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Abstract. The coprime array provides the possibility of 
resolving more signals than the sensors for the direction-
of-arrival (DOA) estimation application. However, the 
non-consecution of its virtual array raises challenges for 
making full use of the degree of freedom (DOF). In this 
paper, we propose a new underdetermined DOA estimation 
method with coprime array where the non-consecutive 
virtual array can be converted into a virtual uniform linear 
array (ULA) with the same aperture. Firstly, all elements 
in the vectorized signal covariance matrix corresponding 
to the same virtual array positions are averaged to 
construct the output signals of the virtual array. Then, 
an atomic norm minimization (ANM) based optimization 
problem is formed for denoising the output signals of the 
virtual array and for interpolating the missing signals at 
the virtual array holes. At last, the ANM problem is solved 
by the semidefinite programming (SDP) and the DOAs are 
obtained by applying the subspace method on the recon-
structed signal covariance matrix of the interpolated vir-
tual ULA. The proposed algorithm is gridless and makes 
full use of the DOF and the information provided by the 
coprime array. The simulation results compared with the 
other representative methods are given to demonstrate the 
superiority of the proposed method with respect to the 
resolution and estimation accuracy. 

Keywords 
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1. Introduction 
Direction-of-arrival (DOA) estimation which is the 

technology utilizing multi-antenna array to estimate the 
DOAs of the waves is widely applied in military and civil 
fields, such as radar, electronic countermeasures, seismic 

exploration, and communication [1]. The ULA has been 
widely used due to its simple array configuration [2]. How-
ever, too much redundancy exists in the covariance domain 
of ULA. To reduce the redundancy of ULA and to provide 
possibility for resolving more signals than sensors, some 
sparse arrays are proposed. The minimum redundancy 
array (MRA) [3] and minimum hole array (MHA) [4] are 
the old ones. However, they do not have a systematic array 
structures and they need to be determined by exhaustive 
tests. In contrast, the newly proposed coprime array [5] and 
the nested array [6] have a closed-form expression for the 
array configuration. Among them, the coprime array re-
ceives more attention since it is less affected by the mutual 
coupling. 

Coprime array, as a kind of sparse array, can provide 
2( )M  DOFs only using M physical elements. However, 

the coprime array is a partially augmentable array [7], 
which means the virtual array derived from coprime array 
is non-consecutive. This leads to the fact that the ULA-
based methods cannot be directly applied to the coprime 
array. In order to use the ULA-based methods, a common 
practice is to only employ the longest consecutive subarray 
of virtual array for DOA estimation [8]. The drawbacks of 
this method are the information loss and the underutiliza-
tion of DOF. Although the low rank matrix denoising algo-
rithm in [9] uses the low rank property of the covariance 
matrix to reduce the DOA estimation error caused by noise, 
it still has not made full use of the DOF. 

For this problem, compressed sensing [10], [11] pro-
vides a new solution since this kind of methods can 
theoretically deal with arbitrary array. The least absolute 
shrinkage and selection operator (LASSO) based algorithm 
in [12] is an example. Unfortunately, another problem 
called basis mismatch arises [13]. Since the sparse diction-
ary in compressed sensing is discrete, the estimated DOAs 
can only be located at the pre-defined grids. In fact, the 
true DOAs cannot be exactly on grids. In order to solve 
this problem, the off-grid method is proposed [14]. Never-
theless, the basis mismatch problem has not been fully 
solved until the gridless methods were proposed. 
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The gridless methods in [15][22] can estimate pa-
rameters without setting grid points in advance. For the 
coprime array application, a nuclear norm minimization-
based method was proposed in [21]. The missing signals in 
virtual array are interpolated by the concept of matrix com-
pletion. However, there is no denoising operation in this 
method. The virtual array interpolation-based method is 
also proposed in [22], which makes full use of the DOF. 
Nevertheless, this method has not fully utilized the signal 
information due to discarding some elements in covariance 
matrix and this method forms an optimization problem in 
the pattern of multiple measurement vectors [23], leading 
to high computational complexity. 

In this paper, we propose a new underdetermined 
DOA estimation method with coprime array. Through 
interpolating the non-consecutive virtual array to virtual 
ULA, we can make full use of the DOF. Through averag-
ing all elements in the vectorized signal covariance matrix 
corresponding to the same virtual array positions, we uti-
lize all the signal information successfully. The interpola-
tion operation is performed by forming and solving 
an ANM based problem where the denoising operation is 
also involved. Since ANM belongs to the gridless com-
pressed sensing, the basis mismatch effect is avoided in 
this method. The ANM problem is solved by SDP and the 
DOAs are obtained by applying the subspace method on 
the reconstructed signal covariance matrix of the interpo-
lated virtual ULA. Simulation results demonstrate the supe-
riority of the proposed method in terms of resolution and 
estimation accuracy. 

The rest paper is organized as follows. Section 2 re-
visits coprime signal model. Section 3 presents the pro-
posed method that contains the details of processing. The 
numerical simulation results are given in Sec. 4. Finally, 
Section 5 concludes this paper. 

Notations:  denotes the set of complex number. 
()T, ()* and ()H denote the transpose, conjugate, and 
conjugate transpose, respectively. 

2
 represents the 2  

norm.   stands for the Kronecker product.   is the 
wavelength of the signal.  denotes the DOF of the array. 
The notation Ε[ ]  represents the statistical expectation. 
vec( )  represents the vectorizing operator. Tr()denotes the 
trace of the matrix.   denotes the cardinality of a set . 

2. Coprime Signal Model 
For the coprime array, there are several types of 

configurations [24]. In this paper, we choose the so called 
extended coprime array proposed in [8] for example and 
the method proposed in this paper is also applicable for 
other types of coprime array. The extended coprime array 
is composed of a pair of ULAs. In the case of M < N, one 
subarray consists of 2M  sensors spaced Nd apart and the 
position of the array elements can be expressed as 1d , 
where 1 { ,0 2 1}mN m M     and d is a half-wavelength 

0 Nd 2Nd (2M-1)Nd

0 2MdMd (N-1)Md

. . ..

. . ..

 
Fig. 1.  The extended coprime array configuration. 

i.e., 2d   . The other one consists of N sensors spaced 
Md apart and the position of the array elements can be 
expressed as 2d , where 2 ,0 1nM n N     . Here, 
M and N satisfy the coprime condition. The coprime array 
 is formed by overlapping the first array element of the 
two subarrays, as showed in Fig. 1. Thus, this coprime 
array consists of 2 1N M   sensors in total and its DOF 
can be up to  3MN M N MN      [21]. 

Supposed that there are K far-field narrow-band plane 
wave signals with DOA T

1 2= [ , , , ]Kθ θ θθ   impinging at 
the coprime array , and then the output signal of this array 
at time t is 

            
=1

K

k k
k

t θ t t t t   x a s n As n  (1) 

where ( 2 1)
1 2( ) ( ) ( ) N+ M - K

Kθ , θ , , θ   A a a a   stands for 
the manifold matrix of the coprime array. 

T
1 2( ) ( ) ( ) ( )]Kt t , t , , t s s s s  denotes the signal waveform 

vector and T
1 2( ) ( ) ( ) ( )Kt t , t , , t  n n n n  denotes the 

additive white Gaussian noise component which is 
independent with the incident signal waveform vector. 

( )kθa  represents the steering vector of the thk  source, 
which can be expressed as 

      T
2 2 11,exp( j cos ),...,exp( j cos )k k N M kθ u θ u θ       a

(2) 
where =2 /d    and j 1   is the imaginary unit. ku  
denotes the position of the thk  physics sensor with 1 0u  . 

3. The Proposed DOA Estimation 
Algorithm 

3.1 The Formation of Virtual Array and Its 
Output Signal 

The output signal covariance matrix can be expressed 
as 

    Η H Η 2E = E nt t       xR x x A SS A I  (3) 

where H  SR SS  denotes the covariance matrix of 
sources and it is a diagonal matrix. 2

n  denotes the power 
of noise. I  stands for the ( ) (2 2 )1 1N M N M      
identity matrix. In practice, the covariance matrix of the 
output signal is calculated by the following formula
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Fig. 2.  Illustration of coprime array with M = 3 and N = 5: (a) Extended coprime array configuration; (b) Virtual array derived from this 
coprime array; (c) Interpolated virtual ULA. 

 

    H

=1

1ˆ
T

t

t t
T

 xR x x  (4) 

where T denotes the number of snapshots. When T in-
creases infinitely, the estimated ˆ

xR  infinitely approximates 
the true xR . 

The output signals of the virtual array can be 
constructed from the second order statistics of received 
signal. Vectorizing the covariance matrix, we have 

     2

1

ˆvec
K

k k n
k=

θ p  xy R v i  (5) 

where ( ) ( ) ( )*
k k kθ θ θ v a a , kp  denotes the power of 

the thk source and vec( )i I . The position of the virtual 
array is d  and 

  0,1 2 1m nu u | m,n = ,...,N M     (6) 

where 3MN M N   . Since the coprime array is 

a partially augmentable array, the virtual array derived 
from coprime array has several missing elements that are 
referred to as the holes. For the sake of intuition, we give 
an example of extended coprime array with M = 3 and 
N = 5 in Fig. 2. Obviously, the virtual array shown in 
Fig. 2(b) is non-consecutive. The dotted circles in Fig. 2(c) 
indicate the positions of the holes which are at {18, 21, 
23, 24}. Figure 2(c) is called the interpolated virtual 
array which will be used in the following. 

By averaging the elements in y corresponding to the 
same positions in  , output signals of the virtual array y  

can be obtained as 

 2
n y Vp 1  (7) 

where KV   denotes the virtual array manifold 
matrix. p  is the signal power vector and 1  is a vector that 
only the middle entry is 1 and the others are 0. Here, by the 
averaging operation, the whole signal information provided 
by coprime array can be fully utilized. 

Since the virtual array derived from coprime array has 
some holes, the virtual signals at the holes actually do not 
exist. However, we can assume there are imaginary ele-

ments at the holes and the output signals of the imaginary 
elements can be interpolated later. Combined with the 
imaginary elements, the non-consecutive virtual array will 
be a virtual ULA with sensors positions at d  where   
is the interpolated consecutive version of  , just like the 
array in Fig. 2(c) and 4 2 1MN N   . So, in this 
way, we can employ all the DOF provided by the coprime 
array. By initializing the signals of the imaginary elements 
to zero, we can form the output signals of the virtual ULA 
as 

 
0

i
i

, i

i

 
   

y
z




 



 
 (8) 

where 
i

  represents the signal of the array element at 

position id . 

3.2 Interpolating and Denoising Signals of 
Virtual ULA Based on ANM 

The concept of atomic norm and many common 
sparse norms such as 1  norm, 2  norm, and the nuclear 
norm of matrices are introduced in [25]. An atom for 
representing z can be defined as 

    0 ,180k kθ ,θ    v . (9) 

The atomic norm of the interpolated output signal z  

is defined as the smallest number of atoms in  that can 

express z  

  
 

  
inf 0 conv

inf : , 0, 0 ,180k k k k k
k k

t t

p p θ p θ  

   
      
 

z z

z v




 (10) 

where inf denotes the infimum. Therefore, the optimal z*  
can be obtained by solving the following ANM problem 

 
20 2

2
min , . .s t  
z
z z z
 Ω Ω  (11) 

where 2 denotes the upper limit of noise variance. Ω 
represents the elements positions of non-consecutive 
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virtual array. For example, Ω can be expressed as a set of 
array element positions in Fig. 2(b), i.e. Ω = {0,  
}. 0 z yΩ . Then atomic norm 
z


 can be converted into the following semidefinite 
programming (SDP) (The proof can be found in [26]). 

     
H1 1

inf Tr T 0
T2 2

t
t

       
   

z
z u

z u


 (12) 

where  T u     denotes a Hermitian Toeplitz matrix 
with vector u   as its first column. Therefore, the 
atomic norm z


 can be calculated by the following 

formula 

     
H

,
min Tr T , . . 0w s t

T

 
  

 z u

w z
u

z u
 (13) 

where w t   and t  is a turning parameter. It follows 
from (13) that the formula (11) can be cast as the following 
SDP problem 

    
H

20 2

2,
min Tr T , . . 0,w s t

T


 
    

 
Ω Ωz u

w z
u z z

z u
. 

 (14) 
According to the Lagrangian analysis, the dual 

problem of the (14) can be expressed as the following form 
(The proof is given in the Appendix A [27].) 

 
 

 

0 H

2,
H

*

min ,

1
. . 0, 0,T 0

e

s t

 

      
 

Ω Ω Ω

Ω

v W
v z v

v
v W I

v W

 (15) 

where   is the regularization parameter, ( )e   indicates 
taking the real value and T ( )*   denotes the adjoint operator 
of T( ) . By using standard solver SDPT3 [28], the dual 
problem (15) can be solved more efficiently than the 
primal problem (14). According to the duality, the 
Lagrange multiplier corresponding to the first constraint of 
(15) is exactly the matrix in the first constraint of (14) 
which contains z. So, after the formula (15) is solved, the 
interpolated output signal z* can also be obtained. 

3.3 Covariance Matrix Reconstruction for 
DOA Estimation 

Since the interpolated output signal z* is a rank-1 
signal, this problem is equivalent to the DOA estimation of 
coherent signal or single snapshot. Although spatial 
smoothing operation is capable of removing the coherence 
of the signal, we choose a more efficient method proposed 
in [29] to reconstruct the rank-K signal covariance matrix. 
Setting 1 / 2L     , we can reconstruct the covariance 
matrix Rv  as 

 

1 1

1 2

2 1 2 2

L L

L L

L L L





 

 
 
 
 
 
 

z z z

z z z
Rv

z z z

* * *

* * *

* * *




   


. (16) 

After the signal covariance matrix is reconstructed, 
the DOAs can be obtained by the subspace method such as 
the MUSIC [8], [29], [30], the ESPRIT [31][33], and the 
root-MUSIC [34], [35]. Here, we describe the MUSIC 
spectrum as following formula 

 
   MUSIC H H

s N N s

1
P θ

θ θ
  

a U U a
 (17) 

where as
H(θ) is the steering vector of sub virtual ULA from 

the position of 0 to Ld. UN is the noise subspace. The 
DOAs are found by searching the locations of the K largest 
peaks of the spectrum. 

The proposed algorithm is described in Algorithm 1. 
The advantages of this method are summarized as follows. 
Firstly, the non-consecutive virtual array is interpolated to 
the virtual ULA, so we make full use of the DOF. Sec-
ondly, by averaging all elements in the vectorized signal 
covariance matrix corresponding to the same virtual array 
positions, we utilized all the signal information. Further-
more, in this optimization procedure, the denoising opera-
tion is involved, which increases the accuracy of the esti-
mation. At last, the gridless ANM based optimization 
method avoids the basis mismatch problem. 
 
 
 
 
 

Algorithm 1 Virtual Array Interpolation-Based 
Underdetermined DOA Estimation via Atomic Norm 
Minimization 

1.  Input: Extended coprime array received signal 
{ ( )}T

tt x  and the number of sources K. 

2.  Output: ˆ
kθ , k=1, 2, …, K. 

3.  Calculate the covariance matrix ˆ
xR and construct the 

output signal y  corresponding to the non-
consecutive virtual array . 

4.  Initialize the interpolated output signal z via (8). 

5.  Restore the interpolated output signal z* with respect 
to interpolated virtual ULA   via (15). 

6.  Reconstruct the signal covariance matrix vR of the 
interpolated virtual ULA via (16). 

7.  Estimate the spatial spectrum by using MUSIC 
algorithm in (17) to get the DOA estimation. 

 



RADIOENGINEERING, VOL. 29, NO. 2, JUNE 2020 409 

 

 
 (a) (b) 

 
 (c) (d) 

Fig. 3.  The spatial spectrum of these algorithms. The number of sources is 21. The vertical dashed lines denote the actual DOA of the sources: 
(a) LASSO algorithm; (b) NNM algorithm; (c) CA-VAI algorithm; (d) Proposed algorithm. 

 

4. Numerical Experiments 
An extended coprime array with M = 3, N = 5 is 

adopted, which yields a total number of 2 1 10N M    
physical sensors located at {0, 3d, 5d, 6d, 9d, 10d, 12d, 
15d, 20d, 25d}, where d is half wavelength. The proposed 
method is compared with several representative algorithms, 
namely the spatial smoothing method (SS-MUSIC) in [8], 
the low rank matrix denoising (LRD) in [9], the least abso-
lute shrinkage and selection operator (LASSO) in [12] the 
nuclear norm minimization (NNM) in [21], and the virtual 
array interpolation-based (CA-VAI) in [22]. The regular-
ization parameters for LASSO algorithm, LRD algorithm, 
CA-VAI algorithm, and the proposed algorithm are set as 
1.5, 10, 0.25, and 1, respectively. The convex optimization 
problems in the above algorithms are all solved by the 
CVX package using MATLAB software [36]. 

4.1 Achievable DOF 

In this section, we compare the achievable DOF of 
the proposed method with other algorithms. Supposed 
there are 21 uncorrelated sources whose cosine values of 
the source angle are uniformly distributed from –0.9 to 0.9. 
As SS-MUSIC and LRD cannot handle so many sources, 
we only choose LASSO, NNM, and CA-VAI. The SNR 
and the number of snapshots are set as 10 dB and 400, 

respectively. The grid interval of LASSO algorithm is set 
as Δθ = 0.2°. It is showed in Fig. 3 that each algorithm can 
achieve effective resolution of 21 sources only using 10 
physical array elements. We take 1000 Monte Carlo trials 
and measure their recovery accuracy with the root-mean-
squared error (RMSE) and represent it under each sub-
graph. The RMSE is defined as follows 

   2

1 1

1 ˆRMSE
QK

k k
k q

θ q θ
KQ  

   (18) 

where ˆ ( )kθ q  is the DOA estimation in the thq  Monte-
Carlo trial. Q denotes the total number of Monte-Carlo 
trials. We can see that the RMSE of the proposed algorithm 
is the smallest as shown in Fig. 3. This is because that 
LASSO can only estimate the DOA on predefined grid 
points, increasing the estimation error. Although NNM 
based on matrix completion can get the DOA, the signal 
has not been denoised, and the limited number of snapshots 
can affect the accuracy of matrix completion, resulting in 
an affect the accuracy of matrix completion, resulting in a 
large estimation error. CA-VAI and the proposed method 
both use an interpolation-based approach, but the CA-VAI 
has not fully utilized all the information provided by the 
covariance matrix. In contrast, the proposed method makes 
full use of the information provided by the signal and 
improves the estimation accuracy. 
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 (a) (b) 

Fig. 4.  RMSE performance comparison in each algorithm: (a) RMSE versus the number of snapshots with SNR = 20 dB. (b) RMSE versus 
SNR with the number of snapshots T=500. 

 
 (a) (b) (c) 

 
 (d) (e) (f) 

Fig. 5.  DOA Resolution comparison of different algorithms. T = 400 and SNR = 10 dB. The vertical dashed lines denote the actual DOA of 
sources: (a) SS-MUSIC algorithm; (b) LRD algorithm; (c) LASSO algorithm; (d) NNM algorithm; (f) CA-VAI algorithm; (f) Proposed 
algorithm. 

 
4.2 Estimation Performance Analysis 

In this section, we set the number of sources as 12. 
The sources are uniformly spaced from 25° to 155° and 
each DOA is added with a random jitter which follows the 
uniform distribution in [1°0.1°to reduce the impact of 
basis mismatch effect. The grid interval of LASSO algo-
rithm is set as Δθ = 0.1°. 1000 Monte Carlo trials are run. 
The Cramér-Rao bound (CRB) [37] is also given as the 
reference.  

The results of RMSE versus the number of snapshots 
is shown in Fig. 4(a), where the SNR is 20 dB. It can be 

seen that the trend of the RMSE curves of various algo-
rithms is consistent with the trend of the CRB curve. As for 
LASSO, it generates spurious peaks in the spectrum, lead-
ing to the fluctuation tendency of the curve. SS-MUSIC 
and LRD only use a part of array elements, leading to 
a relatively large RMSE. NNM is a method using all DOF, 
which makes its performance better than former two algo-
rithms. CA-VAI achieves lower RMSE than NNM due to 
the involved denoising operation. The performance of the 
proposed algorithm outperforms significantly than other 
algorithms. Also, when the number of snapshots is greater 
than 100, the RMSE value of the proposed algorithm be-
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gins to decrease, indicating the performance threshold is 
obviously lower than other algorithms. A similar perfor-
mance comparison is given by the simulation of the RMSE 
versus SNR for each algorithm in Fig. 4(b) with the num-
ber of snapshots T = 500. Again, the results are similar to 
Fig. 4(a) and the proposed method outperforms others 
under all value of SNR. 

4.3 Resolution 

In this section, we are comparing the resolution per-
formance of the proposed algorithm with other five algo-
rithms. Two sources located at 89.55° and 90.55°are con-
sidered with the number of snapshots T = 400 and 
SNR = 10 dBThe results are given in Fig. 5. It is showed 
that the SS-MUSIC algorithm is not able to resolve the 
sources and the resolution of LRD is very poor. This is 
because they only use partial array elements of the virtual 
array. LASSO can resolve the two sources, but the peak 
location is not accurate, which is because it is an on-grid 
estimator. The remaining three algorithms are gridless 
method and they all exhibit accurate peaks. However, 
among them, we find the peaks of the proposed method are 
the sharpest, indicating the best resolution performance. 

5. Conclusion 
In this paper, we proposed a new underdetermined 

DOA estimation method for the coprime array application. 
This algorithm makes full use of the array DOF. Through 
averaging all elements in the vectorized signal covariance 
matrix corresponding to the same virtual array positions, 
this algorithm also makes full use of the signal information. 
The optimization problem in this method is formed and 
solved under the framework of ANM, indicating it is 
a gridless method. Simulation results have shown the supe-
riority of the proposed method in terms of resolution and 
estimation accuracy. Furthermore, this method can also be 
easily extended to ULA, MRA, nested array and other 
sparse arrays. Future works are to consider the scenarios of 
correlated and coherent signals and to perform DOA esti-
mation with unknown number of sources. 
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Appendix A 

Let 
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where   denotes the complementary set of Ω . 
Minimizing   with respects to  w u z  gives the dual 

objective which equals 
2
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obtain the dual problem (15) as the following form 

 
 

 

0 H

2,
H

*

min ,

1
s. t. 0, 0,T 0.

e 

       

Ω Ω Ω

Ω

v W
v z v

v
v W I

v W

 (A2) 

References 

[1] VAN TREES, H. L. Detection, Estimation, and Modulation 
Theory (Part IV: Optimum Array Processing). New York, USA: 
Wiley, 2004. ISBN: 0-471-09390-4 

[2] PAN, Y., LUO, G. Q., JIN, H., et al. Direction-of-arrival 
estimation with ULA: A spatial annihilating filter reconstruction 
perspective. IEEE Access, 2018, vol. 6, p. 2317223179. DOI: 
10.1109/ACCESS.2018.2828799 

[3] MOFFET, A. Minimum-redundancy linear arrays. IEEE 
Transactions on Antennas and Propagation, 1968, vol. 16, no. 2, 
p. 172175. DOI: 10.1109/TAP.1968.1139138 



412 Y. PAN, M. YAO, G. Q. LUO, ET AL., UNDERDETERMINED DIRECTION-OF-ARRIVAL ESTIMATION … 

 

[4] BLOOM, G. S., GOLOMB, S. W. Applications of numbered 
undirected graphs. Proceedings of the IEEE, 1977, vol. 65, no. 4, 
p. 562570. DOI: 10.1109/PROC.1977.10517 

[5] VAIDYANATHAN, P. P., PAL, P. Sparse sensing with co-prime 
samplers and arrays. IEEE Transactions on Signal Processing, 
2011, vol. 59, no. 2, p. 573586. DOI: 10.1109/TSP.2010.2089682  

[6] PAL, P., VAIDYANATHAN, P. P. Nested arrays: A novel 
approach to array processing with enhanced degrees of freedom. 
IEEE Transactions on Signal Processing, 2010, vol. 58, no. 8, 
p. 41674181. DOI: 10.1109/TSP.2010.2049264 

[7] ABRAMOVICH, Y. I., SPENCER, N. K., GOROKHOV, A. Y. 
Positive-definite Toeplitz completion in DOA estimation for 
nonuniform linear antenna arrays. II. Partially augmentable arrays. 
IEEE Transactions on Signal Processing, 1999, vol. 47, no. 9, 
p. 15021521. DOI: 10.1109/78.765119 

[8] PAL, P., VAIDYANATHAN, P. P. Coprime sampling and the 
MUSIC algorithm. In Proceedings of 2011 Digital Signal 
Processing and Signal Processing Education Meeting (DSP/SPE). 
Sedona (AZ, USA), 2011, p. 289294. DOI: 10.1109/DSP-
SPE.2011.5739227 

[9] PAL, P., VAIDYANATHAN, P. P. A grid-less approach to 
underdetermined direction of arrival estimation via low rank 
matrix denoising. IEEE Signal Processing Letters, 2014, vol. 21, 
no. 6, p. 737741. DOI: 10.1109/LSP.2014.2314175 

[10] DONOHO, D. L. Compressed sensing. IEEE Transactions on 
Information Theory, 2006, vol. 52, no. 4, p. 12891306. DOI: 
10.1109/TIT.2006.871582 

[11] CANDES, E. J., ROMBERG, J., TAO, T. Robust uncertainty 
principles: Exact signal reconstruction from highly incomplete 
frequency information. IEEE Transactions on Information Theory, 
2006, vol. 52, no. 2, p. 489509. DOI: 10.1109/TIT.2005.862083 

[12] ZHANG, Y. D., AMIN, M. G., HIMED, B. Sparsity-based DOA 
estimation using co-prime arrays. In Proceedings of 2013 IEEE 
International Conference on Acoustics, Speech and Signal 
Processing (ICASSP). Vancouver (BC, Canada), 2013, 
p. 39673971. DOI: 10.1109/ICASSP.2013.6638403 

[13] PAN, Y., LUO, G. Q., JIN, H., et al. DOA estimation with planar 
array via spatial finite rate of innovation reconstruction. Signal 
Processing, 2018, vol. 153, p. 4757. DOI: 
10.1016/j.sigpro.2018.07.001 

[14] TAN, Z., NEHORAI, A. Sparse direction of arrival estimation 
using co-prime arrays with off-grid targets. IEEE Signal 
Processing Letters, 2014, vol. 21, no. 1, p. 2629. DOI: 
10.1109/LSP.2013.2289740 

[15] YANG, Z., LI, J., STOICA, P., et al. Sparse Methods for 
Direction-of Arrival Estimation. 65. [Online] Cited 2016103. 
Available at: arXiv: 1609.09596 [cs.IT] 

[16] YANG, Z., XIE, L. Exact joint sparse frequency recovery via 
optimization methods. IEEE Transactions on Signal Processing, 
2016, vol. 64, no. 19, p. 51455157. DOI: 
10.1109/TSP.2016.2576422 

[17] YANG, Z., XIE, L. Enhancing sparsity and resolution via 
reweighted atomic norm minimization. IEEE Transactions on 
Signal Processing, 2016, vol. 64, no. 4, p. 9951006. DOI: 
10.1109/TSP.2015.2493987 

[18] YANG, Z., XIE, L. On gridless sparse methods for line spectral 
estimation from complete and incomplete data. IEEE Transactions 
on Signal Processing, 2015, vol. 63, no. 12, p. 31393153. DOI: 
10.1109/TSP.2015.2420541 

[19] YANG, Z., XIE, L. Continuous compressed sensing with a single 
or multiple measurement vectors. In Proceedings of 2014 IEEE 

Workshop on Statistical Signal Processing (SSP). Gold Coast 
(Australia), 2014, p. 288–291. DOI: 10.1109/SSP.2014.6884632 

[20] GUO, M., CHEN, T., WANG, B. An improved DOA estimation 
approach using coarray interpolation and matrix denoising. 
Sensors, 2017, vol. 17, no. 5, p. 1–12. DOI: 10.3390/s17051140 

[21] LIU, C., VAIDYANATHAN, P. P., PAL, P. Coprime coarray 
interpolation for DOA estimation via nuclear norm minimization. 
In Proceedings of 2016 IEEE International Symposium on Circuits 
and Systems (ISCAS). Montreal (QC, Canada), 2016,  
p. 2639–2642. DOI: 10.1109/ISCAS.2016.7539135 

[22] ZHOU, C., GU, Y., FAN, X., et al. Direction-of-arrival estimation 
for coprime array via virtual array interpolation. IEEE 
Transactions on Signal Processing, 2018, vol. 66, no. 22, 
p. 59565971. DOI: 10.1109/TSP.2018.2872012 

[23] LI, Y., CHI, Y. Off-the-grid line spectrum denoising and 
estimation with multiple measurement vectors. IEEE Transactions 
on Signal Processing, 2016, vol. 64, no. 5, p. 12571269. DOI: 
10.1109/TSP.2015.2496294 

[24] QIN, S., ZHANG, Y. D., AMIN, M. G. Generalized coprime array 
configurations for direction-of-arrival estimation. IEEE 
Transactions on Signal Processing, 2015, vol. 63, no. 6, 
p. 13771390. DOI: 10.1109/TSP.2015.2393838 

[25] CHANDRASEKARAN, V., RECHT, B., PARRILO, P. A., et al. 
The convex geometry of linear inverse problems. Foundations of 
Computational Mathematics, 2012, vol. 12, no. 6, p. 805–849. 
DOI: 10.1007/s10208-012-9135-7 

[26] TANG, G., BHASKAR, B. N., SHAH, P., et al. Compressed 
sensing off the grid. IEEE Transactions on Information Theory, 
2013, vol. 59, no. 11, p. 74657490. DOI: 
10.1109/TIT.2013.2277451 

[27] BOYD, S. P., VANDENBERGHE, L. Convex Optimization. 
Cambridge, U.K.: Cambridge Univ. Press, 2004. ISBN: 978-0-
521-83378-3 

[28] TOH, K.-C., TODD, M. J., TÜTÜNCÜ, R. H. SDPT3-a MATLAB 
software package for semidefinite programming version 1.3. 
Optimization Methods Software, 1999, vol. 11, no. 14, 
p. 545581. DOI: 10.1080/10556789908805762 

[29] LIU, C., VAIDYANATHAN, P. P. Remarks on the spatial 
smoothing step in coarray MUSIC. IEEE Signal Processing 
Letters, 2015, vol. 22, no. 9, p. 14381442. DOI: 
10.1109/LSP.2015.2409153 

[30] SCHMIDT, R. O. Multiple emitter location and signal parameter 
estimation. IEEE Transactions on Antennas and Propagation, 
1986, vol. 34, no. 3, p. 276280. DOI: 10.1109/TAP.1986.1143830 

[31] ZHOU, C. ZHOU, J. Direction-of-arrival estimation with coarray 
ESPRIT for coprime array. Sensors, 2017, vol. 17, no. 8, p. 1–17. 
DOI: 10.3390/s17081779 

[32] ROY, R., KAILATH, T. ESPRIT-estimation of signal parameters 
via rotational invariance techniques. IEEE Transactions on 
Acoustics, Speech, and Signal Processing, 1989, vol. 37, no. 7, 
p. 984995. DOI: 10.1109/29.32276 

[33] CHEN, H., HOU, C., ZHU, W. P., et al. ESPRIT-like two-
dimensional direction finding for mixed circular and strictly 
noncircular sources based on joint diagonalization. Signal 
Processing, 2017, vol. 141, p. 4856. DOI: 
10.1016/j.sigpro.2017.05.024 

[34] RAO, B. D., HARI, K. V. S. Performance analysis of root-MUSIC. 
In The Twenty-Second Asilomar Conference on Signals, Systems 
and Computers. Pacific Grove (CA, USA), 1988, p. 578582. 
DOI: 10.1109/ACSSC.1988.754608 

[35] LIU CONGFENG, LIAO GUISHENG. Fast algorithm for Root-
MUSIC with real-valued egendecomposition. In Proceedings of 



RADIOENGINEERING, VOL. 29, NO. 2, JUNE 2020 413 

 

2006 CIE International Conference on Radar. Shanghai (China), 
2006, p. 14. DOI: 10.1109/ICR.2006.343159 

[36] GRANT, M., BOYD, S. CVX: Matlab Software for Disciplined 
Convex Programming. [Online] Cited 20143. Available at: 
http://cvxr.com/cvx. 

[37] LIU, C. L., VAIDYANATHAN, P. P. Cramér-Rao bounds for 
coprime and other sparse arrays, which find more sources than 
sensors. Digital Signal Processing, 2016, vol. 61, p. 4361. DOI: 
10.1016/j.dsp.2016.04.011	

About the Authors ... 
Yujian PAN was born in 1987. He received his Ph.D. 
from the National University of Defense Technology in 
2015. He is currently a Lecturer with the School of Elec-
tronics and Information, Hangzhou Dianzi University, 
Hangzhou, China. His main research interests include mi-
crowave circuit design, radar system design, radar signal 
processing, array signal processing, and machine learning. 
From 2019 to 2020, he is a visiting scholar at the Dept. of 
Electrical Engineering (ESAT), KU Leuven, Belgium. 

Min YAO was born in 1996. She received a B.E. degree in 
Taiyuan University of Science and Technology, Taiyuan, 
China, in 2018. She is now studying for M.S. degree in 
Electronic Science and Technology at Hangzhou Dianzi 

University. Her current research interest lies in the area of 
array signal processing. 

Guo Qing LUO (corresponding author) was born in 1979. 
He received the Ph.D. degree from the Southeast Univer-
sity, Nanjing, China, in 2007. Since 2007, he has been 
a Lecturer with the Faculty of School of Electronics and 
Information, Hangzhou Dianzi University, Hangzhou, 
China, and was promoted to Professor in 2011. His current 
research interests include RF, microwave and mm-wave 
passive devices, antenna array, and frequency selective 
surfaces. 

Bai Cao PAN was born in 1989. He received the Ph.D. 
degree in Electrical Engineering from the Southeast Uni-
versity, Nanjing, China in 2018. He joined the School of 
Electronics and Information, Hangzhou Dianzi University, 
where he is currently an Associate Professor. His research 
interests include engineered electromagnetic structures, 
metamaterials, spoof surface plasmon polaritons, antennas 
array, and microwave circuits. 

Xiaoxin GAO was born in 1995. She received a B.E. de-
gree in Shijiazhuang University, Shijiazhuang, China, in 
2019. She is now studying for M.S. degree in Electronics 
and Communication Engineering at Hangzhou Dianzi Uni-
versity. Her current research interest is the array signal 
processing. 

 


