
4 10 0.01 9.00
5 10 0.1 8.67
6 10 0.5 7.67
7 100 0.01 11.00
8 100 0.1 10.00
9 100 0.5 9.33
10 1000 0.01 9.00
11 1000 0.1 8.00
12 1000 0.5 10.00
13 10000 0.01 9.67
14 10000 0.1 9.00
15 10000 0.5 9.67

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

Exposure 1 1 0.01 8.00
100ms 2 1 0.1 9.00

3 1 0.5 9.67
4 10 0.01 9.33
5 10 0.1 8.67
6 10 0.5 8.67
7 100 0.01 11.00
8 100 0.1 10.33
9 100 0.5 10.00
10 1000 0.01 10.00
11 1000 0.1 8.67
12 1000 0.5 11.00
13 10000 0.01 10.00
14 10000 0.1 10.00
15 10000 0.5 10.00

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

Exposure 1 1 0.01 7.33
200ms 2 1 0.1 8.67

3 1 0.5 8.33
4 10 0.01 8.67
5 10 0.1 8.67
6 10 0.5 8.33
7 100 0.01 10.33
8 100 0.1 9.33
9 100 0.5 9.33
10 1000 0.01 9.33
11 1000 0.1 8.00
12 1000 0.5 11.00
13 10000 0.01 10.00
14 10000 0.1 9.33
15 10000 0.5 9.33
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Tab. A.8: Quality results for different PSF type(AM)

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

PSF type 1 1 0.01 7.58
k_a=7 2 1 0.1 9.29

3 1 0.5 9.17
4 10 0.01 8.38
5 10 0.1 7.58
6 10 0.5 7.29
7 100 0.01 9.88
8 100 0.1 9.38
9 100 0.5 8.79
10 1000 0.01 8.83
11 1000 0.1 7.75
12 1000 0.5 9.75
13 10000 0.01 9.25
14 10000 0.1 9.00
15 10000 0.5 9.08

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

PSF type 1 1 0.01 7.85
k_a=9 2 1 0.1 8.93

3 1 0.5 9.11
4 10 0.01 8.22
5 10 0.1 7.37
6 10 0.5 7.44
7 100 0.01 9.78
8 100 0.1 9.04
9 100 0.5 8.93
10 1000 0.01 8.44
11 1000 0.1 7.81
12 1000 0.5 9.96
13 10000 0.01 9.30
14 10000 0.1 9.22
15 10000 0.5 9.30

𝑖 𝛾 𝛼 𝑚𝑒𝑎𝑛

PSF type 1 1 0.01 7.40
Dirrack 2 1 0.1 9.40

3 1 0.5 9.32
4 10 0.01 9.48
5 10 0.1 9.44
6 10 0.5 7.16
7 100 0.01 10.08
8 100 0.1 9.64
9 100 0.5 9.72
10 1000 0.01 9.68
11 1000 0.1 7.68
12 1000 0.5 9.96
13 10000 0.01 9.52
14 10000 0.1 9.52
15 10000 0.5 9.56
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Tab. A.9: Quality assesment of results of model data AM,ML

AM SSIM
Alpha Gamma Index AM ML

k_a sd SNR image h image h image h
5 0.5 0.5 100 10 9 3 0.5331
7 0.5 0.5 10000 1 15 3 0.5657 0.5493
10 0.5 0.1 100 1 9 2 0.6048 0.6898
15 0.5 0.1 10000 1 15 1 0.6456 0.8507
20 0.5 0.5 10000 1 15 3 0.7078 0.9338
30 0.5 0.1 10000 1 15 2 0.7442 0.9647
40 0.5 0.01 10000 1 15 1 0.7488 0.9700
50 0.5 0.01 1000 1 12 1 0.7492 0.9698

k_a sd SNR
7 1 0 0.01 10000 13 0.8353 0.8918
7 2 0 0.01 10000 13 0.6905 0.8099
7 3 0 0.01 10000 13 0.7046 0.7819
7 4 0 0.01 10000 13 0.7112 0.7713
7 5 0 0.01 10000 13 0.7152 0.7663
9 1 0 0.01 10000 13 0.8348 0.8917
9 2 0 0.01 10000 13 0.6683 0.7945
9 3 0 0.01 10000 13 0.6412 0.7513
9 4 0 0.01 10000 13 0.6530 0.7340
9 5 0 0.01 10000 13 0.6587 0.7257
21 1 0 0.01 10000 13 0.8312 0.8917
21 2 0 0.01 10000 13 0.6723 0.7881
21 3 0 0.01 10000 13 0.5724 0.7199
21 4 0 0.01 10000 13 0.5077 0.6732
21 5 0 0.01 10000 13 0.4353 0.6477

k_a sd 0
7 2 10 0.5 0.5 10000 1 15 3 0.4678 0.5041
9 2 10 0.01 0.1 10 1 4 2 0.2033 0.4796
21 2 10 0.5 0.1 10000 1 15 1 0.3945 0.4499
7 2 20 0.1 0.1 1000 1 11 2 0.5035 0.7314
9 2 20 0.01 0.1 10 10 4 5 0.2053 0.7017
21 2 20 0.1 0.01 10 1 5 1 0.0783 0.6679
7 2 30 0.1 0.5 1000 1 14 3 0.5266 0.7797
9 2 30 0.01 0.5 100 100 7 9 0.2051 0.7466
21 2 30 0.5 0.1 1 1 3 2 0.0783 0.7144
7 2 40 0.01 0.1 1000 1 10 2 0.5323 0.7820
9 2 40 0.01 0.01 10 10 4 4 0.2052 0.7509
21 2 40 0.5 0.5 1 10000 3 15 0.0784 0.7216
7 2 50 0.01 0.1 1000 1 13 2 0.5331 0.7821
9 2 50 0.01 0.5 10 1 4 3 0.2052 0.7513
21 2 50 0.5 0.5 1 10000 3 15 0.0783 0.7199
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B PROGRAMMING PART
Data sets coupled with implemented AM algorithm can be found on attached CD.
Files to be tested are stored in method-related folders. Depending on if model
or real images are tested, two separate groups of files are created (method 1,2 vs.
method 3,4). Division in groups represents the choice of pre-modeled data and pre-
estimated PSFs or the method of modelling and testing coupled to the user choice.
The meaning of all possible choices is described in following section.

Whole code is based on work with configuration structure (cfg), which consists of
default and determined settings. The workflow is designed for results examination
therefore functions to save images and results into .mat and .tiff files are also used.

1 %% DEFAULT settings of configuration structure
2 % constants
3 cfg. alfa_con =[ 0.01 0.1 0.5 ];
4 cfg. gama_con =[1 10 100 1000 10000];
5

6 % constants combinations to get best results
7 cfg. constants = combvec (cfg.alfa_con ,cfg. gama_con );
8

9 % algorithm properties
10 cfg. integr_step =10;
11 cfg.u_step =10;
12 cfg.h_init =[];
13 cfg. blur_sd =9;
14 cfg. blur_size =2;
15 cfg. I_orig_lena =
16 im2double ( rgb2gray (imread(’lena512color .tiff ’)));

Method 1 models the image blur with user given parameter and default initial
PSF .

1 %% INPUT SETTINGS
2 %1 method (’model ’)
3 cfg. blur_sd =3;
4 cfg. blur_size =21;

Method 2 uses pre-defined files (.mat) of degraded model (lena) images with
given degradation parameters (kernel size, 𝜎 and SNR). These parameters are esti-
mated from file name to be used while algorithm (function degr_properties_define)
with default initial PSF.

84



1 %% INPUT SETTINGS
2 % 2 method (’model degradation ’)
3 [FILENAME , PATHNAME ]= uigetfile (’.mat ’);
4 load ([ PATHNAME , FILENAME ])
5 cfg.I_degr= I_final_degr ;
6 % degr_blur_size , degr_sd_definition from file name
7 [cfg.blur_size ,cfg.blur_sd ,cfg. degr_SNR ]
8 = degr_properties_define ( FILENAME );

Method 3 works with real microscope images stored in .tiff format. Examina-
tion of all constants combinations defined in default settings in cfg will be done.
Initial PSF is to be chosen from pre-estimated (.mat) files.

1 %% INPUT SETTINGS
2 % 3 method (’real with PSF ’)
3 % Degraded image
4 [FILENAME_im , PATHNAME_im ]= uigetfile (’.tif ’)
5 cfg.I_degr= im2double (imread ([ PATHNAME_im , FILENAME_im ]));
6 % initial PSF
7 [FILENAME_h , PATHNAME_h ]= uigetfile (’.mat ’)
8 load ([ PATHNAME_h , FILENAME_h ]);
9 % dirrack distributin incaseof no initial guess of PSF

10 cfg.h_init=zeros(cfg.blur_size ,cfg. blur_size );
11 h_init(round(cfg. blur_size /2) ,round(cfg. blur_size /2))=1;
12 cfg.h_init=h_init;

Method 4 works with real microscope images stored in .tiff format. Examina-
tion of all constants combinations defined in default settings in cfg will be done.
Initial PSF is not chosen but estimated by algorithm described in (3.1.2) with given
kernel size.

1 %% INPUT SETTINGS
2 % 4 method (’real , PSF estimation ’)
3 % Degraded image
4 [FILENAME_im , PATHNAME_im ]= uigetfile (’.tif ’)
5 cfg.I_degr= im2double (imread ([ PATHNAME_im , FILENAME_im ]));
6 % initial PSF with given size
7 cfg. blur_size =7;
8 PSF= PSF_estimation (cfg. blur_size )
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Following steps are then common for all variants of methods. Blind deconvolution
via implemented AM is performed for all combinations of given constant parameters,
if model image is present, SSIM index is evaluated, otherwise just the images are
saved to undergo subjectively-objective evaluation process.

1 for ii =1: length(cfg. constants )
2 cfg.alfa=cfg. constants (1,ii)
3 cfg.gama=cfg. constants (2,ii)
4 cfg = BD_ssim (cfg ,method);
5 [cfg. ssim_index_image {ii }]= ssim_index_calc (cfg.u,cfg.

u_step ,cfg. I_orig_lena );
6 [cfg. ssim_index_h {ii }]= ssim_index_calc (cfg.h,cfg.u_step ,

cfg. I_orig_lena );
7 cfg.out{ii}= cfg.u;
8 end
9

10 [cfg. alfa_best_image ,cfg. gama_best_image ,cfg.
ind_best_image ,cfg. ssim_best_image ]

11 = ssim_index_eval (cfg. ssim_index_image ,cfg.constants ,cfg.
u_step);

12

13 [cfg.alfa_best_h ,cfg.gama_best_h ,cfg.ind_best_h ,cfg.
ssim_best_h ]

14 = ssim_index_eval (cfg.ssim_index_h ,cfg.constants ,cfg.
u_step);
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