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Abstract
The presented dissertation thesis deals with evaluation of the leading terms of the Williams
asymptotic expansion describing an in-plane electro-elastic field at the tip of piezoelectric bi-
material notches and interface cracks using the expanded Lekhnitskii-Eshelby-Stroh formalism in
connection to the pure anisotropic elasticity. It is demonstrated that the expanded Lekhnitskii-
Eshelby-Stroh formalism with modern Python programming concepts represents an effective
theoretical as well as a practical tool for the fracture analysis of piezoelectric bi-materials.
The theoretical part of the thesis outlines aspects of anisotropic elasticity and their connection
with piezoelectric materials. The governing equations focused on special types of monoclinic
piezoelectric materials, which enable decoupling to the in-plane and anti-plane problem, are
introduced via the complex potentials. In the practical part of the thesis, the eigenvalue problem
of a bi-material notch is proposed in order to determine the singularity exponents as well as the
generalized stress intensity factors by application of the two-state Ψ-integral. All relations and
numerical procedures are applied to the pure anisotropic and subsequently expanded to the
piezoelectric fracture problem of bi-material notches and deeply investigated in the numerical
examples. A special attention is paid to the change of the asymptotic solution connected with the
transition of a very closed notch into an interface crack. Also the influence of arbitrary oriented
poling directions upon asymptotic solution is investigated. The accuracy of calculations of the
generalised stress intensity factors is tested by comparing the asymptotic solutions with results
obtained by the finite element method using a very fine mesh. Finally, the formalism is modified
for non-piezoelectric media such as conductors and insulators.

Keywords
Bi-material notch, interface crack, monoclinic material, expanded Lekhnitskii-Eshelby-Stroh
formalism, piezoelectricity, Ψ-integral, singularity exponent, generalized stress intensity factor





Abstrakt
Předkládaná dizertační práce se zabývá stanovením hlavních členů Williamsova asymptotického
rozvoje popisujícího rovinné elektro-elastické pole v okolí piezoelektrických bi-materiálových
vrubů a trhlin na rozhraní za použití rozšířeného Lechnického-Eshelbyho-Strohova formalismu
v návaznosti na čistě anizotropní pružnost. Je ukázáno, že rozšířený Lechnického-Eshelbyho-
Strohův formalismus představuje spolu s moderními programovacími koncepty v jazyku Python
efektivní a také praktický nástroj pro lomovou analýzu piezoelektrických bi-materiálů. Teore-
tická část práce popisuje aspekty anizotropní pružnosti a její návaznost na piezoelektrické ma-
teriály. Základní rovnice zaměřené na speciální typy monoklinických materiálů, které umožňují
oddělení rovinného a anti-rovinného problému, jsou vyjádřeny pomocí komplexních potenciálů.
V praktické části práce je sestaven problém vlastního hodnot pro bi-materiálový vrub, na jehož
základě jsou stanoveny exponenty singularity a pomocí dvoustavového Ψ-integrálu také zobec-
něné faktory intenzity napětí. Veškeré vztahy a numerické procedury jsou následně rozšířeny na
problém piezoelektrických bi-materiálových vrubů a podrobně prozkoumány v uvedených pří-
kladech. Zvláštní pozornost je věnována přechodu asymptotického řešení téměř zavřených vrubů
a trhlin na rozhraní. Vliv směru polarizace na asymptotické řešení je také zkoumán. Přesnost
stanovení zobecněných faktorů intenzity napětí je testována srovnáním asymptotického řešení
a řešení získaného pomocí metody konečných prvků s velmi jemnou sítí konečných prvků. Na
závěr je formalismus modifikován pro nepiezoelektrické materiály.

Klíčová slova
Bi-materiálový vrub, trhlina na rozhraní, monoklinický materiál, rozšířený Lechnického-Eshelbyho-
Strohův formalismus, piezoelektřina, Ψ-integrál, exponent singularity, zobecněný faktor intenzity
napětí
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1 Introduction
Piezoelectric materials have been extensively used as sensors or actuators in smart advanced
structure design, as well as in many branches of technology. It is well known that piezoelectric
materials produce an electric field when deformed and undergo deformation when subjected to
an electric field. This is so called intrinsic electromechanical coupling phenomenon. Commonly
used piezoelectric materials are ceramics manufactured by conventional ceramic processing. In
order to insure the reliability and structural integrity of electromechanical devices made from
these materials, it is necessary to understand their mechanical behaviour. There has been a lot
of research dealing with behaviour of piezoelectric ceramics. The introduction of the Pak’s paper
[1] is a vignette of primary scientific researches in the field of piezoelectricity, such as [2, 3, 4, 5].
Nevertheless, these studies were limited to the linear elastic fracture mechanics without taking
the electrical effects into account. Modelling of the electro-elastic coupling in combination with
anisotropic behaviour requires a different approach.

Firstly, the computational model for general elastic anisotropic bi-materials is investigated.
The constitutive laws for generally anisotropic materials involve 21 independent elastic constants.
Stress and displacement fields are described by using two well-known formalisms, based on the
complex potential theory. The Lekhnitskii formalism [6] starts from expressions for stresses in
terms of stress functions that satisfy equilibrium and provides a compatibility condition decom-
posed into six operators of the first order. Alternatively, the Stroh formalism [7, 8] shows that
particular solutions can be found in the form of a certain complex combination of 𝑥1 and 𝑥2
coordinate axes. More detailed exposition of the Stroh’s solution including numerous examples
can be seen in [9]. Both the Stroh and Lekhnitskii methods are based on the appropriate lin-
ear transformation of the in-plane coordinates 𝑥1, 𝑥2. This approach requires special solution
methods, limited only to plane elasticity problems.

Many researchers have investigated singular stress fields around a sharp notch in homoge-
neous materials or interface corners [1, 10, 11, 12]. Williams introduced an eigenvector approach
to examine sharp notches in homogeneous media [13]. Based on this studies, Labossiere and
Dunn [14], Carpenter [15] and Sinclair et al. [16] used the Betti’s reciprocal principle to derive
the path-independent Ψ-integral to obtain the stress intensity factors of interface corners be-
tween dissimilar anisotropic materials by using the Stroh formalism. The general solution for
eigenvalues of anisotropic multi-wedges has been provided by Hwu [17].

Stress field in the closed vicinity of multi-material joints has a singular character and stress
singularity exponents differ from 1/2, a characteristic value for cracks. The degree of anisotropy
of many advanced materials is lower than the general anisotropy [9]. These materials possess one
or more symmetry planes, e.g. orthotropic materials with three symmetry planes or transversally
isotropic materials. In such cases, in-plane and anti-plane strains can be decoupled, which allows
these cases to have counterparts for plane analysis of cracks in isotropic materials [18]. To avoid
the difficulty with handling the large number of material constants, the so-called Lekhnitskii-
Eshelby-Stroh (LES) formalism can be implemented [9, 17, 19].

Based on the above mentioned anisotropic theories, piezoelectric continuum is governed by
the expanded equations of linear electromechanical statics. The anisotropy of piezoelectric mate-
rials requires usage of suitable mathematical tools and numerical methods. The expanded Stroh
formalism has been developed for this purpose, as can be seen in [20, 21, 22]. A detailed study
was done by Hirai et al. [23] and Abe et al. [24] for bi-material corners including determination
of the stress intensity factors by using the Ψ-integral. However, the correspondence with other
approaches, such as in Ou and Wu [25] or Ou and Chen [26], has not been pointed out.

In the beginning of the presented thesis, basics of the linear fracture mechanics and its
generalization to the case of the piezoelectric materials are briefly summarized. The thesis is
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focused on the Irwin’s concept of the stress intensity factors and its generalized form for bi-
material notches. Their evaluation combines analytical and numerical methods, which are put
together in the so-called Ψ-integral. The main goal is the deep investigation of the present
LES formalism for pure anisotropic elasticity and its expansion for problems of piezoelectric
materials and a subsequent implementation to the eigenvalue problem of the bi-material notches
and interface cracks. Equivalence of the formalism for the limit case of the geometry – an
interface crack and the Hilbert problem will be also proved.

In spite of a large number of studies related to the interface corners and interface cracks in
jointed dissimilar piezoelectric materials there are only limited data concerning the asymptotic
solutions around these concentrators. In particular, a transition between the oscillatory and
non-oscillatory singularity as a function of the notch geometry and poling orientation for various
dissimilar bi-materials has not been investigated yet. Hence, a wide range of notch geometries,
material combinations, and poling orientations is considered here to shed some light on these
problems.
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(a) (b) (c)

Fig. 2.1: Three symmetry modes, (a) in-plane opening mode, (b) in-plane shearing mode, (c) anti-plane
shearing mode.

2 Linear elastic fracture mechanics
The theory of fracture mechanics is based on stress distribution and stability criterion assessment
of a crack in a homogeneous isotropic material. For description of a stress distribution in the
vicinity of a bi-material notch, we proceed from concepts describing crack properties, because the
basic type of a failure is the unstable crack propagation. Subsequent relations for a simple crack
can be then generalized to notches or wedges. The linear elastic fracture mechanics (LEFM) can
be applied, if the relation between stress and deformation is linear, i.e. the material follows the
Hooke’s law [27]. There are two basic approaches for a crack assessment: the Griffith’s principle
of energetic balance and the Irwin’s principle of the stress intensity factor (K-conception) [18,
27].

2.1 Symmetry modes

In 1960, Irwin introduced so-called symmetry modes describing the fundamental crack loading
states, as illustrates Fig. 2.1. This specification does not impose a limitation on the non-uniform
loaded notches, because such problems can be solved as a superposition of the three symmetry
modes [27]:

1. The opening mode is referred as mode I. The principal load is applied normal to the crack
plane and tends to open it (Fig. 2.1(a)).

2. The in-plane shearing mode is referred as mode II. This mode tends to slide one crack face
with respect to the other (Fig. 2.1(b)).

3. The anti-plane shearing or sliding mode is referred as mode III. The stresses are parallel
both with the plane of a crack and with a crack front (Fig. 2.1(c)).

2.2 Stress and displacement distribution in the vicinity of a crack

The 𝐾-conception, based on the works of Westergaard [28] and Williams [29], is the historically
oldest method for description of a singularity ahead of the crack front. However, it is practically
usable if the plastic zone at the crack tip is small. This is called the small-scale yielding concept.

Let us assume a crack in a continuous linear elastic medium. The crack has a sharp tip
(the crack tip radius → ∞), see Fig. 2.2. The stress and displacement ahead of a crack tip can
be then described as

𝜎𝑖𝑗 = 𝐾𝑘√
2𝜋𝑟

𝑓𝑖𝑗𝑘(𝜃), 𝑘 = I, II, III, (2.1a)
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Fig. 2.2: Definition of the (a) Cartesian and (b) polar coordinate system ahead of a crack tip, the 𝑧
direction is normal to 𝑥𝑦-plane.

𝑢𝑖 = 2𝐾𝑘(1 + 𝜈)
𝐸

√︂
𝑟

2𝜋𝑔𝑖(𝜃,𝜈), 𝑘 = I, II, III, (2.1b)

where 𝐾𝑘, 𝑘 = I, II, III is defined as the stress intensity factor [18]. The functions 𝑓𝑖𝑗𝑘 and 𝑔𝑖

depend only on the polar coordinate 𝜃 and Poisson’s ratio 𝜈. The relations (2.1a) and (2.1b)
represent the classical formulation of fracture mechanics problems, where functions describing
the stress or displacement development are expressed in the form of the product of the normalized
shape function and the stress intensity amplitude. The amplitude is characterised by the stress
intensity factor 𝐾𝑘. In practice, the mode I is often considered as the most dangerous case. The
equations (2.1) only for mode I can be then expressed in the form of [30]⎧⎪⎨⎪⎩

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

⎫⎪⎬⎪⎭ = 𝐾I√
2𝜋𝑟

cos
(︂
𝜃

2

)︂⎧⎪⎨⎪⎩
1 − sin 𝜃

2 sin 3𝜃
2

1 + sin 𝜃
2 sin 3𝜃

2
sin 𝜃

2 cos 3𝜃
2

⎫⎪⎬⎪⎭ , (2.2a)

{︃
𝑢𝑥

𝑢𝑦

}︃
= 𝐾I

2𝐺

√︂
𝑟

2𝜋 (𝜅− cos 𝜃)
{︃

cos 𝜃
2

sin 𝜃
2

}︃
, (2.2b)

where for
plane strain : 𝜅 = 3 − 4𝜈, 𝜎𝑧 = 𝜈 (𝜎𝑥 + 𝜎𝑦) ,
plane stress : 𝜅 = (3 − 𝜈)/(1 + 𝜈), 𝜎𝑧 = 0. (2.3)

The solution for stresses has the singularity type 1√
𝑟
, which approaches infinity for 𝑟 → 0.

The amplitude of the crack-tip field is characterised by the above mentioned stress intensity
factor 𝐾I, which can be determined from the stresses in (2.2) by setting 𝜃 = 0 [30]:

𝐾I = lim
𝑟→0

√
2𝜋𝑟𝜎𝑦(𝜃 = 0). (2.4)

For larger distances 𝑟 from the crack tip, higher (non-singular) terms have to be taken into
account, as reported in [31, 32, 33].
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M1
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M2

M1

M2

M1

M2

M1

M2

M1

M3
M2

(a) (c)(b)

(d) (f)(e)

Fig. 2.3: Typical examples of general singular stress concentrators: (a) V-notch in a homogeneous ma-
terial, (b) bi-material V-notch, (c) interface crack or very closed bi-material notch, (d) crack
terminating at the inclusion surface (e) free edge singularity, (f) example with multiple stress
singularity concentrators.

2.3 General singular stress concentrator

Modern material constructions require application of components with a complicated geometry
including also a combination of different materials whose presence is generally connected with
existence of singular stress concentration. There are many types of singularities such as cracks
with the tip at the bi-material interface, a bi-material laminate, bi-material notches and wedges
[34], as is schematically shown in Fig. 2.3.

The stress near the tip of a singular stress concentrator has a singular character, but the type
of singularity differs from this of cracks. Hence, the standard approach of fracture mechanics
cannot be applied directly. To establish fracture parameters, the asymptotic analysis of the stress
and strain fields has been introduced. Considering 𝑛 singular terms only, the stress distribution
in the vicinity of a general singular stress concentrator (GSSC) is generally expressed in the
form of

𝜎𝑖𝑗 =
𝑛∑︁

𝑘=1

𝐻𝑘√
2𝜋
𝑟−𝑝𝑘𝐹𝑖𝑗𝑘, (2.5)

where 𝑟, 𝜃 are polar coordinates with the origin at the tip of the concentrator, see Fig. 2.4,
and 𝐹𝑖𝑗𝑘 are the functions of a material and geometry. 𝐻𝑘 (𝑘 = 1,2, . . . ,𝑛) are the generalized
stress intensity factors (GSIF), which determine the amplitude of the stress distribution and are
dependent on the external loading. 𝑝𝑘 is the stress singularity exponent and it can be determined
on the basis of boundary conditions prevailing at the notch tip [34]. The value of 𝑝𝑘 is generally
complex and since the stress field and strain energy cannot be unbounded, only values located
in the range of 0 < ℜ(𝑝𝑘) < 1 are considered.

In the case of a transversally isotropic bi-material notch, which is the subject of the study,
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material 1

material 2

𝑟

𝜃

𝜔2

𝜔1

Fig. 2.4: Bi-material notch as a special case of the general singular stress concentrator. The stress and
displacement field is described by polar coordinate system with the origin in the notch tip.

the value 𝑘 = 2 is taken into consideration. The stress singularity exponent 𝑝𝑘 is given by

𝑝𝑘 = 1 − 𝛿𝑘, (2.6)

in which 𝛿𝑘 is the 𝑘th eigenvalue (exponent) of the eigenvalue problem established from the
boundary conditions at the bi-material notch tip. Note that the physical unit of the GSIF is
[𝐻𝑘] = MPa · m1−𝛿𝑘 .

The electro-mechanical coupling and anisotropy of piezoelectric materials make the stress
distribution near a general singular concentrator more complex. The singularity exponent need
not to be necessary simple root of the corresponding eigenproblem. Moreover, it can be accom-
panied with the logarithmic type of singularity (ln 𝑟) 𝑟1−𝛿. Omitting this kind of solution, the
stress field can be written as (2.5), but supplemented with the electric displacement field. The
stress tensor 𝜎𝑖𝑗 is extended with

𝐷𝑗 = 𝜎4𝑗 =
𝑛∑︁

𝑘=1

𝐻𝑘√
2𝜋
𝑟𝑝𝑘𝐹4𝑗𝑘. (2.7)

2.3.1 Conditions of stability

The classical approach of the linear elastic fracture mechanics (the 𝐾-conception) says that an
unstable fracture occurs if the stress intensity factor reaches its critical value 𝐾Icrit, which is
represented for brittle materials by the fracture toughness 𝐾IC. In other words, a crack will
propagate under the pure mode I whenever the stress intensity factor 𝐾I reaches the material
constant 𝐾IC [18, 27]. A similar situation comes about fatigue crack growth where the range of
the stress intensity factor Δ𝐾 is lower than the fatigue crack growth threshold Δ𝐾th [27]. The
stability criterion for a crack has the following form

𝐾I < 𝐾Icrit. (2.8)

Analogically to cracks, a condition for a general singular stress concentrator can be establish.
This value expresses circumstances under which no crack is initiated from the GSSC tip. A
general principle of the stability assessment has been introduced in [34]. Equivalently to (2.8),
the stability condition for such concentrators can be expressed by means of its critical value
𝐻𝑘crit, that is [34, 35, 36]

𝐻𝑘 (𝜎appl) < 𝐻𝑘crit. (2.9)

In practice, there is sometimes a requirement to express the relation between 𝐾Icrit and
𝐻𝑘crit. We assume that the mechanism of the crack propagation from the tip in a generally
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anisotropic material is the same as in the case of a crack in a homogeneous media. New control
variable 𝐿 with the clear physical meaning is introduced. The second assumption is based on the
condition that instability (i.e. 𝐾Icrit and 𝐻𝑘crit) occurs when the variable 𝐿 reaches its critical
value 𝐿 = 𝐿C, which is identical for both critical parameters [34]. For the bi-material notch
stability assessment, we proceed from relations derived for cracks.

2.3.2 Maximal tangential stress criterion (MTS)

The stability condition for a crack with the singularity exponent different from 1/2 is related
to the average stress 𝜎 calculated across a critical distance 𝑑 ahead of the crack tip [37]. It
is expected that the crack will initiate from the notch tip when the average stress achieves its
critical value 𝜎C, i.e. [19]

𝜎𝜃𝜃 = 𝜎C(𝜃0), (2.10)

where the averaged stress on the left-hand side is expressed as

𝜎𝜃𝜃 = 1
𝑑

∫︁ 𝑑

0
𝜎𝜃𝜃 (𝑟, 𝜃0) d𝑟. (2.11)

2.3.3 Criterion of strain energy density factor (SEDF)

The strain energy density factor criterion is based upon the work of Erdogan and Sih [38].
The modified criterion was introduced for example in [39] or [40]. The stress field around
a bi-material notch inherently combines the normal and shear mode of loading. Additionally,
under an assumption that both materials are perfectly bonded, the crack propagation into either
material 1 or 2 is supposed. The strain energy density is defined as

Σ (𝑟,𝜃) = 𝑟
d𝑊
d𝑉 = 𝑟

∫︁ 𝜀𝑝𝑞

0
𝜎𝑖𝑗 d𝜀𝑖𝑗 , (2.12)

where 𝑊 is the strain energy, d𝑉 is a differential volume and 𝜀𝑖𝑗 is a strain. The integrand
in (2.12) has to be the total differential to provide the integral path-independent. The strain
energy density depends on the distance 𝑟 from the notch tip. To avoid this dependence, it is
convenient to introduce a mean value of the SEDF over some distance 𝑑, which is defined by
the relation

Σ (𝑟,𝜃) = 1
𝑑

∫︁ 𝑑

0
Σ (𝑟,𝜃) d𝑟, (2.13)

from which the resulting direction is determined and subsequently used for the stability criterion
estimation defined in Eq. (2.9). A detailed study was reported in [39, 41].

2.4 Determination of the singularity exponent
Let us consider a bi-material notch composed of two generally anisotropic materials. An ideal
adhesion along the interface is assumed. The most effective tool for describing problems of
plane elasticity are methods based on the complex variable theory. Isotropic plane elasticity is
dominantly treated by employing the Muskhelischvili complex potential theory [17, 42]. But,
for dealing with generally anisotropic materials, there are two major approaches implementing
complex potential methods: the Lekhnitskii [6] and Stroh [7] formalism. The expanded Stroh
formalism for piezoelectric media developed by Barber and Ting [43], Pak [1], Suo et al. [10]
and Hwu [20, 22], includes both in-plane and anti-plane fields. But, within the dissertation, an
expansion of the LES formalism presented by Suo [44] is introduced, based on works [45, 46, 47,
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48, 49, 50, 51, 52, 53]. The principle of the expanded LES formalism will be described below in
section 4.2.8 after introducing the linear theory of piezoelectricity.

2.5 Determination of the generalized stress intensity factor
Methods for a stress intensity factor determination of a crack has been well examined and they
are also available in the commercial FEM software. Determination of the GSIF requires more
sophisticated methods, such as the direct or integral method implemented for example in [32,
54, 55]. The latter group involves one special and robust tool for the GSIF computation – the
two state path-independent Ψ-integral (in the literature also known as the 𝐻-integral), which is
based on the Betti’s reciprocal theorem. The method of the Ψ-integral enables determination of
the local stress field in the vicinity of the crack or notch tip by using the real deformation and
stress field in the remote points, where the numerical results are more accurate [19]. Neglecting
the body forces and residual stresses, the Ψ-integral is expressed in the following form:

Ψ (u,û) =
∫︁

Γ

(︁
uᵀt̂ − ûᵀt

)︁
d𝑠. (2.14)

It is path-independent for free-free multi-material wedges when the path Γ emanates from one
notch face to the second one in the counter-clockwise direction [17]. The GSIF is then determined
by virtue of the FEM, regular and auxiliary solutions.
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3 Aims of the thesis
On the basis of the literature survey, the aims of the research conducted within the dissertation
can be proposed as:

• Determination of the stress singularity exponents of a sharp piezoelectric bi-material notch
using the expanded Lekhnitskii-Eshelby-Stroh formalism.

• Establishing the path-independent Ψ-integral to determine the generalized stress intensity
factors. The method of the Ψ-integral enables to define the local stress field parameters,
i.e. the generalized stress intensity factors, in the vicinity of the crack or notch tip by
using a displacement and stress field obtained by the finite element analysis in the remote
points.

• Parametric studies of a dependence of the fracture-mechanical parameters on the material
parameters and boundary conditions.

One of the goals is to introduce and describe theories in the most general way and after that to
give simplified relations that often occur in published papers.
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4 Overview to references relating to the solved prob-
lems

4.1 Two-dimensional anisotropic elasticity

A bi-material notch composed of two generally anisotropic materials covers a group of special
configurations such as orthotropic and isotropic materials or their combinations. Before intro-
ducing the complex potential theories describing stress singularity, some restrictions of material
symmetry have to be defined. The equilibrium equations can be then simplified and decoupled
to in-plane and anti-plane counterparts.

4.1.1 Generalized Hooke’s law

Let us assume an elastic material. Additionally, if the relationship between stresses and strains
is linear, it is usually called the generalized Hooke’s law and written as [17]

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙, (4.1)

where 𝐶𝑖𝑗𝑘𝑙 is the fourth rank tensor characterising elastic behaviour of the solid with 81 in-
dependent constants and 𝑖,𝑗,𝑘,𝑙 = 1,2,3. Employing the stress tensor properties and material
symmetry leads to reduction of the independent material constants.

Since the stress and strain tensor components are symmetric, it implies that [17]

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙, 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘, 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 . (4.2)

Foregoing symmetry restrictions lead to 21 independent elastic constants for the most general
case of anisotropy.

4.1.2 Contracted notation

It is more convenient to express the generalized Hooke’s law by using the contracted notation
of strains and stresses as

𝜎𝑝 = 𝐶𝑝𝑞𝜀𝑞, 𝐶𝑝𝑞 = 𝐶𝑞𝑝 𝑝,𝑞 = 1,2, . . . ,6, (4.3a)

where the indices shrink according to Tab. 4.1. In engineering applications, 𝜎𝑖 and 𝜀𝑖 are usually
replaced by the engineering stress 𝜏𝑖𝑗 and engineering strain 𝛾𝑖𝑗 . The definition (4.3a) can be
expressed in the matrix form as

𝜎 = C𝜀. (4.3b)

It is necessary to point out that the quantities 𝜎𝑝, 𝐶𝑝𝑞, 𝜀𝑞 are not tensors1 and their trans-
formation cannot be treated as by tensors. In the literature, 𝐶𝑝𝑞 is sometimes called stiffness
matrix. Its transformation to a new coordinate system will be described in the section 4.1.4.

The inverse Hooke’s law is defined as

𝜀𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜎𝑘𝑙, (4.4)
1Note that the material properties written down in the component form 𝐶𝑖𝑗𝑘𝑙 are called elastic constants. A

bold symbol C is usually called elastic tensor.
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index 𝑖𝑗 or 𝑘𝑙 index 𝑝 or 𝑞
11 1
22 2
33 3

23 or 32 4
31 or 13 5
12 or 21 6

Tab. 4.1: Contraction of the individual tensor component indices.

in which 𝑆𝑖𝑗𝑘𝑙 are the compliances, also components of a four rank tensor. The symmetry
conditions and contracted notation can be specified in the same manner of the previous relations
(4.2) and (4.3a), i.e.

𝑆𝑖𝑗𝑘𝑙 = 𝑆𝑗𝑖𝑘𝑙, 𝑆𝑖𝑗𝑘𝑙 = 𝑆𝑖𝑗𝑙𝑘, 𝑆𝑖𝑗𝑘𝑙 = 𝑆𝑘𝑙𝑖𝑗 . (4.5)

The contracted notation can be also introduced, nevertheless, some additional rules have to be
added [9]:

𝑆𝑖𝑗𝑘𝑙 = 𝑆𝑝𝑞, if both 𝑝,𝑞 ≤ 3,
2𝑆𝑖𝑗𝑘𝑙 = 𝑆𝑝𝑞, if either 𝑝 or 𝑞 ≤ 3,
4𝑆𝑖𝑗𝑘𝑙 = 𝑆𝑝𝑞, if both 𝑝,𝑞 > 3.

(4.6)

Using the above-stated conditions, it is also possible to express the inverse Hooke’s law in the
contracted form as

𝜀𝑝 = 𝑆𝑝𝑞𝜎𝑞, 𝑆𝑝𝑞 = 𝑆𝑞𝑝 𝑝,𝑞 = 1,2, . . . ,6 (4.7a)

and in the matrix form:
𝜀 = S𝜎. (4.7b)

Substituting (4.7b) into (4.3b) yields to the important relation

CS = SC = I, (4.8)

where I is the unit matrix of the shape 6 × 6.

4.1.3 Material symmetry

Due to the symmetry of the elastic tensor, it is possible to express the relation (4.3b) as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16
𝐶12 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26
𝐶13 𝐶23 𝐶33 𝐶34 𝐶35 𝐶36
𝐶14 𝐶24 𝐶34 𝐶44 𝐶45 𝐶46
𝐶15 𝐶25 𝐶35 𝐶45 𝐶55 𝐶56
𝐶16 𝐶26 𝐶36 𝐶46 𝐶56 𝐶66

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (4.9)

The stiffness matrix in Eq. (4.9) has the form characterising the most general anisotropic
material with no planes of symmetry of the material properties, usually called triclinic material.
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If a material has some symmetry planes, the number of independent constants will be
reduced. Without loss of generality, let the symmetry planes coincide with the global coordinate
planes defined by the Cartesian coordinate system 𝑥1, 𝑥2, 𝑥3. If a material has one symmetry
plane defined by 𝑥3 = 0, the stiffness matrix in (4.9) reduces to

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐶11 𝐶12 𝐶13 0 0 𝐶16
𝐶12 𝐶22 𝐶23 0 0 𝐶26
𝐶13 𝐶23 𝐶33 0 0 𝐶36
0 0 0 𝐶44 𝐶45 0
0 0 0 𝐶45 𝐶55 0
𝐶16 𝐶26 𝐶36 0 0 𝐶66

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.10)

and such material is called monoclinic and has 13 independent elastic constants.
If a material has three mutually orthogonal planes [9], we call it orthotropic (or rhom-

bic) material. With the above introduced condition of principal axes and coordinate system
coincidence, the matrix of elastic constants has the following form:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶13 𝐶23 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.11)

which has 9 independent elastic constants.
An orthotropic material with one certain plane in which the material is isotropic, is called

transversally isotropic. If the plane 𝑥1 = 0 is the plane of isotropy, the stiffness matrix is

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶12 𝐶23 𝐶22 0 0 0
0 0 0 𝐶22−𝐶23

2 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶44

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.12)

with 5 independent constants. A material with elastic constants symmetric to any axis, or in
other words, material properties are identical in all directions, is called isotropic and the stiffness
matrix structure is

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶11 𝐶12 0 0 0
𝐶12 𝐶12 𝐶11 0 0 0
0 0 0 𝐶11−𝐶12

2 0 0
0 0 0 0 𝐶11−𝐶12

2 0
0 0 0 0 0 𝐶11−𝐶12

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.13)

Such material is characterised by 2 independent Lamé constants 𝜆 and 𝜇 defined from Eq. (4.13)
by [17]

𝜆 = 𝐶12, 𝜇 = 𝐶11 − 𝐶12
2 . (4.14)

The generalized Hooke’s law for an isotropic material can be written as

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝜇𝜀𝑖𝑗 , 𝑖,𝑗 = 1,2,3, (4.15)



28 4 Overview to references relating to the solved problems

𝑥2

𝑥1

𝑥*
1 = 𝐿

𝑥*
2 = 𝑇

𝜃

𝑥3 = 𝑥*
3 = 𝑇 ′

Fig. 4.1: Transformation between 𝐿-𝑇 and 𝑥1-𝑥2 coordinate systems.

where 𝛿𝑖𝑗 is the Kronecker delta.
Considering an orthotropic or an isotropic material in engineering applications, material

constants are usually defined, unlike elastic properties of piezoelectric materials, by the Young’s
moduli, Poisson’s ratios and shear moduli. They are measured by uniaxial tension and shear
tests. The structure of the compliance matrix S composed of these engineering constants for a
general anisotropic material is stated in [17], by using the Chentsov coefficients that have to be
additionally defined.

In the following chapters, a bi-material notch composed of at least one transversally isotropic
solids with fibres parallel to the plane 𝑥3 = 0 is considered. Such properties can have for
example unidirectional fibre-reinforced composites consisted of parallel fibres embedded in the
matrix. The direction parallel to the fibres is generally called longitudinal, referred as 𝐿, the
perpendicular is called transverse direction, referred as 𝑇 or 𝑇 ′. Note that 𝑇𝑇 ′ is the plane where
the material has isotropic properties, from which it follows that 𝐸𝑇 = 𝐸𝑇 ′ . Let us designate
a coordinate system 𝐿𝑇𝑇 ′ in these principal material directions. The compliance matrix S is
defined in the principal material axes by using the engineering constants as

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝐸𝐿

−𝜈𝐿𝑇
𝐸𝐿

−𝜈𝐿𝑇
𝐸𝐿

0 0 0
−𝜈𝑇 𝐿

𝐸𝑇

1
𝐸𝑇

−𝜈𝑇 𝑇 ′
𝐸𝑇

0 0 0
−𝜈𝑇 𝐿
𝐸𝑇 ′

−𝜈𝑇 ′𝑇
𝐸𝑇 ′

1
𝐸𝑇 ′

0 0 0
0 0 0 2(1+𝜈𝑇 𝑇 ′ )

𝐸𝑇
0 0

0 0 0 0 1
𝐺𝐿𝑇

0
0 0 0 0 0 1

𝐺𝐿𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.16)

where the components of the lower triangular matrix have to be recomputed by using the
symmetry conditions

𝜈𝑖𝑗

𝐸𝑖
= 𝜈𝑗𝑖

𝐸𝑗
, 𝑖,𝑗 = 𝐿,𝑇,𝑇 ′. (4.17)

Assuming an arbitrary fibre orientation defined by the angle 𝜃 (see Fig 4.1), the stiffness,
or the compliance matrix, respectively, has the form described in Eq. (4.10) for a monoclinic
material. Let us consider that fibres are oriented so that the principal axes go along with the
global Cartesian coordinate system defined by the axes 𝑥1, 𝑥2, 𝑥3. To avoid a mismatch in
the directional indices, we establish that the longitudinal direction 𝐿 coincides with 𝑥1 and the
transversal direction 𝑇 with 𝑥2, i.e. 𝛼 = 0. Then the stiffness matrix attains the form (4.11),
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e.g. the components 𝐶16, 𝐶26, 𝐶36 and 𝐶45 vanish.
The most convenient approach to compose the compliance matrix of a transversally isotropic

material with an arbitrary fibre orientation in the plane 𝑥1𝑥2 can be divided into the following
steps:

1. Assembly of the compliance matrix S (4.16) by using the engineering constants in the
principal material coordinate system 𝐿𝑇𝑇 ′.

2. Rotation of the 𝐿-𝑇 axes to the global 𝑥1-𝑥2 axes about 𝑥3 axis by an angle 𝜃. Note that the
arrow of the angle determines the positive direction of rotation (counter-clockwise). The
sign of the angle will be negative when transforming in the opposite direction (clockwise).

4.1.4 Transformation of the coordinate system

Before we introduce the conditions for a two-dimensional analysis, an orthogonal transformation
of the reference coordinate system has to be defined. Transformation of the principal fibre
directions discussed in the previous section stands for a rigid body rotation about the 𝑥3 axis
by the angle 𝜃. The orthogonal transformation matrix Ω is defined as

Ω =

⎡⎢⎣ cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎦ . (4.18)

Let us pronounce the principal material coordinate system 𝐿𝑇𝑇 ′ as 𝑥*
𝑖 . Four rank tensor of

the elastic constants referred to a new coordinate system 𝑥𝑖 is expressed under the orthogonal
transformation 𝑥𝑖 = Ω𝑖𝑗𝑥

*
𝑗 as [9]

𝐶𝑖𝑗𝑘𝑙 = Ω𝑖𝑝Ω𝑗𝑞Ω𝑘𝑟Ω𝑙𝑠𝐶
*
𝑝𝑞𝑟𝑠. (4.19)

The identical relation can be written for 𝑆𝑖𝑗𝑘𝑙. If we introduce the contracted notation (4.3a) or
(4.7a), using of Eq. (4.19) is not convenient. The stresses and strains in (4.9) are transformed
according to

𝜎 = K𝜎*, (4.20a)

𝜀 =
(︁
K−1

)︁ᵀ
𝜀*, (4.20b)

where the matrix

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos2 𝜃 sin2 𝜃 0 0 0 2 cos 𝜃 sin 𝜃
sin2 𝜃 cos2 𝜃 0 0 0 −2 cos 𝜃 sin 𝜃

0 0 1 0 0 0
0 0 0 cos 𝜃 − sin 𝜃 0
0 0 0 sin 𝜃 cos 𝜃 0

− cos 𝜃 sin 𝜃 cos 𝜃 sin 𝜃 0 0 0 cos2 𝜃 − sin2 𝜃

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.21)

defines a rotation about 𝑥3 axis by the angle 𝜃 (positive in counter-clockwise direction). The
Hooke’s law (4.3b) in the coordinate system 𝑥*

𝑖 is expressed as

𝜎* = C*𝜀*. (4.22)

Substituting inverse relations (4.20) into (4.22) we get

K−1𝜎 = C*Kᵀ
𝜀. (4.23)
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Multiplying by K from the left side, the stress-strain relations in the new coordinate system are
obtained:

𝜎 = KC*Kᵀ
𝜀, (4.24)

where
C = KC*Kᵀ (4.25)

defines the stiffness matrix transformation from the coordinate system 𝑥*
𝑖 to 𝑥𝑖. Analogically,

one can derive a relation for transformation of the compliance matrix:

S =
(︁
K−1

)︁ᵀ
S*K−1. (4.26)

4.1.5 Generalized plane deformation

In a body with general anisotropic properties, plane deformation is usually not possible. Consid-
ering a transversely isotropic material enables to solve the problem as two-dimensional (plane)
problem by asserting that all stress and displacement components depend only on 𝑥1 and 𝑥2
[17]. By satisfying this conditions, behaviour of such body is called generalized plane stress or
generalized plane strain. This state corresponds to given plane state in an isotropic material.

The state of generalized plane strain is characterised by

𝜀3 = 0. (4.27)

Under this condition, the third row of (4.7a) is rewritten as

𝜎3 = −
∑︁
𝑞 ̸=3

𝑆3𝑞𝜎𝑞

𝑆33
. (4.28)

Substituting this relation back into (4.7a), we obtain

𝜀0 = Ŝ𝜎0, (4.29)

where

𝜎0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜎1
𝜎2
𝜎4
𝜎5
𝜎6

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, 𝜀0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜀1
𝜀2
𝜀4
𝜀5
𝜀6

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Ŝ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑆11 𝑆12 𝑆14 𝑆15 𝑆16
𝑆12 𝑆22 𝑆24 𝑆25 𝑆26
𝑆14 𝑆24 𝑆44 𝑆45 𝑆46
𝑆15 𝑆25 𝑆45 𝑆55 𝑆56
𝑆16 𝑆26 𝑆46 𝑆56 𝑆66

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.30)

Components 𝑆𝑝𝑞 are the reduced elastic compliances defined as

𝑆𝑝𝑞 = 𝑆𝑝𝑞 − 𝑆𝑝3𝑆3𝑞

𝑆33
, 𝑆𝑝𝑞 = 𝑆𝑞𝑝. (4.31)

Similarly, the relation (4.3a) under the condition (4.27) leads to

𝜎0 = C0𝜀0, (4.32)

where

C0 =

⎡⎢⎢⎢⎢⎢⎣
𝐶11 𝐶12 𝐶14 𝐶15 𝐶16
𝐶12 𝐶22 𝐶24 𝐶25 𝐶26
𝐶14 𝐶24 𝐶44 𝐶45 𝐶46
𝐶15 𝐶25 𝐶45 𝐶55 𝐶56
𝐶16 𝐶26 𝐶46 𝐶56 𝐶66

⎤⎥⎥⎥⎥⎥⎦ (4.33)
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is created from (4.9) simply by deleting the third row and the third column.
Analogically, the generalized plane stress is defined by

𝜎3 = 0. (4.34)

The equations (4.29) and (4.32) are rewritten as follows:

𝜀0 = S0𝜎0, 𝜎0 = Ĉ0
𝜀0, (4.35)

where the components of S0 are established by eliminating the third row and the third column
of (4.7). Ĉ0 is the reduced stiffness matrix, which components are defined by

𝐶𝑝𝑞 = 𝐶𝑝𝑞 − 𝐶𝑝3𝐶3𝑞

𝐶33
, 𝐶𝑝𝑞 = 𝐶𝑞𝑝. (4.36)

Similarly to (4.8), it can be proved that

C0Ŝ = I S0Ĉ = I. (4.37)

4.1.6 Decoupling of in-plane and anti-plane relations

Let us consider a monoclinic material with symmetry plane parallel to 𝑥3 and generalized plane
strain. The constitutive equation (4.9) for (4.10) comes into the shape of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜎1
𝜎2
𝜎4
𝜎5
𝜎6

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎣
𝐶11 𝐶12 0 0 𝐶16
𝐶12 𝐶22 0 0 𝐶26
0 0 𝐶44 𝐶45 0
0 0 𝐶45 𝐶55 0
𝐶16 𝐶26 0 0 𝐶66

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜀1
𝜀2
𝜀4
𝜀5
𝜀6

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (4.38)

in which the in-plane and anti-plane relations are decoupled. Eqs. (4.38) can be written in the
decomposed form as ⎧⎪⎨⎪⎩

𝜎1
𝜎2
𝜎6

⎫⎪⎬⎪⎭ =

⎡⎢⎣𝐶11 𝐶12 𝐶16
𝐶12 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66

⎤⎥⎦
⎧⎪⎨⎪⎩
𝜀1
𝜀2
𝜀6

⎫⎪⎬⎪⎭ (4.39a)

and {︃
𝜎4
𝜎5

}︃
=
[︃
𝐶44 𝐶45
𝐶45 𝐶55

]︃{︃
𝜀4
𝜀5

}︃
. (4.39b)

The above stated assumptions allow solving the in-plane and anti-plane problem separately.
This relations can be analogically written for generalized plane stress.

Most approaches analysing stress singularities are derived for certain singular stress concen-
trators. Bi-material or multi-material anisotropic wedges are modelled by using plane elasticity
theories based on the Stroh and Lekhnitskii formalism, such as for example [56, 57]. By ex-
ceeding a certain wedge angle, the singularity exponent becomes complex-valued, just as the
resulting stress intensity factors. The aim of the following paragraphs is to derive an universal
formalism that would not distinguish whether the singularity exponents are real or complex.
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4.1.7 Complex potential method – Lekhnitskii-Eshelby-Stroh formalism

In the second half of the last century, plane anisotropic elasticity theory based on complex vari-
able functions had been formulated. Lekhnitskii [6] and Stroh [8] presented pioneering works
for a stress description near singular stress concentrators, which employs advantages of com-
plex variable functions. At the beginning, the Lekhnitskii formalism considers two-dimensional
stresses, whereas Stroh starts with two-dimensional displacements [17]. The application suit-
ability of the individual approaches depends on the type and degree of the problem.

Hwu employed the Stroh formalism [8, 9] in his extensive research and introduced the Key
matrix [58] and the unified definition [59] for stress intensity factors of interface corners and
cracks. This theory represents a strong mathematical tool for dealing with anisotropic singular
concentrator. Considering a combination of an orthotropic and isotropic material, the relations
for complex potentials violate the key matrix. However, Hwu presented a study in [60] that
concerns with these configurations.

Besides that, Suo [44] introduced the Lekhnitskii-Eshelby-Stroh formalism (LES). It was
also based on the studies of Ting [61, 62], where the modified Lekhnitskii formalism was intro-
duced, which was in fact the same principle. When a monoclinic material defined in (4.38) is
considered, the Lekhnitskii and Stroh formalism are formally indistinguishable. The equivalence
allows to take an advantage of the clear algebraic results as well as the explicit solutions derived
from Lekhnitskii’s relations. There have been two reasons to use these basic characteristics of
complex variable functions. Firstly, differentiation in the complex domain can be treated as an
equivalent of harmoniousness, i.e. when a function has its derivative in a complex domain (in the
complex theory they are called analytical functions), it fulfils the so called biharmonic equation
automatically and thus it can be used for an expression of the Airy stress function. Another
advantage is a complex variable application, which leads to simplification of the elastic variable
description. In the LES formalism, material properties of a monoclinic material are charac-
terized only by three material eigenvalues 𝜇𝑖 (𝑖 = 1,2,3), when both in-plane and anti-plane
fields are taking into account. When only in-plane fields are considered, material eigenvalues
are reduced to two. Their definition will be shown in the following paragraphs.

Governing differential equations

The basic equations for anisotropic elasticity are the equilibrium equations for static loading con-
ditions (4.40), the strain-displacement relations (4.40b) and the Hooke’s law for linear anisotropic
elastic solids (4.40c). That is

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝑓𝑖 = 0 , (4.40a)

𝜀𝑖𝑗 = 1
2

(︃
𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜕𝑢𝑗

𝜕𝑥𝑖

)︃
, (4.40b)

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 , (4.40c)

where indices 𝑖,𝑗,𝑘,𝑙 = 1,2,3, 𝑓𝑖 designates body forces referred to a unit volume. In order to
conform with the Lekhnitskii’s nomenclature, all parameters will be written out according to
the conventional notation instead of the contracted notation, i.e. 𝑥1 → 𝑥, 𝑥2 → 𝑦, 𝜎1 → 𝜎𝑥,
𝜎2 → 𝜎𝑦, 𝜎12 → 𝜏𝑥𝑦, 𝜎13 → 𝜏𝑥𝑧, 𝜎23 → 𝜏𝑦𝑧. On the basis of two Airy functions 𝜙(𝑥,𝑦) and
𝜓(𝑥,𝑦), the stresses are expressed as

𝜎𝑥 = 𝜕2𝜙

𝜕𝑦2 + 𝐹 , 𝜎𝑦 = 𝜕2𝜙

𝜕𝑥2 + 𝐹 , 𝜏𝑥𝑦 = − 𝜕2𝜙

𝜕𝑥𝜕𝑦
, 𝜏𝑥𝑧 = 𝜕𝜓

𝜕𝑦
, 𝜏𝑦𝑧 = −𝜕𝜓

𝜕𝑥
, (4.41)
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where 𝐹 is the potential of the body forces 𝑓𝑥 and 𝑓𝑦, for which it holds

𝑓𝑥 = −𝜕𝐹

𝜕𝑥
, 𝑓𝑦 = −𝜕𝐹

𝜕𝑦
. (4.42)

By employing the inverse stress-strain relation (4.40c) and strain-displacement relation (4.40b),
strain and displacement components can also be written out in terms of the Airy stress function.

For the sake of brevity, only relevant equations of the formalism will be stated, the reader
is referred to [17, p. 34] for the detailed derivation. When the displacement compatibility is
satisfied, the problem leads to a homogeneous system of differential equations:

𝐿4𝜙+ 𝐿3𝜓 = −(𝑆12 + 𝑆22)𝜕
2𝐹

𝜕𝑥2 + (𝑆16 + 𝑆26) 𝜕
2𝐹

𝜕𝑥𝜕𝑦
− (𝑆11 + 𝑆12)𝜕

2𝐹

𝜕𝑦2 ,

𝐿3𝜙+ 𝐿2𝜓 = −2𝛼+𝐴𝑆34 −𝐵𝑆35 + (𝑆14 + 𝑆24)𝜕𝐹
𝜕𝑥

+ (𝑆15 + 𝑆25)𝜕𝐹
𝜕𝑦

,

(4.43a)

where 𝐿2, 𝐿3, 𝐿4 are differential operators of the second, third and fourth order:

𝐿2 = 𝑆44
𝜕2

𝜕𝑥2 − 2𝑆45
𝜕2

𝜕𝑥𝜕𝑦
+ 𝑆55

𝜕2

𝜕𝑦2 ,

𝐿3 = −𝑆24
𝜕3

𝜕𝑥3 + (𝑆25 + 𝑆46) 𝜕3

𝜕𝑥2𝜕𝑦
− (𝑆14 + 𝑆56) 𝜕3

𝜕𝑥𝜕𝑦2 + 𝑆15
𝜕3

𝜕𝑦3 ,

𝐿4 = 𝑆22
𝜕4

𝜕𝑥4 − 2𝑆26
𝜕4

𝜕𝑥3𝜕𝑦
+ (2𝑆12 + 𝑆66) 𝜕4

𝜕𝑥2𝜕𝑦2 − 2𝑆16
𝜕4

𝜕𝑥𝜕𝑦3 + 𝑆11
𝜕4

𝜕𝑦4 ,

(4.43b)

where 𝑆𝑖𝑗 are the reduced elastic compliances defined in (4.31). 𝐴, 𝐵, 𝛼 are the arbitrary
constants associated with the rigid body motion.

General solution

Lekhnitskii [6] assumed the solution in the form

𝜙 = 𝜙(ℎ) + 𝜙(𝑝), 𝜓 = 𝜓(ℎ) + 𝜓(𝑝), (4.44)

where 𝜙(𝑝), 𝜓(𝑝) are the particular solutions of the non-homogeneous system (4.43a). Let us first
find a solution of the homogeneous system

𝐿4𝜙
(ℎ) + 𝐿3𝜓

(ℎ) = 0,
𝐿3𝜙

(ℎ) + 𝐿2𝜓
(ℎ) = 0,

(4.45)

where 𝜙(ℎ), 𝜓(ℎ) are the homogeneous solutions of the Airy stress functions. Eliminating 𝜓(ℎ)

from both equations in (4.43a), we get an equation of the sixth order:(︁
𝐿4𝐿2 − 𝐿2

3

)︁
𝜙(ℎ) = 0. (4.46)

The sixth order operator 𝐿4𝐿2 −𝐿2
3 can be decomposed into six operators of the first order, i.e.

𝐷6𝐷5𝐷4𝐷3𝐷2𝐷1𝜙
(ℎ) = 0, (4.47)

where
𝐷𝑘 = 𝜕

𝜕𝑦
− 𝜇𝑘

𝜕

𝜕𝑥
, 𝑘 = 1,2, . . . 6 (4.48)
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and 𝜇𝑘 are the roots of the characteristic algebraic equation associated with the differential
equation (4.46), i.e. [62]

𝑙4(𝜇)𝑙2(𝜇) − 𝑙23(𝜇) = 0, (4.49a)

where

𝑙2(𝜇) = 𝑆55𝜇
2 − 2𝑆45𝜇+ 𝑆44,

𝑙3(𝜇) = 𝑆15𝜇
3 − (𝑆14 + 𝑆56)𝜇2 + (𝑆25 + 𝑆46)𝜇− 𝑆24,

𝑙4(𝜇) = 𝑆11𝜇
4 − 2𝑆16𝜇

3 + (2𝑆12 + 𝑆66)𝜇2 − 2𝑆26𝜇+ 𝑆22.

(4.49b)

For an anisotropic material and by considering both in-plane and anti-plane stress components,
there are always three pair of complex conjugate roots of the characteristic equation (4.49a).
For the subsequent computations, let us arrange the roots 𝜇𝑘 in the following order:

𝜇𝑘+3 = 𝜇𝑘, ℑ𝜇𝑘 > 0, 𝑘 = 1,2,3. (4.50)

Solving the problem (4.47) by successive integration, we obtain the stress functions in the form

𝜙(ℎ) = 2ℜ
3∑︁

𝑘=1
𝜙𝑘(𝑧𝑘), 𝑧𝑘 = 𝑥+ 𝜇𝑘𝑦 (4.51)

or

𝜓(ℎ) = 2ℜ
3∑︁

𝑘=1
𝜓𝑘(𝑧𝑘), (4.52)

when Eq. (4.46) is expressed in terms of 𝜓(ℎ).
At this point, it is convenient to introduce a material assumption which will lead to simpli-

fication of the governing equations. Firstly, for a monoclinic material with the symmetry plane
at 𝑧 = 0 (see (4.10)), the elastic compliances in 𝑙3(𝜇) all vanish. The sextic equation (4.49a) is
then reduced to two equations: 𝑙4(𝜇) = 0 for the in-plane field and 𝑙2(𝜇) = 0 for the anti-plane
field. Three distinct material eigenvalues split up into 𝜇1, 𝜇2 as the roots of 𝑙4(𝜇) = 0 and 𝜇3
of 𝑙2(𝜇) = 0. Secondly, when the problem is treated as two-dimensional, with the monoclinic
material assumption and neglecting of the body forces, the particular solution is zero including
the arbitrary constants 𝐴, 𝐵 and 𝛼. The relation between 𝜙𝑘 and 𝜓𝑘 is

𝜓𝑘(𝑧𝑘) = 𝜂𝑘𝜙
′
𝑘(𝑧𝑘), 𝑘 = 1,2,3, (4.53)

where
𝜂𝑘 = −𝑙3(𝜇𝑘)

𝑙2(𝜇𝑘) = −𝑙4(𝜇𝑘)
𝑙3(𝜇𝑘) . (4.54)

As 𝑙4(𝜇1) = 𝑙4(𝜇2) = 𝑙2(𝜇3) = 0, relations (4.54) will lead to be divided by zero or infinity. To
get non-zero expressions, we use 𝑙4(𝜇3) = 𝑙2(𝜇1) = 𝑙2(𝜇2) ̸= 0. To avoid of using coefficients that
approach zero or infinity due to the 𝑙3(𝜇𝑘) = 0, the expressions for stress functions are defined
as

𝜙 = 2ℜ {𝜙1(𝑧1) + 𝜙2(𝑧2) + 𝜙3(𝑧3)} ,

𝜓 = 2ℜ
{︂
𝜆1𝜙

′
1(𝑧1) + 𝜆2𝜙

′
2(𝑧2) + 1

𝜆3
𝜙′

3(𝑧3)
}︂
,

(4.55)

in which
𝜆1 = 𝜂1 = −𝑙3(𝜇1)

𝑙2(𝜇1) , 𝜆2 = 𝜂2 = −𝑙3(𝜇2)
𝑙2(𝜇2) , 𝜆3 = 1

𝜂3
= −𝑙3(𝜇𝑘)

𝑙4(𝜇𝑘) . (4.56)
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Since the terms 𝜆1, 𝜆2 and 𝜆3 become zero for a monoclinic material and 𝜙3 is an arbitrary
function, we introduce the new stress functions 𝑓𝑘(𝑧𝑘) that absorb the coefficients as follows:

𝑓1(𝑧1) = 𝜙′
1(𝑧1), 𝑓2(𝑧2) = 𝜙′

2(𝑧2), 𝑓3(𝑧3) = 1
𝜆3
𝜙′

3(𝑧3). (4.57)

Inserting Eq. (4.55) into (4.41) with the new functions (4.57) leads to the following expressions
for stresses:

𝜎𝑥 = 2ℜ
{︁
𝜇2

1𝑓
′
1(𝑧1) + 𝜇2

2𝑓
′
2(𝑧2)

}︁
,

𝜎𝑦 = 2ℜ
{︀
𝑓 ′

1(𝑧1) + 𝑓 ′
2(𝑧2)

}︀
,

𝜏𝑥𝑦 = −2ℜ
{︀
𝜇1𝑓

′
1(𝑧1) + 𝜇2𝑓

′
2(𝑧2)

}︀
,

𝜏𝑥𝑧 = 2ℜ
{︀
𝜇3𝑓

′
3(𝑧3)

}︀
,

𝜏𝑦𝑧 = −2ℜ
{︀
𝑓 ′

3(𝑧3)
}︀
.

(4.58)

The displacements are expressed by inserting Eq. (4.58) into the inverse stress-strain relation
(4.29) and consequently to (4.40b), which leads to

𝜕𝑢

𝜕𝑥
= 𝑆11𝜎𝑥 + 𝑆12𝜎𝑦 + 𝑆14𝜏𝑦𝑧 + 𝑆15𝜏𝑥𝑧 + 𝑆16𝜏𝑥𝑦,

𝜕𝑣

𝜕𝑦
= 𝑆12𝜎𝑥 + 𝑆22𝜎𝑦 + 𝑆24𝜏𝑦𝑧 + 𝑆25𝜏𝑥𝑧 + 𝑆26𝜏𝑥𝑦,

𝜕𝑤

𝜕𝑦
= 𝑆14𝜎𝑥 + 𝑆24𝜎𝑦 + 𝑆44𝜏𝑦𝑧 + 𝑆45𝜏𝑥𝑧 + 𝑆46𝜏𝑥𝑦,

𝜕𝑤

𝜕𝑥
= 𝑆15𝜎𝑥 + 𝑆25𝜎𝑦 + 𝑆45𝜏𝑦𝑧 + 𝑆55𝜏𝑥𝑧 + 𝑆56𝜏𝑥𝑦,

𝜕𝑢

𝜕𝑦
+ 𝜕𝑣

𝜕𝑥
= 𝑆16𝜎𝑥 + 𝑆26𝜎𝑦 + 𝑆46𝜏𝑦𝑧 + 𝑆56𝜏𝑥𝑧 + 𝑆66𝜏𝑥𝑦,

(4.59)

where the contracted notation 𝑢1 ≡ 𝑢, 𝑢2 ≡ 𝑣, 𝑢3 ≡ 𝑤 was implemented. Considering a
monoclinic material and generalized plane strain, the reduced elastic compliances vanish, i.e.
𝑆14 = 𝑆15 = 𝑆24 = 𝑆25 = 𝑆46 = 𝑆56 = 0. By integration of these resulting equations, we can
find the displacements functions as

𝑢 = 2ℜ
{︃ 3∑︁

𝑘=1
𝑎1𝑘𝑓𝑘(𝑧𝑘)

}︃
,

𝑣 = 2ℜ
{︃ 3∑︁

𝑘=1
𝑎2𝑘𝑓𝑘(𝑧𝑘)

}︃
,

𝑤 = 2ℜ
{︃ 3∑︁

𝑘=1
𝑎3𝑘𝑓𝑘(𝑧𝑘)

}︃
,

(4.60a)

where
𝑎1𝑘 = 𝜇2

𝑘𝑆11 + 𝑆12 − 𝜇𝑘𝑆16,

𝑎2𝑘 =
(︁
𝜇2

𝑘𝑆21 + 𝑆22 − 𝜇𝑘𝑆26
)︁
/𝜇𝑘,

𝑎3𝑘 = 0, 𝑘 = 1,2,
𝑎13 = 0,
𝑎23 = 0,

𝑎33 =
(︁
𝜇3𝑆45 − 𝑆44

)︁
/𝜇3,

(4.60b)
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Eshleby et al. [63] presented a similar representation based on the Navier-Cauchy equations.
It has the same structure as Eqs. (4.60) and (4.58) and it is written in more elegant form as

𝑢𝑖 = 2ℜ
{︃ 3∑︁

𝑘=1
𝐴𝑖𝑘𝑓𝑘(𝑧𝑘)

}︃
, (4.61a)

𝑇𝑖 = −2ℜ
{︃ 3∑︁

𝑘=1
𝐿𝑖𝑘𝑓𝑘(𝑧𝑘)

}︃
, (4.61b)

𝜎1𝑖 = −2ℜ
{︃ 3∑︁

𝑘=1
𝐿𝑖𝑘𝜇𝑘𝑓

′
𝑗(𝑧𝑘)

}︃
, 𝜎2𝑖 = 2ℜ

{︃ 3∑︁
𝑘=1

𝐿𝑖𝑘𝑓
′
𝑘(𝑧𝑘)

}︃
, (4.61c)

where 𝑇𝑖 are the components of the stress function vector along the semi-infinite line passing
through the origin of the coordinate system 𝑥1𝑥2. It is convenient to adopt the matrix convention
from the Stroh formalism. Let us write the complex potentials into a vector as

f(𝑧) =

⎧⎪⎨⎪⎩
𝑓1(𝑧1)
𝑓2(𝑧2)
𝑓3(𝑧3)

⎫⎪⎬⎪⎭ , 𝑧𝑘 = 𝑥+ 𝜇𝑘𝑦, 𝑘 = 1,2,3. (4.62)

Then, the equations (4.61a) and (4.61b) can be written as

u(𝑧) = 2ℜ {Af(𝑧)} , (4.63a)

T(𝑧) = 2ℜ {Lf(𝑧)} . (4.63b)

The displacements and stress function vectors have the form:

u(𝑧) =

⎧⎪⎨⎪⎩
𝑢1
𝑢2
𝑢3

⎫⎪⎬⎪⎭ , T(𝑧) =

⎧⎪⎨⎪⎩
𝑇1
𝑇2
𝑇3

⎫⎪⎬⎪⎭ , (4.64)

where 𝑢 ≡ 𝑢1, 𝑣 ≡ 𝑢2, 𝑢 ≡ 𝑢3. The matrices A and L have then the following structure:

A =

⎡⎢⎣𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤⎥⎦ , L =

⎡⎢⎣−𝜇1 −𝜇2 0
1 1 0
0 0 −1

⎤⎥⎦ . (4.65)

The matrix elements 𝑎𝑖𝑘 are defined in (4.60b). Assuming plane strain, each of the characteristic
roots 𝜇𝑘 and each corresponding column of A are solved from the eigenvalue problem from the
Stroh formalism [7], [44] [︁

Q + 𝜇𝑘

(︁
R + Rᵀ)︁+ 𝜇2

𝑘T
]︁

a = 0, (4.66)

where
𝑄𝑖𝑘 = 𝐶𝑖1𝑘1, 𝑅𝑖𝑘 = 𝐶𝑖1𝑘2, 𝑇𝑖𝑘 = 𝐶𝑖2𝑘2, 𝑖,𝑘 = 1,2,3. (4.67)

Each column of A is multiplied by the arbitrary normalization coefficient, i.e.

A =

⎡⎢⎣𝑐1𝑎11 𝑐2𝑎12 𝑐3𝑎13
𝑐1𝑎21 𝑐2𝑎22 𝑐3𝑎23
𝑐1𝑎31 𝑐2𝑎32 𝑐3𝑎33

⎤⎥⎦ , L =

⎡⎢⎣−𝑐1𝜇1 −𝑐2𝜇2 0
𝑐1 𝑐2 0
0 0 −𝑐3

⎤⎥⎦ . (4.68)
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Fig. 4.2: Normal and tangent directions of a boundary surface.

Thus, 𝜇𝑘 are the roots of the characteristic sixth-order polynomial⃒⃒⃒
Q + 𝜇𝑘

(︁
R + Rᵀ)︁+ 𝜇2

𝑘T
⃒⃒⃒

= 0. (4.69)

The matrix L is associated with A as

𝐿𝑖𝑗 =
3∑︁

𝑘=1
[𝑅𝑖𝑘 + 𝜇𝑗𝑇𝑖𝑘] 𝑎𝑘𝑗 = 0. (4.70)

This relation shows that by comparing the uniquely normalized Lekhnistkii matrices (4.65) with
those in (4.68) derived by Stroh [7], the normalization coefficients are eliminated by using Eq.
(4.70) and Eshelby’s [63] representation (4.61) is uniquely determined by the elastic constants
of the considered material.

Boundary conditions

The arbitrary complex functions 𝑓𝑘(𝑧𝑘) are determined through the satisfaction of the boundary
conditions on the lateral surface. The first fundamental problem resides in prescribing the
tractions 𝑡𝑥, 𝑡𝑦 and 𝑡𝑧 = 0 along the boundary by

𝜎𝑥𝑛1 + 𝜏𝑥𝑦𝑛2 = 𝑡𝑥, 𝜏𝑥𝑦𝑛1 + 𝜎𝑦𝑛2 = 𝑡𝑦, 𝜏𝑥𝑧𝑛1 + 𝜏𝑦𝑧𝑛2 = 0. (4.71)

The normal vector n of the boundary is defined by

𝑛1 = − sin 𝜃 = − d𝑦
d𝑠 , 𝑛2 = cos 𝜃 = d𝑥

d𝑠 . (4.72)

The tangential direction 𝑠 is chosen so that when we face the direction of the increasing 𝑠,
the material lies on the right side (see Fig. 4.2). Inserting (4.41) and (4.72) into (4.71) and
integrating with respect to 𝑠, we get

𝜕𝜙

𝜕𝑦
= 𝑇𝑥(𝑠) + 𝑐1,

𝜕𝜙

𝜕𝑥
= 𝑇𝑦(𝑠) + 𝑐2, 𝜓 = 𝑐3, (4.73a)

where 𝑐1, 𝑐2, 𝑐3 are the integration constants and

𝑇𝑥(𝑠) = −
∫︁ 𝑠

0
𝑡𝑥 d𝑠,

𝑇𝑦(𝑠) =
∫︁ 𝑠

0
𝑡𝑦 d𝑠.

(4.73b)
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Substituting (4.55) and (4.57) into (4.73a), we obtain

2ℜ {𝜇1𝑓1 + 𝜇1𝑓1} = 𝑇𝑥(𝑠) + 𝑐1,

2ℜ {𝑓1 + 𝑓1} = 𝑇𝑦(𝑠) + 𝑐2,

2ℜ {𝑓3} = 𝑐3.

(4.74)

The second fundamental problem is represented by the displacements prescribed along the
boundary:

𝑢 = �̂�, 𝑣 = 𝑣, 𝑤 = �̂�. (4.75)

Using (4.59), (4.60) and (4.75), one gets

2ℜ
{︃ 3∑︁

𝑘=1
𝑎1𝑘𝑓𝑘(𝑧𝑘)

}︃
=�̂�,

2ℜ
{︃ 3∑︁

𝑘=1
𝑎2𝑘𝑓𝑘(𝑧𝑘)

}︃
=𝑣,

2ℜ
{︃ 3∑︁

𝑘=1
𝑎3𝑘𝑓𝑘(𝑧𝑘)

}︃
=�̂�.

(4.76)

4.2 Two-dimensional piezoelectric elasticity

4.2.1 Background

Piezoelectricity was discovered by the brothers Jacques and Pierre Curie in 1880. Piezoelectric
materials possess a property that an electric field is induced when it is subjected to pressure,
i.e. direct piezoelectric effect. The effect is also reversible, i.e. deformations occur due to the
applied electric field, which is known as the converse piezoelectric effect predicted by Gabriel
Lippmann in 1881. The piezoelectric effect can be manifested only when materials have a
non-centrosymmetric crystal structure, represented by 21 crystal classes. Ten of them exhibit
spontaneous polarization without mechanical stress due to the permanent dipole moment [64].
Such materials are called pyroelectric [65]. If the polarization can be reversed, the material
is denoted as ferroelectric. Their relations can be seen in Fig. 4.3. Anther non-ferroelectric
piezoelectric classes do not have a spontaneous polarization, such as quartz, which has a trigonal
crystal lattice. The piezoelectric effect is then caused by polarization due to the distortion on
the crystal lattice and creating electrical dipoles, which dismiss during unloading. However, the
effect is not very strong. In the case of ferroelectric solids, the piezoelectric effect is caused
by changing the magnitude of polarization also by the lattice distortion, but it is stronger and
proportional to the initial polarization. These materials are not spontaneously polarized, but
the polarization can be induced through so called poling [66, p. 27], [67, p. 16]. Ferroelectric
materials can be crystals, ceramics or polymers.

Within the dissertation, we introduce a simplification that when we speak about piezoelectric
materials, we mean a group of ferroelectric piezoelectric materials, i.e. spontaneous polarization
exists in their structure even in the absence of an electrical field. We focus on piezoelectric
ceramics whose physical properties are suitable for a wide range of smart technical applications,
namely zirconate titanate (PZT) series, potassium sodium niobate (PSN) series or perovkites
characterized by the chemical formula ABO3, where A is a mono- or divalent alkaline earth
metal and B is a tetra- or pentavalent metal [65, 68]. These materials exhibit good strength
and stiffness and excellent piezoelectricity [69]. Piezoelectric ceramics are produced by pressing
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Fig. 4.3: Sorting of dielectric materials [66].
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Fig. 4.4: Perovskite crystal structure of BaTiO3 (a) above the Curie temperature with cubic lattice, (b)
below the Curie temperature with tetragonal lattice (Curie temperature ∼ 130 ∘C).

ferroelectric grains, which are provided in a form of a fine powder. During the fabrication process,
the powder is sintered above the Curie temperature. Over this point, the crystal has a cubic
symmetry (such materials are called paraelectrics), with no dipole moments. As it cools down,
it undergoes a phase transformation to the ferroelectric state with a tetragonal or rhomboedral
crystal symmetry [70]. The process can be illustrated on the barium titanate (BaTiO3) in Fig.
4.4. The phase transformation at about 130 ∘C involves movement of the Ba2+ ions to the off-
centre position, which initiates a dipole moment. The electric domains are randomly oriented,
which leads to zero macroscopic net polarization and all piezoelectric constants would be zero
(Fig. 4.5(a)). Exposing the ceramic element to a sufficiently strong uni-direction electric field
usually at the temperature slightly below the Curie temperature causes reorientation of domains
in the direction of the applied field (Fig. 4.5(b)). After this poling process, domains do not return
to their initial positions and most nearly remain in alignment with the direction of the applied
electric field, which is called the poling direction (Fig. 4.5(c)). Now, it is able to induce the
piezoelectric effect by applying an appropriate electric field, which results to the domain motion
and consequent lattice deformation [71]. Hence, the poling direction is a significant material
parameter which plays an important role in a design of piezoelectric devices. Note that the above
described transformation phase is not the only one. For example, at 0 ∘C (the second transition
temperature) or at −90 ∘C the ferroelectric to ferroelectric phase transformation occurs.
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Fig. 4.5: Poling of a piezoelectric element: (a) prior to polarization, domains are oriented randomly, (b)
exposing to large uni-direction electric field, (c) state after polarization, almost unidirectional
polarization of domains.

4.2.2 Piezoelectric constitutive equations

In the following paragraphs, the governing equations and boundary conditions for piezoelec-
tric materials by considering the variation principle and thermodynamics are introduced. The
internal energy stored in any linear-elastic dielectric can be written as [1]

𝑈 = 1
2𝜎𝑖𝑗𝜀𝑖𝑗 + 1

2𝐸𝑖𝐷𝑖, (4.77)

where 𝑈 is the internal energy density, 𝜎𝑖𝑗 is the stress tensor, 𝜀𝑖𝑗 is the strain tensor, 𝐷𝑖 is the
electric displacement (in the literature also called induction) and 𝐸𝑖 is the electric field. The
internal energy 𝑈 can be considered as the thermodynamic potential with respect to charges
on a dielectric. To derive the governing equations with 𝐸𝑖 (related to the electric potential 𝜑)
instead of 𝐷𝑖 (related to the electric charge 𝑞) as an independent variable, we need to introduce
another thermodynamic potential with respect to the electric potential. Therefore, the electric
enthalpy density is defined as [72]

𝐻 = 𝑈 −𝐷𝑖𝐸𝑖, (4.78)

where the second term −𝐷𝑖𝐸𝑖 has an importance due to the energy variation [1]. Therefore,
𝐻 is the thermodynamic potential when the mechanical displacement and the electric potential
are taken to be the independent variables.

To derive the governing equations and boundary conditions for a piezoelectric material, we
need to employ the following variational form of the relation between the enthalpy (4.78) and
the work of the external mechanical and electric loads [73]:

𝛿

∫︁
𝑉
𝐻 d𝑉 −

∫︁
𝑉

(𝑓𝑖𝛿𝑢𝑖 − 𝑞𝑏𝛿𝜑) d𝑉 −
∫︁

𝑆
(𝑡𝑖𝛿𝑢𝑖 − 𝑞𝑠𝛿𝜑) d𝑆 = 0, (4.79)

where 𝑓𝑖 is the body force, 𝑢𝑖 is the displacement, 𝑞𝑏 or 𝑞𝑠 is the body or applied surface charge,
which is usually zero, 𝑡𝑖 is the applied surface traction, 𝜑 is the electric potential, 𝑉 is the
volume of the material and 𝑆 is the material boundary. The electric enthalpy density in the first
integral of (4.79) for a linear elastic piezoelectric material follows from Eq. (4.78) and according
to [72] it is defined as

𝐻 (𝜀𝑖𝑗 ,𝐸𝑖) = 1
2𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 − 1

2𝜔𝑖𝑗𝐸𝑖𝐸𝑗 − 𝑒𝑖𝑘𝑙𝜀𝑘𝑙𝐸𝑖, (4.80)
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where 𝐶𝑖𝑗𝑘𝑙 is the elastic stiffness at constant electric field, 𝜔𝑖𝑗 is the dielectric permittivity at
constant strains and 𝑒𝑖𝑘𝑙 is piezoelectric stress/charge tensors [20]. The strain and electric field
tensors are expressed by

𝜀𝑖𝑗 = 1
2 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) ,

𝐸𝑘 = −𝜑,𝑘,
(4.81)

where the comma denotes differentiation with respect to 𝑘. By substitution (4.80), (4.81) into
(4.79) we get the the variational form∫︁

𝑉
𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙𝛿𝑢𝑖,𝑗d𝑉 −

∫︁
𝑉
𝜔𝑖𝑘𝐸𝑘𝛿𝜑,𝑖d𝑉 −

∫︁
𝑉
𝑒𝑖𝑘𝑙 (𝜀𝑘𝑙𝛿𝜑,𝑖 + 𝛿𝑢𝑘,𝑙𝐸𝑖) d𝑉−

−
∫︁

𝑉
(𝑓𝑖𝛿𝑢𝑖 − 𝑞𝑏𝛿𝜑) d𝑉 −

∫︁
𝑆

(𝑡𝑖𝛿𝑢𝑖 − 𝑞𝑆𝛿𝜑) d𝑆 = 0, (4.82)

from which, after the integration by parts, one can deduce equilibrium equations:

𝜎𝑖𝑗,𝑗 + 𝑓𝑖 = 0
𝐷𝑖,𝑖 = 𝑞𝑏,

(4.83)

and boundary conditions:

𝜎𝑖𝑗𝑛𝑗 = 𝑡𝑖

𝐷𝑖𝑛𝑖 = −𝑞𝑠,
(4.84)

where 𝑛𝑖 is the outer unit normal vector to the boundary 𝑆 and the stress and electric displace-
ment are defined by

𝜎𝑖𝑗 = 𝜕𝐻

𝜕𝜀𝑖𝑗
= 𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗 + 𝑒𝑘𝑖𝑗𝐸𝑘,

−𝐷𝑖 = 𝜕𝐻

𝜕𝐸𝑖
= 𝑒𝑖𝑘𝑙𝜀𝑘𝑙 − 𝜔𝑖𝑗𝐸𝑘.

(4.85)

4.2.3 Constitutive laws for piezoelectric materials in three-dimensional state

There are natural crystals such as quartz that exhibit piezoelectricity. Much more stronger
piezoelectric coupling exhibit man-made piezoelectric materials, for example barium titanate or
lead zirconate ceramics. These materials are implicitly in isotropic and non-piezoelectric state.
Piezoelectric properties can be induced in these ceramics through a process called poling [1],
during which their mechanical properties change to generally anisotropic. However, most poled
material become transversally isotropic.

For an anisotropic and linearly electro-elastic solid, the constitutive laws between the elastic
field tensors (𝜎𝑖𝑗 and 𝜀𝑖𝑗) and electric field vectors (induction 𝐷𝑗 and electric field 𝐸𝑗) are
represented by four equally important equation systems. They can be written in a tensor
notation as [20, 74] {︃

𝜎𝑖𝑗 = 𝐶𝐸
𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘,

𝐷𝑗 = 𝑒𝑗𝑘𝑙𝜀𝑘𝑙 + 𝜔𝜀
𝑗𝑘𝐸𝑘,

{︃
𝜀𝑖𝑗 = 𝑆𝐸

𝑖𝑗𝑘𝑙𝜎𝑘𝑙 − 𝑑𝑘𝑖𝑗𝐸𝑘,

𝐷𝑗 = 𝑑𝑗𝑘𝑙𝜎𝑘𝑙 + 𝜔𝜎
𝑗𝑘𝐸𝑘,{︃

𝜎𝑖𝑗 = 𝐶𝐷
𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − ℎ𝑘𝑖𝑗𝐷𝑘,

𝐸𝑗 = −ℎ𝑗𝑘𝑙𝜀𝑘𝑙 + 𝛽𝜀
𝑗𝑘𝐷𝑘,

{︃
𝜀𝑖𝑗 = 𝑆𝐷

𝑖𝑗𝑘𝑙𝜎𝑘𝑙 − 𝑔𝑘𝑖𝑗𝐷𝑘,

𝐸𝑗 = −𝑔𝑗𝑘𝑙𝜎𝑘𝑙 + 𝛽𝜎
𝑗𝑘𝐷𝑘,

(4.86)
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where 𝑆𝐸
𝑖𝑗𝑘𝑙 and 𝑆𝐷

𝑖𝑗𝑘𝑙 are elastic compliances at constant electric field and induction; 𝐶𝐸
𝑖𝑗𝑘𝑙 and

𝐶𝐷
𝑖𝑗𝑘𝑙 are elastic stiffnesses at constant electric field and induction; 𝜔𝜀

𝑗𝑘, 𝜔𝜎
𝑗𝑘 and 𝛽𝜀

𝑗𝑘, 𝛽𝜎
𝑗𝑘 are

dielectric permittivities on non-permittivities at constant strains and stresses; 𝑑𝑘𝑖𝑗 , 𝑒𝑘𝑖𝑗 , 𝑔𝑘𝑖𝑗

and ℎ𝑘𝑖𝑗 are piezoelectric strain/charge, stress/charge, strain/voltage and stress/voltage tensors,
respectively. Due to the symmetry of the stresses and strains and the path-independence of the
elastic strain energy, the electro-mechanical material constants have the following symmetry
properties:

𝐶𝐸
𝑖𝑗𝑘𝑙 = 𝐶𝐸

𝑗𝑖𝑘𝑙 = 𝐶𝐸
𝑘𝑙𝑖𝑗 , 𝑒𝑘𝑖𝑗 = 𝑒𝑘𝑗𝑖, 𝜔𝜀

𝑗𝑘 = 𝜔𝜀
𝑘𝑗 ,

𝑆𝐸
𝑖𝑗𝑘𝑙 = 𝑆𝐸

𝑗𝑖𝑘𝑙 = 𝑆𝐸
𝑘𝑙𝑖𝑗 , 𝑑𝑘𝑖𝑗 = 𝑑𝑘𝑗𝑖, 𝜔𝜎

𝑗𝑘 = 𝜔𝜎
𝑘𝑗 ,

𝐶𝐷
𝑖𝑗𝑘𝑙 = 𝐶𝐷

𝑗𝑖𝑘𝑙 = 𝐶𝐷
𝑘𝑙𝑖𝑗 , ℎ𝑘𝑖𝑗 = ℎ𝑘𝑗𝑖, 𝛽𝜀

𝑗𝑘 = 𝛽𝜀
𝑘𝑗 ,

𝑆𝐷
𝑖𝑗𝑘𝑙 = 𝑆𝐷

𝑗𝑖𝑘𝑙 = 𝑆𝐷
𝑘𝑙𝑖𝑗 , 𝑔𝑘𝑖𝑗 = 𝑔𝑘𝑗𝑖, 𝛽𝜎

𝑗𝑘 = 𝛽𝜎
𝑘𝑗 .

(4.87)

4.2.4 Contracted notation

In order to determine the solution of piezoelectric problems, it is suitable to transform the
extended tensor notation to the matrices by using the contracted matrix notation introduced in
section 4.1.1 for pure elastic anisotropic materials. This simplification consists in replacing 𝑖𝑗 or
𝑘𝑙 by 𝑝 or 𝑞, where 𝑖, 𝑗, 𝑘 and 𝑙 take the values 1, 2 and 3 and 𝑝 and 𝑞 take the values 1, 2,. . . ,
6. The parameters are transformed by the following prescription:

• if 𝑖 = 𝑗 or 𝑘 = 𝑙, then 𝑝 = 𝑖 and 𝑞 = 𝑘, for example 𝐶1122 = 𝐶12

• if 𝑖 ̸= 𝑗 or 𝑘 ̸= 𝑙, then 𝑝 or 𝑞 is equal to the remaining number from the progression 1, 2,
3 increased of 3, for example 𝐶3123 = 𝐶54.

With this assignment and the symmetry properties (4.87), certain transformation rules have to
be added:

2𝑆𝑖𝑗𝑘𝑙 = 𝑆𝑝𝑞, if either 𝑝 or 𝑞 > 3,
4𝑆𝑖𝑗𝑘𝑙 = 𝑆𝑝𝑞, if both 𝑝 and 𝑞 > 3,
2𝜀𝑖𝑗 = 𝜀𝑝, 2𝑑𝑘𝑖𝑗 = 𝑑𝑘𝑝, 2𝑔𝑘𝑖𝑗 = 𝑔𝑘𝑝 if 𝑝 > 3.

(4.88)

Using the contracted notation, the constitutive laws (4.86) can be then rewritten in the matrix
form as [20]

{︃
𝜎
D

}︃
=
[︃
C𝐸 eᵀ

e −𝜔𝜀

]︃{︃
𝜀

−E

}︃
,

{︃
𝜀
D

}︃
=
[︃
S𝐸 −dᵀ

d −𝜔𝜎

]︃{︃
𝜎

−E

}︃
,{︃

𝜎
−E

}︃
=
[︃
C𝐷 −hᵀ

h −𝛽𝜀

]︃{︃
𝜀
D

}︃
,

{︃
𝜀

−E

}︃
=
[︃
S𝐷 gᵀ

g −𝛽𝜎

]︃{︃
𝜎
D

}︃
,

(4.89)
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where

𝜎 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, 𝜀 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜀11
𝜀22
𝜀33
2𝜀23
2𝜀13
2𝜀12

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

C𝐸 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐶𝐸
11 𝐶𝐸

12 𝐶𝐸
13 𝐶𝐸

14 𝐶𝐸
15 𝐶𝐸

16
𝐶𝐸

12 𝐶𝐸
22 𝐶𝐸

23 𝐶𝐸
24 𝐶𝐸

25 𝐶𝐸
26

𝐶𝐸
13 𝐶𝐸

23 𝐶𝐸
33 𝐶𝐸

34 𝐶𝐸
35 𝐶𝐸

36
𝐶𝐸

14 𝐶𝐸
24 𝐶𝐸

34 𝐶𝐸
44 𝐶𝐸

45 𝐶𝐸
46

𝐶𝐸
15 𝐶𝐸

25 𝐶𝐸
35 𝐶𝐸

45 𝐶𝐸
55 𝐶𝐸

56
𝐶𝐸

16 𝐶𝐸
26 𝐶𝐸

36 𝐶𝐸
46 𝐶𝐸

56 𝐶𝐸
66

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

E =

⎧⎪⎨⎪⎩
𝐸1
𝐸2
𝐸3

⎫⎪⎬⎪⎭ , D =

⎧⎪⎨⎪⎩
𝐷1
𝐷2
𝐷3

⎫⎪⎬⎪⎭ , e =

⎡⎢⎣𝑒11 𝑒12 𝑒13 𝑒14 𝑒15 𝑒16
𝑒21 𝑒22 𝑒23 𝑒24 𝑒25 𝑒26
𝑒31 𝑒32 𝑒33 𝑒34 𝑒35 𝑒36

⎤⎥⎦ ,
𝜔𝜀 =

⎡⎢⎣𝜔𝜀
11 𝜔𝜀

12 𝜔𝜀
13

𝜔𝜀
12 𝜔𝜀

22 𝜔𝜀
23

𝜔𝜀
13 𝜔𝜀

23 𝜔𝜀
33

⎤⎥⎦ .

(4.90)

Expressions for the matrices S𝐸 , S𝐷, C𝐷, d, g, h, 𝜔𝜎, 𝛽𝜎 𝛽𝜀 are similar. The superscript ᵀ

denotes a matrix transposition. One set can be recomputed from the other by the following
equations:

C𝐸 = S−1
𝐸 , C𝐷 = S−1

𝐷 , 𝛽𝜀 = 𝜔−1
𝜀 , 𝛽𝜎 = 𝜔−1

𝜎 ,

d = eS𝐸 = 𝜔𝜎g, e = dC𝐸 = 𝜔𝜀h,
g = hS𝐷 = 𝛽𝜎d, h = gC𝐷 = 𝛽𝜀e,

𝜔𝜎 − 𝜔𝜀 = dC𝐸dᵀ = eS𝐸eᵀ = deᵀ,

𝛽𝜀 − 𝛽𝜎 = hS𝐷hᵀ = gC𝐷gᵀ = hgᵀ,

C𝐷 − C𝐸 = eᵀ𝛽𝜀e = hᵀ𝜔𝜀h = hᵀe,

S𝐸 − S𝐷 = gᵀ𝜔𝜎g = dᵀ𝛽𝜎d = dᵀg.

(4.91)

An inversion of the material characteristics can be also performed by using the matrix identities[︃
C𝐸 eᵀ

e −𝜔𝜀

]︃ [︃
S𝐷 gᵀ

g −𝛽𝜎

]︃
= I,

[︃
C𝐷 −hᵀ

h −𝛽𝜀

]︃ [︃
S𝐸 −dᵀ

d −𝜔𝜎

]︃
= I, (4.92)

where I is the unit matrix of a shape 9 × 9.

4.2.5 Material symmetry

Material characteristics of piezoelectric materials are predominantly provided by the elastic
stiffnesses 𝐶𝐸

𝑖𝑗 , piezoelectric constants 𝑒𝑖𝑗 and dielectric permitivities 𝜔𝜀
𝑖𝑗 . The inverse forms can

be determined by the transformation relations (4.91), or the elastic, piezoelectric and electric
constants can be merged into a compact matrix as in (4.89) and use the identities (4.92) to get
the inverse constants. Both operations lead to the same result.

The stiffness, piezoelectric and permittivity matrices C𝐸 , e and 𝜔𝜀 in (4.90) characterise
the most general form of an anisotropic material with piezoelectric properties. We make the
same deliberation as for the pure anisotropic elasticity in section 4.1.3. The symmetry planes
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coincide with the global coordinate planes in the Cartesian coordinate system 𝑥1, 𝑥2, 𝑥3. The
matrix structure of the monoclinic piezoelectric material, i.e. when the material has only one
symmetry plane defined by 𝑥3 = 0, is

C𝐸 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐶𝐸
11 𝐶𝐸

12 𝐶𝐸
13 0 0 𝐶𝐸

16
𝐶𝐸

12 𝐶𝐸
22 𝐶𝐸

23 0 0 𝐶𝐸
26

𝐶𝐸
13 𝐶𝐸

23 𝐶𝐸
33 0 0 𝐶𝐸

36
0 0 0 𝐶𝐸

44 𝐶𝐸
45 0

0 0 0 𝐶𝐸
45 𝐶𝐸

55 0
𝐶𝐸

16 𝐶𝐸
26 𝐶𝐸

36 0 0 𝐶𝐸
66

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

e =

⎡⎢⎣𝑒11 𝑒12 𝑒13 0 0 𝑒16
𝑒21 𝑒22 𝑒23 0 0 𝑒26
0 0 0 𝑒34 𝑒35 0

⎤⎥⎦ , 𝜔𝜀 =

⎡⎢⎣𝜔𝜀
11 𝜔𝜀

12 0
𝜔𝜀

12 𝜔𝜀
22 0

0 0 𝜔𝜀
33

⎤⎥⎦ .
(4.93)

It is worth noticing that the stiffness and permittivity matrices are symmetric, but the piezo-
electric matrix is not.

An orthotropic material has three mutually orthogonal symmetry planes. Considering a
poling direction parallel to 𝑥1-axis, the material matrices reduce to [75]

C𝐸 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐶𝐸
11 𝐶𝐸

12 𝐶𝐸
13 0 0 0

𝐶𝐸
12 𝐶𝐸

22 𝐶𝐸
23 0 0 0

𝐶𝐸
13 𝐶𝐸

23 𝐶𝐸
33 0 0 0

0 0 0 𝐶𝐸
44 0 0

0 0 0 0 𝐶𝐸
55 0

0 0 0 0 0 𝐶𝐸
66

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

e =

⎡⎢⎣𝑒11 𝑒12 𝑒13 0 0 0
0 0 0 0 0 𝑒26
0 0 0 0 𝑒35 0

⎤⎥⎦ , 𝜔𝜀 =

⎡⎢⎣𝜔𝜀
11 0 0
0 𝜔𝜀

22 0
0 0 𝜔𝜀

33

⎤⎥⎦ .
(4.94)

The initially isotropic ceramic becomes transversally isotropic during the poling process with
the plane of isotropy perpendicular to the poling axis. This symmetry state plays a significant
role in investigations of poled piezoelectric materials. The material matrices have the following
structure:

C𝐸 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶𝐸
11 𝐶𝐸

12 𝐶𝐸
12 0 0 0

𝐶𝐸
12 𝐶𝐸

22 𝐶𝐸
23 0 0 0

𝐶𝐸
12 𝐶𝐸

23 𝐶𝐸
22 0 0 0

0 0 0 𝐶𝐸
22−𝐶𝐸

23
2 0 0

0 0 0 0 𝐶𝐸
44 0

0 0 0 0 0 𝐶𝐸
44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

e =

⎡⎢⎣𝑒11 𝑒12 𝑒12 0 0 0
0 0 0 0 0 𝑒26
0 0 0 0 𝑒26 0

⎤⎥⎦ , 𝜔𝜀 =

⎡⎢⎣𝜔𝜀
11 0 0
0 𝜔𝜀

22 0
0 0 𝜔𝜀

22

⎤⎥⎦ .
(4.95)

From the above depicted structures we can see that the directional properties depend on the
poling axis. Since we want to unify the procedure with the pure anisotropic relations, we
coincide the poling axis with the longitudinal direction of the laminate model. We can observe
the equality of the stiffness matrices (4.12) and (4.95). Structure of the piezoelectric matrix
depends on the poling direction, which can attain two limit configurations: coincidence with 𝑥1-
axis or with 𝑥2-axis. Between this states the structure corresponds to monoclinic (see (4.93)).
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It is illustrated in the following scheme:

q 𝑥1

⎡⎢⎣𝑒11 𝑒12 𝑒12 0 0 0
0 0 0 0 0 𝑒26
0 0 0 0 𝑒26 0

⎤⎥⎦
⇓

in between

⎡⎢⎣𝑒11 𝑒12 𝑒13 0 0 𝑒16
𝑒21 𝑒22 𝑒23 0 0 𝑒26
0 0 0 𝑒34 𝑒35 0

⎤⎥⎦
⇓

q 𝑥2

⎡⎢⎣ 0 0 0 0 0 𝑒16
𝑒21 𝑒22 𝑒21 0 0 0
0 0 0 𝑒16 0 0

⎤⎥⎦

(4.96)

Let us consider a rotation of the material coordinate system about 𝑥3 axis by an angle of 90∘

and −90∘, i.e. the poling direction coincides with 𝑥2 axis. Considering a transversally isotropic
material in pure anisotropic elasticity, the resulting stiffness matrices will be equal, so will be for
a piezoelectric material. The difference is only in the piezoelectric matrix, where the absolute
values of the matrix element will be same, but their signs will be opposite. Structure of the
permittivity matrices will be also equal. It follows from the above that the poling has an unique
orientation and contrary to the adopted laminate theory there are no symmetries in rotations
of the longitudinal directions. More about the matrix structure of individual crystal classes can
be found in [76, p. 123].

4.2.6 Transformation of the coordinate system

Similarly to pure anisotropic elasticity, we define transformation relations to investigate material
configurations with a poling axis arbitrary oriented in the plane 𝑥3 = 0. As was stated in the
previous section, we coincide the longitudinal direction 𝐿 with the poling axis and the plane
of isotropy is defined by transversal directions 𝑇𝑇 ′. Let us designate the principal material
coordinate system 𝐿𝑇𝑇 ′ as 𝑥*

𝑖 . We assemble the stiffness, piezoelectric and permittivity matrices
in these coordinates and perform the inverse by using (4.92) to obtain the compliance matrix
S*

𝐷, piezoelectric matrix g* and non-permittivities2 𝛽*
𝜎. Then the relation (4.26) can be used to

transform the compliance matrix of a piezoelectric material, i.e.

S𝐷 =
(︁
K−1

)︁ᵀ
S*

𝐷K−1, (4.97)

where the transformation matrix K is defined in (4.21).
To derive the transformation of the piezoelectric and dielectric constants, we proceed from

the constitutive equation (4.89)4. Transformation of the electric intensity and electric displace-
ment is realized by using

D = ΩD*,

E = ΩE*,
(4.98)

where the transformation matrix Ω is defined in (4.18). The angle 𝜃 defines a rotation about 𝑥3
axis in the counter-clockwise direction and physically refers to the poling direction, see Fig. 4.1.

2Dielectric permittivity has not an inverse quantity. It is stated in some papers that the inverse is electric
susceptibility 𝜒𝑒, but these parameters are not inverse, but it holds that 𝜒𝑒 = 𝜔𝜀 − 1. Owing to this fact, we
adopted the Hwu’s non-permittivity [20].
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Considering a homogeneous non-dispersive linear anisotropic material, the relation between the
electric displacement and electric intensity in the coordinate system 𝑥*

𝑖 is

E* = 𝛽*
𝜎D*. (4.99)

Inserting (4.98) into Eq. (4.99) we get

Ω−1E = 𝛽*
𝜎Ω−1D. (4.100)

After multiplication by Ω from the left we obtain the relation in the new coordinate system:

E = Ω𝛽*
𝜎Ω−1D = 𝛽𝜎D, (4.101)

where
𝛽𝜎 = Ω𝛽*

𝜎Ω−1 (4.102)

is the transformation of the non-permittivity matrix from the coordinate system 𝑥*
𝑖 to 𝑥𝑖.

Analogically, a transformation relation for piezoelectric matrix can be defined. The coupling
relation between piezoelectricity and elasticity (see (4.89)4) in the coordinate system 𝑥*

𝑖 is

−E* = g*𝜎*. (4.103)

Substituting (4.98) and (4.20) into (4.103) one obtains

−Ω−1E = g*K−1𝜎. (4.104)

After multiplication by Ω from the left we get

E = Ωg*K−1𝜎 = g𝜎, (4.105)

from which we get the transformation relation for the piezoelectric constants:

g = Ωg*K−1. (4.106)

4.2.7 Constitutive laws for piezoelectric materials in two-dimensional state

Analytical solutions to fully-coupled piezoelectric problems in three-dimensional systems exist
under very restrictive geometry assumptions. On the other hand, the numerical solutions are in
generally computationally expensive. To avoid these limitations, it is convenient to simplify the
3D problem into a mathematically two-dimensional formulation, which is much easier from both
analytical and numerical point of view. The problem dealing with piezoelectric materials can
be simplified to a plane problem when in-plane and anti-plane relations are decoupled. Section
4.2.5 shows that when a monoclinic piezoelectric material with symmetry axis parallel to 𝑥3 = 0
is considered, all assumptions are fulfilled to extend the LES formalism to piezoelectric mate-
rials. Despite the fact that ideal piezoelectric materials are homogeneous ceramics, its poling
direction can be apprehended as the longitudinal directions in the sense of dominant material
properties. This fact enables extension of pure anisotropic elasticity to piezoelectric materials.
The conception of the principal material directions as an analogy with fibre orientations provides
a great utility to model the problem.

In two-dimensional anisotropic plane problems, generalized plane strain (𝜀3 = 0) or gener-
alized plane stress (𝜎3 = 0) can be introduced. As for elastic fields described in section 4.1.5,
two states for electric fields can also be considered: open circuit condition (𝐷3 = 0) when the
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faces of the piezoelectric body are in contact with a non-conducting media and the top an bot-
tom surfaces are free of charge, and short circuit condition (𝐸3 = 0) when the top and bottom
surfaces are held at the same electric potential [20]. By combining the previous conditions, a
two-dimensional state of the piezoelectric material can be divided into four different situations,
i.e.:

1. Generalized plane strain and short circuit: 𝜀3 = 0 and 𝐸3 = 0.
2. Generalized plane strain and open circuit: 𝜀3 = 0 and 𝐷3 = 0.
3. Generalized plane stress and short circuit: 𝜎3 = 0 and 𝐸3 = 0.
4. Generalized plane stress and open circuit: 𝜎3 = 0 and 𝐷3 = 0.

The constitutive laws (4.89) under the above plane conditions can be reduced by eliminating
the terms associated with the zero values of 𝜀3, (or 𝜎3) and 𝐸3 (or 𝐷3) and replacing 𝜎3, (or 𝜀3)
and 𝐷3 (or 𝐸3) according to the generalized relation for the reduced elastic compliances [9, 17].
The matrix form of the constitutive laws for a piezoelectric material in two dimensional state
are [20]:
State 1: 𝜀3 = 0 and 𝐸3 = 0{︃

𝜎0

D0

}︃
=
[︃
C0

𝐸 e0ᵀ

e0 −𝜔0
𝜀

]︃{︃
𝜀0

−E0

}︃
,

{︃
𝜀0

D0

}︃
=
[︃
Ŝ𝐸 −d̂

ᵀ

d̂ −�̂�𝜎

]︃{︃
𝜎0

−E0

}︃
,

{︃
𝜎0

−E0

}︃
=
[︃
C′

𝐷 −h′ᵀ

h′ −𝛽′
𝜀

]︃{︃
𝜀0

D0

}︃
,

{︃
𝜀0

−E0

}︃
=
[︃
Ŝ′

𝐷 ĝ′ᵀ

ĝ′ −�̂�
′
𝜎

]︃{︃
𝜎0

D0

}︃
,

(4.107a)

where

𝜎0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜎1
𝜎2
𝜎4
𝜎5
𝜎6

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
𝜀0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜀1
𝜀2
𝜀4
𝜀5
𝜀6

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
C0

𝐸 =

⎡⎢⎢⎢⎢⎢⎣
𝐶𝐸

11 𝐶𝐸
12 𝐶𝐸

14 𝐶𝐸
15 𝐶𝐸

16
𝐶𝐸

12 𝐶𝐸
22 𝐶𝐸

24 𝐶𝐸
25 𝐶𝐸

26
𝐶𝐸

14 𝐶𝐸
24 𝐶𝐸

44 𝐶𝐸
45 𝐶𝐸

46
𝐶𝐸

15 𝐶𝐸
25 𝐶𝐸

45 𝐶𝐸
55 𝐶𝐸

56
𝐶𝐸

16 𝐶𝐸
26 𝐶𝐸

46 𝐶𝐸
56 𝐶𝐸

66

⎤⎥⎥⎥⎥⎥⎦ ,

E0 =
{︃
𝐸1
𝐸2

}︃
, D0 =

{︃
𝐷1
𝐷2

}︃
, e0 =

[︃
𝑒11 𝑒12 𝑒14 𝑒15 𝑒16
𝑒21 𝑒22 𝑒24 𝑒25 𝑒26

]︃
,

𝜔0
𝜀 =

[︃
𝜔𝜀

11 𝜔𝜀
12

𝜔𝜀
12 𝜔𝜀

22

]︃
,

(4.107b)

Ŝ′
𝐷 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑆′𝐷

11 𝑆′𝐷
12 𝑆′𝐷

14 𝑆′𝐷
15 𝑆′𝐷

16
𝑆′𝐷

12 𝑆′𝐷
22 𝑆′𝐷

24 𝑆′𝐷
25 𝑆′𝐷

26
𝑆′𝐷

14 𝑆′𝐷
24 𝑆′𝐷

44 𝑆′𝐷
45 𝑆′𝐷

46
𝑆′𝐷

15 𝑆′𝐷
25 𝑆′𝐷

45 𝑆′𝐷
55 𝑆′𝐷

56
𝑆′𝐷

16 𝑆′𝐷
26 𝑆′𝐷

46 𝑆′𝐷
56 𝑆′𝐷

66

⎤⎥⎥⎥⎥⎥⎥⎦ , ĝ′ =
[︃
𝑔′

11 𝑔′
12 𝑔′

14 𝑔′
15 𝑔′

16
𝑔′

21 𝑔′
22 𝑔′

24 𝑔′
25 𝑔′

26

]︃
,

�̂�
′
𝜎 =

[︃
𝛽′𝜎

11 𝛽′𝜎
12

𝛽′𝜎
12 𝛽′𝜎

22

]︃
.

(4.107c)

The matrix elements are recomputed by

𝑆′𝐷
𝑖𝑗 = 𝑆𝐷

𝑖𝑗 + 𝑔3𝑖𝑔3𝑗

𝛽𝜎
33

= 𝑆′𝐷
𝑗𝑖 , 𝑔′

𝑖𝑗 = 𝑔𝑖𝑗 − 𝛽𝜎
3𝑖𝑔3𝑗

𝛽𝜎
33

, 𝛽′𝜎
𝑖𝑗 = 𝛽𝜎

𝑖𝑗 −
𝛽𝜎

3𝑖𝛽
𝜎
3𝑗

𝛽𝜎
33

= 𝛽′𝜎
𝑗𝑖 , (4.107d)
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in which

𝑆𝐷
𝑖𝑗 = 𝑆𝐷

𝑖𝑗 −
𝑆𝐷

3𝑖𝑆
𝐷
3𝑗

𝑆𝐷
33

= 𝑆𝐷
𝑗𝑖 , 𝑔𝑖𝑗 = 𝑔𝑖𝑗 −

𝑔𝑖3𝑆
𝐷
3𝑗

𝑆𝐷
33

, 𝛽𝜎
𝑖𝑗 = 𝛽𝜎

𝑖𝑗 + 𝑔𝑖3𝑔𝑗3
𝑆𝐷

33
= 𝛽𝜎

𝑗𝑖. (4.107e)

The expressions for Ŝ𝐸 , d̂, �̂�𝜎, Ĉ′
𝐷, �̂�

′
𝜀 are obtained analogically. The individual equations in

(4.107a) are called after the letter of the matrix of piezoelectric coefficients, i.e. e-type, d-type,
h-type and g-type [66]. Mostly, only the e-type and g-type constitutive laws (4.107a) are used,
therefore in the other three states only this two equation systems are stated.
State 2: 𝜀3 = 0 and 𝐷3 = 0{︃

𝜎0

D0

}︃
=
[︃
C′

𝐸 e′ᵀ

e′ −𝜔′
𝜀

]︃{︃
𝜀0

−E0

}︃
,

{︃
𝜀0

−E0

}︃
=
[︃
Ŝ𝐷 ĝᵀ

ĝ −�̂�𝜎

]︃{︃
𝜎0

D0

}︃
, (4.108)

State 3: 𝜎3 = 0 and 𝐸3 = 0{︃
𝜎0

D0

}︃
=
[︃
Ĉ𝐸 êᵀ

ê −�̂�𝜀

]︃{︃
𝜀0

−E0

}︃
,

{︃
𝜀0

−E0

}︃
=
[︃
S′

𝐷 g′ᵀ

g′ −𝛽′
𝜎

]︃{︃
𝜎0

D0

}︃
, (4.109)

State 4: 𝜎3 = 0 and 𝐷3 = 0{︃
𝜎0

D0

}︃
=
[︃
Ĉ′

𝐸 ê′ᵀ

ê′ −�̂�′
𝜀

]︃{︃
𝜀0

−E0

}︃
,

{︃
𝜀0

−E0

}︃
=
[︃
S0

𝐷 g0ᵀ

g0 −𝛽0
𝜎

]︃{︃
𝜎0

D0

}︃
, (4.110)

The remaining material characteristics are considered as follows:

𝐶 ′𝐸
𝑖𝑗 = 𝐶𝐸

𝑖𝑗 + 𝑒3𝑖𝑒3𝑗

𝜔𝜀
33

= 𝐶 ′𝐸
𝑗𝑖 , 𝑒′

𝑖𝑗 = 𝑒𝑖𝑗 − 𝜔𝜀
3𝑖𝑒3𝑗

𝜔𝜀
33

, 𝜔′𝜀
𝑖𝑗 = 𝜔𝜀

𝑖𝑗 −
𝜔𝜀

3𝑖𝜔
𝜀
3𝑗

𝜔𝑆
33

= 𝜔′𝜀
𝑗𝑖,

𝐶𝐸
𝑖𝑗 = 𝐶𝐸

𝑖𝑗 −
𝐶𝐸

3𝑖𝐶
𝐸
3𝑗

𝐶𝐸
33

= 𝐶𝐸
𝑗𝑖 , 𝑒𝑖𝑗 = 𝑒𝑖𝑗 −

𝑒𝑖3𝐶
𝐸
3𝑗

𝐶𝐸
33

, �̂�𝜀
𝑖𝑗 = 𝜔𝜀

𝑖𝑗 + 𝑒𝑖3𝑒𝑗3
𝐶𝐸

33
,

𝐶 ′𝐸
𝑖𝑗 = 𝐶𝐸

𝑖𝑗 + 𝑒3𝑖𝑒3𝑗

�̂�𝜀
33

= 𝐶 ′𝐸
𝑗𝑖 , 𝑒′

𝑖𝑗 = 𝑒𝑖𝑗 − �̂�𝜀
3𝑖𝑒3𝑗

�̂�𝜀
33

, �̂�′𝜀
𝑖𝑗 = �̂�𝜀

𝑖𝑗 −
�̂�𝜀

3𝑖�̂�
𝜀
3𝑗

�̂�𝑆
33

= �̂�′𝜀
𝑗𝑖,

𝑆′𝐷
𝑖𝑗 = 𝑆𝐷

𝑖𝑗 + 𝑔3𝑖𝑔3𝑗

𝛽𝜎
33

= 𝑆′𝐷
𝑗𝑖 , 𝑔′

𝑖𝑗 = 𝑔𝑖𝑗 − 𝛽𝜎
3𝑖𝑔3𝑗

𝛽𝜎
33

, 𝛽′𝜎
𝑖𝑗 = 𝛽𝜎

𝑖𝑗 −
𝛽𝜎

3𝑖𝛽
𝜎
3𝑗

𝛽𝜎
33

= 𝛽′𝜎
𝑗𝑖 .

(4.111)

The parameters 𝑆𝐷
𝑖𝑗 , 𝑔𝑖𝑗 , 𝛽𝜎

𝑖𝑗 , 𝑆′𝐷
𝑖𝑗 , 𝑔′

𝑖𝑗 , 𝛽′𝜎
𝑖𝑗 are defined in (4.107d) and (4.107e).

As in the three-dimensional state, it is sometimes more convenient to use inversion of the
e-type and g-type compound matrices. Transformation between this two types can be done
simply by inverting the compound matrix by the same way as in the three-dimensional state
(4.92), such as for state 1:[︃

C0
𝐸 e0ᵀ

e0 −𝜔0
𝜀

]︃ [︃
Ŝ′

𝐷 ĝ′ᵀ

ĝ′ −�̂�
′
𝜎

]︃
= I,

[︃
C′0

𝐷 −h′ᵀ

h′ −𝛽′
𝜀

]︃ [︃
Ŝ𝐸 −d̂

ᵀ

d̂ −�̂�𝜎

]︃
= I (4.112)

and for state 2, 3 and 4:[︃
C′

𝐸 e′ᵀ

e′ −𝜔′
𝜀

]︃ [︃
Ŝ𝐷 ĝᵀ

ĝ −�̂�𝜎

]︃
= I,

[︃
Ĉ𝐸 êᵀ

ê −�̂�𝜀

]︃
=
[︃
S′

𝐷 g′ᵀ

g′ −𝛽′
𝜎

]︃
= I,[︃

Ĉ′
𝐸 ê′ᵀ

ê′ −�̂�′
𝜀

]︃ [︃
S0

𝐷 g0ᵀ

g0 −𝛽0
𝜎

]︃
= I.

(4.113)

Note that the order of the coordinate transformation and conversion to generalized plane state
are commutative operations. In the present algorithm, material characteristic are firstly trans-
formed and then converted to generalized plane state.
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4.2.8 Expanded Lekhnitskii-Eshelby-Stroh formalism for piezoelectric media

Solutions presented in [5, 10, 77, 78, 79, 80] show that equations for piezoelectric anisotropic
problems have the same structure as those for corresponding anisotropic pure elastic materials.
A closed form solution of a central crack based on the expanded Stroh formalism was derived
in [5], while a solution for an elliptic inclusion and hole was presented in [11, 80, 81]. A first
attempt to express material the matrices explicitly was performed in [82]. The most significant
work was done by Hwu in [20, 21, 22, 83] and also in his monograph [17], where he summed
up the previous research and expanded the Stroh formalism, the Key matrix, and the unified
definition [84] to piezoelectric media. Hirai et al. [23] and Abe et al. [24] applied the theory
to certain bi-material notch configurations including determination of stress intensity factors by
using the Ψ-integral method.

Similar progress was carried out in extending the Lekhnitskii formalism in [45, 46]. A gen-
eral solution for piezoelectric anisotropic materials was derived in [47, 48, 49, 50, 51, 52]. Xu and
Rajapakse [85], Chue and Chen [53] or Chen [86] investigated composite piezoelectric wedges and
junctions, i.e. bi-materials composed from both piezoelectric and anisotropic materials. Singu-
larity exponents and stress intensity factors of an interface crack in isotropic metal/piezoelectric
or insulator/piezoelectric bi-materials were computed in [26, 87, 88]. Banks-Sills et al. [12]
computed stress intensity factors by using the M-integral method.

Kah Soh et al. [89] or Liou and Sung [90] used the modified Lekhnitskii and Stroh approach
to find explicit expressions for the Barnett-Lothe tensors. Crack singularity solved by boundary
integral equations was reported in [91]. Two-dimensional analysis of a semi-infinite crack by
employing the Green’s function was investigated in [50]. An interesting introduction to non-
linear piezoelectric fracture mechanics was presented by Kuna [92]. Authors in [93] developed a
new hybrid finite element method for a plane piezoelectric problem. One of the most significant
method for investigating piezoelectric materials is the boundary element method [94], employed
for example by Li et al. [95].

Suo [44] developed the LES formalism for evaluating the stress singularity of anisotropic
bi-material notches. However, its limit case – an interface crack – is primarily treated as the
Hilbert problem, as can be seen in [25, 80, 96, 97, 98, 99, 100]. The present work employs the
expanded3 LES formalism for a piezoelectric continuum based on the studies [9, 17, 19] and
applies it to the problem of a piezoelectric bi-material notch and interface crack.

Governing differential equations

Deriving of the expanded LES formalism for piezoelectric materials is based on the fourth set
of the g-type constitutive equations (4.107a)4. It corresponds to the generalized plane state
described in section 4.1.5 and short circuit, i.e. 𝜀3 = 0 and 𝐸3 = 0. In the following chapters,
only this plane state is assumed, all other combinations would be derived analogically.

In the absence of body forces and free charges, the equilibrium equations are

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
= 0, 𝜕𝐷𝑖

𝜕𝑥𝑖
= 0, (4.114)

where the repeated indices imply summation. In contrast to the Lekhnitskii’s nomenclature
used in section 4.1.7, it is more convenient to use the Hwu’s variable indexing as in (4.90) for

3According to Hwu [17], the “expanded” formalism is used for expansion to piezoelectric materials, while
the “extended” Stroh formalism is used for problems involving temperature. However, the classification is not
commonly accepted in the research community. For example Fang [66] uses “extended” for both Stroh and
Lekhnitskii formalism. We suggest to follow the Hwu’s classification.
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piezoelectric materials and rewrite coordinates as 𝑥 → 𝑥1, 𝑦 → 𝑥2, 𝑧 → 𝑥3. The stresses and
electric displacements can be denoted by two Airy stress functions 𝜙 and 𝜓 from (4.41) and an
electric displacement function 𝜒 by

𝜎1 = 𝜕2𝜙

𝜕𝑥2
2
, 𝜎2 = 𝜕2𝜙

𝜕𝑥2
1
, 𝜎6 = − 𝜕2𝜙

𝜕𝑥1𝜕𝑥2
, 𝜎5 = 𝜕𝜓

𝜕𝑥2
, 𝜎4 = − 𝜕𝜓

𝜕𝑥1
,

𝐷1 = 𝜕𝜒

𝜕𝑥2
, 𝐷2 = − 𝜕𝜒

𝜕𝑥1
,

(4.115)

which satisfy the equilibrium equation (4.114) automatically. Substituting (4.115) in the consti-
tutive equations (4.107a)4 and then making use of the compatibility equations for piezoelectric
materials

𝜕2𝜀1
𝜕𝑥2

2
+ 𝜕2𝜀2
𝜕𝑥2

1
− 𝜕2𝜀6
𝜕𝑥1𝜕𝑥2

= 0, 𝜕𝜀5
𝜕𝑥2

− 𝜕𝜀4
𝜕𝑥1

= 0, 𝜕𝐸1
𝜕𝑥2

− 𝜕𝐸2
𝜕𝑥1

= 0, (4.116)

we obtain a system of second order partial differential equations for the unknown stress and
electric displacement functions 𝜙, 𝜓 and 𝜒:

𝐿4𝜙+𝑀3𝜒+ 𝐿3𝜓 =0,
𝑀3𝜙+ 𝑃2𝜒+𝑀2𝜓 =0,
𝐿3𝜙+𝑀2𝜒+ 𝐿2𝜓 =0,

(4.117a)

where the differential operators 𝐿2, 𝐿3, 𝐿4, 𝑀2, 𝑀3, 𝑃2 are defined by [52, 66]

𝐿2 = 𝑆′𝐷
44

𝜕2

𝜕𝑥2
1

− 2𝑆′𝐷
45

𝜕2

𝜕𝑥1𝜕𝑥2
+ 𝑆′𝐷

55
𝜕2

𝜕𝑥2
2
,

𝐿3 = −𝑆′𝐷
24

𝜕3

𝜕𝑥3
1

+ (𝑆′𝐷
25 + 𝑆′𝐷

46 ) 𝜕3

𝜕𝑥2
1𝜕𝑥2

− (𝑆′𝐷
14 + 𝑆′𝐷

56 ) 𝜕3

𝜕𝑥1𝜕𝑥2
2

+ 𝑆′𝐷
15

𝜕3

𝜕𝑥3
3
,

𝐿4 = 𝑆′𝐷
22

𝜕4

𝜕𝑥4
1

− 2𝑆′𝐷
26

𝜕4

𝜕𝑥3
1𝜕𝑥2

+ (2𝑆′𝐷
12 + 𝑆′𝐷

66 ) 𝜕4

𝜕𝑥2
1𝜕𝑥

2
2

− 2𝑆′𝐷
16

𝜕4

𝜕𝑥1𝜕𝑥3
2

+ 𝑆′𝐷
11

𝜕4

𝜕𝑥4
2
,

𝑀2 = 𝑔′
24
𝜕2

𝜕𝑥2
1

− (𝑔′
14 + 𝑔′

25) 𝜕2

𝜕𝑥1𝜕𝑥2
+ 𝑔′

15
𝜕2

𝜕𝑥2
2
,

𝑀3 = −𝑔′
22
𝜕3

𝜕𝑥3
1

+ (𝑔′
12 + 𝑔′

26) 𝜕3

𝜕𝑥2
1𝜕𝑥2

− (𝑔′
21 + 𝑔′

16) 𝜕3

𝜕𝑥1𝜕𝑥2
2

+ 𝑔′
11
𝜕3

𝜕𝑥3
2
,

𝑃2 = −𝛽′𝜎
22
𝜕2

𝜕𝑥2
1

+ 2𝛽′𝜎
12

𝜕2

𝜕𝑥1𝜕𝑥2
− 𝛽′𝜎

11
𝜕2

𝜕𝑥2
2
.

(4.117b)

General solution

We assume herein that the partial solutions of the stress functions are zero due to the absence of
body forces and free charges (see Eqs. (4.44)). Then, by eliminating 𝜓 and 𝜒 from the equation
(4.117a) one gets (︁

𝐿4𝐿2𝑃2 + 2𝐿3𝑀2𝑀3 − 𝑃2𝐿
2
3 − 𝐿4𝑀

2
2 − 𝐿2𝑀

2
3

)︁
𝜙 = 0. (4.118)

Let us suppose that 𝜙 is a function of a complex variable, i.e.

𝜙 = 𝜙(𝑧), 𝑧 = 𝑥1 + 𝜇𝑥2. (4.119)

Substituting it into (4.118) and considering a nonzero solution of 𝜙, we get a characteristic
equation [20]

𝑙4(𝜇)𝑙2(𝜇)𝜌2(𝜇) + 2𝑙3(𝜇)𝑚2(𝜇)𝑚3(𝜇) − 𝜌2(𝜇)𝑙23(𝜇) − 𝑙4(𝜇)𝑚2
2(𝜇) − 𝑙2(𝜇)𝑚2

3(𝜇) = 0, (4.120a)
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where

𝑙2(𝜇) = 𝑆′𝐷
55 𝜇

2 − 2𝑆′𝐷
45 𝜇+ 𝑆′𝐷

44 ,

𝑙3(𝜇) = 𝑆′𝐷
15 𝜇

3 − (𝑆′𝐷
14 + 𝑆′𝐷

56 )𝜇2 + (𝑆′𝐷
25 + 𝑆′𝐷

46 )𝜇− 𝑆′𝐷
24 ,

𝑙4(𝜇) = 𝑆′𝐷
11 𝜇

4 − 2𝑆′𝐷
16 𝜇

3 + (2𝑆′𝐷
12 + 𝑆′𝐷

66 )𝜇2 − 2𝑆′𝐷
26 𝜇+ 𝑆′𝐷

22 ,

𝑚2(𝜇) = 𝑔′
15𝜇

2 − (𝑔′
14 + 𝑔′

25)𝜇+ 𝑔′
24,

𝑚3(𝜇) = 𝑔′
11𝜇

3 − (𝑔′
21 + 𝑔′

16)𝜇2 + (𝑔′
12 + 𝑔′

26)𝜇− 𝑔′
22,

𝜌2(𝜇) = −𝛽′𝜎
11𝜇

2 + 2𝛽′𝜎
12𝜇− 𝛽′𝜎

22.

(4.120b)

Since the strain energy is positive, the material eigenvalues 𝜇𝑘 obtained from the eighth-degree
eigenrelation (4.120a) occur in four pairs of complex conjugates (in contrast to pure anisotropic
elasticity described in section 4.1.7, where three pairs of complex conjugates appeared). The
arrangement condition (4.50) can be extended to

𝜇𝑘+4 = 𝜇𝑘, ℑ𝜇𝑘 > 0, 𝑘 = 1,2,3,4. (4.121)

The general solutions 𝜙, 𝜓 and 𝜒 of (4.117a) have the form [53]

𝜙 = 2ℜ
4∑︁

𝑘=1
𝜙𝑘(𝑧𝑘), 𝜓 = 2ℜ

4∑︁
𝑘=1

𝜓𝑘(𝑧𝑘), 𝜒 = 2ℜ
4∑︁

𝑘=1
𝜒𝑘(𝑧𝑘), 𝑧𝑘 = 𝑥1 + 𝜇𝑘𝑥2. (4.122)

The similar material assumptions, as for the pure elastic anisotropic materials, can be
introduced in order to illustrate the expansion to piezoelectric materials. When considering
a monoclinic material with symmetry plane at 𝑧 = 0 (the matrix structure in (4.93)), the
elastic compliances in 𝑙3(𝜇) and piezoelectric coefficients in 𝑚2(𝜇) all vanish. The octic equation
(4.120a) is then reduced to

𝑙2(𝜇)
(︁
𝑙4(𝜇)𝜌2(𝜇) −𝑚2

3(𝜇)
)︁

= 0, (4.123)

where the product of 𝑙2(𝜇) and the bracket assures that the in-plane and anti-plane fields can be
decoupled4. Then 𝑙4𝜌2 −𝑚2

3 = 0 yields to three material eigenvalues 𝜇1, 𝜇2, 𝜇4 for the in-plane
field and anti-plane relation 𝑙2 = 0 gives one eigenvalue 𝜇3.

Eliminating 𝜒 from Eq. (4.117a) with a substitution of (4.119) and consecutive integration
gives the relation between stress functions:

𝜓𝑘(𝑧𝑘) =𝜆𝑘𝜙
′
𝑘(𝑧𝑘), for 𝑘 = 1,2,4,

𝜓𝑘(𝑧𝑘) = 1
𝜆𝑘
𝜙′

𝑘(𝑧𝑘), for 𝑘 = 3,
(4.124)

where [52, 53]

𝜆𝑘 = − 𝑙3(𝜇𝑘)𝜌2(𝜇𝑘) −𝑚3(𝜇𝑘)𝑚2(𝜇𝑘)
𝜌2(𝜇𝑘)𝑙2(𝜇𝑘) −𝑚2

2(𝜇𝑘) , for 𝑘 = 1,2,

𝜆𝑘 = − 𝑙3(𝜇𝑘)𝜌2(𝜇𝑘) −𝑚3(𝜇𝑘)𝑚2(𝜇𝑘)
𝜌2(𝜇𝑘)𝑙4(𝜇𝑘) −𝑚2

3(𝜇𝑘) , for 𝑘 = 3,

𝜆𝑘 = − 𝑙4(𝜇𝑘)𝑚2(𝜇𝑘) − 𝑙3(𝜇𝑘)𝑚3(𝜇𝑘)
𝑚2(𝜇𝑘)𝑙3(𝜇𝑘) −𝑚3(𝜇𝑘)𝑙2(𝜇𝑘) , for 𝑘 = 4.

(4.125)

4This is not the only case of decoupled in-plane and anti-plane fields. Other cases, such as degenerate case or
materials with hexagonal symmetry can be found in [53]
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Similarly, eliminating 𝜓 from equations (4.117a) with substitution of (4.119) and consecutive
integration gives the relation [70]:

𝜒𝑘(𝑧𝑘) =𝜉𝑘𝜙
′
𝑘(𝑧𝑘), for 𝑘 = 1,2,3,

𝜒𝑘(𝑧𝑘) = 1
𝜉𝑘
𝜙′

𝑘(𝑧𝑘), for 𝑘 = 4,
(4.126)

where [12, 46, 49, 52, 53]

𝜉𝑘 = − 𝑙2(𝜇𝑘)𝑚3(𝜇𝑘) − 𝑙3(𝜇𝑘)𝑚2(𝜇𝑘)
𝜌2(𝜇𝑘)𝑙2(𝜇𝑘) −𝑚2

2(𝜇𝑘) , for 𝑘 = 1,2,

𝜉𝑘 = − 𝑙4(𝜇𝑘)𝑚2(𝜇𝑘) − 𝑙3(𝜇𝑘)𝑚3(𝜇𝑘)
𝑚3(𝜇𝑘)𝑚2(𝜇𝑘) − 𝑙3(𝜇𝑘)𝜌2(𝜇𝑘) , for 𝑘 = 3,

𝜉𝑘 = − 𝑙2(𝜇𝑘)𝑚3(𝜇𝑘) − 𝑙3(𝜇𝑘)𝑚2(𝜇𝑘)
𝑙2(𝜇𝑘)𝑙4(𝜇𝑘) − 𝑙23(𝜇𝑘) , for 𝑘 = 4.

(4.127)

The stress functions (4.122) can be then rewritten as

𝜙 = 2ℜ {𝜙1(𝑧1) + 𝜙2(𝑧2) + 𝜙3(𝑧3) + 𝜙4(𝑧4)} ,

𝜓 = 2ℜ
{︂
𝜆1𝜙

′
1(𝑧1) + 𝜆2𝜙

′
2(𝑧2) + 1

𝜆3
𝜙′

3(𝑧3) + 𝜆4𝜙
′
4(𝑧4)

}︂
,

𝜒 = 2ℜ
{︂
𝜉1𝜙

′
1(𝑧1) + 𝜉2𝜙

′
2(𝑧2) + 𝜉3𝜙

′
3(𝑧3) + 1

𝜉4
𝜙′

4(𝑧4)
}︂
.

(4.128)

Since the terms 𝜆1, 𝜆2, 𝜆3, 𝜆4 and 𝜉3, become zero for a monoclinic material and 𝜙3 is the
arbitrary function, we introduce a new stress function 𝑓𝑘(𝑧𝑘) that absorbs the coefficients as
follows:

𝑓1(𝑧1) = 𝜙′
1(𝑧1), 𝑓2(𝑧2) = 𝜙′

2(𝑧2), 𝑓3(𝑧3) = 1
𝜆3
𝜙′

3(𝑧3), 𝑓4(𝑧4) = 1
𝜉4
𝜙′

4(𝑧4). (4.129)

Substituting (4.128) into (4.115) by involving the new functions (4.129) and considering a mon-
oclinic material, we obtain the following expressions of the stresses and electric displacements:

𝜎1 = 2ℜ
{︁
𝜇2

1𝑓
′
1(𝑧1) + 𝜇2

2𝑓
′
2(𝑧2) + 𝜇2

4𝜉4𝑓
′
4(𝑧4)

}︁
,

𝜎2 = 2ℜ
{︀
𝑓 ′

1(𝑧1) + 𝑓 ′
2(𝑧2) + 𝜉4𝑓

′
4(𝑧4)

}︀
,

𝜎6 = −2ℜ
{︀
𝜇1𝑓

′
1(𝑧1) + 𝜇2𝑓

′
2(𝑧2) + 𝜇4𝜉4𝑓

′
4(𝑧4)

}︀
,

𝜎5 = 2ℜ
{︀
𝜇3𝑓

′
3(𝑧3)

}︀
,

𝜎4 = −2ℜ
{︀
𝑓 ′

3(𝑧3)
}︀
,

𝐷1 = 2ℜ
{︀
𝜇1𝜉1𝑓

′
1(𝑧1) + 𝜇2𝜉2𝑓

′
2(𝑧2) + 𝜇4𝑓

′
4(𝑧4)

}︀
,

𝐷2 = −2ℜ
{︀
𝜉1𝑓

′
1(𝑧1) + 𝜉2𝑓

′
2(𝑧2) + 𝑓 ′

4(𝑧4)
}︀
,

(4.130)

where the prime denotes a first derivative with respect to 𝑧𝑘. Note that 𝜎6 = 𝜏𝑥𝑦, 𝜎5 = 𝜏𝑥𝑧 and
𝜎4 = 𝜏𝑦𝑧.
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The displacements and electric potentials are determined by inserting (4.130) into (4.107a)4,
which leads to

𝜕𝑢1
𝜕𝑥1

= 𝑆′𝐷
11 𝜎1 + 𝑆′𝐷

12 𝜎2 + 𝑆′𝐷
14 𝜎4 + 𝑆′𝐷

15 𝜎5 + 𝑆′𝐷
16 𝜎6 + 𝑔′

11𝐷1 + 𝑔′
21𝐷2,

𝜕𝑢2
𝜕𝑥2

= 𝑆′𝐷
12 𝜎1 + 𝑆′𝐷

22 𝜎2 + 𝑆′𝐷
24 𝜎4 + 𝑆′𝐷

25 𝜎5 + 𝑆′𝐷
26 𝜎6 + 𝑔′

12𝐷1 + 𝑔′
22𝐷2,

𝜕𝑢3
𝜕𝑥2

= 𝑆′𝐷
14 𝜎1 + 𝑆′𝐷

24 𝜎2 + 𝑆′𝐷
44 𝜎4 + 𝑆′𝐷

45 𝜎5 + 𝑆′𝐷
46 𝜎6 + 𝑔′

14𝐷1 + 𝑔′
24𝐷2,

𝜕𝑢3
𝜕𝑥1

= 𝑆′𝐷
15 𝜎1 + 𝑆′𝐷

25 𝜎2 + 𝑆′𝐷
45 𝜎4 + 𝑆′𝐷

55 𝜎5 + 𝑆′𝐷
56 𝜎6 + 𝑔′

15𝐷1 + 𝑔′
25𝐷2,

𝜕𝑢1
𝜕𝑥2

+ 𝜕𝑢2
𝜕𝑥1

= 𝑆′𝐷
16 𝜎1 + 𝑆′𝐷

26 𝜎2 + 𝑆′𝐷
46 𝜎4 + 𝑆′𝐷

56 𝜎5 + 𝑆′𝐷
66 𝜎6 + 𝑔′

16𝐷1 + 𝑔′
26𝐷2,

𝜕𝜑

𝜕𝑥1
= 𝑔′

11𝜎1 + 𝑔′
12𝜎2 + 𝑔′

14𝜎4 + 𝑔′
15𝜎5 + 𝑔′

16𝜎6 − 𝛽′𝜎
11𝐷1 − 𝛽′𝜎

12𝐷2,

𝜕𝜑

𝜕𝑥2
= 𝑔′

21𝜎1 + 𝑔′
22𝜎2 + 𝑔′

24𝜎4 + 𝑔′
25𝜎5 + 𝑔′

26𝜎6 − 𝛽′𝜎
12𝐷1 − 𝛽′𝜎

22𝐷2,

(4.131)

where 𝑢1, 𝑢2, 𝑢3 are the displacements in 𝑥1, 𝑥2, 𝑥3 directions and 𝜑 is the electric potential. For a
monoclinic material, the following constants are zero: 𝑆′𝐷

14 = 𝑆′𝐷
15 = 𝑆′𝐷

24 = 𝑆′𝐷
25 = 𝑆′𝐷

46 = 𝑆′𝐷
56 = 0

and 𝑔′
14 = 𝑔′

15 = 𝑔′
24 = 𝑔′

25 = 0. Integrating the equations (4.131) we obtain

𝑢1 = 2ℜ
{︃ 4∑︁

𝑘=1
𝑎1𝑘𝑓𝑘(𝑧𝑘)

}︃
,

𝑢2 = 2ℜ
{︃ 4∑︁

𝑘=1
𝑎2𝑘𝑓𝑘(𝑧𝑘)

}︃
,

𝑢3 = 2ℜ
{︃ 4∑︁

𝑘=1
𝑎3𝑘𝑓𝑘(𝑧𝑘)

}︃
,

𝜑 = 2ℜ
{︃ 4∑︁

𝑘=1
𝑎4𝑘𝑓𝑘(𝑧𝑘)

}︃
,

(4.132a)

where

𝑎1𝑘 = 𝜇2
𝑘𝑆

′𝐷
11 + 𝑆′𝐷

12 − 𝜇𝑘𝑆
′𝐷
16 + 𝜉𝑘

(︀
𝜇𝑘𝑔

′
11 − 𝑔′

21
)︀
, 𝑘 = 1,2

𝑎2𝑘 =
[︁
𝜇2

𝑘𝑆
′𝐷
12 + 𝑆′𝐷

22 − 𝜇𝑘𝑆
′𝐷
26 + 𝜉𝑘

(︀
𝜇𝑘𝑔

′
12 − 𝑔′

22
)︀]︁
/𝜇𝑘, 𝑘 = 1,2

𝑎4𝑘 =
[︁
𝜇2

𝑘𝑔
′
21 + 𝑔′

22 − 𝜇𝑘𝑔
′
26 + 𝜉𝑘

(︁
−𝜇𝑘𝛽

′𝜎
12 + 𝛽′𝜎

22

)︁]︁
/𝜇𝑘, 𝑘 = 1,2

𝑎14 =
(︁
𝜇2

4𝑆
′𝐷
11 + 𝑆′𝐷

12 − 𝜇4𝑆
′𝐷
16

)︁
𝜉4 + 𝜇4𝑔

′
11 − 𝑔′

21,

𝑎24 =
[︁(︁
𝜇2

4𝑆
′𝐷
12 + 𝑆′𝐷

22 − 𝜇4𝑆
′𝐷
26

)︁
𝜉4 + 𝜇4𝑔

′
12 − 𝑔′

22

]︁
/𝜇4,

𝑎44 =
[︁(︁
𝜇2

4𝑔
′
21 + 𝑔′

22 − 𝜇4𝑔
′
26

)︁
𝜉4 − 𝜇4𝛽

′𝜎
12 + 𝛽′𝜎

22

]︁
/𝜇4,

𝑎3𝑘 = 0, 𝑘 = 1,2,4
𝑎13 = 0,
𝑎23 = 0,
𝑎43 = 0,

𝑎33 =
(︁
𝜇3𝑆45 − 𝑆44

)︁
/𝜇3.

(4.132b)
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Leugering [101] published a work that deals with expansion the Eshelby’s theorem [63] to piezo-
electricity. By using the notation (4.61), but with 𝑘 = 1,2, . . . ,4, the Stroh matrix notation is
adopted once more. Let us write the complex potentials into a vector as

f(𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓1(𝑧1)
𝑓2(𝑧2)
𝑓3(𝑧3)
𝑓3(𝑧4)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , 𝑧𝑘 = 𝑥+ 𝜇𝑘𝑦, 𝑘 = 1,2,3,4. (4.133)

Then the displacements and tractions can be written in the matrix form as follows:

u(𝑧) = 2ℜ {Af(𝑧)} , (4.134a)

T(𝑧) = 2ℜ {Lf(𝑧)} . (4.134b)
The displacements and stress function vectors have the following form:

u(𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢1
𝑢2
𝑢3
𝜑

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , T(𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑇1
𝑇2
𝑇3
𝑇𝐷

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (4.135)

𝑇1, 𝑇2, 𝑇3 and 𝑇𝐷 are the components of the stress function vector and electric charge 𝑞 along
the semi-infinite line passing through the origin of the coordinate system 𝑥1𝑥2 and 𝜑 is the
electric potential. The structure of the matrices A and L is:

A =

⎡⎢⎢⎢⎣
𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

⎤⎥⎥⎥⎦ , L =

⎡⎢⎢⎢⎣
−𝜇1 −𝜇2 0 −𝜇4𝜉4

1 1 0 𝜉4
0 0 −1 0

−𝜉1 −𝜉2 0 −1

⎤⎥⎥⎥⎦ , (4.136)

while the matrix elements 𝑎𝑖𝑘 are defined by (4.132b). Assuming generalized plane strain, each of
the characteristic roots 𝜇𝑘 and each corresponding column of A are extracted from the eigenvalue
problem of the Stroh formalism [7], [44][︁

Q + 𝜇𝑘

(︁
R + Rᵀ)︁+ 𝜇2

𝑘T
]︁

a = 0, (4.137)

where the matrices Q, R, T have now the dimension 4 and their elements are defined by

𝑄𝑖𝑘 = 𝐶𝐸
𝑖1𝑘1, 𝑄𝑖4 = 𝑄4𝑖 = 𝑒11𝑖, 𝑖 = 1,2,3, 𝑄44 = −𝜔𝜀

11

𝑅𝑖𝑘 = 𝐶𝐸
𝑖1𝑘2, 𝑅𝑖4 = 𝑅4𝑖 = 𝑒12𝑖, 𝑖 = 1,2,3, 𝑅44 = −𝜔𝜀

12

𝑇𝑖𝑘 = 𝐶𝐸
𝑖2𝑘2, 𝑇𝑖4 = 𝑇4𝑖 = 𝑒22𝑖, 𝑖 = 1,2,3, 𝑇44 = −𝜔𝜀

22.

(4.138)

The matrix A is multiplied by an arbitrary normalization coefficient, i.e.

A =

⎡⎢⎢⎢⎣
𝑐1𝑎11 𝑐2𝑎12 𝑐3𝑎13 𝑐4𝑎14
𝑐1𝑎21 𝑐2𝑎22 𝑐3𝑎23 𝑐4𝑎24
𝑐1𝑎31 𝑐2𝑎32 𝑐3𝑎33 𝑐4𝑎34
𝑐1𝑎41 𝑐2𝑎42 𝑐3𝑎43 𝑐4𝑎44

⎤⎥⎥⎥⎦ , L =

⎡⎢⎢⎢⎣
−𝑐1𝜇1 −𝑐2𝜇2 0 −𝑐4𝜇4𝜉4
𝑐1 𝑐2 0 𝑐4𝜉4
0 0 −𝑐3 0

−𝑐1𝜉1 −𝑐2𝜉2 0 −𝑐4

⎤⎥⎥⎥⎦ . (4.139)

Each column is normalized arbitrary by coefficients 𝑐𝑖. The material eigenvalues 𝜇𝑘 are the roots
of the characteristic sixth-order polynomial⃒⃒⃒

Q + 𝜇𝑘

(︁
R + Rᵀ)︁+ 𝜇2

𝑘T
⃒⃒⃒

= 0. (4.140)
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The matrices L and A are associated with

𝐿𝑖𝑗 =
4∑︁

𝑘=1
[𝑅𝑖𝑘 + 𝜇𝑗𝑇𝑖𝑘] 𝑎𝑘𝑗 = 0. (4.141)

As for pure anisotropic elasticity, comparing the uniquely normalized Lekhnitskii matrices
(4.136) with those in (4.139) derived by Hwu [20], the normalization coefficients will be elimi-
nated by using the relations (4.141).

Boundary conditions

The generalized stress functions 𝑇𝑖 are related to the stresses and electric displacements by

𝜎𝑖1 = −𝑇𝑖,2, 𝜎𝑖2 = 𝑇𝑖,1, 𝑖 = 1,2,3, 𝐷1 = −𝑇4,2, 𝐷2 = 𝑇4,1. (4.142)

The operation (),𝑖 denotes derivation with respect to 𝑥𝑖. 𝑓𝑘(𝑧𝑘) are four holomorphic functions
of the complex variables 𝑧𝑘, which will be determined through the satisfaction of the boundary
conditions on the lateral surface. The first fundamental problem lies in prescribing the tractions
𝑡𝑥, 𝑡𝑦 and 𝑡𝑧 = 0 along the boundary by

𝜎1𝑛1 + 𝜎12𝑛2 = 𝑡1, 𝜎12𝑛1 + 𝜎2𝑛2 = 𝑡2, 𝜎13𝑛1 + 𝜏23𝑛2 = 0,
𝐷1𝑛1 +𝐷2𝑛2 = 𝑡4,

(4.143)

where 𝑡1, 𝑡2, 𝑡3 are the prescribed surface tractions and 𝑡4 is the prescribed electric displacement
on the normal direction of the surface. The normal vector n is defined by (4.72). The tangential
direction 𝑠 is chosen so that when we face the direction of increasing 𝑠, the material lies on the
right side (see Fig. 4.2). By integration of the prescribed surface tractions from zero to infinity
along a straight line, we can specify the following boundary conditions for a piezoelectric notch:

2ℜ {𝜇1𝑓1(𝑧1) + 𝜇2𝑓2(𝑧2) + 𝜇4𝑓4(𝑧4)} =𝑇1 + 𝑐1,

2ℜ {𝑓1(𝑧1) + 𝑓2(𝑧2) + 𝑓4(𝑧4)} =𝑇2 + 𝑐2,

2ℜ {𝑓3(𝑧3)} =𝑐3,

2ℜ {𝜉1𝑓1(𝑧1) + 𝜉2𝑓2(𝑧2) + 𝜉4𝑓4(𝑧4)} =𝑇4 + 𝑐4.

(4.144)

The second fundamental problem is represented by displacements prescribed along the
boundary. By using (4.132a) we get

2ℜ
{︃ 4∑︁

𝑘=1
𝑎1𝑘𝑓𝑘(𝑧𝑘)

}︃
=�̂�1,

2ℜ
{︃ 4∑︁

𝑘=1
𝑎2𝑘𝑓𝑘(𝑧𝑘)

}︃
=�̂�2,

2ℜ
{︃ 4∑︁

𝑘=1
𝑎3𝑘𝑓𝑘(𝑧𝑘)

}︃
=�̂�3,

2ℜ
{︃ 4∑︁

𝑘=1
𝑎4𝑘𝑓𝑘(𝑧𝑘)

}︃
=𝜑,

(4.145)

where �̂�1, �̂�2, �̂�3 are the prescribed displacements and 𝜑 is the prescribed electric potential.
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5 Methods and results
5.1 Stress singularity of an anisotropic bi-material notch and in-

terface crack
In the present work, two types of common general stress concentrators are considered – an in-
terface crack and a bi-material notch. When a monoclinic material is considered, the in-plane
and anti-plane relations are decoupled. When a sample is loaded in the 𝑥1𝑥2 plane, we can focus
only on the in-plane problem. There are two well known plane elasticity methods for stress
singularity description – the Lekhnitskii and the Stroh formalism. They are based on the theory
of complex variable functions. It simplifies the solution so that the elastic variable description
is shrunk only to three material eigenvalues. The Lekhnitskii formalism [6] was derived for a
cylindrical body bounded by a cylindrical surface and all relation are in terms of the elastic
compliances. In addition, the stresses and displacements depend only on 𝑥1, 𝑥2, which is sat-
isfied only by the assumption of the in-plane loading. The Stroh formalism [7, 8, 9, 63] starts
with the two-dimensional displacements and its relations depend on the elastic stiffnesses.

As it was mentioned earlier in section 4.1.7, where a transversally isotropic, or more gen-
erally a monoclinic material is considered, both Stroh and Lekhnitskii formalisms are formally
indistinguishable, i.e. the material eigenvalues, stress and displacement relations and singularity
exponents have the same form. Suo [44] introduced the Lekhnitskii-Eshelby-Stroh formalism,
which linked both techniques together. Its structure is described in section 4.1.7. That approach
enables simplification in the eigenvalue extraction or eliminating the scaling factors needed in
the Stroh formalism. The LES formalism is dominantly used for investigating stress singularities
of V-notches and transversally isotropic bi-material wedges, of which stress term exponents are
real values, as was reported for example in [19, 39, 102, 103, 104, 105, 106].

All previously mentioned authors assumed that the singularity exponents 𝛿 are only real
values. Then, the relations (4.63) for the stresses and displacements can be expressed as

u(𝑧) = 2ℜ {Af(𝑧)} = 2ℜ
{︁

AZ𝛿v
}︁
, (5.1a)

T(𝑧) = 2ℜ {Lf(𝑧)} = 2ℜ
{︁

LZ𝛿v
}︁
, (5.1b)

where
v =

{︃
𝑣1
𝑣2

}︃
(5.2)

is the eigenvector corresponding to the singular order 𝛿. Moreover, due to the assumption of a
monoclinic material, the structure of the material matrices A and L defined in Eqs. (4.65) and
(4.60b) enables that the in-plane and anti-plane components of the displacements and stresses
can be decoupled. Then, the following analysis is considered as a two-dimensional in-plane
problem and the dimension of the material matrices is 2 × 2, i.e.

A =
[︃
𝑎11 𝑎12
𝑎21 𝑎22

]︃
, L =

[︃
−𝜇1 −𝜇2

1 1

]︃
, u =

{︃
𝑢1
𝑢2

}︃
, T =

{︃
𝑇1
𝑇2

}︃
. (5.3)

The elements 𝑎𝑖𝑗 , 𝑖,𝑗 = 1,2, are defined in Eq. (4.60b). When the notch angle 𝜔𝑖 exceeds a
certain angle, the eigenvalue 𝛿 turns into a complex value and the form in (5.1) is not valid, or
more precisely, the neglected imaginary components corresponding to the individual singularity
exponents 𝛿 are not equal and do not mutually subtract.
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Setting the notch angles 𝜔𝑖 to their limit values 2𝜋, an interface crack can be modelled.
This special case has been mostly treated as the Hilbert problem [42, 44, 57, 107, 108]. In such
case, the singular solution has an oscillatory character and the singularity exponent equals to

𝛿 = 1
2 ± 𝑖𝜀, (5.4)

where 𝜀 is so called oscillatory index. Suo [44] proposed the generalized Dundurs parameters
[109], by which the oscillatory index is expressed as

𝜀 = 1
2𝜋 ln

(︂1 − 𝛽

1 + 𝛽

)︂
. (5.5)

The parameter 𝛽 is derived in [44, 110] only for a material with principal axes coincident with
the reference coordinate system. Considering a monoclinic material defined in Eq. (4.10), the
relation (5.5) has to be modified.

It follows from the survey that in the literature, there has been a gap in investigation of
the very closed notches whose stress term order become complex-valued. This state can occur
when the delaminated interface has face angles very close to the interface crack. In the follow-
ing paragraphs it will be presented that the LES formalism described in the previously stated
papers can be extended through notches with the complex-valued oscillatory index to interface
cracks. The definitions for the stresses and displacements have a slightly different form. The
next goal is the expansion of the LES formalism for piezoelectric materials. However, the theory
for pure elastic anisotropic bi-materials has to be firstly investigated in order to get limits of its
application.

5.1.1 Formulation of the fundamental equations describing the stress singu-
larity of a transversally isotropic bi-material notch

Profant et al. [19] proposed the formulation of the orthotropic bi-material notch based on the
LES formalism and following the Hwu’s concept [17] which generalizes Eq. (5.1) to the case of
the complex singularity exponent 𝛿. Assuming stress singularity at the wedge apex, the complex
potentials are expressed as

f(𝑧) = Z𝛿v. (5.6)

If the singularity exponent 𝛿 is generally a complex number, the stress function vectors and
displacements are considered in the following form:

u(𝑧) = AZ𝛿v + AZ𝛿w, (5.7a)

T(𝑧) = LZ𝛿v + LZ𝛿w, (5.7b)

where A and L have the structure (5.3) and their elements are defined in (4.65) and (4.60b).
v = {𝑣1,𝑣2}ᵀ, w = {𝑤1,𝑤2}ᵀ are the eigenvectors associated with the eigenvalue 𝛿, which is
determined through the satisfaction of the boundary conditions at the notch tip. If 𝛿 is a real
value, the eigenvectors v and w will be complex conjugate and the displacements and stress
function vectors are obtained in the form of (5.1).
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𝑥2

𝑥1 ℜ {𝑧}

ℑ {𝑧}

𝜃 1

1

−1 0
1

𝑅

Ψ0−1 1

[𝜇′,𝜇′′]

e1

e2

Fig. 5.1: Cartesian coordinates mapping to a complex plane. An unit circle is mapped to the ellipse
defined by vectors e1, e2.

5.1.2 Transversally isotropic materials

The LES formalism is defined under the assumption of transversally isotropic, or generally
monoclinic materials if principal material directions 𝐿 and 𝑇 are arbitrary oriented in 𝑥1𝑥2
plane. The complex functions Z𝛿 are of the form

Z𝛿 = diag
[︁
𝑧𝛿

1, 𝑧
𝛿
2

]︁
, (5.8)

where
𝑧𝑖 = 𝑥1 + 𝜇𝑖𝑥2, 𝑖 = 1,2. (5.9)

The material eigenvalues 𝜇𝑖, 𝑖 = 1,2 are extracted from Eq. (4.49a) for each material. Note that
if anti-plane relations are taken into account, one more material eigenvalue 𝜇3 is obtained.

It is more convenient to express the independent variables 𝑥1, 𝑥2 appearing in 5.9 in terms of
the polar coordinates 𝑟, 𝜃, while the stresses and displacements are considered in the Cartesian
coordinates 𝑥𝑖. We say that the formalism is defined in dual coordinate systems [9, 17]. With
the origin located at the wedge apex, the transformation relations between the Cartesian and
polar coordinates are

𝑥1 = 𝑟 cos 𝜃, 𝑥2 = 𝑟 sin 𝜃. (5.10)

By substitution (5.10) into (5.9), the definition (5.8) holds

Z𝛿 = diag
[︁
𝑟𝛿 (cos 𝜃 + 𝜇1 sin 𝜃)𝛿 , 𝑟𝛿 (cos 𝜃 + 𝜇2 sin 𝜃)𝛿

]︁
. (5.11)

To make later differentiation of Z easier, a mathematical simplification introduced by Ting [9]
is implemented. Let us define the material eigenvalue as a summation of its real and imaginary
part, i.e. 𝜇𝑖 = 𝜇′

𝑖 + 𝑖𝜇′′
𝑖 . Then, the complex variable

𝑧𝑖 =
(︀
𝑥1 + 𝜇′

𝑖𝑥2
)︀

+ 𝑖𝜇′′
𝑖 𝑥2 (5.12)

is a mapping from the 𝑥1𝑥2-plane to the complex plane (see Fig. 5.1) [111]. It represents a
mathematical trick, where the whole space, over which the solution is searched, is deformed
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𝑥2

𝑥1
𝜃

𝑟
𝜔1

𝜔2
interface

material 1

II

I

material 2

𝛼1

𝛼2

Fig. 5.2: Geometry of a bi-material notch characterized by two regions I and II. The notch faces are
defined by angles 𝜔1 and 𝜔2. The material interface is always considered at 𝜃 = 0. The angles
𝛼1 and 𝛼2 denote the fibre orientation, i.e. the longitudinal material direction.

in order to avoid the complicated description of an anisotropic continuum properties in a non-
deformed space. The space distortion supplies the material anisotropy and it is proportional to
[𝜇′,𝜇′′] [9]. Eq. (5.11) is then defined as follows:

Z𝛿 = diag
[︁
𝑟𝛿𝑅𝛿

1 e𝑖𝛿Ψ1 , 𝑟𝛿𝑅𝛿
2 e𝑖𝛿Ψ2

]︁
, (5.13)

where
𝑅2

𝑖 =
(︀
cos 𝜃 + 𝜇′

𝑖 sin 𝜃
)︀2 +

(︀
𝜇′′

𝑖 sin 𝜃
)︀2
, 𝑖 = 1,2 (5.14)

and

Ψ𝑖 =

⎧⎨⎩arctan
(︁

𝜇′′
𝑖 sin 𝜃

cos 𝜃+𝜇′
𝑖 sin 𝜃

)︁
for 𝜃 > −𝜋

−𝜋 for 𝜃 = −𝜋
, 𝑖 = 1,2. (5.15)

Note that in comparison to [19], the relation (5.15) is reduced from four to only two cases. This
could be done due to using Python’s np.arctan21 function, which fixes a discontinuity of the
arctangent and simulates the complex function Arg(𝑧). The complex conjugation of (5.13) is
performed simply as

Z𝛿 = diag
[︁
𝑟𝛿𝑅𝛿

1 e−𝑖𝛿Ψ1 , 𝑟𝛿𝑅𝛿
2 e−𝑖𝛿Ψ2

]︁
. (5.16)

5.1.3 Formulation of the eigenvalue problem

In the previous sections, the fundamental matrices of the LES formalism were defined as func-
tions of the singularity exponent 𝛿, which is a root of the characteristic equation for the notch
geometry and prescribed notch tip boundary conditions. Let us consider a bi-material notch
illustrated in Fig. 5.2, where each wedge occupies the region 0 < 𝜃 < 𝜔1 or 𝜔2 < 𝜃 < 0. The
notch faces are stress free which imposes the following boundary conditions:

TI(𝜔1) = 0,
TII(𝜔2) = 0.

(5.17)

It is assumed that the bi-material interface coincides with 𝑥1 axis. The displacement and traction
continuity conditions are prescribed along the interface 𝜃 = 0 as

uI(0) = uII(0), (5.18a)
1The functions is contained in numpy library, of which procedures are based on FORTRAN LAPACK functions.
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TI(0) = TII(0). (5.18b)

A bi-material notch composed of two monoclinic materials with the principal material symmetry
arbitrary oriented in the plane 𝑥3 = 0 is considered. By substituting (5.7) into (5.17) and (5.18),
one gets eight homogeneous algebraic equations for the exponent 𝛿, which can be written in the
matrix form as⎡⎢⎢⎢⎢⎣

LIZI𝛿
1 (LI)−1 LIZI𝛿

1 (LI)−1 0 0
0 0 LIIZII𝛿

2 (LII)−1 LIIZII𝛿
2 (LII)−1

AIZI𝛿
0 (LI)−1 AIZI𝛿

0 (LI)−1 −AIIZII𝛿
0 (LII)−1 −AIIZII𝛿

0 (LII)−1

LIZI𝛿
0 (LI)−1 LIZI𝛿

0 (LI)−1 −LIIZII𝛿
0 (LII)−1 −LIIZII𝛿

0 (LII)−1

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

LIvI

LIwI

LIIvII

LIIwII

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = 0. (5.19)

The matrix 0 denotes a 2 × 2 zero matrix on the left-hand side and a 8 × 1 zero vector on
the right-hand side of the equation (5.19). The subscript denotes the index of the angle 𝜔𝑖,
while the superscript stands for association with the material region. With the reference to the
assumption that the interface always coincides with 𝑥1 axis, i.e. 𝜔0 = 0∘, it follows that

Z𝑘𝛿
0 = I, Z𝑘𝛿

0 = I, 𝑘 = I, II, (5.20)

where I is a 2 × 2 identity matrix. Introducing

X𝑘
𝑗 = L𝑘Z𝑘𝛿

𝑗 (𝜔𝑗) (L𝑘)−1, X𝑘
𝑗 = L𝑘Z𝑘𝛿

𝑗 (𝜔𝑗) (L𝑘)−1, (5.21a)

Y𝑘
𝑗 = (X𝑘

𝑗 )−1X𝑘
𝑗 , 𝑗 = 1,2,

𝑗 = 1 =⇒ 𝑘 = I, 𝑗 = 2 =⇒ 𝑘 = II,
(5.21b)

B𝑘
0 = 𝑖A𝑘(L𝑘)−1, B𝑘

0 = −𝑖A𝑘(L𝑘)−1, (5.21c)

the system (5.19) can be rewritten as⎡⎢⎢⎢⎢⎣
XI

1 XI
1 0 0

0 0 XII
2 XII

2
BI

0 −BI
0 −BII

0 BII
0

I I −I −I

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

LIvI

LIwI

LIIvII

LIIwII

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = 0. (5.22)

The equations in (5.22) can be reduced to the algebraic system of two equations

K (𝛿) LIvI = 0, (5.23)

where 0 is now a 2 × 1 zero vector and the matrix K is expressed by

K = BI
0 + BI

0YI
1 −

(︁
BII

0 + BII
0 YII

2

)︁ (︁
I − YII

2

)︁−1 (︁
I − YI

1

)︁
. (5.24)

The reduction is described in detail in Appendix B. The eigenvectors vI are extracted by the
backward substitution of 𝛿 to K (𝛿). To avoid computational complications, the eigenproblem
(5.24) was modified by Desmorat and Leckie [110], presented also in [112], but only for cases
when 𝛿 is real. The real part of the eigenvector LIvI is defined as

ℜ
{︁

LIvI
}︁

= 1
2
(︁
LIvI + LIvI

)︁
. (5.25)
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After applying this procedure, it can be proved that if the eigenvalue 𝛿 is real, the eigenvectors
v and w are complex conjugate. The relation (B.2a) can be rewritten as

LIvI = −YI
1LIvI. (5.26)

By combination of two previous equations (5.25) and (5.26), the real part (5.25) can be expressed
as

ℜ
{︁

LIvI
}︁

= 1
2
(︁
LIvI − YI

1LIvI
)︁

= 1
2
(︁
I − YI

1

)︁
LIvI. (5.27)

Substituting LIvI from Eq. (5.27) into (5.23) we get the modified eigenproblem

K
(︁
I − YI

1

)︁−1
2ℜ
{︁

LIvI
}︁

= 0, (5.28)

which leads to the equality between the eigenvectors v and w if 𝛿 is real:

w = v. (5.29)

The generally complex eigenvector vI is evaluated from (5.27) as

vI =
(︁
LI
)︁−1 (︁

I − YI
1

)︁−1
2ℜ
{︁

LIvI
}︁
. (5.30)

The eigenvector vII for the second material is computed from (B.5) as

vII =
(︁
LII
)︁−1 (︁

I − YII
2

)︁−1 (︁
I − YI

1

)︁
LIvI. (5.31)

Note that to get an unique value of the stress intensity factor 𝐻, we have to normalize the vector
LIvI in (5.30). The remaining eigenvectors, i.e. LIIvII and LIwI, LIIwII satisfy the normality
automatically.

In the case of complex 𝛿, the previous formalism can be also used. However, some relations
have to be modified. Let us start from the right-hand side of Eq. (5.27). Employing the general
form (B.2a) we get

1
2
(︁
I − YI

1

)︁
LIvI = 1

2
(︁
LIvI + LIwI

)︁
= LI

𝑎vI
𝑎, (5.32)

where the index 𝑎 stands for an average value of both eigenvectors with no physical meaning.
By solving the modified eigenproblem (5.28) for a complex 𝛿, the resulting eigenvector would
not be purely real. Therefore, Eq. (5.28) can be expanded as

K
(︁
I − YI

1

)︁−1
2LI

𝑎vI
𝑎 = 0. (5.33)

The eigenvector vI is calculated from the accordingly modified relations (5.30), i.e.

vI =
(︁
LI
)︁−1 (︁

I − YI
1

)︁−1
2LI

𝑎vI
𝑎. (5.34)

The eigenvector vII of the second material is obtained from Eq. (5.31). The values of wI and
wII are determined from (B.2a) and (B.2b):

wI = −
(︁
LI)︁−1

YI
1LIvI, (5.35a)

wII = −
(︁
LII)︁−1

YII
2 LIIvII. (5.35b)
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Young’s modulus [GPa] Poisson’s ratio [-]
shear

modulus
[GPa]

fibre
orientation

[∘]
𝐸𝐿 𝐸𝑇 𝜈𝐿𝑇 𝜈𝑇 𝑇 ′ 𝐺𝐿𝑇 𝛼

material 1 100 50 0.3 0.3 30 0
material 2 400 50 0.3 0.3 30 90

Tab. 5.1: Material properties of transversally isotropic materials. It follows from (4.12) and (4.16) that
𝐸𝑇 = 𝐸𝑇 ′ .

To get a non-trivial solution of (5.28), the following relation must be held:

det
[︂
K
(︁
I − YI

1

)︁−1
]︂

= 0, (5.36)

which leads to a nonlinear characteristic equation, which has an unlimited number of solutions
𝛿𝑖. In the literature, 𝛿 is sometimes called eigenvalue. This is not mathematically exact, but
it fulfils the physical meaning. Since the strain energy cannot be unbounded from the physical
point of view, eigenvalues from the interval 0 < ℜ {𝛿} < 1 have to be considered.

The previous procedure has determined the parameters for defining the so-called regular
solution. It can be proved that 𝛿𝑖 = −𝛿𝑖 also satisfies the characteristic equation (5.33), see
[113]. This so-called auxiliary solution is a mathematical tool allowing the evaluation the GSIFs
via the Betti’s theorem-based path-independent integral introduced hereafter. It represents a
stress field at the notch tip with singularity stronger than the regular one and hence it exhibits
unbounded energy. By reinserting 𝛿𝑖 into (5.33) and by employing (5.34), the corresponding
auxiliary eigenvector v̂I can be evaluated as well as the remaining auxiliary eigenvectors v̂II, ŵI

and ŵII, by application of (5.31), (5.35a) and (5.35b).

Example 1: Material eigenvalues of a transversally isotropic material A transver-
sally isotropic material with fibres oriented in the 𝑥1𝑥2-plane by the angle 𝛼𝑖 (see Fig. 5.2) is
considered. The material properties are stated in Tab. 5.1. In the first step, the determination
of the material eigenvalues 𝜇1 and 𝜇2 for in-plane field was carried out. Under the assumption
of the monoclinic material and in-plane problem only, the equation (4.49a) is reduced to

𝑙4(𝜇) = 0, (5.37)

where 𝑙4 is defined in (4.49b). As the equation is written in the form of a polynomial of the
unknown variable 𝜇, the Python function polynomial.polyroots from the numpy package is
suitable to be used instead of a general root-finding algorithm. Nevertheless, the procedure
requires an attention in its output values. They have to be reordered so that the requirement
(4.50) is satisfied. If the principal material directions coincide with global Cartesian axes 𝑥1 and
𝑥2, i.e. the longitudinal axis is either parallel or perpendicular to 𝑥1-axis, the material constants
𝑆16 and 𝑆26 vanish. For such case, Suo [44] developed an explicit solution for determination of
the material eigenvalues. The characteristic equation (5.37) can be then expressed in the form

𝜆𝜇4 + 2𝜌𝜆
1
2𝜇2 + 1 = 0, (5.38a)

where
𝜆 = 𝑆11

𝑆22
, 𝜌 = 2𝑆12 + 𝑆66

2
√︁
𝑆11𝑆22

. (5.38b)
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𝜇1 𝜇2

material 1, 𝛼1 = 0∘ −0.1478 + 1.1656𝑖 0.1478 + 1.1656𝑖
material 2, 𝛼2 = 0∘ 0.7805𝑖 3.4766𝑖
material 1 𝛼1 = 40∘ −0.1635 + 0.8948𝑖 −0.1598 + 1.1522𝑖

Tab. 5.2: Material eigenvalues for certain material configurations.
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Fig. 5.3: The HSV phase portrait of the characteristic function 𝑓(𝛿) = det[K(I−YI
1)−1] defined in (5.36)

and the contour plot for 𝑓(𝛿) = 0 for a bi-material notch with geometry 𝜔1 = 125∘, 𝜔2 = −180∘

and materials defined in Tab. 5.1. The intersections of the curves of different colour give the
searched roots.

The roots of the characteristic equation (5.38a) are determined by

𝜇1 = 𝑖𝜆− 1
4 (𝑛+𝑚), 𝜇2 = 𝑖𝜆− 1

4 (𝑛−𝑚), for 1 < 𝜌 < ∞,

𝜇1 = 𝜆− 1
4 (𝑖𝑛+𝑚), 𝜇2 = 𝜆− 1

4 (𝑖𝑛−𝑚), for − 1 < 𝜌 < 1,

𝜇1 = 𝜇2 = 𝑖𝜆− 1
4 , for 𝜌 = 1,

(5.39)

where

𝑛 =
√︂

1 + 𝜌

2 , 𝑚 =
√︃⃒⃒⃒⃒1 − 𝜌

2

⃒⃒⃒⃒
. (5.40)

The case 𝜌 = 1 corresponds to a material with the cubic symmetry and the case 𝜆 = 𝜌 = 1 to
the isotropic material, which are together the so-called degenerated states of anisotropy.

The material eigenvalues have the form of 𝜇1,2 = ∓𝑎+ 𝑏𝑖 or they are purely imaginary for
two fibre configurations described in the previous paragraph. If an arbitrary fibre orientation is
included, the real and imaginary parts of 𝜇1 and 𝜇2 become distinct. The compliance matrix
has to be recomputed by using the transformation relation (4.26). Values for three material
configurations are stated in Tab. 5.2.
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Fig. 5.4: The HSV phase portrait of the characteristic function 𝑓(𝛿) = det[K(I−YI
1)−1] defined in (5.36)

and the contour plot for 𝑓(𝛿) = 0 for an interface crack with geometry 𝜔1 = 180∘, 𝜔2 = −180∘

and materials defined in Tab. 5.1. The intersections of the curves of different colour give the
searched roots.

Example 2: Singularity exponents and eigenvectors of a transversally isotropic bi-
material notch The characteristic function (5.36) is a complex function, which has generally
complex roots. A convenient tool to investigate the complex function development is the phase
portrait described in Appendix A, which is based on the recomputing of a complex number
in terms of hue, saturation and value. Let us consider a bi-material notch defined by angles
𝜔1 = 125∘, 𝜔2 = −180∘ and material characteristics defined in Tab. 5.1. The complex function
𝑓(𝛿) = det[K(I − YI

1)−1] defined in Eq. (5.36) is depicted in Fig. 5.3. It can be seen that
on the interval 0 < ℜ{𝛿} < 1 the characteristic function has two real roots, i.e. 𝛿1 = 0.5186
and 𝛿2 = 0.7647. In the interval limits [0,0] and [1,0], which delimit the singular exponents,
the transcendental characteristic function has two poles. The same root identification can be
done for a wedge with complex roots. The characteristic function for an interface crack, i.e.
𝜔1 = 180∘, 𝜔2 = −180∘ is depicted in Fig. 5.4. It is obvious that there are two complex
conjugate roots 𝛿1 = 0.5 + 0.02474𝑖, 𝛿2 = 0.5 − 0.02474𝑖 and two poles in the points 𝛿 = 0 and
𝛿 = 1. Note that the determinant of the matrix on the left-hand side of (5.19) has roots at
points 𝛿 = 0 and 𝛿 = 1.

The root identification algorithm was developed in Python programming language, based
on the findroot from the mpmath library [114]. The default secant method was used and the
tolerance error has been set to 1 × 10−15. It is advised to prove whether the calculated solution
represents the root. By re-inserting the root into the characteristic equation (5.36) a numerical
zero has to be obtained. The second possibility is to set verify=True into key arguments of
the root-finding method. The next verification that could be done is to check continuity of
displacements and tractions (along the material interface). This will be discussed in the next
numerical example.

Fig. 5.5 shows a dependence of the singularity exponents 𝛿 on the notch angle 𝜔1 while the
angle 𝜔2 = −180 remains fixed. For an unreal limit case 𝜔1 = 0, 𝛿1 is approaching 1, while
𝛿2 goes to 2. The second term 𝛿2 is singular for 𝜔1 < 77∘ only and the eigenvalues 𝛿1 and 𝛿2
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Fig. 5.5: The exponent 𝛿𝑖 dependence on the notch geometry 𝜔1, materials are defined in Tab. 5.1.

become complex conjugate when 𝜔1 > 165∘. The notch angle 𝜔1 = 180∘ represents an interface
crack with ℜ{𝛿1} = ℜ{𝛿2} = 0.5. The received results can be compared with Chen [115], in
which the same values of 𝛿𝑖 for the varying notch geometry are obtained.

The right eigenvectors are evaluated by the backward substitution of 𝛿 to (5.28) or (5.33)
and by using linalg.eig of scipy2 library. The required eigenvector corresponds to the zero
eigenvalue of the matrices on the left-hand side of (5.28) or (5.33), respectively. One eigenvector
for each singularity exponent 𝛿𝑖 is obtained. In order to get unique stress intensity factors 𝐻,
the eigenvectors have to be normalized properly. Employing (5.28), the eigenvector LIvI is
normalized by

LIvI =

(︁
I − YI

1

)︁−1
2ℜ
{︁

LIvI
}︁

⃒⃒⃒⃒⃒⃒⃒⃒(︁
I − YI

1

)︁−1
2ℜ
{︁

LIvI
}︁⃒⃒⃒⃒⃒⃒⃒⃒ , (5.41a)

or analogically for a complex 𝛿

LIvI =

(︁
I − YI

1

)︁−1
2LI

𝑎vI
𝑎⃒⃒⃒⃒⃒⃒⃒⃒(︁

I − YI
1

)︁−1
2LI

𝑎vI
𝑎

⃒⃒⃒⃒⃒⃒⃒⃒ . (5.41b)

Subsequently, the eigenvectors vI, vII, wI and wII are determined by using the definitions (5.30)
(or (5.34) for a complex eigenvalue), (5.31), (5.35a) and (5.35b). Note that in the numerical
algorithm, the relations (5.30) and (5.34) are not distinguished and the procedure output is
either real for real eigenvalues 𝛿 or complex for complex 𝛿 and in the text there are written
separately in order to observe the formality. Tab. 5.3 shows eigenvectors for a bi-material notch
with real singularity exponents. We can see that the vectors v and w for the individual material
regions I or II are complex conjugate. Then, the imaginary parts of both addends in (5.7) are
equal, but with an opposite sign, and the simplified relation (5.1a) can be used.

The eigenvectors for an interface crack as a special case of the bi-material notch are given
in Tab. 5.4. The vectors v and w are now distinct, but after substitution to (5.7) we get
real-valued expressions for displacements u and resultant tractions T. It will be discussed in
the next example in detail. It can be easily proved that the structure of the eigenvectors is not
changed when the arbitrary fibre orientations 𝛼1 and 𝛼2 are considered.

Since the LES formalism derived in section 4.1.7 considers also an arbitrary fibre orienta-
tion (in the plane 𝑥1𝑥2), an effect of fibre orientation was also studied (see Fig. 5.6(a)). The
angle of fibre orientation attain the values 𝛼1 ∈ (0∘, 180∘). The state for 𝛼1 = 0∘ and 𝛼1 = 180∘

2Both scipy and numpy libraries are based on LAPACK libraries programmed in FORTRAN language.
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𝛿 vI wI vII wII

𝛿1

{︂
0.52054 + 3.40988𝑖
0.46619 − 3.32334𝑖

}︂ {︂
0.52054 − 3.40988𝑖
0.46619 + 3.32334𝑖

}︂ {︂
1.27408 + 0.04509𝑖

−0.28735 + 0.01257𝑖

}︂ {︂
1.27408 − 0.04509𝑖

−0.28735 − 0.01257𝑖

}︂
𝛿2

{︂
4.88166 − 0.76065𝑖

−5.34670 + 0.20628𝑖

}︂ {︂
4.88166 + 0.76065𝑖

−5.34670 − 0.20628𝑖

}︂ {︂
−0.34464 − 0.89033𝑖
−0.12041 + 0.38015𝑖

}︂ {︂
−0.34464 + 0.89033𝑖
−0.12041 − 0.38015𝑖

}︂
Tab. 5.3: Eigenvectors corresponding to the singularity exponents 𝛿1 = 0.5186 and 𝛿2 = 0.7647 of a

bi-material notch with material characteristics defined in 5.1 and 𝜔1 = 125∘, 𝜔2 = −180∘.

𝛿 vI wI vII wII

𝛿1

{︂
0.83013 + 0.33470𝑖

−0.83013 + 0.33470𝑖

}︂ {︂
5.23087 + 0.28652𝑖

−5.23087 + 0.28652𝑖

}︂ {︂
0.50303𝑖
0.07000𝑖

}︂ {︂
1.13871𝑖

−0.46932𝑖

}︂
𝛿2

{︂
6.11052 − 0.33470𝑖

−6.11052 − 0.33470𝑖

}︂ {︂
0.96972 − 0.39098𝑖

−0.96972 − 0.39098𝑖

}︂ {︂
−1.33020𝑖
0.54824𝑖

}︂ {︂
−0.58763𝑖
−0.08177𝑖

}︂
Tab. 5.4: Eigenvectors corresponding to the singularity exponents 𝛿1 = 0.5 + 0.02474𝑖 and 𝛿2 = 0.5 −

0.02474𝑖 of an interface crack with material characteristics defined in 5.1 and 𝜔1 = 180∘,
𝜔2 = −180∘.

(a) (b)

Fig. 5.6: The exponent 𝛿𝑖 dependence on the notch geometry on the angle of fibre orientation 𝛼1 of a
bi-material notch defined by (a) 𝜔1 = 125∘ and (b) 𝜔1 = 180∘, 𝜔2 = −180∘ and materials
defined in Tab. 5.1.

corresponds to the same configuration and the graphs of both stress singularity exponents have
the same character. These results can be compared with the study done by Chen [115] or by
Hwu et al. [58] with application of the Stroh formalism. However, there is not clearly distin-
guished which singular exponent belongs to anti-plane field. The same study was done for an
interface crack (Fig. 5.6(b)). Both eigenvalues have the real part ℜ{𝛿1} = ℜ{𝛿2} = 0.5 and
their imaginary parts are complex conjugate with the minimal value of the oscillatory index for
𝛼1 = 90∘.
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5.1.4 Problem redefinition by introducing the shape functions

As the in-plane problem of transversally isotropic material leads to two generally complex sin-
gularity exponents 𝛿1 and 𝛿2, the resulting displacements and stress functions are obtained by
superposition of the individual solutions (5.7) for each 𝛿𝑖, where the generally complex valued
weights represent the GSIFs (see Eq (2.5)).

Displacements and stress functions are expressed as

u(𝑧) = 𝐻1
(︁
AZ𝛿1v1 + AZ𝛿1w1

)︁
+𝐻2

(︁
AZ𝛿2v2 + AZ𝛿2w2

)︁
, (5.42a)

T(𝑧) = 𝐻1
(︁
LZ𝛿1v1 + LZ𝛿1w1

)︁
+𝐻2

(︁
LZ𝛿2v2 + LZ𝛿2w2

)︁
, (5.42b)

where the indices 1,2 denote association to the eigenvalue 𝛿1 or 𝛿2, respectively. In order to
simplify the numerical algorithm and relations for the Ψ-integral, it is convenient to introduce
the angular functions 𝜂𝑖 and 𝜆𝑖, 𝑖 = 1,2 defined as follows:

𝜂𝑖(𝜃) = AZ𝛿𝑖(𝜃)v𝑖 + AZ𝛿𝑖(𝜃)w𝑖, (5.43a)

𝜆𝑖(𝜃) = LZ𝛿𝑖(𝜃)v𝑖 + LZ𝛿𝑖(𝜃)w𝑖, (5.43b)

where the angular variable 𝜃 in the bracket of Z𝛿(𝜃) emphasizes that the radial variable 𝑟𝛿 was
excluded. The complex functions (5.13) and (5.16) can be then rewritten as [19]

Z𝛿 = 𝑟𝛿Z𝛿(𝜃) = 𝑟𝛿 diag
[︁
𝑅𝛿

1 e𝑖𝛿Ψ1 , 𝑅𝛿
2 e𝑖𝛿Ψ2

]︁
,

Z𝛿 = 𝑟𝛿Z𝛿(𝜃) = 𝑟𝛿 diag
[︁
𝑅𝛿

1 e−𝑖𝛿Ψ1 , 𝑅𝛿
2 e−𝑖𝛿Ψ2

]︁
.

(5.44)

Displacements and stress functions can be expressed by using the shape functions (5.43) as

u(𝑟,𝜃) = 𝐻1𝑟
𝛿1𝜂1(𝜃) +𝐻2𝑟

𝛿2𝜂2(𝜃), (5.45a)

T(𝑟,𝜃) = 𝐻1𝑟
𝛿1𝜆1(𝜃) +𝐻2𝑟

𝛿2𝜆2(𝜃), (5.45b)

in which

𝜂𝑖(𝜃) =
{︃
𝜂𝑖

1
𝜂𝑖

2

}︃
, 𝜆𝑖(𝜃) =

{︃
𝜆𝑖

1
𝜆𝑖

2

}︃
, 𝑖 = 1,2. (5.46)

Example 3: Shape functions of a transversally isotropic bi-material notch The shape
functions 𝜂1, 𝜂2 and 𝜆1, 𝜆2 for a bi-material notch 𝜔1 = 125∘, 𝜔2 = −180∘ (with real singularity
exponents) are shown in Fig. 5.7. We can see that all imaginary parts (dashed lines) are zero,
which match up with the statement that imaginary parts of both addends of (5.43a) or (5.43b)
subtract from each other. A different situation occurs when 𝛿𝑖 are complex conjugate. The
shape functions are then generally complex (see Fig. 5.8), because the eigenvectors v and w
are not complex conjugate. It implies that the generalized stress intensity factors will be also
complex, but not complex conjugate.
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Fig. 5.7: Components of the shape function vectors (a) 𝜂1, 𝜂2 and (b) 𝜆1, 𝜆2 for a bi-material notch
𝜔1 = 125∘, 𝜔2 = −180∘ (materials defined in Tab. 5.1).

5.1.5 Determination of the generalized stress intensity factors

Generalized stress intensity factors determine an amplitude of the displacements and stresses
characterized by the normalized shape functions (5.43). In the present work, GSIFs are deter-
mined by using the Ψ-integral method outlined in section 2.5. This method was firstly introduced
by Sinclair et al. [116] or Vu-Quoc and Tran [117], and deeply investigated by Hwu [17]. It
is based on the theorem of Betti and Rayleigh [118]. Contrary to the 𝐽-integral introduced by
Rice [119], the path-interdependence of the Ψ-integral is also preserved for multi-material stress
concentrators.

The Betti’s reciprocal theorem claims that if an elastic body is subjected to two systems of
body and surface forces, the work that would be done by the first system in acting through the
displacements due to the second system of forces is equal to the work that would be done by the
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Fig. 5.8: Components of the shape function vectors (a) 𝜂1, 𝜂2 and (b) 𝜆1, 𝜆2 for an interface crack
𝜔1 = 180∘, 𝜔2 = −180∘ (materials defined in Tab. 5.1).

second system in acting through the displacements due to the first system of forces [17]. Let us
then choose the first system to be regular (actual singular fields) and the second system to be
the auxiliary (also called complementary). Neglecting the body forces (assumed by Lekhnitskii
formalism), the Ψ-integral is characterized as

∮︁
Γ

(︁
uᵀt̂ − ûᵀt

)︁
d𝑠 = 0. (5.47)

The vectors û, t̂ are the auxiliary solutions to the displacements and tractions corresponding to
the exponent 𝛿𝑖 = −𝛿𝑖. It can be proved that each regular solution of the eigenvalue problem
(5.36), generating the basis functions in (5.45a), i.e. 𝑟𝛿𝑖𝜂𝑖(𝜃), is associated with the dual solution
𝑟𝛿𝑖 �̂�𝑖(𝜃) of the same eigenvalue problem, where 𝛿𝑖 = −𝛿𝑖 [113]. The auxiliary solutions are defined
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Fig. 5.9: Scheme of a closed Ψ-integral contour around the bi-material notch tip. The closed path is
Γ = Γ1 + Σ1 + Γ2 + Σ2.

as
û𝑖(𝑟,𝜃) = �̂�𝑖𝑟

−𝛿𝑖 �̂�𝑖(𝜃), (5.48a)

T̂𝑖(𝑟,𝜃) = �̂�𝑖𝑟
−𝛿𝑖�̂�𝑖(𝜃), 𝑖 = 1,2, (5.48b)

where �̂�𝑖 = 1. The auxiliary eigenfunctions have the following structure:

�̂�𝑖(𝜃) = AZ−𝛿𝑖(𝜃)v̂𝑖 + AZ−𝛿𝑖(𝜃)ŵ𝑖 (5.49a)

�̂�𝑖(𝜃) = LZ−𝛿𝑖(𝜃)v̂𝑖 + LZ−𝛿𝑖(𝜃)ŵ𝑖. (5.49b)
The eigenvectors v̂, ŵ are computed by the same procedure described in Example 2 just by
substituting 𝛿𝑖 = −𝛿𝑖 into the algorithm. The auxiliary functions for the same above studied
geometric configurations are depicted in Figs. C.1 and C.2 in Appendix C.1.

The vectors u and t represent either the regular asymptotic or the full-field solution obtained
numerically. In the first case, the vector u is given by (5.45a) and the vector t is given by the
derivative of (5.45b) with respect to 𝜃,

t = 𝜕T
𝜕𝑠

= − 𝜕T
𝑟𝜕𝜃

= −T,𝜃

𝑟
. (5.50)

The tangential direction 𝑠 is chosen so that when one faces the direction of increasing 𝑠, the
material lies on the right-hand side. Substituting (5.45b) into (5.50) we get expressions for the
traction vector in terms of the shape functions:

−t(𝑟,𝜃) = 𝐻1𝑟
𝛿1−1𝜆′

1(𝜃) +𝐻2𝑟
𝛿2−1𝜆′

2(𝜃), (5.51)

where ()′ denotes differentiation with respect to 𝜃. A derivative of 𝜆(𝜃) defined in (5.43b) is

𝜆′
𝑖(𝜃) = L

(︁
Z𝛿𝑖(𝜃)

)︁′
v𝑖 + L

(︁
Z𝛿𝑖(𝜃)

)︁′
w𝑖. (5.52)

where(︁
Z𝛿(𝜃)

)︁′
= diag

[︁
𝛿𝑅𝛿−1

1 e𝑖(𝛿−1)Ψ1 [− sin(𝜃) + 𝜇1 cos(𝜃)] ,

𝛿𝑅𝛿−1
2 e𝑖(𝛿−1)Ψ2 [− sin(𝜃) + 𝜇2 cos(𝜃)]

]︁
(5.53)
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Fig. 5.10: Scheme of two circular Ψ-integral contours ΓA and ΓB.

and(︁
Z𝛿(𝜃)

)︁′
= diag

[︁
𝛿𝑅𝛿−1

1 e−𝑖(𝛿−1)Ψ1 [− sin(𝜃) + 𝜇1 cos(𝜃)] ,

𝛿𝑅𝛿−1
2 e−𝑖(𝛿−1)Ψ2 [− sin(𝜃) + 𝜇2 cos(𝜃)]

]︁
. (5.54)

The auxiliary tractions are obtained analogically by employing (5.50):

−t̂𝑖(𝑟,𝜃) = 𝐻𝑖𝑟
−𝛿𝑖−1�̂�

′
𝑖(𝜃), (5.55)

and
�̂�

′
𝑖(𝜃) = L

(︁
Z−𝛿𝑖(𝜃)

)︁′
v̂𝑖 + L

(︁
Z−𝛿𝑖(𝜃)

)︁′
ŵ𝑖. (5.56)

Γ is a closed contour in a simply connected region. Let us consider a contour Γ = Γ1 + Σ1 +
Γ2 + Σ2 as shown in Fig. 5.9. The integral (5.47) can be rewritten as follows:∫︁

Γ1

(︁
uᵀt̂ − ûᵀt

)︁
d𝑠+

∫︁
Σ1

(︁
uᵀt̂ − ûᵀt

)︁
d𝑠+

∫︁
Γ2

(︁
uᵀt̂ − ûᵀt

)︁
d𝑠+

∫︁
Σ1

(︁
uᵀt̂ − ûᵀt

)︁
d𝑠 = 0.

(5.57)
Since the notch faces are assumed to be traction free (boundary conditions (5.17)), the terms
corresponding to the contours Σ1 and Σ2 equal to zero and Eq. (5.57) reduces to∫︁

Γ1

(︁
uᵀt̂ − ûᵀt

)︁
d𝑠+

∫︁
Γ2

(︁
uᵀt̂ − ûᵀt

)︁
d𝑠 = 0. (5.58)

Let us denote ΓA = Γ1 and ΓB = −Γ2, i.e. we changed the orientation of the second contour
so that both are oriented in the counter-clockwise direction (the paths emanate from 𝜔2 to 𝜔1).
We get ∫︁

ΓA

(︁
uᵀt̂ − ûᵀt

)︁
d𝑠 =

∫︁
ΓB

(︁
uᵀt̂ − ûᵀt

)︁
d𝑠, (5.59)

which proved that the Ψ-integral is path-independent for free-free multi-material wedges [59].
For simplicity, a circular counter-clockwise paths ΓA and ΓB through the region dominated by
the singular field are chosen, see Fig. 5.10. The Ψ-integral for a bi-material notch characterised
by angles 𝜔1 and 𝜔2 becomes

Ψ =
∫︁ 𝜔1

𝜔2

(︁
uᵀt̂ − ûᵀt

)︁
𝑟 d𝜃. (5.60)
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Obviously, if the integration contour shrinks to the notch tip, the full-field solution reduces to
the asymptotic solution (5.45a) and (5.51). Inserting the regular solutions (5.45a), (5.51) and
auxiliary solutions (5.48a), (5.55) into (5.60), we obtain

Ψ
(︁
u,𝑟−𝛿𝑖 �̂�𝑖(𝜃)

)︁
=

2∑︁
𝑗=1

𝐻𝑗Ψ
(︁
𝑟𝛿𝑗 𝜂𝑗(𝜃),𝑟−𝛿𝑖 �̂�𝑖(𝜃)

)︁
, 𝑖 = 1,2. (5.61)

Since the regular and corresponding auxiliary solutions are orthogonal with respect to the inte-
gral (2.14), it follows for the individual integrals that [17, 117]

Ψ
(︁
𝑟𝛿𝑗 𝜂𝑗(𝜃),𝑟−𝛿𝑖 �̂�𝑖(𝜃)

)︁
=
{︃

const ̸= 0 for 𝑖 = 𝑗,

0 for 𝑖 ̸= 𝑗.
(5.62)

Applying (5.62), the Ψ-integral (5.61) computed along a path very close to the crack tip gives
an important result for the GSIFs evaluation

Ψ
(︁
u,𝑟−𝛿𝑖 �̂�𝑖(𝜃)

)︁
= Ψ

(︁
𝑟𝛿𝑖𝜂𝑖(𝜃),𝑟−𝛿𝑖 �̂�𝑖(𝜃)

)︁
=

=
∫︁ 𝜔1

𝜔2

(︁
𝐻𝑖𝑟

𝛿𝜂
ᵀ
𝑖 (𝜃)𝑟−𝛿𝑖−1�̂�

′
𝑖(𝜃) − 𝑟−𝛿𝑖 �̂�

ᵀ
𝑖 (𝜃)𝐻𝑖𝑟

𝛿𝑖−1𝜆′
𝑖(𝜃)

)︁
𝑟 d𝜃 =

= 𝐻𝑖

∫︁ 𝜔1

𝜔2

(︁
𝑟𝛿𝑖−𝛿𝑖−1+1𝜂

ᵀ
𝑖 (𝜃)�̂�′

𝑖(𝜃) − 𝑟−𝛿𝑖+𝛿𝑖−1+1�̂�
ᵀ
𝑖 (𝜃)𝜆′

𝑖(𝜃)
)︁

d𝜃 =

= 𝐻𝑖

∫︁ 𝜔1

𝜔2

(︁
𝜂
ᵀ
𝑖 (𝜃)�̂�′

𝑖(𝜃) − �̂�
ᵀ
𝑖 (𝜃)𝜆′

𝑖(𝜃)
)︁

d𝜃, (5.63)

which is independent on the radial coordinate 𝑟. The Ψ-integral with a contribution of the regular
and auxiliary fields is zero when the contour is not in the singular dominance region. Note that
the integration path and the boundary defined in 4.2 are oppositely oriented. Reorienting the
boundary leads to changing the sings of t and t̂ defined in (5.51) and (5.55).

Making use of the Ψ-integral path-independence, the GSIFs can be evaluated when the
right-hand side of Eq. (5.63) is put equal to the Ψ-integral computed along the remote contour
which contains a full-field solution to the vectors u and t. In the present work the full-field
solution is approximated using FEM implemented in ANSYS software [120]. The integration
contour is chosen far away from the bi-material notch tip. Let us introduce the integral

Ψ
(︁
uFEM,𝑟−𝛿𝑖

𝑐 �̂�𝑖(𝜃)
)︁

=
∫︁ 𝜔1

𝜔2

(︂(︁
uFEM

)︁ᵀ
𝑟−𝛿𝑖−1

𝑐 �̂�
′
𝑖(𝜃) + 𝑟−𝛿𝑖

𝑐 �̂�
ᵀ
𝑖 (𝜃)tFEM

)︂
𝑟𝑐 d𝜃, (5.64)

where 𝑟𝑐 is the radius of the circular path far away from the notch singularity. Note that the
signs follow from the orientation of the outward normal and the integration contour. Elements
of the vector uFEM = [𝑢FEM

1 ,𝑢FEM
2 ]ᵀ are the direct output from the finite element analysis, but

elements of the vector tFEM on the surface of the contour have to be computed from the stresses
by using the Cauchy’s formula 𝑡𝑖 = 𝜎𝑖𝑗𝑛𝑗 , in the matrix form written as

tFEM = 𝜎FEMn, (5.65)

where 𝜎FEM is the two-dimensional stress tensor and n is the outer normal to the domain
enclosed by a circular integrating path of the radius 𝑟𝑐 defined as

𝜎FEM =
[︃
𝜎FEM

11 𝜎FEM
12

𝜎FEM
21 𝜎FEM

22

]︃
, n =

{︃
cos(𝜃)
sin(𝜃)

}︃
. (5.66)
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Fig. 5.11: Finite element mesh of the bi-material notch model with scaled regions with a refined and
mapped mesh. The loading and constrains are depicted on the left.

Note that the normal vector introduced in (5.66) has now a different orientation than in (4.72),
because it is normal to the domain enclosed by the circular contour. Applying the analogy with
the standard dot product, the Ψ-integrals (5.63) and (5.64) project analytical and numerical
solution of the same problem into the basis function of a dual function space generated by the
auxiliary solutions (5.49). Hence, both Ψ-integrals (5.63) and (5.64) are equal and the following
relations hold

Ψ
(︁
uFEM,𝑟−𝛿𝑖

𝑐 �̂�𝑖(𝜃)
)︁

= Ψ
(︁
𝐻1𝑟

𝛿1
𝑐 𝜂1(𝜃) +𝐻2𝑟

𝛿2
𝑐 𝜂2(𝜃),𝑟−𝛿𝑖

𝑐 �̂�𝑖(𝜃)
)︁

=

= 𝐻1Ψ
(︁
𝑟𝛿1

𝑐 𝜂1(𝜃),𝑟−𝛿𝑖
𝑐 �̂�𝑖(𝜃)

)︁
+𝐻2Ψ

(︁
𝑟𝛿2

𝑐 𝜂2(𝜃),𝑟−𝛿𝑖
𝑐 �̂�𝑖(𝜃)

)︁
, 𝑖 = 1,2. (5.67)

Applying (5.62), two separate definitions for each index 𝑖 = 1,2 are obtained:

Ψ
(︁
uFEM,𝑟−𝛿1

𝑐 �̂�1(𝜃)
)︁

= 𝐻1Ψ
(︁
𝑟𝛿1

𝑐 𝜂1(𝜃),𝑟−𝛿1
𝑐 �̂�1(𝜃)

)︁
,

Ψ
(︁
uFEM,𝑟−𝛿2

𝑐 �̂�2(𝜃)
)︁

= 𝐻2Ψ
(︁
𝑟𝛿2

𝑐 𝜂2(𝜃),𝑟−𝛿2
𝑐 �̂�2(𝜃)

)︁
,

(5.68)

from which the generalized stress intensity factors can be extracted as

𝐻1 =
Ψ
(︁
uFEM,𝑟−𝛿1

𝑐 �̂�1(𝜃)
)︁

Ψ
(︁
𝑟𝛿1

𝑐 𝜂1(𝜃),𝑟−𝛿1
𝑐 �̂�1(𝜃)

)︁ ,
𝐻2 =

Ψ
(︁
uFEM,𝑟−𝛿2

𝑐 �̂�2(𝜃)
)︁

Ψ
(︁
𝑟𝛿2

𝑐 𝜂2(𝜃),𝑟−𝛿2
𝑐 �̂�2(𝜃)

)︁ .
(5.69)

5.1.6 Finite element model of a bi-material notch

The knowledge of the character of the stress singularity represented by the exponents 𝛿𝑖 is nec-
essary for the GSIFs evaluation. The FEM analysis is an important component of the procedure
that allows one to get a complete description of the singular stress field at the bi-material notch
tip. A script code in the APDL programming language in ANSYS software was created in order
to gain the output data on the desired circular contour. The geometry of the FEM model is
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depicted in Fig. 5.11. The finite element mesh in the vicinity of the notch tip consists of two
regions. The small circle delimited by the radius 𝑅1 = 0.001 mm has a free mesh, because
using of special singular elements would cause a mesh distortion for a finer element length. The
region between 𝑅1 and 𝑅2 = 7 mm is the area of the interest, from which the stresses and
displacements are extracted and the mesh here is fine and mapped so that each element has a
square-like shape. All desired nodal results are saved to a text file and consequently imported
by using a Python script, where the displacement and stress fields are reconstructed by using
scipy.interpolate package, namely griddata function. This procedure requires a homoge-
neous and well-structured finite element mesh. The data on the circular path are interpolated
by using scint.splrep and scint.splev libraries. The advantage of this method is that only
one computation with a fine mesh in ANSYS is necessary in order to reconstruct a circular
path with an arbitrary radius. The second advantage is that employing of adaptive integration
methods for evaluating the Ψ-integral is available.

The 8-node quadratic plane element PLANE183 was used with plane strain enabled. As was
stated in the previous paragraphs, only plane strain state is considered in the studies, because
from the computational point of view, the constitutive equations for plane stress can be analog-
ically modified (see section 4.1.5). A variable notch geometry is enabled, the face angles 𝜔1, 𝜔2
could attain values between 0∘ and 180∘, while the bi-material interface remains fixed at 𝜔0 = 0∘.
The fibre orientation is realized by orienting the element coordinate system by angles 𝛼1 and
𝛼2, respectively. Dimensions of the two-dimensional model are 𝑎 = 180 mm and 𝑏 = 180 mm.

When investigating a stress concentrator in a technical component by using FEM, the sub-
modelling technique is widely used. This method consists in performing two computations.
The whole model with a coarse mesh is analysed. Output of this analysis represents boundary
conditions to a second model, which analyses the singular region more closely, meshed very fine.
Boundary conditions of the sub-model can be both displacements and forces. In the present
work, the finite element model is constrained according to Fig. 5.11. Nodes at the bottom
edge are fixed in the 𝑥2 direction and, on top of that, the right lateral node is fixed in the 𝑥1
direction in order to avoid a rigid body motion. The upper side is loaded with the applied stress
𝜎appl

2 = 100 MPa. Displacements 𝑢2 on the upper boundary are coupled in order to minimize
the non-uniform loading. After deformation, the origin of the coordinate system of the finite
element mesh does not coincide with the origin of the coordinate system of the analytical solution
(5.45)1. Hence, the notch tip displacements have to be subtracted from all body displacements.
It has to be reminded that the notch faces have to remain mechanically unloaded (zero tractions
t).

Example 4: Study of the Ψ-integral path-independence for a transversally isotropic
bi-material notch Before we proceed to investigate the path-independence of the Ψ-integral,
the finite element model with respect to element size is checked. Let us set the integration radius
to 𝑟𝑐 = 2 mm. The only parameter that controls the mesh density is the line division parameter
Δ𝑐 of the 𝑅1 and 𝑅2 perimeters related to the arc of 90∘. The another divisions, edge lengths
and spacing ratios are computed based on this value in order to achieve the best mesh topology
and element shape. It implies from the results in Fig. 5.12 that the most appropriate angular
division is Δ𝑐 = 60. This value gives us a sufficient angular division, by which reliable results
are obtained and minimal computational time is achieved.

All integrals were evaluated by using the Romberg’s method implemented in the library
scipy.integrate.romberg. An advantage of this method, compared to the trapezoidal rule,
for example, consists in possibility of usage of the adaptive integration step, owing to that a
better accuracy is achieved. Therefore, an interpolation function for the nodal results is de-
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Fig. 5.12: Study of the minimal mesh density. The governing parameter was the generalized stress in-
tensity factor 𝐻𝑖. The studied cases were (a) a bi-material notch given by 𝜔1 = 125∘ and
(b) an interface crack (𝜔1 = 180∘). The second notch face was 𝜔2 = −180∘. The materials
are defined in Tab. 5.1, the singularity exponents are (a) 𝛿1 = 0.5186, 𝛿2 = 0.7647 and (b)
𝛿1 = 0.5 + 0.02474𝑖, 𝛿2 = 0.5 − 0.02474𝑖.

fined in order to get an approximative value in each point of the contour. For that purpose, a
linear interpolation function was used, because the cubic spline caused numerical instabilities
near boundaries and in the vicinity of the interface. Since the mesh density is very fine, we can
assume that the error will be minimal. From the computational point of view, the integrals are
evaluated for each material region separately, because the discontinuity of 𝜎11 causes a numerical
error if integration of the whole path from 𝜔2 to 𝜔1 is performed. The resulting integrals for the
whole path are the sum of the particular integrals for the individual material regions.

The study of Ψ-integral path-independence was carried out for forty integration radii 𝑟𝑐

between 0.0005 mm and 4 mm. As in the previous studies, two representative cases were in-
vestigated – a bi-material notch with real singularity exponents (𝜔1 = 125∘, 𝜔2 = −180∘) and
an interface crack with complex conjugate singularity exponents (𝜔1 = 180∘, 𝜔2 = −180∘).
To prove the path-independence, the GSIF as the governing parameter was chosen. Since the
denominator in the definitions (5.69) for GSIFs does not depend on 𝑟𝑐, the independence of
the integrals in the numerator is tested. The results in Fig. 5.13 show that all integrals for
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Fig. 5.13: Test of path-independence of the GSIFs on the integration contour radius enclosing (a) a
transversally orthotropic bi-material notch characterized by 𝜔1 = 125∘, 𝛿1 = 0.5186, 𝛿2 =
0.7647 and (b) an interface crack with 𝛿1 = 0.5 + 0.02474𝑖, 𝛿2 = 0.5 − 0.02474𝑖. Materials are
defined in Tab. 5.1.

both notch configurations are path-independent, which is in accordance with [59]. The small
discrepancy near zero is caused by the finite element mesh, because the first integration radius
𝑟𝑐 = 0.0005 mm lies in the first circle characterized by 𝑅1 = 0.001 mm, where the mesh is un-
structured and also quite rough comparing to the magnitude of 𝑟𝑐. The complex GSIFs in Fig.
5.13(b) were decomposed to real and imaginary parts, which were investigated separately. For
the next studies, 𝑟𝑐 = 2 mm is chosen.

Here, a sign of the GSIF is discussed. As an experienced reader knows from the Irwin’s
theory, the stress intensity factors for a crack under mode I loading are always positive. The sign
of the GSIF for a bi-material notch depends on the orientation of their corresponding eigenvec-
tors v and w. In the case of real singularity exponents 𝛿, the sign of the GSIF can be changed
just by multiplying the corresponding eigenvector by −1. A different situation occurs when the
stress term orders 𝛿 are complex conjugate. The problem leads to two complex and distinct
stress intensity factors, which cannot be distinguished by virtue of a negative or positive sign.
Same problem arise when we want to recompute the unit from Pa · m1−𝛿 to MPa · mm1−𝛿. The
value in SI units is multiplied by the constant 10−6 · 103(1−𝛿), which is for the first case a real
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number, but a complex number for the second case. This can cause a sign change by the real and
imaginary parts of the GSIF. This effect can be eliminated by employing the unified definition
introduced by Hwu [59].

There is a question how to compare the individual fracture parameters among themselves.
If we change one or both notch face angles 𝜔1 and 𝜔2 or a material parameter, we get different
stress term orders 𝛿𝑖, which leads to different units of the generalized stress intensity factors.
From the engineering point of view, configurations which differ only from the external loading
can be compared. Other possibility is a comparison of the resulting stress development or a
change in the potential energy of the body, when it is disturbed by the crack of small finite
length [19, 121].

5.1.7 Stress and displacement fields of a transversally isotropic bi-material
notch

The displacement field is expressed directly by the Williams’ asymptotic expansion (5.45a)
with the knowledge of the analytical form of the angular function (5.43a). The stresses in
the coordinate system arbitrary rotated with respect to 𝑥3 axis are expressed from the stress
functions as

𝜎𝑠𝑠 = −sᵀT,𝑛

𝜎𝑠𝑛 = −nᵀT,𝑛 = sᵀT,𝑠

𝜎𝑛𝑛 = nᵀT,𝑠,

(5.70)

where normals n and s are defined by

s =
{︃

cos 𝜃
sin 𝜃

}︃
, n =

{︃
− sin 𝜃
cos 𝜃

}︃
. (5.71)

Note that the normal n has been introduced in (4.72). The stresses in the Cartesian coordinate
system given by axes 𝑥1, 𝑥2 are obtained by setting 𝜃 = 0 in the definitions (5.71). According
to Fig. 4.2 it holds that 𝑠 → 𝑥1 and 𝑛 → 𝑥2. Substituting (5.7b) into (5.70) leads to

𝜎1 = −𝐻
{︃

L dZ𝛿

d𝑥2
v + L dZ𝛿

d𝑥2
w
}︃
,

𝜎2 = 𝐻

{︃
L dZ𝛿

d𝑥1
v + L dZ𝛿

d𝑥1
w
}︃
,

(5.72)

where the stresses are ordered in the vectors as

𝜎1 =
{︃
𝜎11
𝜎12

}︃
, 𝜎2 =

{︃
𝜎21
𝜎22

}︃
. (5.73)

Since Z𝛿 is expressed in polar coordinates (see (5.8)), we can make these mathematical operation:

d𝑍𝛿
𝑖

d𝑥2
= d𝑍𝛿

𝑖

d𝑥2

d𝑧𝑖

d𝑧𝑖
= d𝑍𝛿

𝑖

d𝑧𝑖

d𝑧𝑖

d𝑥2
= 𝛿𝑍𝛿−1

𝑖 𝜇𝑖,

d𝑍𝛿
𝑖

d𝑥1
= d𝑍𝛿

𝑖

d𝑥1

d𝑧𝑖

d𝑧𝑖
= d𝑍𝛿

𝑖

d𝑧𝑖

d𝑧𝑖

d𝑥1
= 𝛿𝑍𝛿−1

𝑖 ,

𝑧𝑖 = 𝑥1 + 𝜇𝑖𝑥2, 𝑖 = 1,2.

(5.74)
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Eq. (5.72) can be then rewritten as

𝜎1 = −𝐻
{︁

L𝛿Z𝛿−1𝜇v + LZ𝛿−1
𝜇w

}︁
,

𝜎2 = 𝐻
{︁

L𝛿Z𝛿−1v + LZ𝛿−1w
}︁
,

𝜇 =
[︃
𝜇1 0
0 𝜇2

]︃
, 𝜇 =

[︃
𝜇1 0
0 𝜇2

]︃
.

(5.75)

For programming purposes, the equations (5.75) can be modified by means of the shape function
𝜆 introduced in (5.43b). Decomposing the complex function Z𝛿−1 in the same way as in (5.44)
leads to

Z𝛿−1 = 𝑟𝛿−1Z𝛿−1(𝜃) = 𝑟𝛿−1 diag
[︁
𝑅𝛿−1

1 e𝑖(𝛿−1)Ψ1 , 𝑅𝛿−1
2 e𝑖(𝛿−1)Ψ2

]︁
,

Z𝛿−1 = 𝑟𝛿−1Z𝛿−1(𝜃) = 𝑟𝛿−1 diag
[︁
𝑅𝛿−1

1 e−𝑖(𝛿−1)Ψ1 , 𝑅𝛿−1
2 e−𝑖(𝛿−1)Ψ2

]︁
.

(5.76)

Let us introduce the following functions:

�̃�𝑖,𝑥2(𝜃) = L𝛿𝑖Z𝛿𝑖−1(𝜃)𝜇v𝑖 + L𝛿𝑖Z
𝛿𝑖−1(𝜃)𝜇w𝑖, 𝑖 = 1,2,3, (5.77a)

�̃�𝑖,𝑥1(𝜃) = L𝛿𝑖Z𝛿𝑖−1(𝜃)v𝑖 + L𝛿𝑖Z
𝛿𝑖−1(𝜃)w𝑖, 𝑖 = 1,2,3, (5.77b)

where the subscripts ,𝑥1 and ,𝑥2 denote differentiation with respect to the Cartesian coordinates
𝑥1, 𝑥2, i.e.

�̃�,𝑥𝑖(𝑥1,𝑥2) = d�̃�(𝑥1,𝑥2)
d𝑥𝑖

, 𝑖 = 1,2. (5.78)

Considering both singularity exponents 𝛿𝑖, the equations (5.75) can be expressed by employing
(5.77a) and (5.77b) as

𝜎1 = −𝐻1𝑟
𝛿1−1�̃�1,𝑥2(𝜃) −𝐻2𝑟

𝛿2−1�̃�2,𝑥2(𝜃),
𝜎2 =𝐻1𝑟

𝛿1−1�̃�1,𝑥1(𝜃) +𝐻2𝑟
𝛿2−1�̃�2,𝑥1(𝜃).

(5.79)

Example 5: Displacement and stress reconstruction in the vicinity of the transver-
sally isotropic bi-material notch tip The input parameters, boundary conditions and ex-
ternal loading remain identical as in the previous examples the including materials defined in
Tab. 5.1. Fig. 5.14 illustrates the dominance of the stronger stress singularity 1 − 𝛿1, contribu-
tions of 𝐻2 to the stress amplitude is not very significant. It is obvious from Fig. 5.5 that 𝛿1
has always stronger singularity, but the difference fades away with closing the notch angle to its
limit state, i.e. 𝜔1 → 180∘.

The stresses and displacements in Fig. 5.14 were evaluated along the circular path enclos-
ing the notch tip on the radius 𝑟 = 0.001 mm, which shows a very good correspondence between
the analytical and FEM solution. The superscripts 𝐻𝑖, 𝑖 = 1,2 of plotted quantities listed in
the legend indicate particular asymptotic terms in Eqs. (5.45) and (5.79). The stresses and
displacements depicted on the radius 𝑟 = 2 mm farer from the tip (see Fig. 5.15) illustrate that
the analytical solutions differ from FEM more significantly. The most noticeable mismatch can
be observed by 𝜎11, where the difference is higher for radii far from the tip. This phenomenon
is causes by the effect of 𝑇 -stress [122].

The same study was performed for an interface crack from the previous examples. Fig. 5.16
and 5.17 illustrate the displacement and stress distribution on the circular paths 𝑟 = 0.001 mm
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Fig. 5.14: The displacement and stress components on the circular path 𝑟 = 0.001 mm of a bi-material
notch 𝜔1 = 125∘, 𝜔2 = −180∘. Materials are defined in Tab. 5.1, singularity exponents are
𝛿1 = 0.5186, 𝛿2 = 0.7647.

and 𝑟 = 2 mm. Here, the singularity rate is equal for both stress term orders 𝛿𝑖. However,
one can see that the shape functions for a complex 𝛿𝑖 are complex-valued (see 5.8). Then, also
the components of displacements 𝐻𝑖𝑟

𝛿𝑖𝜂𝑖(𝜃) or stress function vectors 𝐻𝑖𝑟
𝛿𝑖𝜆𝑖(𝜃), 𝑖 = 1,2 are

complex. In Fig. C.3 we can see that their imaginary parts have the same magnitude but
an opposite sign and the total displacements or stress functions will be real. In the graphs in
Fig 5.16 and 5.17 and in all following graphs the imaginary parts of the individual singularity
exponents 𝛿𝑖 are omitted and only real part is depicted.

The GSIFs of above studied bi-material combinations are stated in Tab.5.5. The real sin-
gularity exponent 𝛿 implies that the corresponding GSIF is real-valued. For complex conjugate
singularity exponents 𝛿𝑖 we get two distinct complex-valued GSIFs. In contrast to that, studies
investigating interface cracks by the Hilbert problem [44, 57, 108] provide two complex conjugate
stress intensity factors, but this difference is based on the formulation of the eigenvalue problem.

The LES formalism presented within the dissertation is able to cover arbitrary fibre orien-
tations in the 𝑥1𝑥2 plane. In the most research studies, fibres either parallel or perpendicular
to the global Cartesian coordinate system were considered, i.e. the principal material direction
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Fig. 5.15: The displacement and stress components on the circular path 𝑟 = 2 mm of a bi-material
notch 𝜔1 = 125∘, 𝜔2 = −180∘. Materials are defined in Tab. 5.1, singularity exponents are
𝛿1 = 0.5186, 𝛿2 = 0.7647.

𝐿 coincides with either 𝑥1 or 𝑥2 axis. The stresses and displacements for the interface crack
from the previous case, but with fibres of the material 1 rotated about 𝛼1 = 50∘, are stated
in Appendix C.3 in Fig. C.4. A study of the singularity exponent on the fibre orientation was
reported in [115].
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Fig. 5.16: The displacement and stress components on the circular path 𝑟 = 0.001 mm of an interface
crack 𝜔1 = 180∘, 𝜔2 = −180∘. Materials are defined in Tab. 5.1, singularity exponents are
𝛿1 = 0.5 + 0.02474𝑖, 𝛿2 = 0.5 − 0.02474𝑖.

5.1.8 Problem redefinition for modelling an isotropic/transversally isotropic
bi-material notch

The LES formalism is primarily derived for anisotropic materials. If the the Young’s and shear
moduli, Poisson’s ratios are equal in the longitudinal and transversal direction, respectively, the
stiffness matrix attains the form of the isotropic material. Nevertheless, using of the relations
defined in (4.60b) causes that the matrices A and L are degenerate or non-semisimple and can-
not be no longer inverted. There are double material eigenvalue 𝜇1,2 = 𝑖. Let us consider a
bi-material notch composed of one isotropic and one transversally isotropic material. To de-
scribe the elastic field of the isotropic material, the Muskhelishvili complex potential method
[42] was implemented in the framework of previously described LES formalism. Though authors
in [57, 60, 110, 123, 124] dealt with bi-material orthotropic/isotropic notches, nobody published
detailed results for notches with complex values of 𝛿.

Let us distinguish the parameters describing the isotropic material with asterisk. The com-
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Fig. 5.17: The displacement and stress components on the circular path 𝑟 = 2 mm of an interface crack
𝜔1 = 180∘, 𝜔2 = −180∘. Materials are defined in Tab. 5.1, singularity exponents are 𝛿1 =
0.5 + 0.02474𝑖, 𝛿2 = 0.5 − 0.02474𝑖.

plex potentials f*(𝑧) are assumed as [125]

f*(𝑧) = f(𝑧) + (𝑧 − 𝑧) Q df(𝑧)
d𝑧 , (5.80)

where

Q =
[︃
0 0
1 0

]︃
.

The components of complex potentials are sought in the form of

f(𝑧) =
{︃
𝜙(𝑧)
𝜓(𝑧)

}︃
. (5.81)

The Muskhelishvili complex potentials 𝜙(𝑧), 𝜓(𝑧) are assumed in the same form as in (5.8), i.e.

𝜙(𝑧) = 𝑧𝛿𝑣1, 𝜓(𝑧) = 𝑧𝛿𝑣2, (5.82)
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𝜔1 [∘] 𝛿1
𝛿2

𝐻1 [MPa · mm1−𝛿1 ]
𝐻2 [MPa · mm1−𝛿2 ]

90 0.5672
0.9456

186.8
131.9

125 0.5186
0.7647

529.8
−45.72

170 0.5187 + 0.01890𝑖
0.5187 − 0.01890𝑖

−33.89 − 692.5𝑖
−30.63 + 625.8𝑖

180 0.5 + 0.02474𝑖
0.5 − 0.02474𝑖

−26.91 − 542.1𝑖
−23.04 + 464.1𝑖

Tab. 5.5: GSIFs for four transversally orthotropic bi-material notches defined by 𝜔1 and 𝜔2 = −180∘ and
material characteristics in 5.1.

where the complex variable 𝑧 now becomes

𝑧 = 𝑟 (cos 𝜃 + 𝑖 sin 𝜃) . (5.83)

Note that if the eigenvalues 𝜇1,2 = 𝑖 of the degenerate material are substituted into the sim-
plified notation (5.13), the same relation as (5.81) are obtained. However, this representation
provides only one linearly independent complex potential. The second potential is created by
differentiation of the first one, because a function and its derivatives are linearly independent.
The displacements and stress functions are expressed as

u*(𝑧) = A*Z*𝛿v + A*Z*𝛿w, (5.84a)

T*(𝑧) = L*Z*𝛿v + L*Z*𝛿w, (5.84b)

with matrices A* and L* defined as follows:

A* = 1
4𝐺𝑖

[︃
𝜅𝑖 −𝑖
𝜅 1

]︃
, L* = 1

2

[︃
𝑖 −𝑖
1 1

]︃
. (5.85)

𝜅 = 3 − 4𝜈 for plane strain and 𝜅 = (3 − 𝜈)/(1 + 𝜈) for plane stress, where 𝜈 is the Poisson’s
ratio of the isotropic material, and 𝐺 is the shear modulus defined by

𝐺 = 𝐸

2(1 − 𝜈) . (5.86)

Applying (5.80), the function (5.13) attains the form

Z*𝛿 =
[︃

𝑧𝛿 0
(𝑧 − 𝑧) 𝛿𝑧𝛿−1 𝑧𝛿

]︃
=
[︃

𝑟𝛿 e𝑖𝛿𝜃 0
−2𝑖𝑟𝛿𝛿 e𝑖(𝛿−1)𝜃 sin 𝜃 𝑟𝛿 e𝑖𝛿𝜃

]︃
. (5.87)

The complex conjugation of (5.87) leads to:

Z*𝛿 =
[︃

𝑟𝛿 e−𝑖𝛿𝜃 0
2𝑖𝑟𝛿𝛿 e−𝑖(𝛿−1)𝜃 sin 𝜃 𝑟𝛿 e−𝑖𝛿𝜃

]︃
. (5.88)

In the following paragraphs, the eigenvalue problem for an isotropic/transversally isotropic
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bi-material notch is modified. When the relations for displacements and stress functions are
known for both material states, the eigenvalue problem can be redefined in terms of the equations
(5.84) and (5.7). Let us consider the bi-material notch geometry in Fig. 5.2, where the material
1 is isotropic, characterized by the material parameters 𝐸 and 𝜇. Let us redefine the matrices
(5.85), (5.84) and (5.87) for the region I as:

AI = A*, LI = L*

uI = u*, TI = T*

ZI𝛿
1 = Z*𝛿

1 , ZI𝛿
0 = Z*𝛿

0 ,

(5.89)

while the corresponding relations for region II remain unchanged. The eigenvalue problem is
introduced by substituting these relations into the boundary conditions (5.17) and (5.18). The
system of eight homogeneous algebraic equations has the same form as (5.19). Note that the
identity (5.20) is valid also for the isotropic material, i.e.

Z*𝛿
0 = I, Z*𝛿

0 = I. (5.90)

Then, the eigenvalue problem can be modified and reduced by (5.21)–(5.36). All other procedures
remain identical, with complex potentials and material matrices corresponding to the considered
region, i.e. the normalization (5.41a) or (5.41b), shape functions (5.43) and the Ψ-integral (5.47)–
(5.69). The finite element model has the same properties and geometry, except for the material
1, for which isotropic properties are considered.

The relations for the asymptotic stress extraction (5.79) have to be also modified. The
stresses have the following form:

𝜎*1 =𝐻1𝑟
𝛿1−1�̃�

*
1,𝑥2(𝜃) +𝐻2𝑟

𝛿2−1�̃�
*
2,𝑥2(𝜃),

𝜎*2 =𝐻1𝑟
𝛿1−1�̃�

*
1,𝑥1(𝜃) +𝐻2𝑟

𝛿2−1�̃�
*
2,𝑥1(𝜃),

(5.91)

where the derivatives of the shape functions are given by

�̃�
*
𝑖,𝑥2(𝜃) = B*𝛿𝑖Z*𝛿𝑖−1(𝜃)v𝑖 + B*

𝛿𝑖Z
*𝛿𝑖−1(𝜃)w𝑖, 𝑖 = 1,2, (5.92a)

�̃�
*
𝑖,𝑥𝑖

(𝜃) = L*𝛿𝑖Z*𝛿𝑖−1(𝜃)v𝑖 + L*
𝛿𝑖Z

*𝛿𝑖−1(𝜃)w𝑖, 𝑖 = 1,2, (5.92b)

where

B* = 1
2

[︃
3 −1
𝑖 −𝑖

]︃
(5.93)

and

Z*𝛿−1 = 𝑟𝛿−1Z*𝛿−1(𝜃) = 𝑟𝛿−1
[︃

𝛿 e𝑖(𝛿−1)𝜃 0
−2𝑖𝛿(𝛿 − 1) e𝑖(𝛿−2)𝜃 sin 𝜃 𝛿 e𝑖(𝛿−1)𝜃

]︃
,

Z*𝛿−1 = 𝑟𝛿−1Z*𝛿−1(𝜃) = 𝑟𝛿−1
[︃

𝛿 e−𝑖(𝛿−1)𝜃 0
2𝑖𝛿(𝛿 − 1) e−𝑖(𝛿−2)𝜃 sin 𝜃 𝛿 e−𝑖(𝛿−1)𝜃

]︃
.

(5.94)

Subscripts ,𝑥1 and ,𝑥2 denote differentiation with respect to 𝑥1, 𝑥2.
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Fig. 5.18: (a) Dependence of the singularity exponents 𝛿𝑖 on the notch angle 𝜔1, material 1 is defined by
𝐸 = 200 MPa, 𝜈 = 0.3, material 2 is stated in Tab. 5.1, (b) the oscillatory index 𝜀 dependence
on the Young’s modulus 𝐸 of the material 1 and four cases of material 2.

Example 6: Singularity exponents and displacement and stress reconstruction in the
vicinity of the isotropic/transversally isotropic bi-material notch tip For the sake of
brevity, we do not repeat all studies of the previous notch material configuration and we focus on
the most interest ones, in which the different behaviour of the actual notch material configuration
is expected. Let us consider a bi-material notch, where the material 1 is isotropic with following
material properties: 𝐸 = 200 MPa, 𝜈 = 0.3. The material 2 is transversally isotropic with
material properties stated in Tab. 5.1. Firstly, a study of the singularity exponent 𝛿 dependence
on the notch angle 𝜔1 is performed, while 𝜔2 = −180∘ remains fixed. The result is illustrated
in Fig. 5.18(a). It can be seen that the graph is similar to Fig. 5.5 for transversally isotropic
bi-material notch.

A subsequent study was realized in order to investigate a variation of the oscillatory indices.
Fig. 5.18(b) shows the dependency of the oscillatory indices on the Young’s modulus 𝐸 of
the material 1 for four cases of longitudinal moduli 𝐸𝐿 of the material 2. We see that the
oscillatory indices are always symmetric with respect to zero, because the eigenvalues 𝛿 are
complex conjugate. Then, the zero value of the oscillatory indices, contrary to its non-zero
value implicitly assumed in the literature, is expected for the particular values of 𝐸. The zero
values of 𝜀𝑖 are successively for 𝐸 = 50.73 GPa, 𝐸 = 69.51 GPa, 𝐸 = 90.71 GPa, 𝐸 = 107.5 GPa.
A correlation of these moduli with another material parameters is not obvious.

The effect of the fibre orientation 𝛼2 on the oscillatory indices for three Young’s moduli of
the material 1 is illustrated in Fig. 5.19. The oscillatory indices for an isotropic/transversally
isotropic bi-material notch do not depend on the fibre orientation of the material 2.

The integration radius of the Ψ-integral procedure is chosen in accordance with the previous
bi-material notch configurations. Let us consider a bi-material notch defined by 𝜔1 = 170∘, 𝜔2 =
−180∘. The material parameters of the material 1 are 𝐸 = 200 MPa and 𝜈 = 0.3 and properties
of the material 2 are adopted from Tab. 5.1, but with fibre orientation 𝛼2 = 50∘. The FEM
model is loaded according to Fig. 5.11 with 𝜎appl

2 = 100 MPa. Two complex conjugate singularity
exponents 𝛿1,2 = 0.5092±0.0354𝑖 are obtained. The GSIFs are 𝐻1 = 532.1+228.8𝑖MPa·mm1−𝛿1

and 𝐻2 = 424.9−182.7𝑖MPa·mm1−𝛿2 . The stresses and displacements on the radii 𝑟 = 0.001 mm
and 𝑟 = 2 mm are shown in Fig. 5.20 and Fig. 5.21, respectively. A very good correspondence
between the analytical and FEM solution is observed.
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Fig. 5.19: Dependence study of the oscillatory index 𝜀 on the fibre orientation 𝛼2 of the material 2 and
four cases of material 1.
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Fig. 5.20: The displacement and stress components on the circular path 𝑟 = 0.001 mm of an
isotropic/transversally isotropic bi-material notch 𝜔1 = 170∘, 𝜔2 = −180∘. Material 1 is
isotropic (𝐸 = 200 MPa and 𝜈 = 0.3), material 2 is defined in Tab. 5.1 with fibre orientation
𝛼2 = 50∘, singularity exponents are 𝛿1 = 0.5092 + 0.03536𝑖, 𝛿2 = 0.5092 − 0.03536𝑖.
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Fig. 5.21: The displacement and stress components on the circular path 𝑟 = 2 mm of an
isotropic/transversally isotropic bi-material notch 𝜔1 = 170∘, 𝜔2 = −180∘. Material 1 is
isotropic (𝐸 = 200 MPa and 𝜈 = 0.3), material 2 is defined in Tab. 5.1 with fibre orientation
𝛼2 = 50∘, singularity exponents are 𝛿1 = 0.5092 + 0.03536𝑖, 𝛿2 = 0.5092 − 0.03536𝑖.
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5.2 Stress singularity of a piezoelectric bi-material notch and in-
terface crack

The analogy between theories describing pure anisotropic elasticity and piezoelectric electro-
mechanical behaviour was outlined in section 4.2.7. With respect to the material symmetry,
monoclinic materials with the symmetry axis parallel to 𝑥3 = 0 have to be considered. This
is the most general configuration when the expanded LES formalism can be employed. Then,
stress and displacement relations in the 𝑥3 direction are functions of the 𝑥1 and 𝑥2 coordinates
only. The in-plane and anti-plane fields are decoupled, which enables the problem simplification.
Under the assumption of external loads parallel to the plane defined by 𝑥3 = 0, we can focus
only on the in-plane field. Note that the anti-plane stresses or strains are not zero, but their
effects are induced by in-plane loads. More detailed studies of anti-plane fields were reported in
[53, 126, 127, 128, 129, 130, 131].

The present research of singular stress concentrators in the piezoelectric materials as well as
in the anisotropic ones is mostly limited to the cases when the principal material directions are
in coincidence with the global Cartesian axes. This brings about simplifications of the governing
equations in the same manner as for pure anisotropic elastic bodies described by the equations
(5.38)–(5.40). Additionally, there has also been a gap in linking between bi-material piezoelec-
tric notches and interface cracks, which are investigated dominantly as the Hilbert problem (see
[25, 26, 96, 98, 132]).

5.2.1 Formulation of the fundamental equations describing stress singularity
of a piezoelectric bi-material notch

In the following paragraphs the expanded LES formalism for piezoelectric media introduced in
section 4.2.8 is investigated. The in-plane complex representation of displacements and stresses
for a piezoelectric bi-material wedge with the generally complex singularity exponents 𝛿𝑖 has the
same form as (5.1), i.e.

u(𝑧) = AZ𝛿v + AZ𝛿w, (5.95a)

T(𝑧) = LZ𝛿v + LZ𝛿w, (5.95b)

where

u(𝑧) =

⎧⎪⎨⎪⎩
𝑢1
𝑢2
𝜑

⎫⎪⎬⎪⎭ , T(𝑧) =

⎧⎪⎨⎪⎩
𝑇1
𝑇2
𝑇𝐷

⎫⎪⎬⎪⎭ , (5.96a)

A =

⎡⎢⎣𝑎11 𝑎12 𝑎14
𝑎21 𝑎22 𝑎24
𝑎41 𝑎42 𝑎44

⎤⎥⎦ , L =

⎡⎢⎣−𝜇1 −𝜇2 −𝜇4𝜉4
1 1 𝜉4

−𝜉1 −𝜉2 −1

⎤⎥⎦ , v =

⎧⎪⎨⎪⎩
𝑣1
𝑣2
𝑣3

⎫⎪⎬⎪⎭ , w =

⎧⎪⎨⎪⎩
𝑤1
𝑤2
𝑤3

⎫⎪⎬⎪⎭ . (5.96b)

Elements of the matrices A and L are introduced in (4.132b) and (4.127). To avoid a confusion,
we kept the index 3 for the anti-plane parameters (consistent with pure anisotropic elasticity).
But this was not applied to the eigenvectors, their indices do not have a directional corre-
spondence. The singularity exponents 𝛿𝑖 and their corresponding eigenvectors are determined
through the satisfaction of the boundary conditions at the tip of the bi-material notch.



90 5 Methods and results

5.2.2 Transversally isotropic materials

A poled piezoelectric ceramic has different material characteristics in the direction of poling
than in the plane perpendicular to poling, in which the material behaviour is isotropic. Similarly
to pure anisotropic elasticity, the matrices A, L are non-degenerate if the poling direction is
perpendicular with the 𝑥3 axis. In the case of semi-degenerate or degenerate materials, i.e.
when the poling direction coincide with 𝑥3 axis, the general solution (5.95) requires a special
treatment, see [17, p. 385].

Poled piezoelectric ceramics have transversally isotropic properties in the sense of both
elastic and electric characteristics. We focus only on these technical types of non-degenerate
ferroelectric materials with hexagonal crystals. The typical representatives are lead zirconate
titanate, such as PZT-4, PZT-5H, PZT-6B, PZT-7, PZT-7A, barium titanate BaTiO3, or zinc
oxide ZnO. These functional ceramics possess very good actuating strain (maximal to 0.2%),
high stiffness and a fast response.

The complex function Z𝛿 has the form

Z𝛿 = diag
[︁
𝑧𝛿

1, 𝑧
𝛿
2 𝑧

𝛿
3

]︁
, (5.97)

where
𝑧𝑖 = 𝑥1 + 𝜇𝑖𝑥2, 𝑖 = 1,2,3. (5.98)

The material eigenvalues are evaluated from (4.123) reduced to the in-plane problem. Three
material eigenvalues 𝜇1, 𝜇2, 𝜇3

3 are obtained for each material. The complex function Z𝛿 can be
also expressed in the polar coordinates in order easily specify the boundary conditions. Using
(5.10), (5.12), (5.14) and (5.15), in which the indices are extended to 𝑖 = 1,2,3, we can write

Z𝛿 = diag
[︁
𝑟𝛿𝑅𝛿

1 e𝑖𝛿Ψ1 , 𝑟𝛿𝑅𝛿
2 e𝑖𝛿Ψ2 , 𝑟𝛿𝑅𝛿

3 e𝑖𝛿Ψ3
]︁

(5.99)

and for the complex conjugate function

Z𝛿 = diag
[︁
𝑟𝛿𝑅𝛿

1 e−𝑖𝛿Ψ1 , 𝑟𝛿𝑅𝛿
2 e−𝑖𝛿Ψ2 , 𝑟𝛿𝑅𝛿

3 e−𝑖𝛿Ψ3
]︁
. (5.100)

5.2.3 Formulation of the eigenvalue problem

With the previous assumptions, the eigenvalue problem presented in section 5.1.3 can be ex-
panded to the piezoelectric materials. The boundary conditions (5.17) express that the notch
faces are traction free and electrically insulated (impermeable, i.e. charge-free and the normal
component of electric displacement 𝐷 vanishes). The boundary conditions (5.17) imply that
normal electrical displacement is zero on the notch faces, i.e. 𝐷I

𝑛 = 𝐷II
𝑛 = 0. This electric

boundary condition is still debated, but it requires much simpler mathematical treatment and
the zero surface charge condition is not violated, if one material has significantly higher permit-
tivity than the second one, e.g. a piezoelectric ceramic in a contact with air [70]. The conditions
(5.18) assure stress and electric displacement continuity in the direction normal to the interface,
and displacement and electric potential continuity. The eigenvalue problem (5.19) has the same
structure and the identical algebraic modifications (5.20)–(5.35) expanded to the dimensions of
the piezoelectric problem can be employed. Here, the matrix 0 is 3 × 3 on the left-hand side,
12 × 1 on the right-hand side and I is a 3 × 3 identity matrix. The unknown exponents 𝛿𝑖 can
be determined from the nonlinear characteristic equation (5.36). Within the dissertation, values
bounded only on the interval 0 < ℜ {𝛿} < 1 are considered.

3The eigenvalue 𝜇4 will be solution of the anti-plane characteristic equation 𝑙2(𝜇) = 0.
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Fig. 5.22: Geometry of a bi-material notch characterized by two regions I and II. The notch faces are
defined by angles 𝜔1 and 𝜔2. The bi-material interface is always considered at 𝜃 = 0. The
angles 𝛼1 and 𝛼2 denote poling directions of the materials I and II, respectively.

The auxiliary solutions needed for the determination of GSIFs by using the Ψ-integral is
constructed in the same manner as for the pure anisotropic elasticity, i.e. considering 𝛿 = −𝛿 as
the exponent of the auxiliary solution. The eigenvectors v̂I are evaluated by reinserting of the
exponents 𝛿𝑖 into (5.33) by employing (5.34). The remaining eigenvectors v̂II, ŵI and ŵII can
be determined from (5.31), (5.35a) and (5.35b).

Example 7: Material eigenvalues of a piezoelectric material Let us consider a piezo-
electric material with poling direction parallel with the 𝑥1𝑥2-plane. The poling direction is
characterizes by the angle 𝛼𝑖 (see Fig. 5.22). Note that poling has a directional character,
which corresponds to the polarization. It means, contrary to the fibre orientation of pure
anisotropic elastic materials, that the poling direction rotated about for example 90∘ and −90∘

does not give the identical material behaviour. The stiffness and permittivity matrices S𝐷 and
𝛽𝜎, respectively, have the same structure for both poling orientations, but the only difference
is in the structure of the piezoelectric matrix g, of which elements have opposite signs for the
above mentioned poling configurations. We will apply the formalism on common transver-
sally isotropic piezoelectric materials, whose elastic, piezoelectric and electric characteristics are
stated in Tab. 5.6. In many studies, the material properties are defined for poling in 𝑥3-axis.
To keep the formalism consistent with the LES for pure anisotropic elasticity, the poling direc-
tion is considered parallel with 𝑥1-axis. The elastic, piezoelectric constants and permittivities
can be reordered by the following procedure: 𝐶𝐸,𝑥1

11 = 𝐶𝐸,𝑥3
33 , 𝐶𝐸,𝑥1

12 = 𝐶𝐸,𝑥3
13 , 𝐶𝐸,𝑥1

23 = 𝐶𝐸,𝑥3
12 ,

𝐶𝐸,𝑥1
22 = 𝐶𝐸,𝑥3

11 ,𝐶𝐸,𝑥1
44 = 𝐶𝐸,𝑥3

44 , 𝑒𝑥1
11 = 𝑒𝑥3

33 , 𝑒𝑥1
12 = 𝑒𝑥3

13 , 𝑒𝑥1
26 = 𝑒𝑥3

15 , 𝜔𝜀,𝑥1
11 = 𝜔𝜀,𝑥3

33 , 𝜔𝜀,𝑥1
22 = 𝜔𝜀,𝑥3

11 ,
where the superscripts ,𝑥1 or ,𝑥3 stand for poling in the 𝑥1- or 𝑥3-axis, respectively.

Since the in-plane problem only is considered, the material eigenvalues are evaluated from
the second bracket in Eq. (4.123):

𝑙4(𝜇)𝜌2(𝜇) −𝑚2
3(𝜇) = 0, (5.101)

where 𝑙4(𝜇), 𝜌2(𝜇), 𝑚3(𝜇) are defined in (4.120b). The using of the same numerical procedure
as in the case of pure anisotropic elasticity is conditioned by the formulation of the equation
(5.101) in the form of a polynomial, i.e

𝑎0 + 𝑎1𝜇+ 𝑎2𝜇
2 + 𝑎3𝜇

3 + 𝑎4𝜇
4 + 𝑎5𝜇

5 + 𝑎6𝜇
6 = 0, (5.102a)
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material constants PZT-4 PZT-5H PZT-6B PZT-7A BaTiO3

𝐶𝐸
11 ×1010 [Pa] 11.3 11.7 16.3 13.1 14.6

𝐶𝐸
12 ×1010 [Pa] 7.43 5.30 6.00 7.42 6.60

𝐶𝐸
23 ×1010 [Pa] 7.78 5.50 6.00 7.62 6.60

𝐶𝐸
22 ×1010 [Pa] 13.9 12.6 16.8 14.8 15.0

𝐶𝐸
44 ×1010 [Pa] 2.56 3.53 2.71 2.54 4.40
𝑒11 [Cm−2] 13.8 23.3 7.10 9.50 17.5
𝑒12 [Cm−2] -6.98 -6.50 -0.90 -2.10 -4.35
𝑒26 [Cm−2] 13.4 17.0 4.60 9.70 11.4
𝜔𝜀

11 ×10−9 [C(Vm)−1] 5.47 13.0 3.40 7.35 11.2
𝜔𝜀

22 ×10−9 [C(Vm)−1] 6.00 15.1 3.60 8.11 9.87

Tab. 5.6: Material properties of some transversally isotropic piezoelectric ceramics poled in 𝑥1-direction
[23, 24, 25].

poling direction 𝜇1 𝜇2 𝜇3

𝛼 = 0∘ −0.2183 + 0.86483𝑖 0.8396𝑖 0.2183 + 0.86483𝑖
𝛼 = 50∘ 0.0944 + 1.3004𝑖 0.1266 + 0.7898𝑖 0.1757 + 1.0154𝑖
𝛼 = 90∘ −0.2744 + 1.0871𝑖 1.1910𝑖 0.2744 + 1.0871𝑖
𝛼 = 180∘ −0.2183 + 0.86483𝑖 0.8396𝑖 0.2183 + 0.86483𝑖

Tab. 5.7: Material eigenvalues for certain poling directions 𝛼 of PZT-4.

where

𝑎0 = −𝑆′𝐷
22 𝛽

′𝜎
22 − 𝑔′2

22,

𝑎1 = 2
(︁
𝑆′𝐷

26 𝛽
′𝜎
22 + 𝑆′𝐷

22 𝛽
′𝜎
12 + 𝑔′

22(𝑔′
12 + 𝑔′

26)
)︁
,

𝑎2 = −(2𝑆′𝐷
12 + 𝑆′𝐷

66 )𝛽′𝜎
22 − 4𝑆′𝐷

26 𝛽
′𝜎
12 − 𝑆′𝐷

22 𝛽
′𝜎
11 − 2𝑔′

22(𝑔′
21 + 𝑔′

16) − (𝑔′
12 + 𝑔′

26)2,

𝑎3 = 2
(︁
𝑆′𝐷

16 𝛽
′𝜎
22 + (2𝑆′𝐷

12 + 𝑆′𝐷
66 )𝛽′𝜎

12 + 𝑆′𝐷
26 𝛽

′𝜎
11 + 𝑔′

11𝑔
′
22 + (𝑔′

12 + 𝑔′
26)(𝑔′

21 + 𝑔′
16)
)︁
,

𝑎4 = −(2𝑆′𝐷
12 + 𝑆′𝐷

66 )𝛽′𝜎
11 − 4𝑆′𝐷

16 𝛽
′𝜎
12 − 𝑆′𝐷

11 𝛽
′𝜎
22 − 2𝑔′

11(𝑔′
12 + 𝑔′

26) − (𝑔′
21 + 𝑔′

16)2,

𝑎5 = 2
(︁
𝑆′𝐷

16 𝛽
′𝜎
11 + 𝑆′𝐷

11 𝛽
′𝜎
12 + 𝑔′

11(𝑔′
21 + 𝑔′

16)
)︁
,

𝑎6 = −𝑆′𝐷
11 𝛽

′𝜎
11 − 𝑔′2

11.

(5.102b)

Then, the numerical procedure polynomial.polyroots from numpy library can be employed. In
the case of an in-plane piezoelectric problem, three pairs of complex conjugate material eigen-
values are obtained. They are reordered according to (4.121).

In many studies, the poling direction is considered parallel with either 𝑥1- or 𝑥2-axis. Then,
the material eigenvalues have the form 𝜇1,3 = ∓𝑎+ 𝑏𝑖, 𝜇2 = 𝑐𝑖. When an arbitrary fibre orien-
tation is considered, the real and imaginary parts of 𝜇1 and 𝜇3 are distinct. This is illustrated
in Tab. 5.7 for PZT-4. The values for poling direction 𝛼 = 90∘ agree with those in [52]. Note
that for the cases 𝛼 = 0∘ and 𝛼 = 180∘ we get equal material eigenvalues, but as was mentioned
in the previous paragraph, the material behaviour is different due to the opposite signs in the
piezoelectric matrix ĝ′.
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Fig. 5.23: The HSV phase portrait of the characteristic function 𝑓(𝛿) = det[K(I−YI
1)−1] defined in (5.36)

and the contour plot for 𝑓(𝛿) = 0 for a PZT-5H/BaTiO3 bi-material notch with geometry
𝜔1 = 120∘, 𝜔2 = −180∘. The intersections of the curves of different colour give the searched
roots.

Example 8: Singularity exponents and eigenvectors of a piezoelectric bi-material
notch The exponents 𝛿𝑖 can be also real or complex, but there are certain dissimilarities in
comparison to pure anisotropic elasticity. In the root-finding procedure findroot, the Muller’s
method was chosen instead of the default secant method, which provided incorrect roots for
some notch and material configurations or converged very slowly. The tolerance error remained
1 × 10−15.

Let us consider PZT-5H/BaTiO3 bi-material combination (the order will always be material
1/material 2) and a bi-material notch described by 𝜔1 = 120∘ and 𝜔2 = −180∘. In all following
examples, the poling direction is parallel with 𝑥2-axis (𝛼1 = 𝛼2 = 90∘) if it is not specified
otherwise. The phase portrait of the transcendental function (5.36) is depicted in Fig. 5.23. We
have obtained three real roots 𝛿1 = 0.5226, 𝛿2 = 0.5770 and 𝛿3 = 0.7462 of the characteristic
function (5.36) on the interval 0 < ℜ{𝛿} < 1. In the case of an interface crack (𝜔1 = 180∘),
there are two complex conjugate roots 𝛿1 = 0.5 + 0.01293𝑖, 𝛿2 = 0.5 − 0.01293𝑖 and the third
root is real, 𝛿3 = 0.5, see Fig. 5.24. The real parts of the exponents are equal to 0.5. The
imaginary part of the complex conjugate roots 𝛿1,2 is the oscillatory index. The characteristic
function (5.36) has two poles in the points 𝛿 = 0 and 𝛿 = 1 in the case of the notch as well as
the interface crack.

Different results are obtained when we consider an interface crack between PZT-5H and
PZT-4 materials. Note that the crack faces are considered to be impermeable, i.e. free of
electric charge. One can see in Fig. 5.25 that there are three real roots 𝛿1 = 0.4558, 𝛿2 =
0.5 and 𝛿3 = 0.5442 contrary to complex ones in the previous material combination. Why is
the oscillatory index missing? Actually, it is not missing. The answer will be more clear by
comparing the results with Ou and Wu [25], who investigated the interface crack in terms of
the Hilbert problem, e.g. [44]. They found out that there are two types of singularities in the
case of an interface crack between two piezoelectric materials – the oscillatory singularity when
exponents have the oscillatory index 𝜀 or non-oscillatory singularity with the parameter 𝑖𝜅. In
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Fig. 5.24: The HSV phase portrait of the characteristic function 𝑓(𝛿) = det[K(I − YI
1)−1] defined in

(5.36) and the contour plot for 𝑓(𝛿) = 0 for a PZT-5H/BaTiO3 interface crack with geometry
𝜔1 = 180∘, 𝜔2 = −180∘. The intersections of the curves of different colour give the searched
roots.

the first case, the eigenvalues have the form

𝛿1,2 = 0.5 ± 𝑖𝜀, (5.103)

while in the latter case
𝛿1,3 = 0.5 ± 𝑖(𝑖𝜅) = 0.5 ∓ 𝜅, (5.104)

which are real numbers. The bi-materials with an interface crack are then divided into two
classes: 𝜀-class and 𝜅-class. Contrary to the Hilbert problem formulation used in [25], the
employed procedure for solution of the eigenvalue problem (5.22) and (5.21) does not provide
for 𝜅-class bi-materials the parameter 𝑖𝜅 and the value 0.5 separately, but they are merged in
the resulting roots 𝛿 of the characteristic function (5.36). When taking a look at the exponents
for the PZT-5H/PZT-4 bi-material more closely, it can be seen that 𝛿1 and 𝛿3 are symmetric
with respect to the 𝛿2 = 0.5. Then the parameter 𝜅 can be extracted by subtracting the value
0.5 from 𝛿1 or 𝛿3, respectively. The obtained results of 𝛿1 and 𝛿2 for 𝜀-class or 𝛿1 and 𝛿3 for
𝜅-class bi-materials compared with the values reported in the literature are summarized in Tab.
5.8 and Tab. 5.9. The remaining exponents are always 𝛿3 = 0.5 or 𝛿2 = 0.5, respectively. Tab.
5.9 gives the parameter 𝜅 extracted from the obtained exponent using Eq. (5.104). One can see
that the all received values of 𝛿1 and 𝛿2 or 𝛿3 coincide with the values reported in [25, 133].

A study of the dependence of the exponents 𝛿𝑖 on the notch angle 𝜔1 shows us more about
the differences between particular bi-material classes. Let the angle 𝜔2 = −180∘ be fixed and
the angle 𝜔1 changes on the interval 0 < 𝜔1 < 180∘. The dependence of the exponents 𝛿𝑖 on
the angle 𝜔1 for PZT-5H/BaTiO3 bi-material is shown in Fig. 5.26(a). Similar behaviour can
be obtained for all 𝜀-class bi-materials. The eigenvalues 𝛿1 and 𝛿2 are real-valued almost in the
whole interval 0 < 𝜔1 < 180∘ except for the values 𝜔1 > 168∘, where they become complex
conjugate. Note that the imaginary part of 𝛿2 is not plotted because it has the same values
as ℑ{𝛿1} but with an opposite sign. The third exponent 𝛿3 corresponds to the non-singular
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Fig. 5.25: The HSV phase portrait of the characteristic function 𝑓(𝛿) = det[K(I − YI
1)−1] defined in

(5.36) and the contour plot for 𝑓(𝛿) = 0 for a PZT-5H/PZT-4 interface crack with geometry
𝜔1 = 180∘, 𝜔2 = −180∘. The intersections of the curves of different colour give the searched
roots.

bi-materials 𝛿1 𝛿2 oscillatory index
𝜀

comparison with
Ou and Wu [25]

PZT-5H/BaTiO3 0.5 + 0.01293𝑖 0.5 − 0.01293𝑖 0.01293 0.0130
PZT-5H/PZT-6B 0.5 + 0.02189𝑖 0.5 − 0.02189𝑖 0.02189 0.0219
PZT-5H/PZT-7A† 0.5 + 0.00697𝑖 0.5 − 0.00697𝑖 0.00697 0.0069
PZT-6B/PZT-7A 0.5 + 0.00547𝑖 0.5 − 0.00547𝑖 0.00547 0.0055

† 𝛿1,2 = 0.5 ± 0.00697𝑖 computed by Hwu and Kuo [21] by using the expanded Stroh formalism

Tab. 5.8: Oscillatory indices of 𝜀-class bi-materials and their comparison with results in [25].

character of the stress and electric displacement field at the notch tip because 𝛿3 > 1 up to
𝜔1 = 78∘ and it is always real. The real parts of complex conjugate eigenvalues 𝛿1 and 𝛿2 as
well as the third exponent 𝛿3 converge to the value 0.5 for 𝜔1 → 180∘. It has to be pointed out
that 𝛿3 is not equal to the real parts of neither 𝛿1 nor 𝛿2 for very closed notch configurations.
The dependency for other material combination, PZT-7A/BaTiO3, is stated in Appendix D in
Fig. D.1. It is obvious that the oscillatory index 𝜀 emerges in considerably smaller region of the
angle 𝜔1 than in the previous case.

The same study was carried out for PZT-5H/PZT4 bi-material, one of representatives of the
𝜅-class bi-materials. One can see in Fig. 5.26(b) the different dependency of the exponents 𝛿𝑖 on
the 𝜔1 in contrast to the previous study. The third eigenvalue 𝛿3 provides the stress and electric
displacement field at the notch tip, which is singular when 𝛿3 < 1 for 𝜔1 > 75∘. Moreover, it is
real-valued in the whole interval 0 < 𝜔1 < 180∘. The exponents 𝛿1 and 𝛿2 are complex conjugate
for 139∘ < 𝜔1 < 166∘. For the interface crack as the limit case of the notch, the exponent 𝛿2
converges to 0.5, while the exponents 𝛿1 and 𝛿3 become symmetric with respect to the exponent
𝛿2. The same bi-material was investigated by Hirai et al. [23]. Unfortunately their results do
not agree with our ones.



96 5 Methods and results

bi-materials 𝛿1 𝛿3 non-oscillatory
index 𝜅

comparison with
Ou and Wu [25]

PZT-4/BaTiO3 0.44914 0.55086 0.05086 0.0508
PZT-4/PZT-5H 0.45585 0.54415 0.04415 0.0442
PZT-4/PZT-6B 0.48316 0.51684 0.01684 0.0168
PZT-4/PZT-7A 0.47525 0.52475 0.02475 0.0247
PZT-6B/BaTiO3 0.49039 0.50961 0.00961 0.0095
PZT-7A/BaTiO3 0.47936 0.52064 0.02064 0.0206

Tab. 5.9: Non-oscillatory indices of 𝜅-class bi-materials and their comparison with [25].

(a) PZT-5H/BaTiO3 (b) PZT-5H/PZT-4

Fig. 5.26: The exponent 𝛿𝑖 dependence on the notch geometry 𝜔1. Poling directions are 𝛼1 = 90∘,
𝛼2 = 90∘.

Comparing the graphs in Fig. 5.26(a) one can conclude that the bi-material classification
introduced by Ou and Wu [25] for interface cracks cannot be applied to bi-material notches with
a geometry characterized by an arbitrary angle 𝜔1. Depending on the angle 𝜔1 both bi-materials
PZT-5H/BaTiO3 and PZT-5H/PZT-4 exhibit both the 𝜀-class type and 𝜅-class type behaviour.
In the case of PZT-5H/PZT-4 bi-material there exists even a value range of 139 < 𝜔1 < 166∘

where simultaneously 𝜀 and 𝜅 differ from zero.
Ou and Wu bi-material classification also fails for interface cracks if one of the poling angles

𝛼1 and/or 𝛼2 differs from 90∘ as can be seen from the dependency of the exponents 𝛿𝑖 on the
poling angle 𝛼1 while the angle 𝛼2 = 90∘ remains fixed. The PZT-5H/BaTiO3 bi-material
combination in Fig. 5.27(a) leads to two complex conjugate exponents 𝛿1 and 𝛿2 in a small
interval 70∘ < 𝛼1 < 90∘ while their real parts are equal to 0.5. The third exponent is constant
𝛿3 = 0.5. The exponents 𝛿1 and 𝛿3 become abruptly real-valued and symmetric with respect to
𝛿2 for the remaining values of 𝛼1. Observe that with increasing miss-orientation of the poling
orientations the exponent 𝛿1 starts to decrease and reaches a lowest value for anti-parallel poling
orientation, i.e. for 𝛼1 = −90∘. It is worth of noting that the stress and electric displacement
field at the tip of the interface crack exhibits then a strong singularity, i.e. 𝛿1 < 0.5.

The PZT-5H/PZT-4 bi-material notch has the real exponents 𝛿𝑖 in the agreement with Ou
and Wu bi-material classification. In this case, the maximum of the singularity exponent 𝛿1 is
again reached for parallel poling orientation and the minimum for anti-parallel poling orientation.
The same parallelism effect of poling directions of the both materials in the cracked bi-material
is shown in Figs. D.2(a) and D.2(b), but for the case of 𝛼1 = 𝛼2 = 0. The result that the
always parallel poling directions maximize the singularity exponent of the stress and electric
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(a) PZT-5H/BaTiO3 (b) PZT-5H/PZT-4

Fig. 5.27: The dependence of the interface crack exponents 𝛿𝑖 on the poling direction 𝛼1. The poling
direction 𝛼2 = 90∘.

(a) PZT-5H/BaTiO3 (b) PZT-5H/PZT-4

Fig. 5.28: The dependence of the interface crack exponents 𝛿𝑖 on the poling direction 𝛼1. The poling
direction 𝛼2 = 𝛼1.

displacement field independently on the orientation of the poling directions with respect to the
crack plane, is illustrated in Fig. 5.28.

The similar study was performed for non-symmetric bi-material notches. Two characteristic
notch configurations have been investigated to get an idea about the exponents 𝛿𝑖 behaviour.
Consider the PZT-5H/BaTiO3 bi-material notch defined by 𝜔1 = 120∘ and 𝜔2 = 180∘. It is
shown in Fig. 5.26(a) that there are three real exponents 𝛿𝑖. Fig. 5.29(a) shows that variation
of the poling direction 𝛼1 does not affect the exponents 𝛿𝑖, which remain real-valued. In contrast
to that result, the PZT-5H/BaTiO3 bi-material notch has two complex conjugate exponents 𝛿1,
𝛿2 and the real one 𝛿3 for 80∘ < 𝛼1 < 130∘. Three real exponents 𝛿𝑖 occur for the remaining
values 0 < 𝛼1 < 80∘ and 130∘ < 𝛼1 < 180∘. Similar behaviour can be seen in Chen [86] for
a right angle wedge in PZT-5H/PZT-4 bi-material. Thus, it can be concluded that the 𝜀 and
𝜅 classification of a bi-material is applicable only for an interface crack with poling directions
𝛼1 = 𝛼2 = 90∘. It follows from the above investigation that a bi-material notch problem solved
by (5.22) and (5.21) can have either three real exponents 𝛿𝑖 or two complex conjugates exponents
𝛿1, 𝛿2 with an oscillatory index 𝜀 and one real exponent 𝛿3. Closing a notch by 𝜔1 → 180∘, two
unique exponent developments – type A (Fig. 5.26(a)) or type B (Fig. 5.26(b)) are observed for
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(a) PZT-5H/BaTiO3, 𝜔1 = 120∘ (b) PZT-5H/PZT-4, 𝜔1 = 155∘

Fig. 5.29: Dependence study of the singularity exponents 𝛿 on the poling direction 𝛼1 for two geometries
of a bi-material notch. Poling direction 𝛼2 = 90∘.

the poling directions 𝛼1 = 𝛼2 = 90∘. Their limit configuration, an interface crack for 𝜔1 = 180∘,
has either three real exponents (two 𝛿1 and 𝛿3 symmetric with respect to third one 𝛿2 = 0.5)
or two complex conjugate exponents 𝛿1, 𝛿2 with real parts 0.5 and one real exponent 𝛿3 = 0.5.
However, by changing the poling direction 𝛼1, bi-materials can switch from one to another set of
exponents 𝛿𝑖. Furthermore, the interface crack is the only one concentrator where the symmetry
of two exponents, e.g. 𝛿1 and 𝛿3, with respect to the third one 𝛿2 occurs. That is the reason why
the classification introduced in Ou and Wu [25] cannot be used in the present study for general
singular stress concentrators.

As a piezoelectric bi-material notch has two characteristic sets of exponents, eigenvectors
have also two typical forms. A disproportion of elastic, piezoelectric and permittivity constants
causes that the matrices appearing in the constitutive laws are ill-conditioned and hence the
procedure scipy.linalg.eig gives erroneous results. For this reason, it is suitable to use an
alternative method of the evaluation of the eigenvectors vI

𝑖, vII
𝑖 , wI

𝑖, wII
𝑖 and their auxiliary

complements v̂I
𝑖, v̂II

𝑖 , ŵI
𝑖, ŵII

𝑖 . By substituting 𝛿𝑖 into (5.28) (or (5.33) if 𝛿𝑖 is complex) we get

K*(𝛿𝑖)v*
𝑖 = 0, (5.105a)

where
K* = K

(︁
I − YI

1

)︁−1
, v* = 2ℜ

{︁
LIvI

}︁
= 0, or v* = 2LI

𝑎vI
𝑎. (5.105b)

Eq. (5.105a) can be expressed in the matrix form as
⎡⎢⎣𝐾𝑖*

11 𝐾𝑖*
12 𝐾𝑖*

13
𝐾𝑖*

21 𝐾𝑖*
22 𝐾𝑖*

23
𝐾𝑖*

31 𝐾𝑖*
32 𝐾𝑖*

33

⎤⎥⎦
⎧⎪⎨⎪⎩
𝑣𝑖*

1
𝑣𝑖*

2
𝑣𝑖*

3

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
0
0
0

⎫⎪⎬⎪⎭ . (5.106)

Because of the singularity of the matrix K*(𝛿𝑖), one vector component is chosen, i.e. 𝑣𝑖*
3 = 1, to

eliminate one row of K*(𝛿𝑖). The system (5.106) is then reordered as follows:
[︃
𝐾𝑖*

11 𝐾𝑖*
12

𝐾𝑖*
21 𝐾𝑖*

22

]︃{︃
𝑣𝑖*

1
𝑣𝑖*

2

}︃
=
{︃

−𝐾𝑖*
13

−𝐾𝑖*
23

}︃
. (5.107)
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𝛿 v w

𝛿1

vI =

⎧⎨⎩ 1.01825 + 2.47345𝑖
−0.19379 − 0.01713𝑖

−1.43309e−10 + (6.58147e−10)𝑖

⎫⎬⎭ wI =

⎧⎨⎩ 1.01825 − 2.47345𝑖
−0.19379 + 0.01713𝑖

−1.43309e−10 − (6.58147e−10)𝑖

⎫⎬⎭
vII =

⎧⎨⎩ 1.23043 + 1.74304𝑖
−0.76890 + 0.11476𝑖

−3.18326e−10 + (4.16499e−10)𝑖

⎫⎬⎭ wII =

⎧⎨⎩ 1.23043 − 1.74304𝑖
−0.76890 − 0.11476𝑖

−3.18326e−10 − (4.16499e−10)𝑖

⎫⎬⎭

𝛿2

vI =

⎧⎨⎩ −0.20437 + 1.71736𝑖
0.09387 + 0.04536𝑖

−3.58696e−10 + (3.89404e−10)𝑖

⎫⎬⎭ wI =

⎧⎨⎩ −0.20437 − 1.71736𝑖
0.09387 − 0.04536𝑖

−3.58696e−10 − (3.89404e−10)𝑖

⎫⎬⎭
vII =

⎧⎨⎩ 0.09557 + 1.91080𝑖
−0.07205 − 0.02546𝑖

−4.09823e−10 + (3.45040e−10)𝑖

⎫⎬⎭ wII =

⎧⎨⎩ 0.09557 − 1.91080𝑖
−0.07205 + 0.02546𝑖

−4.09823e−10 − (3.45040e−10)𝑖

⎫⎬⎭

𝛿3

vI =

⎧⎨⎩ −0.29351 + 0.63030𝑖
−0.06068 − 0.13216𝑖

−8.14879e−10 − (1.34862e−10)𝑖

⎫⎬⎭ wI =

⎧⎨⎩ −0.29351 − 0.63030𝑖
−0.06068 + 0.13216𝑖

−8.14879e−10 + (1.34862e−10)𝑖

⎫⎬⎭
vII =

⎧⎨⎩ −1.31872 + 0.87143𝑖
−0.20858 − 0.66727𝑖

−5.08349e−10 − (2.90745e−10)𝑖

⎫⎬⎭ wII =

⎧⎨⎩ −1.31872 − 0.87143𝑖
−0.20858 + 0.66727𝑖

−5.08349e−10 + (2.90745e−10)𝑖

⎫⎬⎭
Tab. 5.10: Eigenvectors corresponding to exponents 𝛿1 = 0.5154, 𝛿2 = 0.5642 and 𝛿3 = 0.7299 of a

PZT-5H/PZT-4 piezoelectric bi-material notch for 𝜔1 = 120∘, 𝜔2 = −180∘, 𝛼1 = 90∘ and
𝛼2 = 90∘.

The remaining vector components can be now solved as an ordinary system of two linear equa-
tions. In connection with the LES formalism we can define

ℜ
{︁

LIvI
𝑖

}︁
=

⎧⎪⎨⎪⎩
𝑣𝑖*

1
𝑣𝑖*

2
1

⎫⎪⎬⎪⎭ . (5.108)

The eigenvectors LIvI
𝑖 can be firstly normalized by using (5.41a) or (5.41b) and subsequently

evaluated by applying (5.30) or (5.34), (5.31) and (5.35). It has to be pointed out that the
expressions (5.30) and (5.34) are not distinguished in the numerical algorithm.

Eigenvectors for the PZT-5H/PZT-4 bi-material notch defined by 𝜔1 = 120∘, 𝜔2 = −180∘

and poled in 𝑥2-axis are stated in Tab. 5.10, while for an interface crack of PZT-5H/BaTiO3
bi-material poled in 𝑥2-axis are in Tab. 5.11. It can be seen that the eigenvector structure is
same as by pure anisotropic elasticity, i.e. the eigenvectors v and w are complex conjugate for
a real singular exponent 𝛿 and generally not complex conjugate for a complex-valued 𝛿.

5.2.4 Expanded shape functions

Displacements and stress functions were redefined in terms of shape functions in section 5.1.4.
Same treatment can be done for piezoelectric materials just by extending the addend with the
third term, i.e.

u(𝑟,𝜃) = 𝐻1𝑟
𝛿1𝜂1(𝜃) +𝐻2𝑟

𝛿2𝜂2(𝜃) +𝐻3𝑟
𝛿3𝜂3(𝜃), (5.109a)

T(𝑟,𝜃) = 𝐻1𝑟
𝛿1𝜆1(𝜃) +𝐻2𝑟

𝛿2𝜆2(𝜃) +𝐻3𝑟
𝛿3𝜆3(𝜃), (5.109b)
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𝛿 v w

𝛿1

vI =

⎧⎨⎩ 0.33567 + 0.21016𝑖
0.06121

−1.03589e−10 + (0.44011e−10)𝑖

⎫⎬⎭ wI =

⎧⎨⎩ 0.39072 − 3.42865𝑖
−0.10605

−2.62627e−10 − (9.44911e−10)𝑖

⎫⎬⎭
vII =

⎧⎨⎩ 0.32512 + 0.10606𝑖
0.02515

−0.55929e−10 + (0.16120e−10)𝑖

⎫⎬⎭ wII =

⎧⎨⎩ 0.35495 − 3.08419𝑖
0.02265

−0.78607e−10 − (5.22511e−10)𝑖

⎫⎬⎭

𝛿2

vI =

⎧⎨⎩ 0.42379 + 3.71880𝑖
−0.11503

−2.84852e−10 + (10.2488e−10)𝑖

⎫⎬⎭ wI =

⎧⎨⎩ 0.36407 − 0.22794𝑖
0.06639

−1.12356e−10 − (0.47735e−10)𝑖

⎫⎬⎭
vII =

⎧⎨⎩ 0.38498 + 3.34518𝑖
0.02457

−0.85260e−10 + (5.66729e−10)𝑖

⎫⎬⎭ wII =

⎧⎨⎩ 0.35263 − 0.11504𝑖
0.02727

−0.60662e−10 − (0.17484e−10)𝑖

⎫⎬⎭

𝛿3

vI =

⎧⎨⎩ 0.24554 + 2.72943𝑖
0.50892

−1.90684e−10 + (7.55132e−10)𝑖

⎫⎬⎭ wI =

⎧⎨⎩ 0.24554 − 2.72943𝑖
0.50892

−1.90684e−10 − (7.55132e−10)𝑖

⎫⎬⎭
vII =

⎧⎨⎩ 0.41885 + 2.16557𝑖
0.16229

−0.84048e−10 + (3.65881e−10)𝑖

⎫⎬⎭ wII =

⎧⎨⎩ 0.41885 − 2.16558𝑖
0.16229

−0.84048e−10 − (3.65881e−10)𝑖

⎫⎬⎭
Tab. 5.11: Eigenvectors corresponding to exponents 𝛿1 = 0.5+0.01293𝑖, 𝛿2 = 0.5+0.01293𝑖 and 𝛿3 = 0.5

of a PZT-5H/BaTiO3 piezoelectric interface crack for 𝜔1 = 180∘, 𝜔2 = −180∘, 𝛼1 = 90∘ and
𝛼2 = 90∘.

where 𝜂𝑖 and 𝜆𝑖 are defined in (5.43). The matrices A, L and eigenvectors vI
𝑖, vII

𝑖 , wI
𝑖, wII

𝑖 are
expressed in Eq. (5.96b). Components of the shape functions are

𝜂𝑖(𝜃) =

⎧⎪⎨⎪⎩
𝜂𝑖

1
𝜂𝑖

2
𝜂𝑖

3

⎫⎪⎬⎪⎭ , 𝜆𝑖(𝜃) =

⎧⎪⎨⎪⎩
𝜆𝑖

1
𝜆𝑖

2
𝜆𝑖

3

⎫⎪⎬⎪⎭ , 𝑖 = 1,2,3. (5.110)

The complex potentials are simply expanded as

Z𝛿 = 𝑟𝛿Z𝛿(𝜃) = 𝑟𝛿 diag
[︁
𝑅𝛿

1 e𝑖𝛿Ψ1 , 𝑅𝛿
2 e𝑖𝛿Ψ2 , 𝑅𝛿

3 e𝑖𝛿Ψ3
]︁
,

Z𝛿 = 𝑟𝛿Z𝛿(𝜃) = 𝑟𝛿 diag
[︁
𝑅𝛿

1 e−𝑖𝛿Ψ1 , 𝑅𝛿
2 e−𝑖𝛿Ψ2 , 𝑅𝛿

3 e−𝑖𝛿Ψ3
]︁
,

(5.111)

where 𝑅𝑖 and Ψ𝑖 are given by(5.14) and (5.15).

Example 9: Shape functions of a piezoelectric bi-material notch The shape functions
of a PZT-5H/PZT-4 bi-material notch with face angles 𝜔1 = 120∘, 𝜔2 = −180∘ and an interface
crack for PZT-5H/BaTiO3 bi-material are shown in Fig. 5.30 and Fig. 5.31. The structure of
the functions is identical with the shape functions of pure anisotropic elasticity, i.e. when the
eigenvalue is complex, so is the shape function. The third components of 𝜂 and 𝜆 were depicted
in a separate graph due to its scale and units. It is worth noticing that 𝜂1 and 𝜂2 correspond to
the displacements u, while 𝜂3 is related to the electric potential 𝜑. The shape functions 𝜆1 and
𝜆2 are related to the stress function T, 𝜆3 describes the electric displacement 𝐷.
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Fig. 5.30: Components of the shape function vectors (a) 𝜂1, 𝜂2, 𝜂3 and (b) 𝜆1, 𝜆2, 𝜆3 for a PZT-
5H/PZT-4 bi-material notch defined by 𝜔1 = 120∘, 𝜔2 = −180∘.
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Fig. 5.31: Components of the shape function vectors (a) 𝜂1, 𝜂2, 𝜂3 and (b) 𝜆1, 𝜆2, 𝜆3 for an interface
crack of PZT-5H/BaTiO3 bi-material.
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5.2.5 Determination of the generalized stress intensity factors

This paragraph directly follows section 5.1.5, which introduced the Ψ-integral applied to pure
anisotropic bi-material notches. The definitions (5.47)–(5.60) assume traction free notch faces.
Considering of piezoelectric material implies that the notch faces are also electrically imperme-
able, i.e. 𝐷𝑛 = 0 along the notch faces, as follows from the boundary conditions (5.17). It makes
sense from the physical point of view. When the face is not mechanically loaded, it means that
it is in a contact with air, which has permittivity very close to vacuum and the circuit is open.
This is the most common case that can be investigated in engineering applications. If the notch
faces will be in a contact with a body of higher permittivity, the boundary conditions (5.17) will
be different and the whole formalism including the Ψ-integral (5.58) has to be modified. Within
the following section, traction free and electrically open (impermeable) notch faces are assumed.

The relations for the auxiliary solutions (5.48) and corresponding auxiliary shape functions
(5.49) were expanded according to the dimensions of the piezoelectric problem, i.e. 𝑖 = 1,2,3.
The eigenvectors v̂, ŵ are computed by using the same algorithm described in Example 8 just by
substituting 𝛿𝑖 = −𝛿𝑖. The development of the auxiliary solutions corresponding to the regular
solutions depicted in Fig. 5.30 and 5.31 is shown in Appendix D.1 (Fig. D.3 and D.4).

Substituting (5.109b) into (5.50) we get the traction vector

−t(𝑟,𝜃) = 𝐻1𝑟
𝛿1−1𝜆′

1(𝜃) +𝐻2𝑟
𝛿2−1𝜆′

2(𝜃) +𝐻3𝑟
𝛿3−1𝜆′

3(𝜃), (5.112)

where ()′ denotes differentiation with respect to 𝜃 and 𝜆′(𝜃) is defined in (5.52). The auxiliary
solutions corresponding to Eq. (5.112) are expressed in (5.55) and (5.56). The first derivative
of the complex potentials Z𝛿(𝜃) and Z𝛿(𝜃) can be written as:(︁

Z𝛿(𝜃)
)︁′

= diag
[︁
𝛿𝑅𝛿−1

1 e𝑖(𝛿−1)Ψ1 [− sin(𝜃) + 𝜇1 cos(𝜃)] ,

𝛿𝑅𝛿−1
2 e𝑖(𝛿−1)Ψ2 [− sin(𝜃) + 𝜇2 cos(𝜃)] ,

𝛿𝑅𝛿−1
3 e𝑖(𝛿−1)Ψ3 [− sin(𝜃) + 𝜇3 cos(𝜃)]

]︁
(5.113)

and(︁
Z𝛿(𝜃)

)︁′
= diag

[︁
𝛿𝑅𝛿−1

1 e−𝑖(𝛿−1)Ψ1 [− sin(𝜃) + 𝜇1 cos(𝜃)] ,

𝛿𝑅𝛿−1
2 e−𝑖(𝛿−1)Ψ2 [− sin(𝜃) + 𝜇2 cos(𝜃)]

𝛿𝑅𝛿−1
3 e−𝑖(𝛿−1)Ψ3 [− sin(𝜃) + 𝜇3 cos(𝜃)]

]︁
. (5.114)

The substitution of these regular and auxiliary solutions for the piezoelectric problem into (5.60)
maintains all the orthogonality and path-independence properties of the Ψ-integral and does not
modify the relations (5.61)–(5.63).

The second integral (5.64) is constructed in the same manner as for pure anisotropic bi-
materials, i.e. by using the auxiliary displacements and tractions as the virtual state and the
FEM solution as the full-field one. The tractions are computed by using the Cauchy’s formula
𝑡𝑖 = 𝜎𝑖𝑗𝑛𝑗 expanded to piezoelectric problems, i.e.

tFEM = 𝜎FEMn, (5.115)

where 𝜎FEM is the expanded two-dimensional stress-electric displacement tensor

𝜎FEM =

⎡⎢⎣𝜎FEM
11 𝜎FEM

12
𝜎FEM

21 𝜎FEM
22

𝐷FEM
1 𝐷FEM

2

⎤⎥⎦ (5.116)
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and n has the same form as in (5.66). The displacement vector is expanded with the elec-
tric potential 𝜑 as the third component, i.e. uFEM = [𝑢FEM

1 ,𝑢FEM
2 ,𝜑FEM]ᵀ. The integral

Ψ
(︁
uFEM,𝑟−𝛿𝑖

𝑐 �̂�𝑖(𝜃)
)︁

has the form

Ψ
(︁
uFEM,𝑟−𝛿𝑖

𝑐 �̂�𝑖(𝜃)
)︁

= Ψ
(︁
𝐻1𝑟

𝛿1
𝑐 𝜂1(𝜃) +𝐻2𝑟

𝛿2
𝑐 𝜂2(𝜃) +𝐻3𝑟

𝛿3
𝑐 𝜂3(𝜃),𝑟−𝛿𝑖

𝑐 �̂�𝑖(𝜃)
)︁

=

= 𝐻1Ψ
(︁
𝑟𝛿1𝜂1(𝜃),𝑟−𝛿𝑖

𝑐 �̂�𝑖(𝜃)
)︁

+𝐻2Ψ
(︁
𝑟𝛿2𝜂2(𝜃),𝑟−𝛿𝑖

𝑐 �̂�𝑖(𝜃)
)︁

+

+𝐻3Ψ
(︁
𝑟𝛿3𝜂3(𝜃),𝑟−𝛿𝑖

𝑐 �̂�𝑖(𝜃)
)︁
, 𝑖 = 1,2,3. (5.117)

Applying the orthogonality (5.62), three separate relations are obtained:

Ψ
(︁
uFEM,𝑟−𝛿1

𝑐 �̂�1(𝜃)
)︁

= 𝐻1Ψ
(︁
𝑟𝛿1

𝑐 𝜂1(𝜃),𝑟−𝛿1
𝑐 �̂�1(𝜃)

)︁
,

Ψ
(︁
uFEM,𝑟−𝛿2

𝑐 �̂�2(𝜃)
)︁

= 𝐻2Ψ
(︁
𝑟𝛿2

𝑐 𝜂2(𝜃),𝑟−𝛿2
𝑐 �̂�2(𝜃)

)︁
,

Ψ
(︁
uFEM,𝑟−𝛿3

𝑐 �̂�3(𝜃)
)︁

= 𝐻3Ψ
(︁
𝑟𝛿3

𝑐 𝜂3(𝜃),𝑟−𝛿3
𝑐 �̂�3(𝜃)

)︁
,

(5.118)

from which three generalized stress intensity factors for a piezoelectric problem can be expressed:

𝐻1 =
Ψ
(︁
uFEM,𝑟−𝛿1

𝑐 �̂�1(𝜃)
)︁

Ψ
(︁
𝑟𝛿1

𝑐 𝜂1(𝜃),𝑟−𝛿1
𝑐 �̂�1(𝜃)

)︁ ,
𝐻2 =

Ψ
(︁
uFEM,𝑟−𝛿2

𝑐 �̂�2(𝜃)
)︁

Ψ
(︁
𝑟𝛿2

𝑐 𝜂2(𝜃),𝑟−𝛿2
𝑐 �̂�2(𝜃)

)︁ ,
𝐻3 =

Ψ
(︁
uFEM,𝑟−𝛿3

𝑐 �̂�3(𝜃)
)︁

Ψ
(︁
𝑟𝛿3

𝑐 𝜂3(𝜃),𝑟−𝛿3
𝑐 �̂�3(𝜃)

)︁ .
(5.119)

5.2.6 Finite element model of a piezoelectric bi-material notch

The finite element model for a piezoelectric bi-material notch was based on the model for the
anisotropic bi-material notch described in section 5.1.6. The notch geometry, mesh structure and
topology remain unchanged (see Fig. 5.11). The difference resides in the element type. ANSYS
has PLANE223 at coupled field analyses’ disposal. Plane piezoelectric problems are treated by
using 8-node quadratic element PLANE223. By setting KEYOPT,e_type,1,1001 an electrostatic-
structural coupled field analysis with piezoelectric effect is enabled. We have to pay heed to
some issues.

At first, there are only two plane deformation states to be set – plane strain and plane
stress. Plane strain is derived from the first equation of (4.89), while plane stress from the
fourth equation of (4.89), which is practically an inverse of the first one. Then, the first option
corresponds to the state 1 (generalized plane strain and short circuit: 𝜀3 = 0 and 𝐸3 = 0), while
the latter one is the state 4 (generalized plane stress and open circuit: 𝜎3 = 0 and 𝐷3 = 0), see
4.2.7. The electro-mechanical parameters were compared with a FEM model created in FEniCS
Project4, but the comparison is not quoted here. Within the following text, plane strain and
short circuit is considered for the FEM model.

Material properties are inputted to the ANSYS in the form of e-type matrices – the stiffness
4https://fenicsproject.org/

https://fenicsproject.org/
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mechanical quantity unit electrical quantity unit

force 𝐹 N charge 𝑄 C
stress 𝜎 Pa = N

m2 electric displacement 𝐷 C
m2

displacement 𝑢 m voltage 𝜑 V
strain 𝜀 1 = m

m electric intensity 𝐸 V
m

elastic constants 𝐶 Pa = N
m2 dielectric permittivity 𝜀 C

Vm = F
m = N

V2

Tab. 5.12: The electromechanical analogy.

matrix C𝐸 , piezoelectric matrix e and dielectric constants represented by the relative anisotropic
permittivity at constant strain. The relative permittivity is obtained by

𝜔𝑟
𝑖𝑗 =

𝜔𝜀
𝑖𝑗

𝜔0
, 𝑖,𝑗 = 1,2,3 (5.120)

where 𝜔0 = 8.854 × 10−12 F m−1 is the vacuum permittivity. It si convenient to set the material
data in the form corresponding to the poling in 𝑥1-axis. A different poling direction is realized
by rotating element coordinate systems by angles 𝛼1 and 𝛼2.

Boundary conditions are represented by prescribed stresses,displacements, electric displace-
ments and electric potentials. To understand the connection between mechanical and electric
fields, it is suitable to introduce the electromechanical analogy of the physical quantities. Ne-
glecting the piezoelectric contributions in the first set of (4.86), we see that the elastic and
electric constitutive equations have the same form, i.e.

𝜎𝑖𝑗 = 𝐶𝐸
𝑖𝑗𝑘𝑙𝜀𝑘𝑙,

𝐷𝑗 = 𝜔𝜀
𝑗𝑘𝐸𝑘.

(5.121)

The elastic constants 𝐶𝐸
𝑖𝑗𝑘𝑙 and dielectric permittivities 𝜔𝜀

𝑗𝑘 characterise the mechanical and elec-
trical properties of the material, respectively. Another analogous quantities and their units are
summarized in Tab. 5.12. The boundary conditions prescribed along the boundaries of the FE
model are illustrated in Fig. 5.32. Zero displacements and zero electric potential are prescribed
on the lower side of the model. The displacement at the right lateral node is fixed in the 𝑥1
direction in order to avoid a rigid body motion. The upper side is loaded with the applied stress
𝜎appl

2 = 10 kPa and electric displacement 𝐷appl
2 = 0.01 Cm−2. The displacements on the upper

side were coupled in the 𝑥2 direction in order to minimize the non-uniform loading. With respect
to the electromechanical analogy, the electric potentials were also coupled. The coordinate sys-
tems of the deformed FEM solution and the analytical solution are not coincident, both notch
tip displacements and electric potentials have to be subtracted from all body displacements and
potentials, respectively. It has to be reminded that notch faces have to remain mechanically and
electrically unloaded (zero tractions and electric displacements).

The Python function scipy.interpolate.griddata is used for reconstruction of both me-
chanical and electrical fields. The procedures scint.splrep and scint.splev are employed for
data interpolation on the circular path enclosing the notch tip. From the programming point of
view, all numerical procedures for the pure anisotropic bi-material notch were simply expanded.
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𝜎appl
2

𝜑 = 0
𝑢1 = 0

𝑢2 = 0

𝐷appl
2

𝑥1

𝑥2

Fig. 5.32: Finite element mesh of a piezoelectric bi-material notch with mechanical and electrical bound-
ary conditions.

Example 10: Study of the Ψ-integral path-independence for a piezoelectric bi-
material notch Algorithms controlling the mesh structure are the same as for the anisotropic
bi-material notch. The only parameter that controls the mesh size of the model is Δ𝑐, which
sets the number of elements on the perimeter 𝑅1 and 𝑅2, related to the arc of 90∘ (see Fig.
5.11). The other line division parameters are functions of this parameter and notch dimensions.
This algorithm ensures that the mesh is well-structured. An advantage of such structure is
obvious form mesh density studies in Fig. 5.33. The governing parameters were the generalized
stress intensity factors 𝐻1, 𝐻2, 𝐻3. It is obvious that changes of the stress intensity factor
are small in comparison to their magnitudes. The relative error was between 0.2% and 0.4%.
Although these errors are negligible, every small error negatively affects the solution of the me-
chanical and electrical quantities due to the ill-conditioned matrices of the LES-formalism. The
mesh has to be fine also due to the linear interpolation of the circular contour, on which the
electro-mechanical parameters are depicted. Then, the mesh size Δ𝑐 = 60 will be considered
in the following studies. Integration was performed by the Romberg’s integration method
by employing Python’s function scipy.integrate.romberg. The computation was realized in
the same manner as in Example 4, i.e. all integrals were evaluated for each material sepa-
rately. Forty radii between 0.0005 mm and 4 mm were investigated for two representative cases:
a PZT-5H/PZT-4 bi-material notch with the face angles 𝜔1 = 120∘, 𝜔2 = −180∘, which has real
singularity exponents and an interface crack for PZT-5H/BaTiO3 with two complex conjugate
singularity exponents and one real. The results in Fig. 5.34 show that all Ψ-integrals are path
independent on the integration path. Note that the complex intensity factors were decomposed
to real and imaginary parts.

It has to be pointed out that the default settings of the integration algorithm in Python are
inappropriate to get the results in Fig. 5.34. The third components of the eigenvectors v and
w from (5.34) are much smaller in comparison to the remaining ones (see Tab. 5.10 and 5.11).
That brings about problems with the relative tolerance in the Romberg’s integration procedure,
which default value is 1.48 × 10−8. It is higher than the order of the Ψ-integral appearing in the
denominator of (5.69), i.e. in the Ψ-integral involving the auxiliary and regular solutions (5.43)1,
(5.49) and (5.52). It was found out that the relative error has to be set to 1.48 × 10−25 to get
sufficiently precise results for all bi-material configurations. Hereinafter, the value 𝑟𝑐 = 2 mm is
chosen as the radius of the integration path of the Ψ-integrals in (5.69).
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Fig. 5.33: Study of the minimal mesh density of (a) a piezoelectric bi-material notch given by 𝜔1 = 120∘

and 𝜔2 = −180∘ and (b) a piezoelectric interface crack. The material is defined in Tab. 5.6. The
singularity exponents are (a) 𝛿1 = 0.5154, 𝛿2 = 0.5642, 𝛿3 = 0.7299 and (b) 𝛿1 = 0.5+0.01293𝑖,
𝛿2 = 0.5 − 0.01293𝑖, 𝛿3 = 0.5.

5.2.7 Electro-elastic fields of a piezoelectric bi-material notch

The displacements, stresses, electric displacements and electric potentials are expressed by the
Williams’ asymptotic expansions (5.109a) and (5.109b), where the analytical forms of the angular
functions (5.43a) and (5.43b) are known. The stresses in the coordinate system arbitrary rotated
with respect to 𝑥3 axis are defined as

𝜎𝑠𝑠 = −sᵀT,𝑛

𝜎𝑠𝑛 = −nᵀT,𝑛 = sᵀT,𝑠

𝜎𝑛𝑛 = nᵀT,𝑠,

𝐷𝑠 = −iᵀ3 T,𝑛,

𝐷𝑛 = iᵀ3 T,𝑠,

(5.122)
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Fig. 5.34: Test of path-independence of the GSIFs on the integration contour radius enclosing (a) the
piezoelectric bi-material notch characterized by 𝜔1 = 120∘, 𝜔2 = −180∘, 𝛿1 = 0.5154, 𝛿2 =
0.5642, 𝛿3 = 0.7299 and (b) the piezoelectric interface crack with 𝛿1 = 0.5 + 0.01293𝑖, 𝛿2 =
0.5 − 0.01293𝑖, 𝛿3 = 0.5.

where the normals n, s and i3 are defined in [17]

s =

⎧⎪⎨⎪⎩
cos 𝜃
sin 𝜃

0

⎫⎪⎬⎪⎭ , n =

⎧⎪⎨⎪⎩
− sin 𝜃
cos 𝜃

0

⎫⎪⎬⎪⎭ , i3 =

⎧⎪⎨⎪⎩
0
0
1

⎫⎪⎬⎪⎭ . (5.123)

By setting 𝜃 = 0 in (5.122), stresses in the Cartesian coordinate system given by axes 𝑥1, 𝑥2 are
obtained. Substituting (5.95) into (5.122) we get

𝜎1 = −𝐻
{︃

L dZ𝛿

d𝑥2
v + L dZ𝛿

d𝑥2
w
}︃
,

𝜎2 = 𝐻

{︃
L dZ𝛿

d𝑥1
v + L dZ𝛿

d𝑥1
w
}︃
,

(5.124)
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where the matrices A, L and the eigenvectors v, w are defined in (5.96b). The extended vectors
𝜎1, 𝜎2 have the form

𝜎1 =

⎧⎪⎨⎪⎩
𝜎11
𝜎12
𝐷1

⎫⎪⎬⎪⎭ , 𝜎2 =

⎧⎪⎨⎪⎩
𝜎21
𝜎22
𝐷2

⎫⎪⎬⎪⎭ . (5.125)

Considering (5.74) for 𝑖 = 1,2,3, Eq. (5.124) can be rewritten as

𝜎1 = −𝐻
{︁

L𝛿Z𝛿−1𝜇v + LZ𝛿−1
𝜇w

}︁
,

𝜎2 = 𝐻
{︁

L𝛿Z𝛿−1v + LZ𝛿−1w
}︁
,

𝜇 =

⎡⎢⎣𝜇1 0 0
0 𝜇2 0
0 0 𝜇3

⎤⎥⎦ , 𝜇 =

⎡⎢⎣𝜇1 0 0
0 𝜇2 0
0 0 𝜇3

⎤⎥⎦ .
(5.126)

Generalizing the functions (5.76) to

Z𝛿−1 = 𝑟𝛿−1Z𝛿−1(𝜃) = 𝑟𝛿−1 diag
[︁
𝑅𝛿−1

1 e𝑖(𝛿−1)Ψ1 , 𝑅𝛿−1
2 e𝑖(𝛿−1)Ψ2 , 𝑅𝛿−1

3 e𝑖(𝛿−1)Ψ3
]︁
,

Z𝛿−1 = 𝑟𝛿−1Z𝛿−1(𝜃) = 𝑟𝛿−1 diag
[︁
𝑅𝛿−1

1 e−𝑖(𝛿−1)Ψ1 , 𝑅𝛿−1
2 e−𝑖(𝛿−1)Ψ2 , 𝑅𝛿−1

3 e−𝑖(𝛿−1)Ψ3
]︁ (5.127)

and employing (5.77a) and (5.77b), the expressions for generalized stresses are obtained, i.e.

𝜎1 = −𝐻1𝑟
𝛿1−1�̃�1,𝑥2(𝜃) −𝐻2𝑟

𝛿2−1�̃�2,𝑥2(𝜃) −𝐻3𝑟
𝛿3−1�̃�3,𝑥2(𝜃),

𝜎2 =𝐻1𝑟
𝛿1−1�̃�1,𝑥1(𝜃) +𝐻2𝑟

𝛿2−1�̃�2,𝑥1(𝜃) +𝐻3𝑟
𝛿3−1�̃�3,𝑥1(𝜃).

(5.128)

Subscripts ,𝑥1 and ,𝑥2 denote differentiation with respect to the Cartesian coordinates 𝑥1, 𝑥2
introduced in (5.78).

Example 11: Displacement, stress, electric displacement and potential reconstruc-
tion in the vicinity of the piezoelectric bi-material notch tip We focus on the two above
investigated bi-material configuration, i.e. PZT-5H/PZT-4 and PZT-5H/BaTiO3. In following
studies, the poling directions 𝛼1 = 90∘, 𝛼2 = 90∘ are considered, if it is not specified otherwise.
The asymptotic stresses, electric displacements, displacements and electric potentials calculated
along the circular path with radius 𝑟 = 0.001 mm encircling the notch tip in the bi-material PZT-
5H/PZT-4 together with results obtained by FEM are shown in Fig. 5.35. The superscripts 𝐻𝑖,
𝑖 = 1,2,3 of plotted quantities listed in the legend indicate particular asymptotic terms in Eqs.
(5.109a) and (5.128). The plots show a very good agreement of the asymptotic solution with the
complete FEM solution obtained using a very fine mesh, which also demonstrates the accuracy
of GSIFs calculations. Results of the same calculations, but performed along the circular path
with radius 𝑟 = 2 mm are shown in Fig. 5.36. We can see that the correspondence is still very
good, more significant changes occur in the electric displacements.

The same study was carried out for an interface crack for PZT-5H/BaTiO3 bi-material.
Figs. 5.37 and 5.38 show the electro-elastic parameters on circular paths around the notch tip.
The contribution of the components corresponding to the complex conjugate exponents 𝛿1 and
𝛿2 to the total mechanical stresses and displacements as well as the electric displacements and
potential are equivalent. The correspondence between the asymptotic and FEM solution is very
good for both radii 𝑟 = 0.001 mm and 𝑟 = 2 mm, respectively.

According to our best knowledge, only poling directions coinciding with one of the Cartesian
coordinate axis, mostly 𝑥2 or 𝑥3, have been considered in currently published studies. Such
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Fig. 5.35: The displacements, stress components, electric displacement components and electric potential
of a PZT-5H/PZT-4 bi-material notch on the circular path 𝑟 = 0.001 mm, 𝜔1 = 120∘, 𝜔2 =
−180∘, the singularity exponents are 𝛿1 = 0.5154, 𝛿2 = 0.5642, 𝛿3 = 0.7299.
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Fig. 5.36: The displacements, stress components, electric displacement components and electric potential
of a PZT-5H/PZT-4 bi-material notch on the circular path 𝑟 = 2 mm, 𝜔1 = 120∘, 𝜔2 = −180∘,
the singularity exponents are 𝛿1 = 0.5154, 𝛿2 = 0.5642, 𝛿3 = 0.7299.
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an orientation is related to the manufacturing technology, operational purpose and relations
for material eigenvalues. But there are some situations that can cause an abrupt change of
poling direction. When a body is subjected to a high compressive load in the direction of
the spontaneous polarization or to the high tensile load perpendicular to the direction of the
spontaneous polarization, the electric domain can be switch by 90∘. The polarization can be also
switched by application of an electric field with a different direction, which can force the crystal
to transform to one of the another five possible configurations. The expanded LES formalism
can provide a solution with the arbitrary poling direction in the plane 𝑥1𝑥2. The graphs in Figs.
D.5 and D.6 show the stresses, displacements, as well as electric displacements and electric
potential for a PZT-5H/PZT-4 bi-material notch defined by angles 𝜔1 = 155∘, 𝜔2 = −180∘,
where the poling of the PZT-5H is 𝛼1 = 40∘. One can observe an excellent agreement between
the full-field FEM solution and the asymptotic solution in Eqs. (5.45) and (5.128) calculated
along the circular paths with radii 𝑟 = 0.001 mm and 2 mm, respectively.

The asymptotic and finite element solutions along the bi-material interface are shown in Fig.
5.39. A very good agreement of both solutions for stresses can be observed up to the distance
of 10 mm from the crack tip, while the dominance region of the first singular term for electric
displacement is smaller.

The GSIFs for some notch configurations for above stated material combinations are stated
in Tab. 5.13 and 5.14. If the exponent 𝛿𝑖 is real-valued, so is the corresponding GSIF. Two
distinct complex GSIFs are obtained for complex conjugate exponents 𝛿𝑖. The third exponent
is always real, just as its stress intensity factor.

𝜔1 [∘]
𝛿1
𝛿2
𝛿3

𝐻1 [MPa · mm1−𝛿1 ]
𝐻2 [MPa · mm1−𝛿2 ]
𝐻3 [MPa · mm1−𝛿3 ]

90
0.5407
0.6232
0.8898

41.09
−34.42
3.456

120
0.5154
0.5642
0.7299

93.93
−97.95
15.10

150
0.5062 + 0.01161𝑖
0.5062 − 0.01161𝑖

0.6210

−114.4 + 107.2𝑖
−113.0 − 105.8𝑖

−40.47

170
0.4764
0.4969
0.5674

−146.4
−112.1
−55.83

180
0.4559

0.5
0.5441

−108.5
−62.15
−65.85

Tab. 5.13: Generalized stress intensity factors for a PZT-5H/PZT-4 piezoelectric bi-material notches
defined by 𝜔1 and 𝜔2 = −180∘.

The application of the fracture mechanics concept requires the knowledge of the conventional
stress intensity factors 𝐾I, 𝐾II, 𝐾IV. The proper definition for stress intensity factors for the
piezoelectric bi-material notches is the unified definition proposed by Hwu and Ikeda [22]. Stress



5.2.7 Electro-elastic fields of a piezoelectric bi-material notch 113

−3 −2 −1 0 1 2 3
θ [rad]

−2

−1

0

1

2

3

4

u 1
[m

m
]

×10−5

uH1
1

uH2
1

uH3
1

uH1+H2+H3
1

uFEM
1

−3 −2 −1 0 1 2 3
θ [rad]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

u 2
[m

m
]

×10−4

uH1
2

uH2
2

uH3
2

uH1+H2+H3
2

uFEM
2

−3 −2 −1 0 1 2 3
θ [rad]

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

σ
11

[M
Pa

]

×103

σH1
11

σH2
11

σH3
11

σH1+H2+H3
11

σFEM
11

−3 −2 −1 0 1 2 3
θ [rad]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

σ
12

[M
Pa

]

×103

σH1
12

σH2
12

σH3
12

σH1+H2+H3
12

σFEM
12

−3 −2 −1 0 1 2 3
θ [rad]

−4

−3

−2

−1

0

1

2

σ
22

[M
Pa

]

×103

σH1
22

σH2
22

σH3
22

σH1+H2+H3
22

σFEM
22

−3 −2 −1 0 1 2 3
θ [rad]

−3

−2

−1

0

1

2

3

D 1
[C

m
−

2 ]

DH1
1

DH2
1

DH3
1

DH1+H2+H3
1

DFEM
1

−3 −2 −1 0 1 2 3
θ [rad]

−3.5
−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0

D 2
[C

m
−

2 ]

DH1
2

DH2
2

DH3
2

DH1+H2+H3
2

DFEM
2

−3 −2 −1 0 1 2 3
θ [rad]

−5

−4

−3

−2

−1

0

1

2

3

φ
[V

]

×102

φH1

φH2

φH3

φH1+H2+H3

φFEM

Fig. 5.37: The displacements, stress components, electric displacement components and electric potential
of a PZT-5H/BaTiO3 interface crack on the circular path 𝑟 = 0.001 mm, 𝜔1 = 180∘, 𝜔2 =
−180∘, the singularity exponents are 𝛿1 = 0.5 + 0.01293𝑖, 𝛿2 = 0.5 − 0.01293𝑖, 𝛿3 = 0.5.
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Fig. 5.38: The displacements, stress components, electric displacement components and electric potential
of a PZT-5H/BaTiO3 interface crack on the circular path 𝑟 = 2 mm, 𝜔1 = 180∘, 𝜔2 = −180∘,
the singularity exponents are 𝛿1 = 0.5 + 0.01293𝑖, 𝛿2 = 0.5 − 0.01293𝑖, 𝛿3 = 0.5.
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Fig. 5.39: Stress and electric displacement distribution along the bi-material interface for a PZT-
5H/BaTiO3 interface crack.

𝜔1 [∘]
𝛿1
𝛿2
𝛿3

𝐻1 [MPa · mm1−𝛿1 ]
𝐻2 [MPa · mm1−𝛿2 ]
𝐻3 [MPa · mm1−𝛿3 ]

90
0.5582
0.6256
0.9212

1.430
−3.775
−0.2342

120
0.5226
0.5770
0.7462

3.287
−6.313
−1.738

150
0.5079
0.5359𝑖
0.6036

1.608
−14.74
−9.917

170
0.5099 + 0.004000𝑖
0.5099 − 0.004000𝑖

0.5244

−53.19 − 107.4𝑖
−52.24 + 105.5𝑖

−100.4

180
0.5 + 0.01293𝑖
0.5 − 0.01293𝑖

0.5

53.82 − 3.876𝑖
48.71 + 3.574𝑖

−74.38

Tab. 5.14: Generalized stress intensity factors for a PZT-5H/BaTiO3 piezoelectric bi-material notches
defined by 𝜔1 and 𝜔2 = −180∘.

intensity factors of the in-plane problem are given as⎧⎪⎨⎪⎩
𝐾II
𝐾I
𝐾IV

⎫⎪⎬⎪⎭ = lim
𝑟→0

√
2𝜋𝑟1−ℜ{𝛿𝑐}Λ⟨(𝑟/ℓ)−𝑖𝜀𝑖⟩Λ−1

⎧⎪⎨⎪⎩
𝜎12
𝜎22
𝐷2

⎫⎪⎬⎪⎭ , 𝑖 = 1,2,3, (5.129)

where
Λ = Λ(𝜃 = 0) = [𝜆1(𝜃 = 0),𝜆2(𝜃 = 0),𝜆3(𝜃 = 0)] . (5.130)

The brackets ⟨⟩ stand for the 3×3 diagonal matrix, 𝛿𝑐 is the most critical singularity exponent
and ℓ is the length parameter which may be chosen arbitrarily. Substituting (5.128) into (5.130),
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Fig. 5.40: Geometry of a bi-material notch characterized by two regions I and II. The notch faces are
defined by angles 𝜔1 and 𝜔2, where the face corresponding to the latter angle is mechanically
clamped and electrically closed. The material interface is always considered at 𝜃 = 0. The
angles 𝛼1 and 𝛼2 denote poling direction of the materials I and II, respectively.

the relation between stress intensity factors 𝐾 and GSIFs 𝐻 is obtained:⎧⎪⎨⎪⎩
𝐾II
𝐾I
𝐾IV

⎫⎪⎬⎪⎭ =
√

2𝜋Λ⟨(ℜ{𝛿𝑐} + 𝑖𝜀𝑖)/ℓ𝑖𝜀𝑖⟩

⎧⎪⎨⎪⎩
𝐻1
𝐻2
𝐻3

⎫⎪⎬⎪⎭ , 𝑖 = 1,2,3. (5.131)

Using the relation (5.131), the near tip solution (5.45) can be rewritten in terms of 𝐾II, 𝐾I, 𝐾IV
as

u(𝑟,𝜃) = 1√
2𝜋
𝑟ℜ{𝛿𝑐}E(𝜃)⟨(ℜ{𝛿𝑐} + 𝑖𝜀𝑖)−1(𝑟/ℓ)𝑖𝜀𝑖⟩Λ−1

⎧⎪⎨⎪⎩
𝐾II
𝐾I
𝐾IV

⎫⎪⎬⎪⎭ , (5.132a)

T(𝑟,𝜃) = 1√
2𝜋
𝑟ℜ{𝛿𝑐}Λ(𝜃)⟨(ℜ{𝛿𝑐} + 𝑖𝜀𝑖)−1(𝑟/ℓ)𝑖𝜀𝑖⟩Λ−1

⎧⎪⎨⎪⎩
𝐾II
𝐾I
𝐾IV

⎫⎪⎬⎪⎭ , (5.132b)

where
E(𝜃) = [𝜂1(𝜃),𝜂2(𝜃),𝜂3(𝜃)] . (5.133)

5.2.8 Problem redefinition for modelling a piezoelectric bi-material notch with
a clamped notch face

The presented eigenvalue problem was derived under the assumption of traction free and elec-
trically open notch faces, see boundary conditions (5.17). Within the following paragraph, a
modified algorithm for modelling a piezoelectric bi-material notch with one clamped face is pro-
posed. Another cases of boundary conditions can be modelled analogically, but they are not
presented here due to their similar form. Some studies, in which a single or permeable interface
crack was considered, were reported in [100, 130, 134, 135].

Let us consider a piezoelectric bi-material notch with a geometry and boundary conditions
depicted in Fig. 5.40. The notch face corresponding to the notch angle 𝜔2 is clamped. The
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boundary conditions (5.17) have the form

TI(𝜔1) = 0,
uII(𝜔2) = 0.

(5.134)

From the structure of the generalized displacement vector (5.96a) can be seen that the second
face is mechanically clamped and electrically closed. Another combinations of the boundary
conditions of the notch face, such as clamped and electrically open, cannot be covered by the
above presented eigenvalue problem (5.19). The asymptotic solution of that kind of problems
was reported for example in [85, 128, 136, 137]. Substituting (5.95) into (5.134) and interface
continuity conditions (5.18) we obtain a system of twelve algebraic equation for the exponent 𝛿,
written in the matrix form as⎡⎢⎢⎢⎢⎣

LIZI𝛿
1 (LI)−1 LIZI𝛿

1 (LI)−1 0 0
0 0 AIIZII𝛿

2 (LII)−1 AIIZII𝛿
2 (LII)−1

AIZI𝛿
0 (LI)−1 AIZI𝛿

0 (LI)−1 −AIIZII𝛿
0 (LII)−1 −AIIZII𝛿

0 (LII)−1

LIZI𝛿
0 (LI)−1 LIZI𝛿

0 (LI)−1 −LIIZII𝛿
0 (LII)−1 −LIIZII𝛿

0 (LII)−1

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

LIvI

LIwI

LIIvII

LIIwII

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = 0, (5.135)

where 0 denotes a 3 × 3 zero matrix on the left-hand side and a 12 × 1 zero vector on the
right-hand side of the equation (5.135). The subscript denotes the index of the angle 𝜔𝑖 and
the superscript stands for association with the material region. With (5.20), the system can be
rewritten as ⎡⎢⎢⎢⎢⎣

XI
1 XI

1 0 0
0 0 BII

2 BII
2

BI
0 −BI

0 −BII
0 BII

0
I I −I −I

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

LIvI

LIwI

LIIvII

LIIwII

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = 0, (5.136)

where the matrix elements introduced in (5.21) are redefined as

XI
1 = LIZI𝛿

1 (𝜔1) (LI)−1, XI
1 = LIZI𝛿

1 (𝜔1) (LI)−1, (5.137a)

BII
2 = AIIZII𝛿

2 (𝜔2) (LII)−1, BII
2 = AIIZII𝛿

2 (𝜔2) (LII)−1. (5.137b)

This system can be reduced to the algebraic system of two equations given by (5.23) and (5.24),
where

YI
1 = (XI

1)−1XI
1, YII

2 = (BII
2 )−1BII

2 . (5.138)

Then, the procedure represented in Eqs. (5.25)–(5.35) for the piezoelectric problem and reduc-
tion of the algebraic system introduced in Appendix B can be used. The unknown exponents 𝛿𝑖

are determined from the nonlinear characteristic equation (5.36). The auxiliary solutions, eigen-
vector evaluation, expanded shape functions, Ψ-integral and electro-elastic field reconstruction
are computed by using the procedures introduced in sections 5.2.3–5.2.7. Note that the contour
Σ2 in (5.57) (see Fig. 5.9) is also zero due to the zero displacements and electric potential. The
FEM model is constrained according to the boundary conditions (5.134), i.e. displacements and
electric potential are set to zero along the second notch face. The applied stress and electric
displacement is identical to the previous piezoelectric bi-material problem. Settings for all nu-
merical procedures remain the same as in the previous examples. For the sake of brevity, the
Ψ-integral path independence and the mesh density studies are not performed.



118 5 Methods and results

0.0 0.2 0.4 0.6 0.8 1.0
<(δ)

−0.10

−0.05

0.00

0.05

0.10

=(
δ)

f (δ)

0.0 0.2 0.4 0.6 0.8 1.0
<(δ)

−0.10

−0.05

0.00

0.05

0.10

=(
δ)

contour f (δ) = 0
<f (δ)
=f (δ)

Fig. 5.41: The HSV phase portrait of the characteristic function 𝑓(𝛿) = det[K(I−YI
1)−1] defined in (5.36)

and the contour plot for 𝑓(𝛿) = 0 for a PZT-5H/BaTiO3 bi-material notch with geometry
𝜔1 = 120∘, 𝜔2 = −180∘. The latter notch face is mechanically clamped and electrically closed.
The intersections of the curves of different colour give the searched roots.

Example 12: Singularity exponents and electro-elastic field reconstruction of a
piezoelectric bi-material notch with a clamped face Consider a PZT-5H/BaTiO3 bi-
material notch with the local geometry and free/clamped boundary conditions of the notch faces
illustrated in Fig. 5.40. The notch geometry is defined by the angles 𝜔1 = 150 and 𝜔2 = −180.
The poling direction is parallel with 𝑥2-axis, i.e. 𝛼1 = 𝛼2 = 90∘. The phase portrait of the
transcendental function (5.36) is depicted in Fig. 5.41. It can be observed that on the inter-
val 0 < ℜ{𝛿} < 1 there are two real and two pairs of complex conjugate roots: 𝛿1 = 0.2187,
𝛿2,3 = 0.2961 ± 0.05114𝑖, 𝛿4,5 = 0.7883 ± 0.04532𝑖, 𝛿6 = 0.9079. The character of the singularity
exponents is considerably different in comparison to singularity exponents of the notch with
traction-free faces. A dependence study of the exponents 𝛿𝑖 on the notch angle 𝜔1 sheds some
light on this problem. Fig. 5.42(a) shows the singularity exponents 𝛿𝑖 for a PZT-5H/BaTiO3
bi-material combination. In the case of an interface crack, there are six rots of the characteristic
function (5.36): two real 𝛿1, 𝛿6 and two complex conjugate pairs 𝛿2,3, 𝛿4,5. When taking a look
at the exponents more closely, it can be seen that 𝛿1, 𝛿2, 𝛿3 and 𝛿4, 𝛿5, 𝛿6 are symmetric with
respect to 0.5. Note that the imaginary parts of the complex roots 𝛿2,3 and 𝛿4,5 have the same
magnitude. However, in contrast to the free/free piezoelectric bi-material notch, the value 0.5
is not the root of the eigenvalue problem (5.136) (see Fig. 5.26). The exponent 𝛿1 remain real
and 𝛿2,3 are complex for all notch angles 𝜔1. All six exponents are singular up to 𝜔1 = 130∘.

The same study was carried out for a PZT-5H/PZT-4 bi-material (see Fig. 5.42(a)). The
roots in the case of the interface crack have the same structure, i.e. 𝛿1, 𝛿2, 𝛿3 and 𝛿4, 𝛿5, 𝛿6
are symmetric with respect to 0.5 and the imaginary parts of the complex roots 𝛿2,3 and 𝛿4,5
have the same magnitude. The exponent 𝛿1 remain real for all notch angles 𝜔1, while 𝛿2,3 turns
real-valued for 38∘ < 𝜔1 < 145∘ and 𝜔1 < 15∘. All six exponents are singular up to 𝜔1 = 130∘.
The abrupt changes in the development of the 𝛿6 (angles 𝜔1 = 100∘ and 𝜔1 = 45∘) indicate that
the sixth root become complex conjugate with the next non-singular term between these angles.
The main conclusion is that the character of the roots 𝛿𝑖 as a function of the notch geometry
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(a) PZT-5H/BaTiO3 (b) PZT-5H/PZT-4

Fig. 5.42: The exponent 𝛿𝑖 dependence on the notch geometry 𝜔1 for free/clamped piezoelectric bi-
material notch. Poling directions are 𝛼1 = 90∘, 𝛼2 = 90∘.

is more complicated than for free/free bi-material notches. The HSV phase plot represents a
convenient tool to visualize the roots for subsequent setting the initial guess for the root finding
algorithm.
As there are more singularity exponents than in the case of a free/free piezoelectric bi-material
notch, procedures for eigenvector extraction, shape function determination and GSIF calculation
can be just expanded for the higher number of the exponents. The generalized displacements
(5.109a) and the generalized stresses (5.128) attain then the form

u(𝑟,𝜃) =
6∑︁

𝑖=1
𝐻𝑖𝑟

𝛿𝑖𝜂𝑖(𝜃) (5.139)

and

𝜎1 = −
6∑︁

𝑖=1
𝐻𝑖𝑟

𝛿𝑖−1�̃�𝑖,𝑥2(𝜃),

𝜎2 =
6∑︁

𝑖=1
𝐻𝑖𝑟

𝛿𝑖−1�̃�𝑖,𝑥1(𝜃).
(5.140)

The asymptotic stresses, electric displacements, displacements and electric potentials calculated
along the circular path with radius 𝑟 = 2 mm encircling the notch tip in the bi-material PZT-
5H/BaTiO3 together with results obtained by FEM are shown in Fig. 5.43. The superscripts
𝐻𝑖, 𝑖 = 1,2, . . . ,6 of plotted quantities listed in the legend indicate particular asymptotic terms
in Eqs. (5.139) and (5.140). The plots show a very good agreement of the asymptotic solution
with the complete FEM solution obtained using a very fine mesh.
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Fig. 5.43: The displacements, stress components, electric displacement components and electric potential
of a free/clamped PZT-5H/BaTiO3 bi-material notch on the circular path 𝑟 = 2 mm, 𝜔1 =
150∘, 𝜔2 = −180∘, the singularity exponents are 𝛿1 = 0.2187, 𝛿2,3 = 0.2961 ± 0.05114𝑖,
𝛿4,5 = 0.7883 ± 0.04532𝑖, 𝛿6 = 0.9079.
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5.2.9 Problem redefinition for modelling a non-piezoelectric/piezoelectric bi-
material notch

Previous bi-material configurations described bi-material notches composed of two ferroelectric
piezoelectric materials, a specific configuration used for example in piezoelectric actuators. In
constructions which employ piezoelectric elements, piezoelectric materials are coupled to elec-
trodes, which conduct the electric charge, or to insulators, e.g. an underlay or insulating pads
between piezoelectric and electrodes, or simply to the body of a construction. Solving problems
of bi-materials consisting of combinations of piezoelectric and non-piezoelectric solids requires
specific changes in the standard formalism used in the previous examples.

The first step in the modification of the expanded LES formalism for piezoelectric materials
to pure elastic non-piezoelectric materials is to set the piezoelectric constants to zero, i.e. 𝑒𝑖𝑗𝑘 = 0
for any 𝑖,𝑗,𝑘. The elastic and electric fields are then decoupled and both direct and converse
piezoelectric effects vanish. The latter phenomenon is sometimes confused with electrostriction,
which is a property of all materials [65, 138], since atoms, molecules, ions or polarizable domains
can be distorted under an application of electric excitation. Let us consider solid dielectrics
only. If a crystal does not become charged under any uniform mechanical load, i.e. it is non-
piezoelectric, the applied voltage will nevertheless induce a mechanical strain. Furthermore,
the strain remains unchanged when the electrical field is reversed [68]. Such behaviour has a
quadratic character and the strain tensor is expressed as

𝜀𝑖𝑗 = 𝑄𝑖𝑗𝑘𝑙𝐷𝑘𝐷𝑙, (5.141)

where 𝑄𝑖𝑗𝑘𝑙 are the electrostrictive coefficients [139]. However, for materials with piezoelectric
properties, the electrostriction is superposed with the converse piezoelectric effect (compare with
Eq. (4.86)4), which has a linear behaviour, i.e.

𝜀𝑖𝑗 = 𝑔𝑘𝑖𝑗𝐷𝑘 +𝑄𝑖𝑗𝑘𝑙𝐷𝑘𝐷𝑙. (5.142)

During a pure electrical loading, strains corresponding to the stress components that induce
electric charge have linear behaviour, whereas the other ones behave quadratic. Under standard
operating conditions (𝐸appl = 0.1–5 MVm−1), the quadratic component is sufficiently small when
a material is piezoelectric [140]. But for non-piezoelectric dielectrics, the linear component
is zero and the electrostrictive strains are quadratic and not negligible. Since the nonlinear
electrostriction (see Eq. (5.141)) is not included in the constitutive laws (4.86)4, the effect is
not covered in the redefined problem for insulators and conductors as well.

The second step is to modify the problem according to the case of an insulator or conductor.
Both cases are different from the physical point of view. In the framework of the Lekhnitskii
and Stroh formalism, Hwu and Kuo [21] proposed a method which fulfil the condition of the
interface impermeability by reducing the permittivity to a sufficiently small value when modelling
an insulator or increasing to a very large value when considering a conductor. Its purpose was
to be in agreement with authors in [85, 137, 141], who modelled the insulator/piezoelectric
bi-material by prescribing 𝐷insulator

𝜃 (0) = 0 along the interface, and conductor/piezoelectric bi-
material by prescribing 𝜑conductor(0) = 0 along the interface (the interface was defined coincident
with 𝑥1-axis, as in Fig. 5.22).

However, the condition for an insulator/piezoelectric interface is not physically exact. The
assumption of zero electric displacement expresses an impermeable interface condition, i.e. the
surfaces are free of charge. This effect is not violated, if one material has significantly higher
permittivity than the second one, e.g. a piezoelectric ceramic in a contact with air [70], which is
actually prescribed on the notch face. But this cannot be applicable to an insulator/piezoelectric
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interface, because relative permittivity of insulators attains a wide range on values. Then, an
insulator/piezoelectric bi-material notch can be modelled in the same way as a piezoelectric
bi-material, but by prescribing zero piezoelectric constants and given permittivity, if they are
known. Other notch face boundary conditions and their effects were reported in [142].

Electric intensity 𝐸 inside a homogeneous conductor is zero. Thus, the electric potential 𝜑
is constant. An uncharged conductor in electrostatics can be regarded as a body with infinite
permittivity 𝜔 [138]. Since the electric displacement 𝐷 does not rely on the permittivity and it
is finite in the entire body, it follows for the electric intensity that 𝐸 → 0 for 𝜔 → ∞, which
is in accordance with properties of a conductor. Thus, the method of Hwu and Kuo in [21] for
modelling the conductor/piezoelectric interface by setting a very large permittivity is in agree-
ment with Landau and Lifshitz [138]. However, when zero electric intensity 𝐸 is considered, it
follows from Eq. (4.81)2 that 𝜑 = const inside the conductor and on its surface, but Hwu and
Kuo in [21] implicitly assumed 𝜑 = 0. The resulting constant value of the asymptotic solution
represented by the expanded LES formalism along the interface between the piezoelectric mate-
rial and conductor is contingent upon the permittivity magnitude and boundary conditions of
the FEM solution.

The above mentioned modifications of the piezoelectric bi-material problem is valid for
a bi-material, where the non-piezoelectric material shows transversally orthotropic properties,
i.e. the material matrices (5.96b) are not degenerate. However, most insulators and especially
conductors have isotropic properties. By substituting the material parameters into the in-plane
characteristic equation (5.101), triple complex conjugate roots 𝜇1,2,3 = 𝑖 are obtained. The
formalism has to be then modified according to the redefinition introduced in section 5.1.8 by
employing the Muskhelishvili complex potentials.

Due to the assumption of zero piezoelectric coefficients ĝ′ (see Eq. (4.107a)4), the structural
and electrical constitutive equations are decoupled, as can be seen from (4.132b) and (4.136).
Thus, the modification of the formalism discussed in the previous sections unifies the relations
for pure isotropic elasticity introduced in section 5.1.8 with equations describing the electrostatic
filed. The complex potentials of an isotropic media (marked with a star) have the same form as
(5.80), i.e.

f⋆(𝑧) = f(𝑧) + (𝑧 − 𝑧) Q df(𝑧)
d𝑧 , (5.143)

where

Q =

⎡⎢⎣0 0 0
1 0 0
0 0 0

⎤⎥⎦ .
The complex potentials f(𝑧) are defined as

f(𝑧) =

⎧⎪⎨⎪⎩
𝜙(𝑧)
𝜓(𝑧)
𝜍(𝑧)

⎫⎪⎬⎪⎭ , 𝑧 = 𝑟 (cos 𝜃 + 𝑖 sin 𝜃) , (5.144)

in which the first two complex functions are the Muskhelishvili complex potentials defined in
(5.82) and 𝜍(𝑧) is

𝜍(𝑧) = 𝑧𝛿𝑣3. (5.145)
The displacements and stress functions (5.7) have the form

u⋆(𝑧) = A⋆Z⋆𝛿v + A⋆Z⋆𝛿w, (5.146a)

T⋆(𝑧) = L⋆Z⋆𝛿v + L⋆Z⋆𝛿w, (5.146b)
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where the matrices A⋆ and L⋆ are expressed by

A⋆ =

⎡⎢⎣ 1
4𝐺𝑖𝜅𝑖 − 1

4𝐺𝑖 𝑖 0
1

4𝐺𝑖𝜅
1

4𝐺𝑖 0
0 0 𝑎44

⎤⎥⎦ , L⋆ = 1
2

⎡⎢⎣𝑖 −𝑖 0
1 1 0
0 0 −1

⎤⎥⎦ (5.147)

with 𝑎44 is defined in (4.132b) and 𝜅 = 3 − 4𝜈 for plane strain and 𝜅 = (3 − 𝜈)/(1 + 𝜈) for plane
stress. Since the available material data of insulators or conductors are provided in the same
form as the piezoelectric ones, it follows for the isotropic parameters that

𝜈 = 𝐶𝐸
12

2(𝐶𝐸
12 + 𝐶𝐸

44)
, 𝐺 = 𝐶𝐸

44. (5.148)

The complex functions Z⋆𝛿 are

Z⋆𝛿 =

⎡⎢⎣ 𝑧𝛿 0 0
(𝑧 − 𝑧) 𝛿𝑧𝛿−1 𝑧𝛿 0

0 0 𝑧𝛿

⎤⎥⎦ =

⎡⎢⎣ 𝑟𝛿 e𝑖𝛿𝜃 0 0
−2𝑖𝑟𝛿𝛿 e𝑖(𝛿−1)𝜃 sin 𝜃 𝑟𝛿 e𝑖𝛿𝜃 0

0 0 𝑟𝛿 e𝑖𝛿𝜃

⎤⎥⎦ . (5.149)

Note that the upper left 2×2 matrix is the same as in (5.87) for pure isotropic elasticity, while
the third diagonal element describes the electric field. The simplified notation (5.13) can be
implemented for the diagonal elements, because it follows for functions (5.14) and (5.15) that
𝑅2 = 1 and Ψ = 𝜃 when 𝜇1,2,3 = 𝑖. Complex conjugation of the function (5.149) leads to

Z*𝛿 =

⎡⎢⎣ 𝑟𝛿 e−𝑖𝛿𝜃 0 0
2𝑖𝑟𝛿𝛿 e−𝑖(𝛿−1)𝜃 sin 𝜃 𝑟𝛿 e−𝑖𝛿𝜃 0

0 0 𝑟𝛿 e−𝑖𝛿𝜃

⎤⎥⎦ . (5.150)

The eigenvalue problem for a bi-material notch composed of a piezoelectric material and a
conductor or insulator is redefined in terms of the equations (5.7) and (5.146). A bi-material
notch with the geometry in Fig. 5.2 is considered, where material 1 is the non-piezoelectric one
defined by elastic constants 𝐶𝐸

𝑖𝑗 and permittivities 𝜔𝜀
𝑖𝑗 . Let us define the following identities:

AI = A⋆, LI = L⋆,

uI = u⋆, TI = T⋆,

ZI𝛿
1 = Z⋆𝛿

1 , ZI𝛿
0 = Z⋆𝛿

0 ,

(5.151)

while the corresponding relations for the region II remain unchanged. The eigenvalue problem
is introduced by the boundary conditions (5.17) and (5.18). The system of eight homogeneous
algebraic equations has the form (5.19). The identity of (5.20) is valid also for the isotropic
material, i.e.

Z⋆𝛿
0 = I, Z⋆𝛿

0 = I. (5.152)
The eigenvalue problem modifications (5.21)–(5.36) can be then employed. All the other proce-
dures remain identical, i.e. normalization (5.41a) or (5.41b), shape function introduction (5.43)
and the Ψ-integral (5.117)–(5.119) (the relations (5.47)–(5.69) expanded for the piezoelectric
problem). The finite element model has the same properties and geometry, except for the ma-
terial model of the material 1.

Definitions for the asymptotic stresses and electric displacements of the isotropic non-
piezoelectric material have the form

𝜎⋆1 =𝐻1𝑟
𝛿1−1�̃�

⋆
1,𝑥2(𝜃) +𝐻2𝑟

𝛿2−1�̃�
⋆
2,𝑥2(𝜃) +𝐻3𝑟

𝛿3−1�̃�
⋆
3,𝑥2(𝜃),

𝜎⋆2 =𝐻1𝑟
𝛿1−1�̃�

⋆
1,𝑥1(𝜃) +𝐻2𝑟

𝛿2−1�̃�
⋆
2,𝑥1(𝜃) +𝐻3𝑟

𝛿3−1�̃�
⋆
3,𝑥1(𝜃),

(5.153)
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material constants epoxy polymer Al2O3 SiC
𝐶𝐸

11 ×1010 [Pa] 0.80 0.386 47.0804 49.9391
𝐶𝐸

12 ×1010 [Pa] 0.44 0.257 14.4626 11.9433
𝐶𝐸

23 ×1010 [Pa] 0.44 0.257 14.4626 11.9433
𝐶𝐸

22 ×1010 [Pa] 0.80 0.386 47.0804 49.9391
𝐶𝐸

44 ×1010 [Pa] 0.18 0.0645 16.3089 18.9979
𝑒11 [Cm−2] 0 0 0 0
𝑒12 [Cm−2] 0 0 0 0
𝑒26 [Cm−2] 0 0 0 0
𝜔𝜀

11 ×10−10 [C(Vm)−1] 0.372 0.797 0.885 0.885
𝜔𝜀

22 ×10−10 [C(Vm)−1] 0.372 0.797 0.885 0.885

Tab. 5.15: Material properties of typical insulators [99].

where the derivatives of the shape functions are given by

�̃�
*
𝑖,𝑥2(𝜃) = B*𝛿𝑖Z*𝛿𝑖−1(𝜃)v𝑖 + B*

𝛿𝑖Z
*𝛿𝑖−1(𝜃)w𝑖, 𝑖 = 1,2,3, (5.154a)

�̃�
*
𝑖,𝑥𝑖

(𝜃) = L*𝛿𝑖Z*𝛿𝑖−1(𝜃)v𝑖 + L*
𝛿𝑖Z

*𝛿𝑖−1(𝜃)w𝑖, 𝑖 = 1,2,3, (5.154b)

where

B* = 1
2

⎡⎢⎣3 −1 0
𝑖 −𝑖 0
0 0 2𝑖

⎤⎥⎦ (5.155)

and

Z⋆𝛿−1 = 𝑟𝛿−1Z⋆𝛿−1(𝜃) = 𝑟𝛿−1

⎡⎢⎣ 𝛿 e𝑖(𝛿−1)𝜃 0 0
−2𝑖𝛿(𝛿 − 1) e𝑖(𝛿−2)𝜃 sin 𝜃 𝛿 e𝑖(𝛿−1)𝜃 0

0 0 𝛿 e𝑖(𝛿−1)𝜃

⎤⎥⎦ ,
Z⋆𝛿−1 = 𝑟𝛿−1Z⋆𝛿−1(𝜃) = 𝑟𝛿−1

⎡⎢⎣ 𝛿 e−𝑖(𝛿−1)𝜃 0 0
2𝑖𝛿(𝛿 − 1) e−𝑖(𝛿−2)𝜃 sin 𝜃 𝛿 e−𝑖(𝛿−1)𝜃 0

0 0 𝛿 e−𝑖(𝛿−1)𝜃

⎤⎥⎦ .
(5.156)

Subscripts ,𝑥1 and ,𝑥2 denote differentiation with respect to 𝑥1, 𝑥2 introduced in (5.78).

Example 13: Singularity exponents and electro-elastic field reconstruction of a non-
piezoelectric/piezoelectric bi-material notch Within the following studies, settings of all
numerical procedures remain unchanged. For the sake of brevity, the Ψ-integral path indepen-
dence and mesh density studies are not performed. A bi-material notch with the local geometry
illustrated in Fig. 5.22 is considered. The material 1 is non-piezoelectric and material 2 has
piezoelectric properties stated in Tab. 5.6.

Firstly, an insulator/piezoelectric bi-material notch is studied. Material parameters of four
typical insulators are listed in Tab. 5.15. Dielectric constants of Al2O3 and SiC were not
known, therefore they were set ten times higher than the vacuum permittivity. Consider two
bi-material combinations – epoxy/PZT-4 and Al2O3/PZT-4. The first case is characterized by
smaller elastic properties than the piezoelectric part, while the insulator in the latter case has
higher elastic properties. Let the angle 𝜔2 = −180∘ be fixed. The dependence of the exponents
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(a) epoxy/PZT-4 (b) Al2O3/PZT-4

Fig. 5.44: The exponent 𝛿𝑖 dependence on the notch angle 𝜔1 of the insulator/piezoelectric bi-material
notch. The poling direction of the material 2 is 𝛼2 = 90∘.

𝛿𝑖 on the notch angle 𝜔1 for the bi-material combinations are shown in Figs. 5.44(a) and 5.44(b).
The graphs have the typical character of the type A piezoelectric bi-materials described in Fig.
5.26(a), nevertheless there are some dissimilarities. Firstly, the roots 𝛿1 and 𝛿2 for epoxy/PZT-4
bi-material approach the limit value 1.0 asymptotically, just as 𝛿3 → 2.0. But, in the case of the
Al2O3/PZT-4 bi-material, only 𝛿2 shows approximative behaviour. The close proximity to the
pole in the 1.0 brings about numerical troubles in the root finding algorithm findroot, which
has to be set properly. Additionally, in the latter bi-material combination there is a region
between 60∘ and 70∘, where roots 𝛿2 and 𝛿3 are complex conjugate. Finally, the regions where
𝛿1 and 𝛿2 are complex conjugate, are wider and the imaginary parts of the roots do not reach
their maximal value for 𝜔2 = −180∘, as was typical for pure piezoelectric bi-materials.

Following the results in Ou and Wu [25] for a piezoelectric bi-material (Tabs. 5.8 and
5.9), Ou and Chen [99] investigated an insulator/piezoelectric interface crack in terms of the
Hilbert problem. Since the studied non-piezoelectric materials had isotropic properties, they
avoided the degenerate matrices by considering the isotropic material as a transversally isotropic
piezoelectric material by assuming very small piezoelectric coefficients 𝑒11, 𝑒12 and 𝑒26. They
found out that, similarly to the pure piezoelectric problem, the bi-material combinations can
show either 𝜀- or 𝜅-class singularity. However, all investigated material combinations possessed
only 𝜀-type singularity, see Eq. 5.103. Tab. 5.16 summarizes the singular exponents 𝛿𝑖 obtained
by the presented redefined eigenvalue problem for non-piezoelectric/piezoelectric interface crack
of and their comparison with results reported by Ou and Chen [99]. The remaining exponent
was always 𝛿3 = 0.5. One can see that both approaches provide coincident eigenvalues. The
introduction of a small perturbation in piezoelectric coefficients to avoid degeneracy was also
reported in [20].

Let us consider a conductor/piezoelectric bi-material notch. Material properties of four
typical conductors are summarized in Tab. 5.17. The dielectric constants are functions of
the parameter 𝑝, which will be later determined according to the assumption of the infinite
permittivity. The structure of the expanded LES formalism provides an elegant way to fulfil the
infinite permittivity requirement. The only component in the material matrices A⋆ and L⋆ (see
(5.147)) which depends on the dielectric coefficients, is the third diagonal element 𝑎44. For the
isotropic conductor properties, 𝑎44 is reduced to (see (4.132b))

𝑎44 = 𝛽′𝜎
22/𝜇4. (5.157)

Since the non-permittivity 𝛽′𝜎
22 is the inverse of 𝜔𝜀

22, it implies that 𝑎44 → 0 for 𝜔𝜀
22 → ∞.
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bi-materials 𝛿1 𝛿2 oscillatory index 𝜀 comparison with
Ou and Chen [99]

epoxy/PZT-4† 0.5 + 0.06260𝑖 0.5 − 0.06260𝑖 0.06260 0.0626
epoxy/BaTiO3 0.5 + 0.06501𝑖 0.5 − 0.06501𝑖 0.06501 0.0650

polymer/PZT-5H 0.5 + 0.05021𝑖 0.5 − 0.05021𝑖 0.05021 0.0502
Al2O3/PZT-4 0.5 + 0.08639𝑖 0.5 − 0.08639𝑖 0.08639 0.0864

Al2O3/PZT-6B 0.5 + 0.04978𝑖 0.5 − 0.04978𝑖 0.04978 0.0498
SiC/PZT-7A 0.5 + 0.05652𝑖 0.5 − 0.05652𝑖 0.05652 0.0565

† 𝛿1,2 = 0.5 ± 0.06258𝑖 computed by Hwu and Kuo [21] by using the expanded Stroh formalism

Tab. 5.16: Oscillatory indices of insulator/piezoelectric interface cracks and their comparison with results
in [99].

material constants copper silver lead aluminium
𝐶𝐸

11 ×1010 [Pa] 22.2852 14.0399 4.2992 9.19
𝐶𝐸

12 ×1010 [Pa] 13.0882 8.6051 3.2433 4.53
𝐶𝐸

23 ×1010 [Pa] 13.0882 8.6051 3.2433 4.53
𝐶𝐸

22 ×1010 [Pa] 22.2852 14.0399 4.2992 9.19
𝐶𝐸

44 ×1010 [Pa] 4.5985 2.7174 0.5280 2.33
𝑒11 [Cm−2] 0 0 0 0
𝑒12 [Cm−2] 0 0 0 0
𝑒26 [Cm−2] 0 0 0 0
𝜔𝜀

11 ×10−12 [C(Vm)−1] 8.854𝑝 8.854𝑝 8.854𝑝 8.854𝑝
𝜔𝜀

22 ×10−12 [C(Vm)−1] 8.854𝑝 8.854𝑝 8.854𝑝 8.854𝑝

Tab. 5.17: Material properties of typical conductors [26].

The expanded LES formalism for modelling a conductor can be thereafter modified implicitly
by setting 𝑎44 = 0. The knowledge of the dielectric constants is then not required. However,
this cannot be applied to the finite element computations, because some commercial programs
require the input in the form of permittivities 𝜔𝜀

22 or 𝜔𝜎
22. For that purpose, a convergence study

of the exponents 𝛿𝑖 on the multiplication parameter 𝑝 was carried out. The results for three
representative bi-materials are illustrated in Fig. 5.45. It can be seen that by increasing the
parameter 𝑝, and so the permittivity of the material, the singularity exponents 𝛿𝑖 or oscillatory
and non-oscillatory indices 𝜀 and 𝜅 converge to their limit values 𝛿∞

𝑖 , 𝜀∞ or 𝜅∞ determined by
setting 𝑎44 = 0, which represents the infinite permittivity. On the secondary axis the absolute
error is shown. For the subsequent comparative studies, 𝑝 = 108 was chosen. The absolute error
of the singularity exponents does not then exceed 2 × 10−6.

A dependence of the exponents 𝛿𝑖 on the notch angle 𝜔1, while 𝜔2 = −180∘ is fixed, are shown
in Figs. 5.46(a) and 5.46(b). The first graph has the character similar to the type B piezoelectric
bi-material, which was typical for the most material combinations except for lead/PZT-6B bi-
material combination, which shows the type A behaviour. Decreasing 𝜔1 causes that 𝛿1, 𝛿2
and 𝛿3 approaches 0.5, 1.0 and 1.5, respectively. Contrary to the previous examples, in the
case of the lead/PZT-6B bi-material notch, the complex conjugate exponents are 𝛿2 and 𝛿3 for
175∘ < 𝜔1 < 180∘, see Fig. 5.46(b).

Similarly to the study of the insulator/piezoelectric interface cracks in [99], Ou and Chen
[26] investigated a conductor/piezoelectric interface crack in the terms of the Hilbert problem.
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Fig. 5.45: Convergence study of the singularity exponents 𝛿𝑖 on the multiplicative parameter 𝑝 introduced
in Tab.5.17. (a) aluminium/PZT-4 bi-material notch, 𝜔1 = 120∘, 𝜔2 = −180∘, (b) interface
cracks of copper/BaTiO3 and lead/PZT-6H bi-materials.

(a) aluminium/PZT-4 (b) lead/PZT-6H

Fig. 5.46: The exponent 𝛿𝑖 dependence on the notch angle 𝜔1 of the conductor/piezoelectric bi-material
notch. Poling direction of the material 2 is 𝛼2 = 90∘.

They avoided degenerate matrices due to the isotropic properties of the conductor by employing
the same procedure, i.e. prescribing very small piezoelectric coefficients 𝑒11, 𝑒12 and 𝑒26. Tab.
5.18 summarizes singular exponents 𝛿𝑖 obtained by the redefined eigenvalue problem for the non-
piezoelectric/piezoelectric interface crack. One can see that only lead/PZT-6B interface crack
possess the 𝜀-type singularity, all other bi-materials show 𝜅-class singular exponents, which are
evaluated Eq. (5.104). The resulting values and exponents reported in Ou and Chen [26] show
a very good agreement.

The effects of the poling direction 𝛼2 for an epoxy/PZT-4 and aluminium/PZT-4 interface
crack are shown in Fig. 5.47. When considering a piezoelectric material coupled with an insulator
or a conductor possessing isotropic material properties, the order of singularity does not depend
on the fibre orientation of the material 2, which was also observed by pure isotropic/transversally
isotropic material in Fig. 5.19. Let us consider an epoxy/PZT-4 interface crack with poling di-
rection 𝛼2 = 90∘ of the material 2. The boundary conditions illustrated in Fig. 5.32 remain
identical, i.e. the upper side is loaded with applied stress 𝜎appl

2 = 10 kPa and electric displace-
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bi-materials 𝛿1 𝛿3 non-oscillatory
index 𝜅

comparison with
Ou and Chen [26]

copper/PZT-4 0.39017 0.60983 0.10983 0.1098
silver/BaTiO3 0.45764 0.542336 0.04236 0.0424
lead/PZT-5H 0.47193 0.52807 0.02807 0.0281

aluminium/PZT-4 0.41274 0.58726 0.08726 0.0873
copper/PZT-7A 0.43450 0.56550 0.06550 0.0655

𝛿2 𝛿3 oscillatory index 𝜀
lead/PZT-6B 0.5 + 0.01105𝑖 0.5 − 0.01105𝑖 0.01105 0.0110

Tab. 5.18: Non-oscillatory and oscillatory indices of conductor/piezoelectric interface cracks and their
comparison with results in [26].

(a) epoxy/PZT-4 (b) aluminium/PZT-4

Fig. 5.47: The dependence of the interface crack exponents 𝛿𝑖 on the poling direction 𝛼2.

ment 𝐷appl
2 = 0.01 Cm−2. The asymptotic stresses, electric displacements, displacements and

electric potentials calculated along the circular path with radius 𝑟 = 0.001 mm encircling the
notch tip together with results obtained by FEM are shown in Fig. 5.48. The superscripts 𝐻𝑖,
𝑖 = 1,2,3 of plotted quantities listed in the legend indicate particular asymptotic terms in Eqs.
(5.109a) and (5.153). The plots show a very good agreement of the asymptotic solution with
the full-field FEM solution. The results computed along the circular path with radius 𝑟 = 2 mm
are shown in Fig. 5.49. We can see that the correspondence is still very good. It can be also
observed that the electric potential in the insulator is higher than in the piezoelectric part.

The stresses, electric displacements, displacements and electric potentials along the contours
with radii 𝑟 = 0.001 mm and 𝑟 = 2 mm encircling the interface crack tip of the aluminium/PZT-4
bi-material notch are shown in Fig. 5.50 and 5.51, respectively. One can observe that the electric
potential in the conductor is constant and very close to zero. The correspondence between the
asymptotic and the FEM solution is very good for both radii.
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Fig. 5.48: The displacements, stress components, electric displacement components and electric potential
of an epoxy/PZT-4 bi-material notch on the circular path 𝑟 = 0.001 mm, 𝜔1 = 140∘, 𝜔2 =
−180∘, the singularity exponents are 𝛿1 = 0.5557, 𝛿2 = 0.6422, 𝛿3 = 0.7624.
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Fig. 5.49: The displacements, stress components, electric displacement components and electric potential
of an epoxy/PZT-4 bi-material notch on the circular path 𝑟 = 2 mm, 𝜔1 = 140∘, 𝜔2 = −180∘,
the singularity exponents are 𝛿1 = 0.5557, 𝛿2 = 0.6422, 𝛿3 = 0.7624.
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Fig. 5.50: The displacements, stress components, electric displacement components and electric potential
of an aluminium/PZT-4 interface crack on the circular path 𝑟 = 0.001 mm, 𝜔1 = 180∘, 𝜔2 =
−180∘, the singularity exponents are 𝛿1 = 0.4127, 𝛿2 = 0.5, 𝛿3 = 0.5873.
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Fig. 5.51: The displacements, stress components, electric displacement components and electric potential
of an aluminium/PZT-4 interface crack on the circular path 𝑟 = 2 mm, 𝜔1 = 180∘, 𝜔2 = −180∘,
the singularity exponents are 𝛿1 = 0.4127, 𝛿2 = 0.5, 𝛿3 = 0.5873.
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6 Conclusion
The determination of the singular stress behaviour is one of the necessary steps for life evaluation
of constructions containing compound materials. The expansion of the Lekhnitskii-Eshelby-
Stroh formalism to piezoelectric materials firstly requires a deep investigation of pure anisotropic
bi-material notches. The effect of the material and geometry and primarily the properties of
the numerical procedures have to be studied. Many similarities between singular parameters of
pure anisotropic and piezoelectric bi-material notches have been observed. However, mainly the
numerical algorithms for finding roots of the characteristic and subsequent eigenvector extraction
had to be enhanced. It was proved that the default settings of the advanced numerical procedures
in numpy and scipy are inappropriate and have to be modified.

Firstly, a character of the singularity exponents as a function of the notch face angle 𝜔1
and fibre orientation 𝛼1 was determined. Considering an in-plane problem and pure anisotropic
material, there are two singularity exponents, which are both either real or complex-valued.
The case of an interface crack is characterised by the oscillatory index. A HSV method was
developed in order to easily identify roots of the eigenvalue problem. Then, an initial guess for
the root finding algorithm can be estimated more precisely.

To achieve the most precise solution, the data extracted from the finite element analysis
with a very fine mesh were interpolated, so that the adaptive Romberg’s integration method can
be implemented. After that, the path independence of the Ψ-integral was proved. A precision
of all computed parameters was illustrated on the good coincidence of the asymptotic and FEM
solutions on two representative circular paths enclosing the notch tip. The modification of the
LES formalism in terms of the Muskhelishvili complex potentials enables a modelling of isotropic
materials.

In the second step, the expanded Lekhnitskii-Eshelby-Stroh formalism for piezoelectric ma-
terials was applied to bi-material notches and interface crack problems. Although these two
kinds of the stress concentrators are usually studied separately, especially in the case of the
piezoelectric materials, the presented results showed that the used form of the expanded LES
formalism and the eigenvalue problem captures acceptably both particular problems of the frac-
ture mechanics. It was shown that the eigenvalue problem can be simply expanded, but the
attention has to be paid to the eigenvector extraction due to the ill-conditioned matrices in the
piezoelectric constitutive laws. The singularities of very closed bi-material notches, characterised
by the complex valued exponents, were part of the discussion. Also arbitrary poling orientation
of the piezoelectric materials in the 𝑥1𝑥2 plane was included into the considerations.

The generalization of the so-called 𝜀 and 𝜅 classification of the piezoelectric bi-materials was
suggested. It was ascertained that the exponents of the singularity of the stresses, mechanical and
electric displacements and electric potential are independent of the parallel poling orientation of
the bi-material. Although in the case of the interface crack, the used eigenvalue procedure is not
able to distinguish between the real and complex exponent form as does the Hilbert problem
formulation presented in Ou and Wu [25]. It was shown that both methods give equivalent
results. After that, the Ψ-integral path-independence was proved. Nevertheless, precision of the
Ψ-integral evaluation method has to be significantly increased. The high accuracy of the GSIFs
calculations was demonstrated by comparing the asymptotic solution with the full-field FEM
solution obtained using a very fine mesh.

An insulator/piezoelectric and conductor/piezoelectric bi-material notches were modelled by
implementing the Muskhelishvili complex potentials similarly to the pure anisotropic bi-material
notches. As the piezoelectric coefficients were omitted, the elastic and electric fields are decou-
pled and the linear electrostriction is not considered. The effect of the quadratic electrostriction,
which could be manifested under electrical loading, is not included in the constitutive law. It was
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shown that the singularity exponents for the interface cracks agree with the 𝜀 and 𝜅 classification
reported in Ou and Chen [99] and Ou and Chen [26].

The effect of the boundary conditions of a piezoelectric bi-material notch was also stud-
ied. It was observed that when one face was clamped, the characteristic equation has six roots.
The relations for electro-elastic fields description were extended for all singular terms. A fu-
ture research will focus on proposal of fracture criteria based on extending the Finite Fracture
Mechanics concept [121] to piezoelectric bi-material notches.
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Nomenclature
𝐶𝑖𝑗 ,𝐶𝑖𝑗 Elastic stiffness, reduced elastic stiffness
𝐶𝐸

𝑖𝑗 Elastic stiffness at constant electric field

𝐶𝐸
𝑖𝑗 Reduced elastic stiffness at constant electric field for generalized plane strain

and short circuit
𝐷𝑖 Electric displacement
𝐷appl

𝑖 Applied electric displacement
𝐸𝑖 Electric intensity
𝐻𝑖 Generalized stress intensity factors
K Transformation matrix 6×6 describing in-plane rotation
𝐾I,𝐾II,𝐾IV Stress intensity factors
𝑆𝑖𝑗 ,𝑆𝑖𝑗 Elastic compliance, reduced elastic compliance
𝑆𝐷

𝑖𝑗 Elastic compliance at constant electric displacement

𝑆𝐷
𝑖𝑗 Reduced elastic compliance at constant electric displacement for generalized

plane strain and short circuit
T Stress functions
Z𝛿 Complex potentials
𝑎,𝑏 FEM model dimensions
𝑒𝑖𝑗 ,𝑑𝑖𝑗 ,ℎ𝑖𝑗 ,𝑔𝑖𝑗 Piezoelectric coefficients
𝑒0

𝑖𝑗 Reduced piezoelectric coefficients
f(𝑧) Complex function vector
𝑔′

𝑖𝑗 Reduced piezoelectric coefficients
𝑖 Imaginary unit
ℓ Length parameter
n Normal vector
𝑞 Electric charge
𝑟,𝜃 Polar coordinates
𝑟𝑐 Radius of the integration contour
T Tractions
tFEM Vector of tractions computed by FEM
A,L,B Material matrices
u Displacements
uFEM Vector of displacements computed by FEM
v𝑖,w𝑖 Eigenvectors
𝑥𝑖 Cartesian coordinates
𝑧 Complex variable
Ω Transformation matrix 3×3 describing in-plane rotation



148 Nomenclature

Ψ (u,û) Ψ-integral
𝛼1,𝛼2 Fibre orientations or poling directions
𝛽𝜎

𝑖𝑗 Dielectric non-permittivity at constant stress

𝛽′𝜎
𝑖𝑗 Reduced dielectric non-permittivity at constant stress for generalized plane

strain and short circuit
𝛿𝑖 Singularity exponent
𝜀 Oscillatory index
𝜀𝑖𝑗 Strain tensor
𝜂𝑖 Shape function vector for displacements
𝜙,𝜓,𝜉 Lekhnitskii’s stress functions
𝜅 Non-oscillatory index
𝜆,𝜇 Lamé constants
𝜆𝑖 Shape function vector for stresses
𝜇𝑖 Material eigenvalues
𝜈 Poisson’s ratio
𝜈𝐿𝑇 ,𝜈𝑇 𝑇 ′ Poisson’s ratio in the principal material directions 𝐿,𝑇,𝑇 ′

𝜔1,𝜔2 Notch face angles
𝜔𝜀

𝑖𝑗 Dielectric permittivity at constant strain
�̂�′𝜀

𝑖𝑗 Reduced dielectric permittivity at constant strain for generalized plane strain
and short circuit

𝜑 Electric potential
𝜎𝑖𝑗 Stress tensor

𝜎appl
𝑖𝑗 Applied stress

FEM Finite element method
GSIF Generalized stress intensity factor
GSSC Generalized stress singular concentrator
LES Lekhnitskii-Eshelby-Stroh formalism
SEDF Strain energy density factor
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A HSV algorithm for visualizing a complex function
One of the crucial tasks in problems of bi-material notches is finding of the roots 𝛿𝑖 of the
transcendental function (5.36). When the roots are real numbers, a root finding algorithm can
be constructed easily, e.g. by using the Newton’s method [114]. But there are special cases,
such as orthotropic interface cracks [110] or isotropic interface corners studied in [143], which
have complex-valued roots. In such cases, it is suitable to depict the transcendental function in
order to quantify the roots visually. Additionally, the initial guess for the Python global search
algorithm findroot can be set more precisely.

The problem of depicting a complex function lies in its definition. Several methods were
introduced in [144, 145, 146, 147] and their subsequent research work, such as analytic landscape
depicting.

The complex function is described by its modulus |𝑓(𝑧)| and argument arg 𝑓(𝑧) (in the lit-
erature also known as a phase). The modulus |𝑓(𝑧)| and the argument arg 𝑓(𝑧) can be described
by one-colour surface and certain colour space, respectively. The way, how both descriptions can
be displayed in one 2D graph, explains the following appendix via the so-called HSV algorithm.

A.1 Domain colouring

For purposes of the present study, the HSV method for depicting a complex function was de-
veloped [148], which is based on recomputing a complex number to hue (H), saturation (S) and
value (V). A complex function 𝑓(𝑧) : C → C lives in four real dimensions, which brings about
difficulties in depicting such a structure, because a human imagination is used to perceive only
in a 3D space.

It is suitable to express a complex number 𝑧 in the eulerian form, i.e.

𝑧 = 𝑥1 + 𝑖𝑥2 = |𝑧| e𝑖𝜙, (A.1)

where 𝑥1, 𝑥2 are Cartesian coordinates, |𝑧| is called the module and 𝜙 the phase. They can be
encoded to a HSV colour space.

A HSV colour model is a cylindrical-coordinate representation of a standard RGB colour
model. In the literature, there are many relations how to recalculate a module and a phase to
hue, saturation and value, such as [149, 150] by using logarithmic or goniometric functions.

A complex number in the eulerian form A.1 is recalculated to hue 𝐻, saturation 𝑆 and value
𝑉 by the following prescription:

𝐻 =
(︂
𝜙

2𝜋 + 1
)︂

mod 1, (A.2a)

𝑆 = const (A.2b)

𝑉 = 1 − 1
1 + |𝑧|

. (A.2c)

Then, hue represents a colour and value a brightness (opacity of the black colour). Saturation
defines a colour intensity with respect to an individual character of the studied function. It holds
for hue and value that 𝐻 ∈ ⟨0,2𝜋⟩ and 𝑉 ∈ ⟨0,1⟩. The function A.2c represents a morphism (or a
mapping function) that transforms the absolute value of 𝑧 to the interval ⟨0,1⟩. Its development
is depicted in Fig. A.2. Data for the phase plot are obtained by transforming the HSV colour
model to the RGB colour model by using the Python library hsv_to_rgb.
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Fig. A.1: Cut-away 3D model of the HSV colour space. On the right there is a circumferential cut by
𝑆 = 1 and below the unit circle.

A.2 Phase portrait
Many common functions can be depicted by using the above described procedure. However,
fracture mechanics of singular stress concentrators, especially piezoelectric bi-material notches,
deals with numbers of various orders, which brings about difficulties with the value 𝑉 . For
example, the elements of the compliance matrix (see Eq. (4.107a)) are in the order of 10−11 MPa.
In the denominator of A.2c, there is a summation of 1 and a lower order number |𝑧|, which causes
problem for the floating point arithmetic. Substitution of sufficiently small |𝑧| into (A.2c) leads
to 1. The contribution of the small number is lost and value 𝑉 equals to 0. The phase plot is
then destroyed by black colour (𝑉 u 0, as can be seen in Fig. A.3).

For root identification purposes, we can forget about the modulus completely and depict
only the phase encoded to the hue. The lost information still makes possible to identify root of
the investigated functions. Let us illustrate it on an example adopted from [148]. The phase
portrait of a complex function

𝑓(𝑧) = 𝑧 − 1
𝑧2 + 𝑧 + 1 (A.3)

is depicted in Fig. A.4. Hue remains defined by (A.2a), saturation and value were set to 𝑆 = 1
and 𝑉 = 1.

A.3 Zero and pole identification
Three exceptional points where all colours come together are highlighted in Fig. A.4. These
points are characterised as zeros, 𝑓(𝑧) = 0, and poles, 𝑓(𝑧) = ∞. Zeros and poles can be
distinguished by ordering of colours in their neighbourhood. If we travel on a circle in the
vicinity of the point in the clockwise direction, then a zero has the same orientation (same
colour ordering) as on the unit circle (see Fig. A.1), a pole has a reversed orientation. The
order of a zero or a pole can be determined as a number of isochromatic rays of one arbitrarily
chosen colour, which goes to that point. Then, the phase 𝜙 rotates with 𝑛-times at the point 𝑧
if the function 𝑓(𝑧) has a power 𝑛 as follows from the eulerian form (A.1). With this knowledge
we can then say that the points 1 and 2 are poles of order one and the point 3 is a zero also of
order one [148].
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Fig. A.2: Mapping function A.2c in the range |𝑧| ∈ (0,103) (left) and zoomed in for |𝑧| ∈ (0,5) (right).
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Fig. A.3: Phase plot of the determinant (5.22) by using the mapping function A.2c. The reduction (B.6)
causes destruction of the whole domain by black colour.
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3
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Fig. A.4: The HSV phase portrait of the complex function 𝑓(𝑧) = (𝑧 − 1)/(𝑧2 + 𝑧 + 1) and the contour
plot for 𝑓(𝑧) = 0. The intersection of the blue and red line identifies the zeros or poles.
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B Reduction of the linear equation system
The system (5.22) can be reduced to a system of two equations by using the following algebraic
operations. If the first row of (5.22) is multiplied by inverse of XI

1 from the left, we get(︁
XI

1

)︁−1
XI

1LIvI + LIwI = YI
1LIvI + LIwI = 0. (B.1a)

An analogous equation can be obtained from the second row of (5.22):(︁
XII

2

)︁−1
XII

2 LIvII + LIIwII = YII
2 LIIvII + LIIwII = 0. (B.1b)

The combination of the relations (B.1a) and (B.1b) leads to the relations between eigenvectors
v and w, which

LIwI = −YI
1LIvI, (B.2a)

LIIwII = −YII
2 LIIvII. (B.2b)

By substituting (B.2) to the third row of (5.22), one gets:

BI
0LIvI + BI

0YI
1LIvI − BII

0 LIIvII − BII
0 YII

2 LIIvII =

=
(︁
BI

0 + BI
0YI

1

)︁
LIvI −

(︁
BII

0 + BII
0 YII

2

)︁
LIIvII = 0. (B.3)

From the fourth row of (5.22) we get:

LIvI + LIwI − LIIvII − LIIwII =
= LIvI − YI

1LIvI − LIIvII + YII
2 LIIvII =

=
(︁
I − YI

1

)︁
LIvI −

(︁
I − YII

2

)︁
LIIvII = 0, (B.4)

from which we express the following relation:

LIIvII =
(︁
I − YII

2

)︁−1 (︁
I − YI

1

)︁
LIvI. (B.5)

Substituting (B.5) into (B.3), the resulting reduced system of two equations is obtained:[︂
BI

0 + BI
0YI

1 −
(︁
BII

0 + BII
0 YII

2

)︁ (︁
I − YII

2

)︁−1 (︁
I − YI

1

)︁]︂
LIvI = 0. (B.6)
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C Additional results for a transversally isotropic bi-
material notch

C.1 Auxiliary shape functions
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Fig. C.1: Components of the auxiliary shape function vectors (a) �̂�1, �̂�2 and (b) �̂�1, �̂�2 for a bi-material
notch 𝜔1 = 125∘, 𝜔2 = −180∘ (materials are defined in Tab. 5.1).
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Fig. C.2: Components of the auxiliary shape function vectors (a) �̂�1, �̂�2 and (b) �̂�1, �̂�2 for an interface
crack 𝜔1 = 180∘, 𝜔2 = −180∘ (materials are defined in Tab. 5.1).
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C.2 Displacement and stress development with imaginary parts
depicted
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Fig. C.3: Real and imaginary parts of displacement and stress components evaluated on the circular path
with radius 𝑟 = 1 mm enclosing the interface crack tip.
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C.3 Displacement and stress development with non-coincident
fibre orientation
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Fig. C.4: The displacement and stress components on the circular path 𝑟 = 0.001 mm of an interface
crack 𝜔1 = 180∘, 𝜔2 = −180∘ and material 1 fibre orientation 𝛼1 = 50∘. Materials are defined
in Tab. 5.1, singularity exponents are 𝛿1 = 0.5092 + 0.02512𝑖, 𝛿2 = 0.5092 − 0.02512𝑖.
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D Additional results for a piezoelectric bi-material
notch

Fig. D.1: The exponent 𝛿𝑖 dependence on the PZT-7A/BaTiO3 bi-material notch geometry 𝜔1. Poling
directions are 𝛼1 = 90∘, 𝛼2 = 90∘.

(a) PZT-5H/BaTiO3 (b) PZT-5H/PZT-4

Fig. D.2: The dependence of the interface crack exponents 𝛿𝑖 on the poling direction 𝛼1. The poling
direction 𝛼2 = 0∘.
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D.1 Auxiliary shape functions
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Fig. D.3: Components of the auxiliary shape function vectors (a) �̂�1, �̂�2, �̂�3 and (b) �̂�1, �̂�2, �̂�3 for a
PZT-5H/PZT-4 bi-material notch defined by 𝜔1 = 120∘.
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Fig. D.4: Components of the auxiliary shape function vectors (a) �̂�1, �̂�2, �̂�3 and (b) �̂�1, �̂�2, �̂�3 for an
interface crack of PZT-5H/BaTiO3 bi-material.
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D.2 Mechanical and electrical fields of a bi-material with nonco-
incident poling orientation
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Fig. D.5: The displacements, stress components, electric displacement components and electric potential
of a PZT-5H/PZT-4 bi-material notch on the circular path 𝑟 = 0.001 mm, 𝜔1 = 155∘, 𝜔2 =
−180∘. Poling directions are 𝛼1 = 40∘ and 𝛼2 = 90∘, the singularity exponents are 𝛿1 = 0.4647,
𝛿2 = 0.5271, 𝛿3 = 0.6174.
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Fig. D.6: The displacements, stress components, electric displacement components and electric potential
of a PZT-5H/PZT-4 bi-material notch on the circular path 𝑟 = 2 mm, 𝜔1 = 155∘, 𝜔2 = −180∘.
Poling directions are 𝛼1 = 40∘ and 𝛼2 = 90∘, the singularity exponents are 𝛿1 = 0.4647,
𝛿2 = 0.5271, 𝛿3 = 0.6174.
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E Attached scripts
The attached CD contains scripts for evaluating the fracture-mechanical parameters for determi-
nation of the stress intensity in the vicinity of an anisotropic and piezoelectric bi-material notch.
The first group are the APDL macros executable by ANSYS software (within the dissertation
ANSYS v18.1 was used). Input data are the material parameters, notch geometry and the line
division parameter Δ𝑐. The output files contain nodal data of electro-elastic fields. Below, the
macros for evaluation of the displacement, electric potential, stress and electric displacement
finite element fields are listed.

Notch_AA_v3.mac Anisotropic bi-material notch with the free-free notch faces.
Notch_AI_v3.mac Isotropic/anisotropic bi-material notch with the free-free notch faces.
Notch_AA_v3_CF.mac Anisotropic bi-material notch with the free-clamped notch faces.
Notch_PP_v3.mac Piezoelectric bi-material notch with the free-free notch faces.
Notch_PI_v3.mac Isotropic/piezoelectric bi-material notch with the free-free notch faces.
Notch_PP_v3_CF.mac Piezoelectric bi-material notch with the free-clamped notch faces.
sqmesh.mac Macro controlling the mesh structure.

The second group is represented by Python scripts (Anaconda Python 2.7) for evaluating
the electro-elastic fields. The input parameters are the material data including the orientation
of the principal material directions (or poling), the notch geometry and the initial guess for the
mpmath.findroot algorithm. The result files from the FEM analysis described above are also
imported. Below, scripts for evaluation of the singularity exponents, generalized stress inten-
sity factors and displacements, electric potentials, stresses and electric displacements computed
along the circular paths around the notch tip are listed.

LES_AA_v3.mac Anisotropic bi-material notch with the free-free notch faces.
LES_AI_v3.mac Isotropic/anisotropic bi-material notch with the free-free notch faces.
LES_AA_v3_CF.mac Anisotropic bi-material notch with the free-clamped notch faces.
LES_PP_v3.mac Piezoelectric bi-material notch with the free-free notch faces.
LES_PI_v3.mac Isotropic/piezoelectric bi-material notch with the free-free notch faces.
LES_PA_v3.mac Anisotropic/piezoelectric bi-material notch with the free-free notch faces.
LES_PP_v3_CF.mac Piezoelectric bi-material notch with the free-clamped notch faces.
mod_HSV_v4.mac Module for depicting the phase portrait of the characteristic function.
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