BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF MECHANICAL ENGINEERING

FAKULTA STROJNIHO INZENYRSTVI

INSTITUTE OF SOLID MECHANICS, MECHATRONICS AND
BIOMECHANICS

USTAV MECHANIKY TELES, MECHATRONIKY A BIOMECHANIKY

ROS FRAMEWORK UTILIZATION FOR AUTONOMQOUS
MOBILE ROBOT CONTROL SYSTEM

VYUZITi NASTROJE ROS PRO RiZENi AUTONOMNIHO MOBILNIHO ROBOTU

MASTER'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. Patrik Vavra
AUTOR PRACE
SUPERVISOR Ing. Martin Appel

VEDOUCI PRACE

BRNO 2019

BRNO FACULTY

UNIVERSITY OF MECHANICAL
OF TECHNOLOGY ENGINEERING

Specification Master's Thesis

Department: Institute of Solid Mechanics, Mechatronics and Biomechanics
Student: Bc. Patrik Vavra

Study programme: Applied Sciences in Engineering

Study field: Mechatronics

Supervisor: Ing. Martin Appel

Academic year: 2018/19

Pursuant to Act no. 111/1998 concerning universities and the BUT study and examination rules, you
have been assigned the following topic by the institute director Master's Thesis:

ROS framework utilization for autonomous mobile robot control system

Concise characteristic of the task:

This thesis deals with four—wheel robot control system using ROS (Robot Operating System)
framework, which allows robot to perform more advanced tasks such as autonomous motion, obstacle
avoidance and mapping.

The aim of this thesis is to get acquainted with the ROS framework and design a topology that will
include a few robots and control panels. Mobile robot will be capable of autonomous motion (automatic
return to docking station) as well as remote control by user.

The outcome of this thesis will be functional ROS based robot control system, which will be
implemented on real four—wheel robot. Robot design description is included in another master’s thesis.

Goals Master's Thesis:

1) Perform a search study of ROS framework and familiarize yourself with ROS tools and conventions.
2) Describe ROS navigation and localization packages and their modifications used in robot's
software.

3) Create simulation environment in Gazebo and test selected localization and navigation method.

4) Implement navigation into real robot in form of automatic return to the docking base.

5) Create educational or entertaining mini—games for users of robots.

Recommended bibliography:

THRUN, Sebastian, Wolfram BURGARD a Dieter FOX. Probabilistic Robotics. [1st ed.]. Cambridge:
The Mit Press, 2006. ISBN 978-0-262-20162-9.

Faculty of Mechanical Engineering, Brno University of Technology / Technicka 2896/2 / 616 69 / Brno

CHOSET, Howie M. Principles of robot motion: theory, algorithms, and implementation. Cambridge,
Mass.: MIT Press, c2005. Intelligent robotics and autonomous agents.

Dokumentace systému ROS, dostupné online na adrese ,wiki.ros.org®

Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2018/19

In Brno,

L.S.

prof. Ing. Jindfich Petruska, CSc. doc. Ing. Jaroslav Katolicky, Ph.D.
Director of the Institute FME dean

Faculty of Mechanical Engineering, Brno University of Technology / Technicka 2896/2 / 616 69 / Brno

Abstrakt

Tato prace se zabyva vytvorenim lokalizacniho a navigacniho systému mobilniho robota pro
vnitini prostiedi pomoci frameworku ROS. Stru¢né je zde predstaven projekt, v ramci kterého
diplomovéa prace vznikla, a jeho cile. V reSersni casti je v kratkosti popsan ROS framework,
simulac¢ni prostiedi Gazebo a senzory, kterymi robot disponuje. Nasleduje vytvoreni modelu
robota a simulacniho prostiedi, v némz jsou vyzkouseny lokaliza¢ni, naviga¢ni a dalsi rutiny. V
experimentalni casti je provedeno testovani senzoru a popsano vyuziti jejich vystupt. Nasledné
jsou upraveny a otestovany algoritmy ze simulace na realném robotovi. V zavéru jsou popsany
vytvorené vzdélavaci minihry. Hlavnim vystupem této prace je funkéni stavovy automat, ktery
umoznuje manualni ovladani, zadavani cilu pro navigaci a v pripadé potieby zajisti autonomni
nabit{ robota.

Summary

This thesis deals with the development of localization and navigation system of a mobile robot
for an indoor environment based on ROS framework. The project, ROS framework, and Gazebo
simulation environment are briefly described in the theoretical survey section alongside sensors
that the robot is equipped with. This is followed by the creation of a model of the robot and
a simulation environment in which localization, navigation, and other routines are tested. In
the experimental section, the sensors are tested, and the usage of their output is described.
Subsequently, algorithms from the simulation are modified and tested on the real robot. In the
end section are created educational mini-games described. The main outcome of this thesis is
a functional state machine that allows to manually control the robot, give the goal position for
navigation and if needed, takes care of autonomous charging of robot.

P~ I
Klicova slova
ROS, Gazebo, lokalizace, navigace, SMACH, autonomni mobilni robot, ArUco, SLAM, si-
mulacni testovani, mobilni robotika
Keywords

ROS, Gazebo, localization, navigation, SMACH, autonomous mobile robot, ArUco, SLAM,
simulation testing, mobile robotics

Bibliographic citation

VAVRA, P. ROS framework utilization for autonomous mobile robot control system. Brno:
Brno University of Technology, Faculty of mechanical engineering, 2019. 82 pages, Master’s
thesis supervisor: Ing. Martin Appel.

Rozsireny abstrakt

Uvod

Rok 2020 bude znacit presné sto let od chvile, kdy bylo poprvé pouzito slovo Robot ve hie
R.U.R. (Rossumovi Univerzalni Roboti). Od té doby se z fiktivnich postav roboti stali béznou
sou¢asti nasich zivotu. V domé se automatické robotické vysavace staraji o ¢istotu podlah,
na zahradé roboti automaticky sekaji travnik a kazdy jisté pfijde na mnoho dalsich prikladu
vyuziti robotli. K nejzajimavéjsim c¢astem mobilni robotiky bezpochyby patii autonomni do-
prava. Nynéjsi auta nabizi celou fadu asistencnich systému a ve vyvoji jsou plné nebo ¢astecné
autonomni vozidla.

Aby mohlo byt dosazeno vysoké tirovné autonomniho fizeni, musi mit vozidla velmi dobré
informace o svém okoli. K tomu pouzivaji celou fadu senzoru, napiiklad Tesla model S obsahuje
dle specifikaci v manuélu [1] 12 ultrazvuku, 8 kamer a radar. Maly robot pro vnitini autonomni
jizdu, ktery bude predstaven v této préci, samoziejmé patii do uplné jiné kategorie, a proto si
vystaci s daleko méné senzory.

Tato préce je soucasti projektu, ktery v roce 2020 vytsti ve Vystavu robotiky v Technickém
muzeum v Brné na pocest sta let od prvniho pouziti slova robot. Projekt je v souc¢asné dobé
tvofen dvéma diplomovymi pracemi - kromé této také praci Be. Romana Addmka [2], na kterou
bude v urc¢itych ¢astech odkazovano. Tato diplomova prace vytvaii zaklady ovladaciho systému
pro ¢astecné autonomniho robota, ktery bude v rdmci vystavy slouzit pro ukazku ruznych
aspektu robotiky. Predpokladem pii psani prace je, ze prace na projektu bude pokracovat, a
proto je u vét§iny balicku uveden odkaz na dokumentaci nebo doplikovou literaturu. Kvuli
stejnému predpokladu probéhl vyvoj robota i v simula¢nim prostiedi, jelikoz v ném lze rychleji
otestovat nové algoritmy a postupy.

Po domluvé s vedoucim prace byl software vyvijen, a zde je tak i popsan, pouze pro jednoho
robota, ovladaci a nabijeci stanici. Software muze byt v budoucnu rozsiten tak, aby zahrnoval
nékolik robott, ovladacich a nabijecich stanic.

Popis reseni

Prace je rozdélena do 3 hlavnich casti. V prvni je v kratkosti predstaven ROS framework a
program Gazebo pro simulacni feseni. Nasleduje popis vybranych balicku z frameworku ROS.
Pro lepsi pochopeni problematiky jsou zde uvedeny i konvence, které komunita vyuzivajici ROS
dodrzuje. Nékteré balicky jsou pouze kratce charakterizovany a je u nich uveden odkaz na dalsi
literaturu, u jinych je vysvétleno jejich fungovani a moznosti nastaveni. Tento popis je zaméren
hlavné na lokalizacni a naviga¢ni moznosti ve frameworku ROS. Pro vytvoteni komplexniho
stavového automatu je zde predstaven i knihovna SMACH psand v jazyce Python. V resersni
casti je také proveden vycet senzoru a jejich parametru. Nasledné je u kazdého senzoru popséano
jakym zpusobem bude v praci vyuzit a tam, kde je to nutné, je uvedena nezbytna teorie pro
pochopeni dané problematiky.

Dalsi ¢ast se zabyva simula¢nim fesenim. Nejprve je nutno navrhnout simulaéni prostiedi,
které by zhruba mélo odpovidat zamyslenému exponatu pouzitému v Technickém muzeu. Si-
mulacni prostiedi je vytvoreno pomoci GUI integrovaného v Gazebu a dostupnych modeli
z databaze. Do prostiedi je také pridano 20 ArUco znacek, aby se robot byl schopen loka-

lizovat. Model robotu je vytvoren pomoci jazyka Xacro. Parametry, které definuji jednotlivé
¢asti jsou alespon v kratkosti zminény a jsou zde uvedeny ukéazky z Xacro kodu. STL soubory
pro vizudlni zobrazeni jednotlivych éésti je prevzato z [2]. Pomoci dostupnych pluginu lze i
simulovat senzory, jimiz je robot vybaven.

Po dspésném vytvoreni simulacniho prostredi a robota je tato ¢ast integrovana s framewor-
kem ROS. Nésledné je zde uvedeno nastaveni pro lokalizaéni balicek robot_localization. Z tohoto
balicku je vyuzit node EKF pro fuzi relativnich i absolutnich dat ze senzort. Pro kazdy node jsou
zde uvedeny jaké vstupy integruje a jeho omezeni. Pro SLAM balicek gmapping jsou zde uve-
deny pouze jeho vstupy a je ukazana mapa prostiedi, ktera byla pomoci balicku vytvorena. Dale
je popsano zakladni nastaveni pro jednotlivé komponenty navigacniho balicku mowve_base_fiex.
Ty jsou vzajemné propojeny pomoci stavového automatu pro navigaci, vytvoreného pomoci
knihovny SMACH.

Na zacdtku experimentalni ¢asti je vypsan pouzity hardware se svymi specifikacemi a je
schématicky znazornéno, jaké ¢asti softwaru se vykonavaji na daném hardwaru. Pro implemen-
taci softwaru na redlného robota je nutno znat parametry jeho senzoru a vytvorit strukturu,
ktera by data ze senzoru upravila pro néaslednou fizi v lokalizacnim balicku. Aby mohly byt
spravné odhadnuty parametry robota a otestovana presnost senzoru, tzv. ground truth data
jsou ziskana pomoci kamery umisténé pod stropem a ChArUco desky umisténé na vrchni ¢éasti
robota. Porovnanim téchto hodnot z dat enkodéru lze estimovat parametry pro kinematicky
model uvedeny v resersni c¢asti. Jelikoz z néj nelze jednoduchym zpusobem vytvorit inverzni
model, jsou parametry odhadnuty zv1ast i pro inverzni model. Déle je provedena kalibrace IMU
jednotky a porovnan odhad natoceni kolem svislé osy s ground truth daty. V rozsahlé casti
tykajici se estimace polohy v globalnim soufadném systému pomoci zpracovani obrazu, je nej-
prve otestovana presnost urceni polohy v lokdlnim souradném systému. Poté je proveden navrh
vyjadieni této nepresnosti a v dalsich ¢astech jsou data z lokalniho s.s. transformovana do
globélniho s.s, kde jsou sloucena, a takto upravena data lze pouzit jako vstup do lokaliza¢niho
balicku.

Lokaliza¢ni balicek je otestovan nejprve v SLAM algoritmu, pomoci kterého je vytvotrena
mapa 7. patra budovy A3 Fakulty strojniho inzenyrstvi a mapa ¢asti Mechatronické laboratore.
Do laboratotre jsou umistény ArUco znacky a jejich poloha je zméfena a zapsana. Po provedeni
téchto casti lze pristoupit na navrh navigace do nabijeci stanice. K tomu je také potieba vytvorit
a vyhodnocena. Robot muze byt ovladan manualné, muzou mu byt v uzivatelském rozhrani
zadavany prikazy pro navigaci a robot také soustavné monitoruje stav své baterie. Pokud
hodnota napéti klesne pod definovanou hodnotu, robot se prepne do autonomniho rezimu,
dojede do nabijeci stanice a po nabiti z ni zase odjede. Popsané chovani je implementované v
ramci stavového automatu vytvoreného v knihovné SMACH.

Jednim z cilu prace je taktéz vytvoreni ukdzkovych miniher pro navstévniky/uzivatele.
Prvni z téchto tkolu se tyka navedeni robota k nabijeci stanici. Navstévnikovi se situace poda
nasledovné: globalni naviga¢ni systém robota mé poruchu a dochazi mu energie, je tieba jej
dovést k nabijeci stanici. Robot se simulovanou poruchou sleduje ArUco znacku umisténou na
zadni casti robota, ktery je ovladan uzivatelem, uzivatel ridi vedouciho robota tak, aby dosahli
pozadované zony v okoli nabijeci stanice.

Druhd minihra predstavi navstévnikum proces tvorby mapy. Na zacatku tkolu se spusti
software nutny k provedeni SLAM algoritmu, uzivatel manualné jezdi s robotem vybavenym
lidarem takovym zpusobem, aby co nejlépe vytvoril mapu prostiedi. Aktudlni stav mapy je
zobrazovan na monitoru a po dokonceni je provedeno porovnani s mapou, ktera byla vytvorena
a nasledné upravena takovym zpusobem, aby co nejvérnéji reprezentovala skutecné prostiedi.
Porovnéni je poté ukazano v separatnim okné.

Shrnuti a zhodnoceni vysledku

V rdmci prace byly vytvoreny lokaliza¢ni a navigacni systémy a jejich funkénost otestovana v
simulacnim i redlném prostiedi. Hlavnim vystupem této prace je funkéni stavovy automat, ktery
umoznuje manualni ovladani, zadavani cili pro navigaci a v pripadé potieby zajisti autonomni
nabiti robota. Uspéénost najeti robota do nabijeci stanice je zavisla na presnosti zméteni pozice
a natoceni ArUco znacek. Pokud jsou tyto znacka zméfeny s dostatecnou presnosti, robot ve
vétsiné pripadu najede do nabijeci stanice na prvni pokus. Vytvorené minihry nejsou zahrnuty
ve stavovém automatu z casovych duvodu. Jejich implementace do automatu je zavisla (minihra
navadéni robota) na vice robotech a v dobé psani prace byl k dispozici pouze jeden robot.
Nicméné podstata miniher je vytvorena a otestovana i na realném robotovi. Vytycené cile
prace tedy byly splnény.

I affirm that the presented master’s thesis is my genuine work and that it was created with
the support of the stated literature, under the supervision of my tutor.

Patrik Vavra

I would like to thank my supervisor, Ing. Martin Appel, for his guidance and support during
the development of this thesis. Also, I would like to express my gratitude to Bc. Roman Adamek
for inspiring cooperation and to all those who supported me during the work on this thesis.

Patrik Vavra

Contents

2.1
2.2
2.3

2.4

3.1

4.1
4.2

4.3

5.1
0.2

5.3
5.4
)

Introduction

Theoretical Survey

Basic Information about ROS Framework
Gazebo Simulation Environmento
ROS Packages Description
2.3.1 Conventionsin ROS
2.3.2 Localization
2.3.3 SLAM
2.3.4 Navigation e
2.3.5 SMACH
Sensors and Their Usage in Robotics
2.4.1 Camera
2.4.2 IMU
2.4.3 Lidar
244 Wheel Encoders

Problem Analysis

Division of the Work on the Project

Simulation in Gazebo

Creation of Simulation Environment
Robot Modelling
4.2.1 Robot Parts Modelling oL
4.2.2 Sensors and Control L
Integration with ROS
4.3.1 Localization using Extended Kalman Filters
4.3.2 SLAM using Gmapping
4.3.3 Navigation using Move Base Flex

Implementation on Real Robot

Brief Description of Used Hardware
Experiments with Sensors
5.2.1 Kinematics Parameter Estimation
5.2.2 IMU Calibration and Usage
5.2.3 Pose Estimation from Image Processing
Experimental SLAM
Navigation to Charging Station
Complex Behavior SMACH

12

13
13
13
14
14
16
20
20
25
26
26
28
31
31

34
34

35
35
36
37
40
41
41
43
44

5.6 Mini-games for Users

2.6.1
5.6.2

6 Conclusion
6.1 Suggestions for Further Work oo

Navigation of Malfunctioned Robot
Creating Map of Environment,

List of Abbreviations

List of Figures

List of Tables

Bibliography

Appendix
Electronic Appendixes

A
B

Figures

11

67
68

69

71

73

1 Introduction

The year 2020 will mark one hundred years since the word robot was first used in play R.U.R.
(Rossum’s Universal Robots) by Karel Capek. Since then, robots have evolved from fictional
characters to become an everyday part of our lives. To address specifically mobile robots -
robotic vacuum cleaner cleans a floor without human supervision; automatic mower takes care
of the lawn in the garden, and several robotic solutions exist for collecting crops from fields
and trees to give a few examples.

Probably the most interesting usage of mobile robotics lies in the autonomous transport of
people as well as goods. In modern vehicles, numerous Advanced driver-assistance systems are
used to create a more comfortable and safer drive for drivers and passengers. These systems
are the first step for truly autonomous vehicles which are in development. According to the
classification of autonomous cars by the Society of Automotive Engineers (SAE), six degrees of
automated driving exist [3]. As for the time of the writing, cars on a maximum level of 2 are
produced, except for Audi’s Al traffic jam pilot system that reached level 3. For the highest
two levels, vehicle system takes all responsibility and controls without the need of any action
from the driver [3].

To be able to reach that high level of autonomous behavior, the necessity is to have reliable
knowledge of surroundings. For that, numerous diverse sensors are used. For example, Tesla
S has according to [1] 12 ultrasonic sensors, 8 cameras and radar for perception. The Small
indoor robot presented in this thesis is, of course, completely different category and manages
to function properly with a fraction of necessary sensors.

This thesis forms a part of the project that will result in the Exhibition of Robotics in the
Brno Technical Museum as an honor to 100 years since the invention of the word robot. The
visitors will have the opportunity to see various aspects of robotics. This thesis builds the
foundation for a mobile robot’s software used to show visitors some of the autonomous mobile
robot’s features. The assumption for writing this thesis is that the work will be extended
and therefore, references to tutorials and documentation are given. For the same reason is
the robot modelled in a simulation environment due to the faster development and testing of
new functionalities. The thesis is divided into three main sections. Firstly, the introduction
and description of the used software and sensors is provided. Then follows the creation of the
simulation environment, and the last main part is composed of software implementation on
the real robot. This division is not strict as development and testing took place sometimes
concurrently in simulation and real environment, therefore throughout both sections, number
of cross-references exist and some algorithms are described in the experimental section, even
though their development was first performed in the simulation environment.

After an agreement with the thesis’s supervisor, the software was created and here described
with the focus on only one robot, working and charging station. This can be extended in the
future to incorporate several robots, working and charging stations.

12

2 Theoretical Survey

2.1 Basic Information about ROS Framework

The Robot Operating System (ROS) is a robotic framework distributed under the BSD license.
ROS provides hardware abstraction, implementation of commonly-used functionality, and a
high number of tools that facilitate the development of complex robotics software.[62]

Supported operating systems are Linux-based Ubuntu and Debian (only for some distri-
butions). Other systems like Mac, Windows, and Raspbian are considered as experimental
platforms [62]. ROS main advantage lies in a large online community that manifests itself in
producing many open source packages, documenting them and providing advice on Discussion
Forum. Another significant aspect of the ROS framework is its utilization in the industrial sec-
tor. ABB, Fanuc, Kuka or Universal Robots are examples of companies using ROS-Industrial
in some of their robots.

ROS does not operate in real time (RT) operating system, but it is possible to integrate
ROS with RT code. Several packages are also provided for communication with embedded
devices - rosserial_embeddedlinux, rosserial_arduino, etc. The description of ROS architecture
will be depicted in more detail in further sections.

The emphasis on RT, a cooperation of multiple robots and functioning properly in non-
ideal networks led to the development of ROS 2. However, at the time of writing this thesis,
ROS 2 significantly lacks in terms of documentation over the previous version.

2.2 Gazebo Simulation Environment

The Gazebo is an open-source (Apache-2.0) 3D simulator used in the development of robots and
robotics algorithms as well as Hardware-in-the-loop (HIL) simulation. Supported platforms are
all major Linux distributions and Mac. As stated in [4], installation on Windows is currently
under development.

Gazebo consist of several parts. Gazebo Master is a topic name server that can handle
multiple running simulations. Communication between parts is provided by the Communication
Library through TCP /TP protocol. The Gazebo can run on 4 different physics engines included
in the Physics Library, all except Dart are accessible in binary installation. From the three
remainings, Open Dynamics Engine (ODE) was the original engine physics and it is still set as
the default option. The visualization is provided through the Rendering Library using OGRE.
The Rendering Library is responsible for rendering GUI (Graphical User Interface), sensor
libraries, lighting, textures, and sky simulation. Many available sensors are simulated from the
Sensor Generation. Users can interact with a simulation through GUI based on Qt. Interaction
consists of modifying objects, changing simulation parameters, or logging simulated sensor data.
Users can utilize plugins for direct access to the physics, sensor, and rendering libraries without
using the communication.[63]

13

2 THEORETICAL SURVEY 2.3 ROS PACKAGES DESCRIPTION

The Gazebo has been widely used in combination with ROS framework. Their integration
is achieved through ROS packages gazebo_ros_pkgs that provide wrappers ! around stand-alone
Gazebo.[5]

@ GAZEBO + ::: ROS gazebo_ros_api_plugin

Meta Package: gazebo_ros_pkgs Gazebo Subscribed Topics
~fset_link_state

~isel_model_stane
gazebo_msgs SE
Msg and Srv 4ata Struciires for Gazebo Published Parameters
imMeracting with Gazebo from ROS. fuse_sim_time
urdfdom Gazebo Published Topics

fdock

H ~flink_stat
gazebo_ros gazebo_plugins TeeE
Formally simulator_gazebolgazebo Robot- Gazebo plugins. -
Gazebo Services
This package wiaps gzserver and 5"';:1"'08 - ~ispawn_urdf_model
gzelient by using Wo Gazebo pluging g:m‘ras:gw ~Ispawn_sdi_model
uwp:cﬂemm m;: neckssary ROS gazebo_fos_imu ~idelete_model
ages, services and gazebo_ros_laser
dynamic reconfigune gazebo_ros_fad State and properties getiers
gazebo_ros_camera_utlis
ROS node name: ebo ros_depth_camera
gazebo xm_ras openni_kinect State and properties setters
gazebo ros_camera
Plugins: gazcho_ros bumper
gazebo_ros_api_plugin ;’:g{g:—::f‘l{:f' Simulation control
gazebo_ros_paths_plugin == ~ipawse_physics
Motor ~npause_physics
Usage: Wag ros_joint_frajectory ~ireset_simulation
rosmn gazebo_ros gazebo gazebo_ros_difkdive ~freset_world
rosrun gazebo_ros gzsernver ebo_fos_force
rosmn gmmbo_rus gzalamm gazebo_ros_lemplale Force control
rosmn g)_ros spawn_f ~la body_wrench
rosrun gazebo_ros perf Dynamic Reconfigure -!am]olm__emn
rosnn gazebo_ros debug mﬁmﬁe‘num ~lclear Joint_forces
= _ | ~ikclear_body wrenches
CAMEra_synchionizer St
gazebo_ros_paths_plugin ‘
Provises ROS package paths to Gazebo

| ROSpackages | GamboPlugin | Deedsdwon S gAsEse]

Figure 2.1: Overview of the gazebo_ros_pkgs interface [5]

2.3 ROS Packages Description

The software in ROS is distributed in separate packages or so-called meta-packages which
contains arbitrary numbers of individual packages. A package might consist of any of the
following: ROS node, ROS-independent library, a dataset, or anything else that logically forms
a useful module. A node is the barest process that performs computation. Nodes communicate
with each other through topics, which are named buses with anonymous publish/subscribe
semantics. Packages can be created by hand or with catkin_create_pkg.[62]

2.3.1 Conventions in ROS

As was stated in the preceding text, ROS is an open-source framework, and therefore, some
guidelines for cooperation and development must be established. ROS Enhancement Proposal
(REP) serves as guidance or proposal for a new functionality. To every REP is assigned one to
four digit number by which it is referred in ROS community. Here follows a brief description
of the most critical REPs for a thorough understanding of indoor ROS robot localization and

"'Wrapper function exists to call another soub-routine or system call without much additional computation

14

2 THEORETICAL SURVEY 2.3 ROS PACKAGES DESCRIPTION

navigation packages.

REP-103

This REP, defined in [6], deals with coordinate conventions and provides a reference for units.
Main principles are described below:

e Exceptions from this REP should be carefully justified and well documented

e SI units or Sl-derived units should be used

Right-handed coordinate frames are used

e Axis orientation in relation to the robot’s body is:

* x forward * y left * 7 up

Cartesian representation of geographic locations is East-North-Up (ENU)

* X east * Y north * 7 up

The preferred order of rotation representations:

1. quaternion

2. rotation matrix

3. fixed axis roll, pitch, yaw about X, Y, Z axes respectively
4.

euler angles yaw, pitch, and roll about Z, Y, X axes respectively

REP-105

Defined in [7], REP-105 specifies conventions for naming and semantic meaning of coordinate
frames for mobile robots. The following section focuses on coordinate frames for an single
indoor robot:

— base_link is rigidly attached to the robot base, preferably in position and orientation
described in 2.3.1

— odom is a world-fixed frame in which the robot pose evolves continuously, that is, without
discrete jumps in transformation between aforementioned frames. Due to the demand for
continuity, only relative data are used for computation in odom frame. In a typical
setup that means fusing measurement from wheel encoders, IMU or visual odometry. For
compensation of the accumulated drift between real and measured robot pose over time,
the map frame must be defined.

— map is also a world-fixed frame in which real robot pose should not significantly drift
from a measured pose. This is accomplished through discrete jumps in transformations
between frames in time. Localization part of robot’s software should constantly recompute
position and readjust transformations to resemble real pose most accordingly.

15

2 THEORETICAL SURVEY 2.3 ROS PACKAGES DESCRIPTION

absolute relative
map odom base_link

Figure 2.2: Relationship between frames for single robot

Due to the fact that the child frame can have only one parent frame in ¢f [8], the package
that provides and computes all transformations in ROS ecosystem, the relationship between
above mentioned frames must be established as depicted in fig. 2.2.

As was already mentioned, the transform from odom to base_link is broadcast by node
fusing odometry sources. The transform from map to odom is computed by localization node.
However, the same transform is not directly broadcast, while it is necessary to first receive
odom to base_link transform and subtract it from the computed transform.

REP-145

REP-145, defined in [9], deals with IMU sensor drivers. Standardized frame coordination are
expressed in compliance with REP-103, preferred topics name are given as:

— Jimu/data_raw: accelerometer and gyroscope data
— Jimu/data: imu/data_raw with orientation estimate
— /imu/mag: magnetometer data

Also, frame_id? for IMU is defined as imu_link, and names for sensor standard deviation are
given.

2.3.2 Localization

Two main approaches to robot localization as described by Thrun et al. [10] are Gaussian and
Nonparametric Filters. Gaussian filters are based on the idea of representing beliefs of current,
previous, and measurement state as multivariate normal distribution defined as [10]:

p(x) = det(27r2)7% exp —% z—p)" 27 (z—p) (2.1)

where z is state vector, g is mean vector, X is the covariance matrix which is symmetric and
positive-semidefinite, and p(z) denotes the density function over vector variable z.

The Gaussian can be represented also in the canonical version, as opposed to the standard
moments version described above. Filter utilizing a canonical Gaussian representation is called
the Information Filter. The canonical representation is defined as [10]:

p(x) = nexp {—%xTQw + zt:T{} (2.2)

where £ is information vector, € is the information matrix, and 7 is normalizer. £ and € can

2Coordinate frame in which are published data given

16

2 THEORETICAL SURVEY 2.3 ROS PACKAGES DESCRIPTION

be obtained from their moments counterparts as follows [10]:

Q=x" (2.3)

§=X"p (2.4)

Both representations are furthered used in 5.2.3.

Nonparametric filters approximate the posterior by a finite number of values. To the most
well-known nonparametric filter belongs the Particle filter. For a detailed description of the
Extended Kalman Filter (EKF) and the Particle Filter, implemented in ROS as one of the
options of robot_localization, respectively AMCL, refer to Thrun et al. [10]. The assumption
for understanding the next sections is that the reader is familiar with EKF.

AMCL estimates pose based on a known map, transforms and laser scans. Due to the fact,
that in the final version of this project, only one robot will be equipped with Lidar, it would
take a significant amount work to modify the package to work solely on observing fiducials in
the environment, as is the aim of this work. Therefore the package robot_localization was chosen
and is further described in the next section.

robot_localization

Implementation of EKF in robot_localization is fairly well documented and offers many possible
options, exposed as ROS parameters and services, to customize sensor fusion. Therefore it is
a quite popular localization tool amongst the ROS community. To the main features belongs
[15]:

e support of an arbitrary number of input sources

e possible input types of ROS messages are nav_msgs/Odometry, sensor-msgs/Imu, geome-
try-msgs/Pose WithCovarianceStamped or geometry_-msgs/Twist WithCovarianceStamped.

e input customization of each sensor - node allows excluding unwanted data from a sensor

e possibility to estimate only parts of the state vector representing robot operating in planar
environment

e asynchronous fusion of input measurement

e reverting filter to the last state before the reception of lagged measurement and processing
all measurements until the current time

e cxclusion of measurement outliers based on Mahalanobis distance

Using Mahalanobis distance in outliers rejection, instead of commonly used Euclidean dis-
tance, brings the main advantage in accounting correlation between measured variables. Basic
comparison between the Mahalanobis and Eculidean distance is depicted in figure 2.3. Maha-
lanobis distance is defined for multivariate normal distribution as follows [11]:

MD (2,0) = /(e —) =7 2 —)" 25)

17

2 THEORETICAL SURVEY 2.3 ROS PACKAGES DESCRIPTION

Euclidean Distance Concept Mahalanobis Distance Concept

« circle distance from the center point or mean + ellipse distance from the center point or mean
* no accounts for the correlation between attributes * accounts for the correlation between attributes
« no reflects for the covariance among attributes * eliminate the influence of covariance among attributes

Figure 2.3: Comparison of the Euclidean and Mahalanobis distance in 2D [12]

Computed Mahalanobis distance expresses the number of variances from mean vector pu to
measurement vector . Based on this value, measurement outliers can be rejected.

As stated for example in [13], if 2 has p-dimensional Gaussian distribution then MD? (z, u)
has a x? distribution.

Another part of EKF implementation in ROS, which needs to be discussed, is the prediction
step of EKF algorithm. Full 12-dimensional state vector x is defined as:

m = (x7 y7 Z? ¢’ 0’ ¢7'j7’ y? 27 q.57 97 77[}’ j? y’ Z.) (2'6)

where x,y, 2, 2,9, 2, Z, 1, Z are position, translational velocity and acceleration respectively and
0,0,, ¢,0,¢ are rotations around fixed axis X,Y, Z, respectively angular velocities around
these axis.

As described in T. Moore, D. Stouch, 2014 [14], the calculation of predicted state vector is:

T, = f (xk,l) +Wr_q (27)

where wj,_; is the process noise, and f is described as a standard 3D kinematic model derived
from Newtonian mechanics.

As can be seen in 2.7, there are no inputs to the prediction step. The shortcoming of
this method is the inability to predict correctly #,4, 7, ¢, 0, ¢). From reviewing documentation
of robot_localization [15] and code accessible on GitHub [16], 2 solutions are implemented in
robot_localization to overcome problems with predicting above-mentioned states:

e predicted value of the state is the same as in the previous step

e value of the state is predicted according to the difference of control term used in the
movement of robot and current translational and angular velocity

Both methods are further discussed in 4.3.1.

18

2 THEORETICAL SURVEY 2.3 ROS PACKAGES DESCRIPTION

imu_filter madgwick

This package incorporates Madgwick algorithm [17] for estimating orientation with respect to
the gravity and Earth’s magnetic field from the fusion of angular velocities, accelerations, and
measurement from the magnetometer. As accelerations provide a reference for attitude, in-
clination errors of the measured magnetic field can be compensated. Another version of the
algorithm fusing only angular velocities and accelerations exists but will not be described here.
The algorithm utilizes quaternion and quaternion derivative for representation of angle, respec-
tively angular velocity. The problem of finding correct orientation is solved as an optimization
task using a gradient descent algorithm. The algorithm is depicted and briefly summarized in
figure 2.4.

S A S o o5 A
E Cest,t-1 ® "Mt ® ¢ Qest t-1

|
0 (/h2+h2 0 hy
NGRS

Magnetometer S

Accelerometer Sét —

/'}it] 22 cTekst,t-l ®E qz,t ‘_ va ”

Group 2 :

1s . s
5E Gest,t-1 ® Wt

Gyroscope ° Wy

q A
/Ddt ™ W > qust,t

Figure 2.4: Block diagram of the complete Madgwick algorithm [17]: Measurements from
magnetometer (after compensation for inclination error) and accelerometer are along with ori-
entation estimate from the previous step the inputs in the computation of the gradient which
resembles the direction of the estimated rate of change of orientation. Thereafter the resut
is multiplied by filter gain (parameter) and subtracted from the compensated measurement
from the gyroscope (after rotating the gyroscope measurement from which bias was subtracted
with quaternion orientation estimate from the previous step). This estimated rate of change of
orientation is then numerically integrated (with orientation estimate from previous step) and
then normalized serves as filter output. Gyroscope bias is computed by numerically integrating
rotated estimated error in the rate of change of orientation and multiplying by parameter (.

Both filter’s parameters values should be roughly based on equations given in article [17], 8
is calculated from mean zero gyroscope error and (is calculated from an estimated gyroscope
bias drift.

The higher [gain is, the faster the filter converges, but bigger noise is introduced to the
output orientation estimate [17].

Laser scan matcher

This package takes sensor_msgs/LaserScan or sensor_msgs/PointCloud2 messages and by com-
paring consecutive messages computes transformation of the sensor in between messages. It

19

2 THEORETICAL SURVEY 2.3 ROS PACKAGES DESCRIPTION

can be used without additional sources as stand-alone odometry estimator. However, as stated
in documentation [18], providing additional odometry input improves the speed of convergence
and accuracy of the estimated transformation. Laser_scan_matcher supports 4 kinds of inputs:

e IMU provides a change of the orientation angle
e Wheel odometry provides a change in position and orientation angle

e Constant velocity model - the assumption of constant velocity between steps, computes
initial pose difference based on provided velocity

e Zero velocity model - the assumption of the same sensor pose as in the previous step

For many additional options to set refer to documentation [18].

2.3.3 SLAM

Simultaneous Localization and Mapping (SLAM) represents one of the fundamental problems
of the mobile robotics in which robot does not have access to a map of the environment and
concurrently does not know its position. According to Thrun et al. [10], there are two main
forms of SLAM from a probabilistic point of view: online SLAM in which posterior is estimated
only for the current time step. Examples are Extended Kalman Filter SLAM and Extended
Information Filter SLAM. The full SLAM, on the other hand, estimates the full path over
the entire time. For example, GraphSLAM belongs to the full SLAM. Some algorithms, for
example, FastSLAM, performs online and full SLAM.

There are many packages in ROS that implements different approaches to SLAM using
different algorithms or map representations. According to findings in the article [19] where
several different SLAM packages were compared, KartoSLAM, HectorSLAM, and Gmapping
produce the most accurate maps. From the three, Gmapping has the best documentation and
therefore was chosen to implement.

Gmapping

G'mapping belongs to particle filter algorithms, more specifically to FastSLAM 2.0 algorithm
with adaptive particle resampling.

Because of the complex problem that SLAM represents and the fact that it does not belong
to the aims of this thesis, no detailed description is discussed here. The reader is encouraged to
read the excellent book [10] for SLAM basics and refer to article [20] for the working principle of
the gmapping package and documentation [21] of gmapping. As the guide for setting parameters
of Gmapping article [22] was used.

2.3.4 Navigation

Navigation of robot is usually composed of several parts - planning and controlling or sometimes
called global, and local planners, environment representation, recovery behaviors and a higher
decision layer that manages these sub-processes. Typical setup of ROS navigation stack using
meta-package mowve_base is displayed in fig. 2.5

Global planner (further referred to as planner) takes into consideration the whole part of
the environment needed to move from start to goal position. In a standard setup in ROS

20

2 THEORETICAL SURVEY 2.3 ROS PACKAGES DESCRIPTION

“move_base_simple/goal* Navigation Stack Setup

geometry_msgs/PoseStamped

move_base "Jmap"

\
+ nav_msgs/GetMap ‘

map_server

global_planner ~—— global_costmap

sensor transforms W i internal / T sensor topics ‘ Sensor sources .
tf/tfMessage nav_msgs/Path | (recovery_behaviors ‘ sensor_msgs/Laserscan |

sensor_msgs/PointCloud

" "
odometry source odom > local_planner -«—— local_costmap
nav_msgs/Odometry - -

amcl

"cmd_vel" |geometry_msgs/Twist
provided node
optional provided node

base controller .
‘ platform specific node

Figure 2.5: An overview of move_base setup [23]

navigation, the planner will simply plan a path to the goal without consideration of kinematic
and dynamic constraints of robot3.

Local planners (further referred only as controllers) will receive path from a planner and
will compute desired velocity commands that will result in a robot moving to the goal position,
assuming that some node equivalent to the base_controller, as depicted in fig. 2.5, will sub-
scribe to published velocity and convert it to physical signals controlling motors of the robot.
Controllers subscribe to odom frame in tf, defined in 2.3.1, to determine the robot position and
to /odometry message that contains current velocity of the robot in base_link.

When the controller does not compute any desired velocity due to possible obstacles collision,
recovery behavior will take control of the robot. If recovery action is successful, a planner will
try to find a new path to the goal position.

The specific implementation of a planner, controller and recovery behavior must adhere
to the interface specified in package nav_core [23]. This is especially useful in the possibil-
ity of trying different implementations of above-mentioned sub-processes without too difficult
modification of the navigation stack.

Another part of the navigation system constitutes of environment representation. Move_base
supports package costmap_2d that builds an occupancy grid containing values defining the
probability of an obstacle being in each cell. Package subscribes to sensor sources and can add
or remove obstacle from the map. Two maps are used in navigation setup, one called global
costmap for the planner, and local costmap for the controller.

As far as the choice of the navigation meta-package for the final implementation is con-
cerned, move_base_flex is backward compatible with move_base and offers many other options
for creating a complex navigation system. Therefore, taking in consideration possible enlarge-
ment of the project in the future, move_base_flex was chosen and is further described.

move_base_flex

Mowe_base_flex (MBF) provides separation between abstract navigation and specific implemen-
tation. Navigation is divided into three separate actions or one complex action as depicted in
fig. 2.6. Each action produces comprehensive result and feedback information, which can be
utilized in customized navigation for complex behaviors. By separation of abstract navigation,

3There are some planners (for example sbpl_lattice_planner) that take into consideration kinematic and dynamic
constraint, but, for brevity of this text, they will not be further discussed

21

2 THEORETICAL SURVEY 2.3 ROS PACKAGES DESCRIPTION

MBEF is not bound to any particular map representation. MBF also allows to load and use
multiple planners, controllers, and recovery plugins. As commercial use of MBF is concerned,
Magazino Gmbh, one of the authors of MBF, successfully operates robots using MBF in six
different commercial settings [24].

/clear_costmaps

inheritance
std_srvs/empty

Global
Costmap

© Sebastian Ptz <spuetzeuni-osnabrueck.de> (CC BY-SA 4.0)

Local
Costmap

Figure 2.6: The move_base_flex architecture: Shown is the relationship between Abstract nav-
igation level and Costmap implementation level [24]

property
message

Plugin Interface — 1\
""" i Service
Abstract Abstract Abstract /Ac“onh piifeccccccaaaee /make_plan
Global Local Recovery get_patl o/GetPl
Planner Planner Behaviors move_base_flex_msgs/GetPath nav_msgs/GetPlan
(—\—’
T T T Transform Action (\
14 A4 A\ Listener Jexe_path Action
i Abstract i i Abstract | | Abstract move_base_flex_msgs/ExePath /move_base ©
i Planner | Controller | Recovery —_— move_base_msgs/MoveBase g
i .., Execution | i .-, Execution | i .., Execution 1 . 3
= J L8 ;8 J [T - Action — 2
) | /recovery o
2 T A T 4 T I Abstract \ move.base_ e mgsrecovery | Topic =
+ Navigation I /move_base_simple/goal 9
: | ... Server | geometry_msgs/PoseStamped g
: : \ : : Action S
"""" a — e/ /move_base .
H move_base_flex_msgs/MoveBase)
: —
Abstract Move Base Flex Level
Move Base Implementation Level
Move Base Move Base Move Base @ 2t thread
Planner Controller Recovery & .
Execution Execution Execution . T H
Service b= 3
/check_pose_cost ") TN,
T T T Move Base move.base flex. msgs/CheckPose) < (_ abstract class
Navigation T
1%]
¥ 3 Server . < O class
Service c
(<]
5 ~
<)'
k3

In the following subsection, the packages, and plugins that are picked to create the desired
navigation functionality in move_base_flex are shortly described.

costmap_2d 'This package serves as a customizable structure that exposes its functionality
in layers. The Static map layer contains information about the portion of costmap that is not
changing, whereas the Obstacle map layer either mark (add) or clear (remove) obstacle from
the costmap for each observation of supported sensor. To add new values around obstacles,
the Inflation layer exists. Calculation of new values for cells further than the inscribed radius
and closer than the inflation radius is described in layer documentation [25], here modified for
better readability:

cost = 25367scale(distancefradius)

(2.8)

where radius is the inscribed radius, distance is the distance from obstacle and scale is the
cost scaling factor. All geometric representations are depicted in fig. 2.7. Inflation settings
have a significant effect on the planner and controller behavior.

global_planner This package uses either A* or Djikstra algorithm to expand cells from start
to goal cell. To every expanded cell, value is assigned according to distance from start and
value of a given cell in the global costmap. Values from costmap are transformed according to

22

2 THEORETICAL SURVEY 2.3 ROS PACKAGES DESCRIPTION

cell ;:1;; “

“lethal" or "W-space” cbstacle
e.g. cost_lethal=254 I range of costs meaning
definitely in collision

"inscribed" or "C-space"” obstacle
e.g. cost_inscribed=253

wg, 257)
range of costs meaning

possibly in collision
“circumscribed” obstacle {depends on orientation)
e.9. cost_possibly_circumscribed=128

wg, 127
discratized cost decay function range of casts meaning
8 definitely not in collision
1 also the range where (most) user
lowest non-fresspace neminal cost decay functicn I preferences should be exprassed
cost=1 1
freespace I
cost=0 = e -
inseribed circumseribed inflation ; distance from
radius radius radius | closest W-space
H obstacle cell
N) [double]
——

buffer zone created by costmap_2d around

abstacles, in order to make the robet prefer

paths that keep some minimum clearance
(this |s a sort of default user preference)

=

ircumszribed ragic:

Figure 2.7: The Inflation layer: Propagation of cost values from occupied cells to neighbouring
cells [26]

the ROS Navigation Tuning Guide [27] as follows:

cost = COST_-NEUTRAL + COST_FACTOR - costmap_cost_value (2.9)

where COST_NFEUTRAL and COST_FACTOR are parameters for customization of the set-
ting of the global_planner and costmap_cost_value is the value of the cell in global costmap.
The Final path is computed using a gradient descent algorithm. The path is then given as a
list of poses to which orientation can be additionally added by orientation filter.

dwa_local_planner Dynamic Window Approach (DWA) works with the assumption of mod-
elling robot velocity as piecewise constant function in time. Therefore, robot trajectories are
formed from finitely many segments of circles segments [28]. Algorithm of DWA can be de-
scribed as follows:

1. Restrict the search space velocity only to those velocities that are admissible in terms of
collision with obstacles and dynamic constraints of the robot

Discretely sample in the robot’s velocity space
Perform forward simulation for each sampled velocity

Evaluate each trajectory using the cost function

AR R A

Pick the highest-scoring trajectory

23

2 THEORETICAL SURVEY 2.3 ROS PACKAGES DESCRIPTION

The cost function in package is described in package documentation [29], here modified for
better readability:

cost = bias,, - distance, + bias, - distance, + scale - cost, (2.10)

where distance, is the distance to path from the endpoint of the trajectory, distance, is the
distance to local goal from the endpoint of the trajectory and cost, is the maximum obstacle
cost along the trajectory. Further, bias,, bias,, and scale are parameters for setting the weight
for each criterion.

rotate_recovery and moveback_recovery As was already described; recovery action takes
over control when the controller can’t compute any feasible trajectory. As the name of move-
back_recovery implies, while executing this behavior, the robot attempts to move backward
with the desired velocity to set distance. While performing rotate_recovery, the robot rotates
for 360 degrees, if it would not result in a collision with obstacles.

CheckGoalPose
ClearCostmaps

CheckStartPose

Figure 2.8: Navigation Sub-Tree [24]

hierarchical finite state machine To create a complex robotic system, many different
components must be integrated into a hybrid architecture that creates global system behavior.
In the introductory paper for MBF [24], two approaches for designing flexible strategy are
presented - Behavior Tree (BT) and state machine (SMACH) package. Example of BT in
navigation using MBF can be seen in fig. 2.8. For its excellent integration with ROS and
introspection possibilities, SMACH was chosen and is described in separate section 2.3.5.

24

2 THEORETICAL SURVEY 2.3 ROS PACKAGES DESCRIPTION

2.3.5 SMACH

SMACH is a stand-alone Python library for creating complex robot behavior. It functions
separately from ROS, but the package smach_ros exists to integrate SMACH tightly with
ROS. From SMACH state, actions and services can be called or act as servers. Listening or
subscribing to topics or using ROS debugging possibilities can also be utilized in SMACH state.
SMACH structures compose of individual states that can be grouped in one of the containers:
StateMachine, Concurrence, Sequence, Iterator or user-defined container. The container can
be added into another container and act as a single state.

Smach Viewer

Graph View | Tree View Path:
= s - i - /SM_ROOT/NAVIGATIC
Path: |[/SM_ROOT/t| v | Depth:| 2 2| Labelwidth:| 40 | |ShowImplicit| |AutoFocus| @ &
Userdata:
received_goal:
NAVIGATION_LOOP o) ((oon) () (mee) Path not available. hseea(fﬁrr

stamp:
\ secs: 0
1 nsecs: 0
WHOLE_NAVIGATION Transition frame id: "map"

pose:

' position:
x:1.5
y:-0.3
. orientation:
Active state £

(eceived_goal y:0.0

z:0.707
w:0.707

recovery_flag: False

Userdata of

Active container e selected state

Selected state

E=)
Outcomes of 7

container

/SM_ROOT/NAVIGATION_LOOP/WHOLE_NAVIGATION/NAVIGATION/GET_PATH

Figure 2.9: SMACH introspection: Shown is the content of Concurrence container NAVIGA-
TION_LOOP in which several states or another whole container, considered as one state, can
run simultaneously. There runs WAIT FOR_CHARGE with WHOLE_NAVIGATION at the
same time - colored in green. Userdata of selected state GET_PATH, which is also the running
state of NAVIGATION container, is displayed on the right side.

For introspection the state of SMACH, the package smach_viewer provides GUI. It can
visualize currently active state, userdata that is exchanged between states are shown and the
transitions between containers or states are easy to understand through graphical edges.

Since its creation, SMACH has been successfully used in projects involving autonomous
recharging, fetching a drink from a refrigerator, playing billiard and many more, as stated in
its introductory article in 2010 [30].

25

2 THEORETICAL SURVEY 2.4 SENSORS AND THEIR USAGE IN ROBOTICS

2.4 Sensors and Their Usage in Robotics

The further described sensors were chosen for the lowest possible price but enough quality to
ensure autonomous navigation of robots. For the absolute localization, a camera was chosen
as Lidar is much more expensive and the camera can also be used for other purposes. One
Lidar was available in the Mechatronics laboratory and was used for SLAM. For the relative
localization, low-price IMU and wheel encoders were used.

2.4.1 Camera

As is further described in 5.1, Raspberry Pi 3B+ is used, therefore as the first option for the
camera, the Raspberry Pi Camera Module v2 with 8 Mpx emerged. As written in specification
[31], video can be captured at 1080p with 30 fps, 720p with fps, 640 x 480 with 90 fps or another
chosen resolution.

Figure 2.10: ArUco marker Figure 2.11: ChArUco board

OpenCV OpenCV is a computer vision library developed originally by Intel, currently is
open source, released under BSD 3-Clause [32]. To supported languages belongs C++, Python,
Java and MATLAB. It provides many functions with extensive documentation and tutorials.
When installing the full version of ROS, OpenCV is also installed.

ArUco Introduced in 2014 [33], ArUco library composes of tools to generate [34] fiducial®
markers and detecting them in the image. ArUco marker, visible in fig. 2.10, is composed
of an outer black border and inner binary matrix that defines its unique identifier (id). The
inner square matrix can be built from 4 x 4 to 6 x 6 bits. Dictionaries are lists of markers,
differentiating in the number of marker’s bits and the total number of markers in the dictionary.
The biggest utilization of ArUco markers is in estimating the pose of the marker with respect
to the camera. Tutorial for marker creation and pose estimation can be found on the web [35].
ChArUco board composes of the chessboard and ArUco markers. It combines the fast detection
and versatility of ArUco markers with a possibility to accurately refine chessboard corners.
Therefore, ChArUco boards are used when high precision is essential, e.g. in camera calibration,
accurate pose estimation, and others. As stated in OpenCV documentation [36], ChArUco
boards are better for high precision than ArUco boards.

4term used in computer vision for a reference object

26

2 THEORETICAL SURVEY 2.4 SENSORS AND THEIR USAGE IN ROBOTICS

P=(X,Y Z)

r

-
e
7

optical
axis -
-7/

oy - ‘;/

principal
point

|
1
|
|
|
|
| I
| I
- -
|
1
I
] (cxycy) Xe
1
- \
| I
|
| Yy
1

] Yf!

¥ 1

Figure 2.12: Pin hole camera model [37]

Camera calibration

For obtaining a real-world unit from the camera image, the camera must be calibrated. To do
that, projection model for projecting 3D points into the image plane must be established. Using
perspective transformation in so-called pinhole camera model (figure 2.12), transformation is
described using equation [37]:

sm’ = A[R|t] M’ (2.11)

where s is scale factor, m’ is the array of coordinates of the projection point in pixels, A is
the camera matrix, [R|t] is the joint rotation-translation matrix or sometimes called extrinsic
matrix and M’ is the array of coordinates of point in the world coordinate system. Rewritten
in the detailed form:

X
u f: 0 ¢ ri1 T2 T3t v

S (% = 0 fy Cy T91 T922 T93 tQ 7 (212)
1 1 0 1 31 T32 T33 t'g, 1

where (X,Y,Z) are the coordinates of a point in the world coordinate space, (u,v) are the
coordinates of the projected point in pixels, (¢s,c¢,) are the coordinates of principal point,
fz, fy are the focal lengths in pixels and r,, with ¢, are components of the transformation
matrix [R]t].

As can be seen in equations 2.11 and 2.12, if the scale of the image is changed, the camera
matrix (sometimes called matrix of intrinsic parameters) must be scaled as well. Therefore the
calibration is necessary to do only for one resolution and can be rescaled for another resolution
as long as the focal length of the camera is fixed.

However, cameras used in the real world are not perfect, and their lenses have radial and
tangential distortions (showed in figure 2.13). Due to this distortions, the existing pinhole

27

2 THEORETICAL SURVEY 2.4 SENSORS AND THEIR USAGE IN ROBOTICS

zero tangential distortion tangential distortion
lens and sensor are parallel lens and sensor are not parallel
I camera lens camera lens
vertical plane vertical plane
negative radial distortion no distortion positive radial distortion
‘ “pincushion” “barrel”
camera ‘
sensor camera
sensor
(a) Tangential distortion (b) Radial distortion

Figure 2.13: Distortions [39]: Subfigure a) shows how tangential distortion originates. Subfigure
b) shows how different radial distortions are manifested in picture.

camera model, assuming z # 0, must be extended to [37]:

¥ =ux/z
Y =y/z
2 = x/Q _'_y/Q
n_ :13/1 + k17’2 + k’Q’I"4 —+]{737”6
1+ kyr? + ksr* + kgr©
"o ,1+k317’2+k‘27“4+k’37”6
y 1 + k’4’l“2 + k?57“4 + kﬁ?"ﬁ
U = fxx” +Cy

v = fyy” + ¢y

+ 2p1x/y/ -+ D2 (7"2 + 2.17,2) (213)

+ 1 (7“2 + 2y'2> + 2poy

where ki, ko, k3, k4, ks, kg are radial and pq, po are tangential distortion coefficients.

The calibration process can be described as computing camera matrix and distortion co-
efficients from at least several images when some object size in image is known. In OpenCV,
calibration can be done using ChArUco board fairly straightforward following documentation
[38]. If using another image resolution, the camera matrix must be rescaled, while distortion
coefficients remain the same [37].

2.4.2 IMU

IMUs can be bought for a reasonable price and therefore belong to the most used sensor in
mobile robotics. In this project, LSM9S1 is used. LSM9S1 incorporates three-axis accelerom-
eter, gyroscope, and magnetometer and therefore can be called 9 DOF IMU. Specified ranges
in datasheet [40] are 2 — 16 g for the accelerometer, £ 245 — 2000 for the gyroscope °/s and
+ 4 — 16 gauss for the magnetometer. The module can communicate via SPI or I*C

IMU needs to be calibrated to give better results. Accelerometer and gyroscope calibration
can be done using basic operations of averaging and scaling or in a more advanced manner as
described in the article [41] where axis non-orthogonality, scale, and bias error are estimated.
The same errors are present in the magnetometer. However, magnetic deviations resemble the
biggest problem of magnetometers.

28

2 THEORETICAL SURVEY 2.4 SENSORS AND THEIR USAGE IN ROBOTICS

<_________
<_________
<_________

(Priy, Priy)

(0,0)

Figure 2.14: Hard iron error [42]: Presence of hard iron errors causes bias in the sensed magnetic
field. A permanent field induces hard iron errors in all orientations.

9 7
\ s
(a) Negligible effects of soft iron errors (b) Maximal effect of soft iron errors

Figure 2.15: Soft iron errors [42]: Soft iron errors are induced by a complex magnetic field
generated by ferro-magnetic materials that have a dependent magnitude of magnetic field on
the mutual angle of material’s and Earth’s magnetic field. In subfigure a) ferrous material
generates a magnetic field in a parallel direction to Earth’s. Thus a small error is introduced.
In subfigure b), Earth’s magnetic field is aligned with magnetic poles of error source; thus soft
iron errors have significant effect on the measurement.

Magnetometer calibration

According to the article [42], a complete error model for three-axis magnetometer is defined as:

h=Ah+b+e (2.14)

where A is matrix combining scale factors, misalignments, and soft iron (figure 2.15) distur-
bances, b represents the combined bias of the sensor offset and hard iron (figure 2.14) distur-
bances, € is noise with normal distribution and zero mean value, h is the error-free magnetic
field in the sensor frame and h is the reading from magnetometer in the sensor frame.

In the article [42], mathematical derivation of obtaining calibration values from the mea-
surement to compensate for errors introduced in equation 2.14 can be found. The derivation is
not presented here for the conciseness of this text, instead only the main concept is introduced
here.

If the error-free magnetometer in the magnetic deviation-free environment is rotated about

29

2 THEORETICAL SURVEY 2.4 SENSORS AND THEIR USAGE IN ROBOTICS

three world fixed axis by many different angles and the endpoint of the measured vector is
plotted, an ideal sphere with a radius equal to the magnitude of the Earth’s magnetic field in
the measuring place appears. On the other hand, if the magnetometer has measuring error and
magnetic deviations are present in the environment, the resulting plane is ellipsoid with the
center of symmetry in offset. Transforming ellipsoid to sphere through adaptive least square
method, described in [43], is the key concept behind calibration. After obtaining the calibration
coefficients, error-free measurement is achieved through removing offset by the computed array
and then by multiplying result after subtraction with the computed transformation matrix.

In summary, the calibration process can be defined as a computing offset array and trans-
formation matrix.

* AMR messurements (LiTesla) e AMR messurements (uiTesla)
Q Earth's magnetic f ed reference % Earth's magnetic f dd reference

(a) Uncalibrated magnetic field measurement (b) Calibrated magnetic field measurement

Figure 2.16: Comparison of uncalibrated and calibrated measurement of the magnetic field [42]:
The ellipsoid is transformed into the sphere

30

2 THEORETICAL SURVEY 2.4 SENSORS AND THEIR USAGE IN ROBOTICS

2.4.3 Lidar

To another used sensor belongs Light Detection and Ranging (Lidar) sensor Hokuyo URG-
04LX-UGO1 (further referred to as URG) which was available in the Mechatronics laboratory.
URG distance measurement works on the principle of the phase difference calculation, described
for example, in the book [44]. The most important characteristics from the specifications [45]
are:

— detection in one plane

— Scan Angle: 240°

— Angular resolution: =~ 0.36°

— scan frequency: 10 Hz

— Guaranteed accuracy for white paper: 3%

— Detectable range: 20 — 5600 mm

— Resolution: 1 mm Figure 2.17: Hokuyo URG-04LX-UGO1 [46]

URG was used in several theses, and therefore its characteristics were already measured. In
thesis [47], extensive measurement of accuracy dependent on object material, color, distance,
and the angle was carried out and confirmed manufacturer’s specifications for white paper
detection but showed inferior accuracy for other objects.

2.4.4 Wheel Encoders

On each motor’s shaft encoders are mounted. Encoders based on Hall effect from Pololu
company are used. From reading their specification on the web [48], maximal resolution 20
counts per revolution can be obtained in the quadrature mode. For determining robot speed
from wheel encoders, skid steer kinematics model must be established.

Kinematics model

Model is derived according to these assumptions :
1. the geometric center and the center of the mass lies in the same location
2. angular velocities of the same-side wheels are equal
3. four wheels of robot are always in contact with the firm ground surface

Kinematics relation between robot velocity and wheel velocities can be represented as follows
[49]:

Vg
v | =J. { Z”; 1 (2.15)

31

2 THEORETICAL SURVEY 2.4 SENSORS AND THEIR USAGE IN ROBOTICS

Figure 2.18: Kinematics model of skid-steer robot [49]

where v,, v, and w, are robot velocity, r is wheel radius and w,, w; are angular velocities of
wheels on respective side. J,, is defined as:

Jw = _ rg —Ig (216)

where (x;,v1), (z,,y.) and (z¢,ye) are coordinates of instantaneous centers of rotation (ICR)
of the left-side tread (IC'R;), right-side tread (/C'R,) and the robot body (IC R¢) respectively.
For the symmetrical kinematics model (zg = 0) can be deduced the new form of J:

1 —Yo Yo
0 0 (2.17)

where yo = —y, =y
These equations represent non-holonomic restriction in the motion plane because J, has no
inverse [49].
Based on these equations, the instantaneous radius of the path curvature can be obtained
as:
-V + v,

e
w, —Y —l—vaO Yo ()

where)\ is non-dimensional path curvature, which definition is obvious from the above equation.

32

2 THEORETICAL SURVEY 2.4 SENSORS AND THEIR USAGE IN ROBOTICS
Then ICR coefficient y can be introduced as:

where B is track width, and x represents occurring slippage. If x equals 1, the kinematics
model is the same as for the ideal differential drive. The main difference between the models
is that ICR values for ideal wheels are constants and corresponds with ground contact points
[49].

From simulations and experiments in the article [49], the following dependence was deduced:

YO =1 A€ [0,10] (2.20)

a
+—,
1+ by/[N]

where a and b are experimentally estimated constants.

Another important finding from simulation and experiments in the article [49] is that y is
not dependent on magnitude of velocity and in comparison with y as a static number, variable
X gives better accuracy in dead-reckoning®.

Slocalization based on only positionally relative information

33

3 Problem Analysis

This thesis is part of the project that will result in the Exhibition of Robotics in the Brno Tech-
nical Museum. Visitors of the museum, presumably mostly children, will have the opportunity
to manually control the robot, fulfill entertaining or educational mini-games and in other ways
dive into the robotics world.

Robots used in the exhibition will be cheap, their components mostly easy-to-replace and
equipped only with wheel encoders, IMU and camera. One of them will be equipped with Lidar.
Fiducials in the environment will be used for localization and Augmented Reality (AR). Control
station will include, apart from hardware interface for controlling - e.g., joystick, buttons; also
computer, therefore software can run on this PC without too much computational limitations.

This thesis aim is to provide the groundwork to entire control structure using ROS frame-
work. Work described here focuses on the software system for one robot with a possibility to
extend the software to incorporate several robots. The most interesting tasks arising from the
project objectives that will be described in this thesis are:

e localization system based on detection of fiducials in the envirionment
e autonomous navigation to the charging station, docking, and undocking sequence
e following of objects equipped with ArUco marker

e creation of the map of the environment and automatic comparison of the created map
with ground truth! map

3.1 Division of the Work on the Project

The project includes two theses. Tasks performed by the author are documented in this thesis,
tasks completed by Be. Roman Adédmek are described in his thesis [2]. Summary of Addmek’s
work:

e design of mechanical and electrical parts of the robot

e design of charging station

e programming GUI for manual robot control

e implementation of AR elements into GUI

e programming robot’s microcontroller - PI motor controller, reading data from sensors
e programming microcontroller in the charging station

e creation of some of the entertaining or educational mini-games for users

e and other minor tasks

ICan be defined as the most accurate measurement that is available

34

4 Simulation in Gazebo

4.1 Creation of Simulation Environment

As the first step in the simulation solution, the environment that will resemble the intended
setting in the museum had to be modelled. The environment is modelled by walls, moveable and
static obstacles, ArUco markers, and few other parts for visualization purposes. Walls, doors,
and windows were created in Building Editor in Gazebo (fig. 4.1) which is quite intuitive and
therefore no description of the process is given here.

Create Walls

wall

Add Features

stairs
Add Color

Figure 4.1: Gazebo Building Editor

Moveable and stationary objects were added from The Model Database Repository through
GUI. Models are downloaded and then stored locally. Each object has to follow a specific
structure to behave correctly in Gazebo. Meta information about the model are stored in
model.config, Simulator Description Format (more about SDF in [50]) of the model is stored in
model.sdf. Optional files are in Meshes Directory that contains COLLADA and/or STL model
files, in Material Directory are textures and in Plugins Directory where plugins for the model
are stored. In fig. 4.2 complete simulation environment with the robot is depicted.

File template presented above was used when adding ArUco markers in the simulation. Due
to the time complexity of creating more different markers, the script from GitHub repository
[51] under the Apache 2.0 License was used to create 20 markers from given images. Then
markers were placed on the wall to cover the entire environment approximately evenly.

35

4 SIMULATION IN GAZEBO 4.2 ROBOT MODELLING

Figure 4.2: Created simulation world

As concerning the settings of Gazebo simulation, the default physics engine ODE was used
with quickstep physics constraint solver with 70 iterations to converge. Real time update rate
alongside with max_step_size was set to 1000, respectively 0.001 to resemble real-world time.
The friction model was set to cone_model because of the faulty implementation of pyramid_model
in Gazebo version 7. For the explanation of presented parameters and many others refer to
documentation [52].

4.2 Robot Modelling

Robots in ROS are modelled in The Universal Robotic Description Format (URDF) which is
XML file format. URDF model is composed of two elements: links and joints that connect
links. Brief description of modelling robot parts is in 4.2.1. For speeding up of tedious writing
in URDF language serves XML macro (Xacro) language. Xacro enables to define repeating
properties and create own macros. Example of using macros to add a wheel to base link and
to add IMU sensor to the robot:

<!-- Add wheel -->
<xacro:rubber_wheel prefix="front_right" parent="$(arg prefix)base_link" reflect="false">
<origin xyz="${wheel_offset_x} -${wheel_offset_y} ${wheel_offset_z}" rpy="0 0 0" />
</xacro:rubber_wheel>
<!-- Import IMU -->
<xacro:sensor_imu_hector prefix="imu" parent="$(arg prefix)base_link">
<origin xyz="0 0.0 0.055" rpy="0 0 O" />

</xacro:sensor_imu_hector>

36

4 SIMULATION IN GAZEBO 4.2 ROBOT MODELLING

Figure 4.3: ArUco markers in detail

For converting Xacro to URDF serves ROS package zacro. For additional information on
URDF and Xacro usage refer to tutorials and documentation [53], [54]. Complete information
on modelling robot in ROS could also be found in the thesis [55].

4.2.1 Robot Parts Modelling

Links

Links in URDF represents a rigid body. Each link consists of several parts in terms of properties
that are divided into visual, collision, and inertial sections.

Here follows a brief description of link elements with the example from one of the links used
in modelling robot for this thesis.

Visual aspect of bodies can be represented using geometric primitives or mesh in .stl or .dae
format. Origin defines the transformation of coordinate system from joint. STL files for parts
were taken from [2].

<visual>
<origin xyz="0.011 -0.060276 0" rpy="${PI/2} 0 ${PI/2}" />
<geometry>
<mesh filename="package://mech_ros/robot_description/meshes/
Chassis.stl" scale="${Scalel}" />
</geometry>
<material name="gray_color" />
</visual>

37

4 SIMULATION IN GAZEBO 4.2 ROBOT MODELLING

Figure 4.4: Model of robot without Lidar

Inertial element composes from the origin of the center of the mass, mass, and Inertia ten-
sor. For root link (the link that has no parent) inertia element cannot be modelled. Instead,
additional dummy link named Inertia with root link as a parent is placed to the mass center of
root link. Note that in this case for Inertia link that resembles inertia element of base_link, non-
diagonal elements of tensor were computed as having a significantly lower value than diagonal
elements, and therefore, were set to zero.

<inertial>

<origin xyz="0 0 0.02" />

<mass value="1.172" />

<inertia ixx="0.001568" ixy="0.0" ixz="0.0" iyy="0.003775" iyz="0.0" izz="0.00483" />
</inertial>

Collision element defines the geometric shape that is considered when creating contacts in
Gazebo. Due to the computational cost of collision detection, it is recommended to model
collision geometry with geometric primitives. Here the mesh of base_link is replaced with the
block.

<collision>
<origin xyz="0.008 0 0.023" rpy="0 0 0" />
<geometry>
<box size="0.242 0.11 0.085" />
</geometry>
</collision>

Gazebo element provides additional information for gazebo simulation. Here only the surface
from gazebo element is needed for the wheel model. The coefficients values that define frictions
were obtained from trial and error method:

38

4 SIMULATION IN GAZEBO 4.2 ROBOT MODELLING

<surface>
<friction>
<ode>
<mu>1.0</mu>
<mu2>1.0</mu2>
<s1ip1>0.5</slip1>
<slip2>0.0</slip2>
<fdirl value="1 0 O"/>
</ode>
</friction>
</surface>
Joints

Joints bind parental and child links. Each link can have only one parent. The origin of the joint
is the transformation from the origin of the parental link. There exists 6 kinds of joint: revolute,
continuous, prismatic, fixed, floating, and planar. Only continuous for rotating without angle
limits, and fixed for tight binding of links were used.

For, as will be described below, wheel continuous joints are controlled with the velocity
controller, joints can be modelled as follows:

<joint name="${prefix}_wheel_joint" type="continuous">
<parent link="${parent}"/>
<child link="${prefix}_wheel"/>
<xacro:insert_block name="origin" />
<axis xyz="0 1 0" rpy="0 O 0" />
<limit effort="1000" velocity="1000" />
<joint_properties damping="0.0" friction="0.0"/>
</joint>

Transmission element must be added to URDF file to control joints from ROS:

<transmission name="${prefix}_wheel_joint_trans">

<type>transmission_interface/SimpleTransmission</type>

<joint name="${prefix}_wheel_joint">
<hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>

</joint>

<actuator name="${prefix}_wheel_joint_motor">
<hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>
<mechanicalReduction>1</mechanicalReduction>

</actuator>

</transmission>

39

4 SIMULATION IN GAZEBO 4.2 ROBOT MODELLING

Figure 4.5: Collision geometry and contacts

Final model

Robot model consists of four wheels, base link, IMU link, Camera link, and Lidar link. Trans-
formations between parts can be seen in fig. 4.6. As an extension, other links and joint could
be added for modelling the lifting mechanism.

4.2.2 Sensors and Control

As was stated in 2.2, Gazebo can simulate sensors through plugins. Gazebo element must
be added to URDF file and either bind with specified link as Gazebo reference or in some
plugins specified separately. Here follows gazebo element for IMU (magnetometer is simulated
separately) where parameter’s meaning should be self-explanatory:

<gazebo>
<plugin name="${prefix}_controller" filename="libhector_gazebo_ros_imu.so">
<alwaysOn>true</alwaysOn>
<topicName>${prefix}/data_raw</topicName>
<bodyName>${prefix}_link</bodyName>
<frameId>${prefix}_link</frameld>
<updateRate>50.0</updateRate>
<gaussianNoise>0.01</gaussianNoise>
<rateOffset>0.0 0.0 0.0</rateOffset>
<rateDrift>0.005 0.005 0.005</rateDrift>
<rateGaussianNoise>0.005 0.005 0.005</rateGaussianNoise>
<accelOffset>0.0 0.0 0.0</accelOffset>
<accelDrift>0.005 0.005 0.005</accelDrift>
<accelGaussianNoise>0.05 0.05 0.05</accelGaussianNoise>
</plugin>
</gazebo>

40

4 SIMULATION IN GAZEBO 4.3 INTEGRATION WITH ROS

As can be seen above, plugin allows specifying sensor frame, topic name, frequency, indi-
vidual noise components, and others. Plugins for IMU, magnetometer, camera, and Lidar are
used. Wheel encoders are not simulated instead velocity measurement is obtained from ROS
package diff_drive_controller that controls wheel velocities through hardwarelnterface/Veloci-
tyJointInterface defined in transmission element of wheels and supports skid steer robots by
controlling the same side wheel to equal velocity.

4.3 Integration with ROS

After the previous section, everything is set up for simulating the robot using ROS in Gazebo.
The procedure for complete simulation is as follows: Gazebo is started with created world as
an argument, then the robot is converted from Xacro to URDF using package robot_description
and then inserted in the simulation through node spawn_model in package gazebo_ros. For
broadcasting transformations of individual robot parts, the node robot_state_publisher in the
same named package is used.

Most algorithms were at first tested in Gazebo and then implemented on real hardware.
Launch files, files which can start many different nodes, were kept separately for simulation
and real target even though they could be written in a way that changing parameter would
result in launching either simulation or either real target.

4.3.1 Localization using Extended Kalman Filters

As was noted in 2.3.1, two localization sources have to broadcast transformations to assure
that base_link pose is correctly defined with respect to the map frame. Two nodes of EKF
from robot_localization package were used for that purpose. One that broadcast transformation
from map to odom was named ekf abs and the one broadcasting transformation from odom to
base_link frame was named ekf rel. Transformation tree for all frames is depicted in fig. 4.6

ekf_rel
As inputs to ekf rel serves the following:

e linear and angular velocity of the robot from diff drive_controller (that is the difference
from real robot implementation, details will be given further) in the form of
nav_msgs/Odometry

e angular velocity and linear acceleration from IMU in the form of sensor_-msgs/Imu

e orientation of the robot with respect to map frame in the form of sensor-msgs/Imu -
strictly speaking that should belong only to absolute localization, but Madgwick algorithm
is iterative (for Madgwick one iteration equals one measurement sample) and therefore
there should not be big jumps in estimated orientation

As the robot moves only in one plane, two_d_mode was set to true. Because on start, un-
certainty in relative localization is zero, elements in initial_estimate_covariance were set to
a minimal number. Parameter dynamic_process_noise_covariance dynamically scales the pro-
cess_noise_covariance based on the magnitude of the robot’s velocity. This setting should ensure
that the covariance of the estimated pose does not grow when the robot is stationary.

41

4 SIMULATION IN GAZEBO 4.3 INTEGRATION WITH ROS

Recorded at time: 214.619

map

[Broadcaster: /ekf_abs
|Average rate: 29.245

[Buffer length: 1.06

Most recent transform: 214.58
ldest transform: 213.52

@swmm

[roadcaster: /ekf_rel

szragle rat: 49057

B th: 1,

Ml::sgef::?wt mg?om, 214.58 Brond:aster /robet smejubllsher
: Average rat

[Oldest transform: 213.52 Buffer Iength 0 0

Most recent transform: 0.0

Oldest transform: 0.0

mechROS_base_link

Broadcaster: /robct _state_publisher
Average rate: 11.

Buffer length: 1. 0

Most recent transform: 214.553
Oldest transform: 213.553

Broadcaster: /robot_state_publisher /Broadcaster: /robot_state_publisher /Broadcaster: /robot_state_publisher\ Broadcaster: /robot_state_publisher \ Broadcaster: /robct t_state_publisher
Average rate: 10000.0 Average rate: 10000.0 0000.0 Average rate: 11.0

Buffer length: 0.0 Buffer length: 0.0 Buffer length: 1.0

Most recent transform: 0.0 Most recent transform: 0.0 Most recent transform: 214.553

Oldest transform: 0.0 Oldest transform: 0.0 Oldest transform: 213.553

laser_base_link

Most recent trans'orm 214553
Oldest transform: 213.553

Most recent transform: 0.0
Oldest transform: 0.0

front_camera_link

Broadcaster: /marker_pose_estimator Broadcaster: /marker_pose_estimator ~ Broadcaster: /mbot state 2_publisher Bmad:aster /mbet state 2_publisher
Average rate: 30.754 Average rate: 30.948 A Average rate: 100

Buffer length: 1.008 Buffer length: 1.034 Buffer length: 0.0 Buffer length: 0.0

Most recent transform: 214.556 Most recent transform: 214.556 ost recent transform: 0.0 Most recent transform: 0.0

Oldest transform: 213.548 Dldest transform: 213.522 Idest transform: 0.0 Pidest transform: 0.0

marker_7 imu_magnetic_link

Figure 4.6: Transformations tree: ekf_abs broadcast transformation from map to odom, ekf_rel
publish odom to base_link transformation, marker_pose_estimator (is furthered discussed in
5.2.3) publish transform from camera to the marker and transformations between robot parts
are broadcasted by robot_state_publisher. Note that back_right_wheel is not shown here for sizing
reason.

Another setting that could improve pose estimation is the use_control parameter. As was
noted in 2.3.2, predicted linear acceleration and angular velocity of the robot in the prediction
step of EKF have the same value as in the previous step. That inherently introduces lag in
state vector variables. Using control command for predicting acceleration could overcome this
problem. While in navigation mode, the controller sends velocity command at a maximal rate
of 10 Hz and sometimes even slower, this settings does not have big impact on performance.
Its significance could be increased in manual control. Settings for using control term:

<!-- Use control to predict acceleration —->
<param name="use_control" value="true"/>
<param name="stamped_control" value="false"/>
<param name="control_timeout" value="0.03"/>
<rosparam param="control_config">[true, false, false,
false, false, true]</rosparam>

<rosparam param="acceleration_limits">[0.4, 0.0, 0.0,

0.0, 0.0, 5.0]</rosparam>
<rosparam param="decceleration_limits">[1.0, 0.0, 0.0,

0.0, 0.0, 7.5]</rosparam>

Acceleration and deceleration of real robot were obtained from measuring translational and
angular velocity from wheel encoders and IMU as a response to step in desired robot velocity.
Computed parameters were used for both simulated and real robot.

Another solution for the reduction of lagging of filtered output is to increase corresponding
elements in process_noise_covariance at the cost of inflating noise from sensors presented in
filtered output.

42

4 SIMULATION IN GAZEBO 4.3 INTEGRATION WITH ROS

ekf_abs

The ekf abs subscribes to inputs:

e same inputs as ekf_rel

e estimation of a pose in map frame from processing image from the camera - How to get
an estimation from ArUco markers detection will be described in detail in 5.2.3.

The same settings as for ekf_rel does apply to ekf_abs except for the initial_estimate
_covariance. Diagonal elements of the mentioned matrix must be big enough that when starting
robot in arbitrary position in the map, upon seeing the first ArUco marker, the robot is properly
localized.

With the current value of the covariance matrix of pose estimation is parameter
rzxx_rejection_threshold related. For every part of the sensor measurement (replace zzzz in the
previous parameter), rejection value based on Mahalanobis distance, defined in 2.3.2, can be
set. Here it is utilized for rejection of pose estimation from ArUco marker measurement because
occasionally, the id of marker could be wrongly determined, and therefore, without rejecting
it, large error would be inserted in the filter. The parameter value is based on X;Q, distribution
for 3 DOF. For the selected p-value 0.05, value from any table describing X;% distribution can
be obtained as 7.815.

As processing image can take some time, pose estimation from ArUco markers may be
delayed. Therefore parameter smooth_lagged_data was set to true. Reverting filter time was
described in 2.3.2. Parameter history_length specifies how long are the data stored for reverting
state. Based on the observation of processing the image on Raspberry Pi, the parameter was
set to 0.2 s. For simulation, it is sufficient to set the parameter to lower value.

This settings for localization are true provided the map of the environment alongside the
map of markers are already created.

Data from IMU follow REP-145, described in 2.3.1, naming convention: imu/data_raw from
IMU are together with magnetometer measurement imu/mag published to imu_filter_madgwick
where orientation is estimated and alongside linear acceleration and angular velocity published
as imu/data.

Parameters (namely gain § and () for node imu_filter_madgwick were set according to
recommendations in 2.3.2 and then modified by trial and error method.

Differences in positional outcomes from ekf abs, ekf rel, and pose estimated from image
processing, are shown in Appendix in fig. 6.1.

4.3.2 SLAM using Gmapping

To successful set-up of the navigation stack, map needs to be created. Then it is used in
global_costmap and could also be utilized as a static layer in local_costmap.

G'mapping needs to subscribe to laser scan measurement and transformation from odom to
base_link. For that purpose ekf_rel node from 4.3.1 was used. As an additional input to ekf_rel
served pose estimation from laser_scan_matcher. For speeding up convergence, IMU readings
were set as inputs to laser_scan_matcher. Most of the Gmapping and laser_scan_matcher param-
eters were left at their default values. Some modifications were made to them while performing
SLAM on the real robot (maps in 5.3) but not here nor there any explanation of parameters
is given because the theory behind these packages would have to be described, which is out of
the scope of this thesis.

43

4 SIMULATION IN GAZEBO 4.3 INTEGRATION WITH ROS

With these settings, Gmapping was launched alongside other nodes and the robot was
controlled through rqt_gui to drive around the environment. The resulting map can be seen in

= B
_I_Luld

Figure 4.7: Created map of simulation environment: White color represents free cells, black
occupied cells, and gray unknown status of cells.

4.3.3 Navigation using Move Base Flex

As a first introduction with navigation stack in ROS, move_base package was used. Subsequently
for better customization and extensibility of navigation was then proceeded to move_base_fiex.
As reported in 2.3.4, numerous things must be correctly set for proper navigation. As default
values for most parameters for setting navigation stack were used recommended values from
Tuning Guide [27], and afterward, the parameters were adjusted for better behavior.

Planner Both A* and Djikstra algorithms, available in package global_planner for expanding
cells to find a feasible path, were tried. Surprisingly, Djikstra algorithm provided better results,
and therefore, was selected even at the cost of being slower (as used maps are relatively small,
the difference in speed is not so significant) due to the expansion of higher amount of cells.

Controller DWA local planner has to know the kinematics and dynamics constraints of the
robot in order to control the movement of the robot correctly. The maximal and minimal
velocity of the real robot were measured and also used for simulations. The problem arising
from the used skid steer platform is that rotation is achieved through different angular velocities
of the same side wheels. Therefore maximal translational and rotational velocities cannot be
reached simultaneously. As a solution, both maximal values of translational and rotational
velocities, were lowered from their actual measured values. Another solution is implemented on
the real robot — when the angular velocity of the wheel calculated from the inverse kinematics
model, described in 5.2.1, could not be reached, both rotational and translational velocity of
the robot is lowered by scale to preserve radius of the desired path arc.

44

4 SIMULATION IN GAZEBO 4.3 INTEGRATION WITH ROS

dwa:

Selected robot kinmematics parameters
max_vel_x: 0.15 # measured 0.24
min_vel_x: -0.15 # measured -0.24
max_trans_vel: 0.15 # measured 0.24
min_trans_vel: 0.05 # measured 0.05
max_rot_vel: 1.3 # measured 1.8

min_rot_vel: 0.3 # measured 0.3

Measurement of the robot’s acceleration and deceleration was already described in 4.3.1.
Parameters bias,, bias, and scale (here slightly renamed for better readability) were tuned
empirically.

Global and Local map Since the robot does only have the monocular camera for sensing
outer world and reliable detection of obstacles from this type of sensor is a task beyond the
time possibilities of this thesis, both global_costmap, and local_costmap were set to static map.
If the robot would be equipped with Lidar (as one robot is intended to have) then in obstacle
layer would be Lidar set as the source for marking and clearing obstacles. Inflation layer has
the same settings for both maps. Parameters radius and scale for inflation layer were tuned
empirically. Local map is set to rolling window. Its center remains in base_link and moves
together with robot.

I Displays

v & Global Options
Fixed Frame map
Background Color [229;229; 229
Frame Rate 30
Default Light

» v Global status: Ok

» @ Grid

> i, RobotModel
T

@

local_costmap

Image /

ommy

ke

oseFromMarkers
» 7\ OdometryAbsKalman

» P
»F
[
e

Ma)
Ma)
al
m

5593

P:
Pal
o
P

ER- ¥

» ~\ 0dometryRelKalman

[mimlw] <[]] Jmim]]]

are

» F2 Map
olygon

ename

simulated image

global_costmap

Figure 4.8: Navigation in the simulation environment: Image from ROS visualization tool -
Rviz where some parts of the navigation system can be seen.

SMACH To create a simple navigation SMACH, the example from tutorials was used. Its
functionality resembles the behavior of move_base with the following behavior:

1. WAIT_-FOR_GOAL: waiting for message geometry-msgs/PoseStamped with coordinates
of goal position — goal coordinates are passed to GET_PATH through userdata

45

4 SIMULATION IN GAZEBO 4.3 INTEGRATION WITH ROS

SM_ROOT

WAIT_FOR_GOAL

valid

3

succeeded

succeeded preempted

aborted preempted

succeeded preempted

aborted | preempted
Figure 4.9: Basic SMACH for navigation

2. GET_PATH: planning path to goal point from current position — planned path is passed
through userdata to the controller

3. EXE_PATH: executing the movement to goal point - controller sends velocity commands
that robot subscribes to. If the robot gets stuck, RECOVERY state becomes active with
the outcome from the controller that specifies current status. If successful, state machine
exits with outcome succeeded

4. RECOVERY: Based on userdata, desired recovery behavior is executed. If successful,
GET_PATH state become active.

When continuous navigation loop is desired, the successful outcome from FXE PATH is con-
nected to WAIT_FOR_GOAL and this loop runs until state machine is preempted by command
or RECOVERY is aborted.

The most significant advantage of this approach to navigation showed in fig. 4.9 is that
multiple different planners, controllers and recovery behaviors can be loaded at the start and
then used as desired, according to the given situation.

Recovery behaviors One of the userdata in SMACH Nawigation is recovery_flag. This
flag is used for choosing recovery behavior. As the first attempt to get the robot unstuck,
moveback_recovery is used. If this attempt is not successful, the robot slowly rotates to relocalize
itself by using rotate_recovery.

46

5 Implementation on Real Robot

Implementation on the real robot was performed concurrently with the simulation. New al-
gorithm or procedure was first tested in the simulation, then on the real robot and robot’s
parameters in the simulation were then modified to resemble the real robot more closely.

5.1 Brief Description of Used Hardware

As was characterized in 3.1, the design of mechanical and electrical parts of robot alongside the
charging station was realized in the thesis by Addmek [2]. Therefore only necessary information
about hardware devices and their connections is illustrated here.

Working station:

e desktop computer with 4-core 3.6 GHz Intel i3-8100, 8 GB RAM and Radeon RX 550
with Ubuntu 16.04 as the operating system.

Robot:

e Raspberry Pi 3B+ (further referred to as RPi): single-board computer with 1.4 GHz
quad-core processor and 1GB SDRAM. Available interfaces are Wi-Fi, Camera Serial
Interface, USB, I2C, SPI, UART, and others. Image based on Ubuntu 16.04 with pre-
installed ROS was downloaded from [56] and installed.

e Hardware Attached on Top (HAT) board for RPi designed in [2] with ATSAMD21J18A
(further referred to as SAMD21) from Atmel supported in Arduino platform. Available
interfaces are USB, I2C, SPI and UART.

Charging station:

e same RPi as on the robot

e Arduino ProMicro with 8bit ATmega328P. I?C interface was used for communication.

Schematic in fig. 5.1 shows the communication protocol between used hardware and de-
scribes in bullet points what is running on each hardware.

Processing image is performed either on the RPi on the robot or either on the Working
station. For autonomous movement, it is necessary to not introduced additional lag from
transmitting video over Wi-Fi. Delay of image over Wi-Fi ranged mostly between 0.25 — 0.3
s but sometimes even longer delay was measured. Various options for transmitting video were
tried but neither showed consistent lag beneath 0.2 s or consistent image quality.

When the robot is controlled manually, the video must be transmitted anyway, and therefore,
the image processing takes place on Working station.

47

5 IMPLEMENTATION ON REAL ROBOT 5.2 EXPERIMENTS WITH SENSORS
Working station
* ROS master
« all the remaining

Q
8
~

0
o
3

Robot
RPi [SAMD21)

Charging station

(ProMicro) RPi ~image :
* motor control
 latch control ’c |1 TCP/IP__ Y processing | UART| |\
« charging current communic. « Lidar - wheel's velocity
- endstop * rosserial * battery level

Figure 5.1: Schematic of used hardware: Communication between hardware is shown. If name
a of sensor is given, that means reading data from the sensor and publishing them either directly
to ROS network or indirectly through UART or I2C. For example, Lidar means reading data
from Lidar and publishing them to ROS network

5.2 Experiments with Sensors

In order to evaluate settings of parameters of specific packages or to estimate unknown coeffi-
cients, it is necessary to have ground truth data for comparison. As a method to obtain ground
truth data was selected pose estimation of ChArUco board from the camera image. Logitech
(C922 camera was placed under the ceiling and aimed in such way that it was focusing the floor.
There was a trade-off between accurately determining ArUco markers on ChArUco board and
between capturing as much area as possible in the camera image. The camera was firstly cal-
ibrated using another ChArUco board with more ArUco markers. Then ChArUco board was

placed on the robot (fig. 5.2), and data (2D pose) were obtained for each experiment described
below.

Figure 5.2: ChArUco board onted on robt

48

5 IMPLEMENTATION ON REAL ROBOT 5.2 EXPERIMENTS WITH SENSORS

5.2.1 Kinematics Parameter Estimation

Kinematics model was established in 2.4.4. Resulting equations are:

Wyt + wyr
Vy — ————
2
Vy = 0 (5.1)
o — T (w, — wp)
By

Four parameters had to be estimated: r, B, a, b (x is dependent on a,b). For estimating
the parameters, 19 experiments were conducted for estimation and 4 for validation. In each,
the robot was manually controlled by a joystick and drove with a different trajectory. Data
from wheel encoders and board pose estimation from camera beneath ceiling were measured.
After that, the kinematics model based on 5.2 with numerical integration of velocities to obtain
2D pose was created in Simulink. Following was to estimate parameters r, B, a, b based on
wheel’s angular velocities as inputs to the kinematics model and pose from image processing
as the measurement.

Figure 5.3: Example of one of the experiments to estimate unknown parameters for the kine-
matics model. Inputs to the simulation model are angular velocities of four wheels, two on each
side.

49

5 IMPLEMENTATION ON REAL ROBOT 5.2 EXPERIMENTS WITH SENSORS

As can be seen in fig. 5.3 and 6.2, pose from the kinematics model resembles measurement
well enough. Figure in Appendix is from validation.

However, no easy way was found to obtain inverse kinematics model from forward model.
Only an extremely complicated model with the help of symbolic solver that would be hard
to implement. Therefore additional estimation with fixed x = 1 was performed and from the
simplified model (it is the same model as for an ideal differential drive) was inverse kinematics
model obtained as follows:

20, +w, B
YrT T
v, —w,B (5.2)
W= ———
2r

Forward kinematics is implemented in script Kinematics.py that subscribes to created mes-
sages mech_ros-msgs/Wheels Velocities and converts them to nav_msgs/Odometry. Inverse kine-
matics is implemented in program HAT_ROS_ALL.ino running on SAMD?21.

’ Parameter H Forward \ Inverse ‘
r 0.04561 m | 0.04539 m
B 0.19007 m | 0.23860 m
a 0.26484 —
b 0.10107 -

Table 5.1: Estimated parameters for forward and inverse kinematics

5.2.2 IMU Calibration and Usage

As the first step for IMU calibration, IMU was left still, and data from accelerometer and
gyroscope were obtained. Elementary statistics analysis was carried out and from this were
retrieved biases, variances, and gyroscope drift that served as first approximation for using
IMU.

Magnetometer calibration was performed by rotating the robot in many different angles,
measuring values from every axis and storing them. From these data transformation matrix
and bias array was computed.

With the same settings as in the previous experiments, the robot was controlled to drive
and camera under the ceiling was capturing the scene. The data from magnetometer were
transmitted to imu_filter_madgwick where orientation was estimated. Parameters of the node
were tuned so that the resulting orientation from Madgwick algorithm was as close as possible
to ground truth orientation.

When moving, the robot is shaking quite a lot, and therefore, the measurement from the
accelerometer is not usable for planar localization as the measurement was extremely noisy.

Data flow is as follows: Data from the accelerometer, gyroscope and magnetometer, are
read in SAMD21 and transmitted through RPi to ROS network in the form of created message
mech_ros-msgs/RawlImu. Then they are processed in node from script IMU_from_raw.py. Read-
ings from accelerometer and gyroscope are scaled, and the bias is subtracted from them. From
the readings from the magnetometer, the bias is subtracted, and the result is multiplied by
the transformation matrix. Processed data are then published in topic /imu/data_raw and
/imu/mag. Calibration data for IMU are stored in IMU-_calibration.yaml file and are loaded on

20

5 IMPLEMENTATION ON REAL ROBOT 5.2 EXPERIMENTS WITH SENSORS

1L —ground truth (camera)
— Magdwick algorithm (IMU)

0 | | | | | | | | | |]
25 26 27 28 29 30 31 32 33 34

Figure 5.4: Experimental verification of Madgwick filter orientation estimate: From both mea-
surements were their first measurement subtracted for better comparison

the start of the node. Accelerometer and gyroscope bias can be recalibrated optionally on start
or/and while the program is running through created services mech_ros_msgs/Start_recalibration
and mech_ros-msgs/End_recalibration.

5.2.3 Pose Estimation from Image Processing

In order to use ArUco marker pose estimation as input to ekf_abs, a model that converts readings
to global frame (map frame) and assigns appropriate covariance matrix, must be established.

Accuracy testing

The procedure was as follow. RPi camera was calibrated using ChArUco board as a first step.
Calibration data are stored in the camera.yaml file. To measure the accuracy of ArUco marker’s
pose estimation, the marker was attached alongside the ChArUco board to a panel as shown
in fig. 5.6. Firstly only the estimation of the ChArUco board pose was tested, and the results
showed that its accuracy is far better than the estimation of a single marker. Therefore pose of
ChArUco board is taken as ground truth measurement even though some error is introduced
to the analysis because of this assumption. Three types of measurement were performed. First
was to move the panel 5 cm further from the camera in a longitudinal direction. 50 samples were

taken for each distance and covariance of o , o} , 05 were computed. Meaning of a,, a,, a,

Qqy? a
is obvious from fig. 5.5. OpenCV function that estimates pose of markers returns translation
and Rodrigues vector from the camera to marker. Rodrigues vector is converted to Euler angles
and alongside translations is inverted to represent transformations in fig. 5.5.

Figure 5.7 shows that the pose estimation accuracy is greatly dependent on the marker’s

surface. Through regression, a dependence of variances o2 , o2 02¢ on the surface was ob-

ay’ “a

tained as power function shown in eq. 5.3. The coefficients acquired by regression served only
as a first approximation and had to be modified in a such way that variances of variables were
increased. Main reasons for this inflation are the dependence of image quality on the ambi-

ent light condition and shaking of the camera when moving. Covariances were computed as

51

5 IMPLEMENTATION ON REAL ROBOT 5.2 EXPERIMENTS WITH SENSORS

global frar:e Figure 5.6: Measurement

X setup for ArUco marker pose
Figure 5.5: Transformation between global frame and camera estimation accuracy analysis

8 %107
x
— 67 x N
[a\]
S x
=4 x % —
b x
Ng‘ ¥ x
o2 Xy Py . =
x X
x x x x x
ol x x x x x x x x x —
\ \ \ \ \ \ \
%10
8 I I I I I I I
x
6 -
~ x
E %X
Soa .
= X %
SRS x x x
&) 2 x x X x % x X x X -
x x x
x % % x
0 e x x x x x —
\ \ \ ! \ \ \
%107
5 I I I I I I I
4 x —
N
ss- « -
~ x
& x |
52 . x
[IS x
o 1+ x* % —
x
x X % x x x
ok x % | X x * x x x x x x x _|
\ \ \ \ \ \ \
2000 4000 6000 8000 10000 12000 14000
S [pia®]

Figure 5.7: Dependence of measurement error variance on marker’s surface: Here S stands for
surface of marker in image bounded by its corner, and given in pixels squared

significantly smaller than variances and thus are neglected in further analysis.

K;
o5 = o (5.3)

where Sporm 18 normalized surface, K; and A; are coefficients, and o2 is the variance of either
Ay, Gy, G-

92

5 IMPLEMENTATION ON REAL ROBOT 5.2 EXPERIMENTS WITH SENSORS

4
x10
‘ x
x
10 — =
x
o~ 8- % x % B
x x
-—-E 6 x * x x =
x x x x X x %
8 x x x
? % x xX x % x x x x
NS 4 * x x Xy * x x % . N
) x x x x x oW xx x P x o
x x x x x x
o x % X x % X X 5 X -
x x * x
x
0]
| | | | |
-6
x10
15 I \ I \ \
x x xx
x
x
x X% x
— 10 x xx . Xy * -
SR x N % x X x
E ® x. ¥ xx X * % % x
x X xXux %
N? 5 * x X x —
X
&} * x
x % x %
x x
x* xx
x XXy x
oL | ! ! ! *HT ey x Fxxx 4
-3
6><10
T T T % T T
x
Il [.|
< 4
S
~
x
S x
NS2[* N
o
Xy x x
x X x XxX WXy W N x * *
0k [% % X % X X Xy XexTx X Xt | Ky % 200 5 xXx¥ x X X% x X xixx XxX XxXX Xx xx xx% X x XX X
2 25 3 3.5 4
@y [rad]

Figure 5.8: Dependence of measurement error variance on angle: Here ¢, stands for ground
truth measurement of angle a,

Setting the panel at a constant distance and changing yaw (rotation angle about the global
Z axis) by small angles was performed as the second experiment. Covariances were computed
as in the previous experiment. In figure 5.8 is the dependence of variances on yaw shown.
Dependence of 02 is excluded from further analysis as 02 is two orders of magnitude smaller
than the other two and is probably influenced mainly by different light reflection on opposite
sides. Variances of the remaining two variables are approximately the same for all angles except
around 7 where the marker is parallel to the camera.

If variances are dependent on the surface and only little dependent on the yaw angle, the
surface must be normalized with respect to yaw to give correct values. To account for higher
variances around 7, member B (a,) was added to eq. 5.3. Function B (a,) can be seen in fig.

5.9.
S

— B _—
S = B0 Tt

(5.4)

where S is the marker’s surface in pixels2 and Sporm 18 the normalized surface.

In the third type of experiment, the variance dependence on a lateral position in the image
was tested. The panel was positioned at a constant longitudinal distance and shifted by 5 cm
in a lateral direction. To make it more general, lateral distance is expressed as the angle from
the optical axis in horizontal plane. No significant dependence on this angle was found. Figure
can be seen in the Appendix.

This measurements and findings are quite consistent with experiments performed on April-

23

5 IMPLEMENTATION ON REAL ROBOT 5.2 EXPERIMENTS WITH SENSORS

1
L 0.95 - *
Q
09r ,

0.85 - ,

08 Il Il Il Il
2.6 2.8 3 3.2 3.4 3.6

a, [rad)

Figure 5.9: Function B (a,) compensates for increase measurement error for a, angles near 7
value.

Tags markers (similar to ArUco marker) in Gazebo simulator by Cerdn, 2017 [57].

Transformation to the global frame

Obtaining 2D pose of camera in the global frame is described by equation 5.5 and depicted in
fig. 5.5.

a = f(a,ps3) (5.5)

where @’ is 2D pose in the global frame, a is pose in marker’s frame, and pg is transformation
from global to marker’s frame. This equation is rewritten in detailed form in 5.7.

T T

a:[ax y a@] : p;;z[xyw] (5.6)
al, = ay cos (a, + V) — aysin (a, +¥) +

ty = agsin (a, +) + a, cos (a, + 1) +y (5.7)
g, = Gy + 1)

In order to compute the pose, pg3 must be known. Therefore the position of the marker has
to be measured and is stored in file MechLAB_markers.yaml. Due to the manual measurement
of the marker’s pose, uncertainty is introduced, and based on how well each marker’s pose could
be measured, diagonal elements o2, Uzy, J?W of covariance matrix X,, are added to the file
shown here:

frame_id : "map"
landmarks:
9 3
Translation: [4.995, -2.105, 0.0]
RPY: [0.0, 0.0, 1.570796327]
Covariances: [0.008, 0.008, 0.008, 0.005, 0.005, 0.005]

Measurement of each marker can be taken as a normal multivariate distribution @ ~

o4

5 IMPLEMENTATION ON REAL ROBOT 5.2 EXPERIMENTS WITH SENSORS

N (o, X,) where p, is the mean vector and ¥, is the covariance matrix whose diagonal ele-
ments are computed according to equations 5.3 and 5.4.

For transforming a multivariate Gaussian distribution, first-order linearization of the trans-
formation can be used. New distribution y ~ N (u,, X,) can be approximated as follows [58],
here rewritten with use of such symbols to remain consistent in the whole thesis:

py = [(1) (5.8)
Of (z), Of (z)"
¥, = 3, :
Y oz oz (5.9)
where %f) is a matrix of first-order partial derivates, also called Jacobian.

Assuming that both distributions of @ and ps are independent, covariance matrix ¥, of 2D
pose of camera in the global coordinate system can be computed as follows [58] (here also some
symbols are rewritten):

a.f (a7p3)2 af <a7p3)T+ 8.f (a7p3)2 a.f (a7p3)T

o = Oa Oa ops 7 Ops (5.10)
In this case, the Jacobians are as follows:
Of (a,ps) | S(PT¥) —sin(p+9) —ycos(p+y)—wsin(p+)
a—a’ = | sin(p+1v) cos(p+1v) xcos(p+)—ysin(p+1) (5.11)
0 0 1
[1 0 —ycos(p+1)—zsin(p+)
M: 0 1 zcos(p+v)—ysin(p+) (5.12)
a4 [0 0 1

Fusion of multiple measurement

The final part is a fusion of the measurements. With the assumption that the normal multivari-
ate distributions are independent, the resulting distribution can be computed as a product of
the two multivariate distributions. As measurements come from the same source, the indepen-
dence assumption is violated. If that remains neglected, then in standard (moments) Gaussian
multivariate representation the resulting mean vector p. and covariance matrix ¥, of product
of the two multivariate distributions are computed according to [59]:

pe= (ST +57Y) 7 (S + 27 o) (5.13)
=+ (5.14)

These equations can be rewritten in a canonical form in which the resulting information
vector &, and information matrix €2, of n Gaussian multivariate distributions product is taken
from [60] (symbols are rewritten to be consistent in the thesis):

95

5 IMPLEMENTATION ON REAL ROBOT 5.3 EXPERIMENTAL SLAM

Q, = znjn (5.15)
=1

€= ZE (5.16)

Both representations were tried and the latter implementation in Python showed as faster,
and therefore, is used. Resulting pose estimation of robot then serves as input to ekf abs. The
computation of all above is implemented in Aruco_detect.py and Estimate_pose_markers.py

Due to not knowing, how severe is the violation of observations independence assumption,
a second method where the resulting mean vector is calculated as a weighted average based on
corresponding inverted covariances is implemented for fusion each measurement. The resulting
covariance matrix is computed as average from individual covariances divided by the number
of measurements. The method can be selected by adjusting the appropriate ROS parameter.

5.3 Experimental SLAM

With the same initial setting as in 4.3.2 for packages gmapping, laser_scan_matcher, and ekf-rel
named node of robot_localization package, SLAM was performed. The package urg_node was
used to read data from Lidar and publish them as ROS messages. As already mentioned in
5.2.2, due to the skid steer design of robot with no damping elements, except for the rubber
wheels, the robot suffers a lot of vibration when moving, and therefore, the position estimation
was better without integrating the acceleration from IMU as input to ekf_rel.

Further exclusion of input concerned orientation estimate from mu_filter_madgwick. As
the IMU is located very near to motors and other electronics, but mostly due to the indoor
operational environment, the magnetometer’s readings were inaccurate. In the place where
calibration was made, the orientation estimate was acceptable, but in other rooms, when moving
in a straight line, the readings from magnetometer were changing significantly along the path.

P

——
o - il / //,\
"j-"”"‘_ﬂ A\ { —H/// ‘//\/(
| W T
o ' I

S

Figure 5.10: Created map of the seventh floor of the A3 building: In red are errors in exper-
imental SLAM. The biggest ellipse marks mistake in loop closure, the left-most ellipse shows
the place where chairs and furniture were placed and the last mark contains error added after
the loop closure.

P T

26

5 IMPLEMENTATION ON REAL ROBOT 5.4 NAVIGATION TO CHARGING STATION

Translational and angular velocity estimation from wheel encoders were sufficiently accurate
(angular velocity matched readings from gyroscope) as long as the floor remained hard. When
the robot was moving over a carpet, the velocity estimation was significantly worse, but that
kind of behavior should be expected.

To test SLAM in a bigger environment, the robot was controlled to drive in the seventh
floor of the A3 building in Faculty Campus. Some parameters of gmapping had to be changed
to give better results, and the created map can be seen in fig. 5.10.

Further testing took place in the Mechatronics laboratory and therefore SLAM was per-
formed in the part of the laboratory. The created map of the part of the Mechatronics Labo-
ratory can be seen in fig. 5.20.

5.4 Navigation to Charging Station

For successful navigation, ArUco markers had to be placed in the environment, their position
measured and file with their pose and covariance had to be created as described in 5.2.3. The
measurement of distance was performed manually by tape measure. Markers were placed on
surfaces in that way that their yaw angle is approximately either 0°, 90°, 180° or 270°. The
further the positions of ArUco markers from the coordinate system (and also the measurement)
origin, the higher the uncertainty of the marker’s position is. This was taken into account when
inserting each marker to file MechLAB_markers.yaml.

Figure 5.11: Photo of ‘vplaéement of ArUco markers in the Mechatronics Laboratory

As discussed in 5.1, images from camera were processed either on RPi or working station.
When processing the image with resolution 1280 x 720 on RPi, the frequency was about 10 Hz.
With the same resolution, frequency higher than 20 Hz could be achieved on working station.
However, the delay introduced when transmitting images from RPi to working station was in-
consistent, and therefore, image processing is performed on RPi when navigating autonomously.

Navigation to the plug in the charging station is divided into two navigations subroutines.
The first subroutine is navigating robot to the pose in front of the charging station and the

57

5 IMPLEMENTATION ON REAL ROBOT 5.4 NAVIGATION TO CHARGING STATION

second one is navigating to plug in the charging station from the pose before the station. This
must be done using backward motion as the connector for charging is located in rear part due
to design requirements.

plug

endstop

latch

Figure 5.12: Photo of charging station: Taken from [2] and modified

The state machine that controls complete navigation to plug in charging station is described
and depicted in figures 5.13 and 5.14.

Because of the requirements described above, two separate controllers and planners are
loaded on start into move_base_flex with different names. Both planners are of the type of
the global_planner. Standard planning is made by Normal_planner, the path from the pose in
front of station to plug is planned by the Charging_station_planner. Setting of the second one
is different in orientation mode, which adds orientation to each position point in the planned
path. Here is mode set to backward orientation along all the path.

Controllers are also of the same type of dwa plugin. Standard controller is named sim-
ply dwa and controller for to/from navigation station is named dwa_station. Here the differ-
ences lie among other things in restriction of maximal velocities, setting the value of param-
eter forward_point_distance to zero to ensure backward motion, and also modifying values of
path_distance_bias, goal_distance_bias, and occdist_scale. Also, the lower frequency of the latter
controller gave better results.

The same behavior of the Charging_station_planner and dwa_station could be achieved by
dynamically reconfiguring parameters of Normal_planner and dwa, but as completely different
plugins for controller and planner were also tried and can be used in the future, loading them
separately is a better option.

Dynamical reconfiguration must be performed for both global_costmap and local_costmap
for parameters footprint that must be scaled down and inflation_layer that is completely shut
down. These settings are true for moving to and from the station; afterward, the parameters
are dynamically set to normal values.

The problem arising from moving back to the station is that it means moving away from the

28

5 IMPLEMENTATION ON REAL ROBOT 5.4 NAVIGATION TO CHARGING STATION

NAVIGATION_TO_CHARGE_WITH_CONTROL

l

~ y
COMPLETE_NAVIGATION_FOR_CHARGING

/

(NAVIGATE_BEFORE_STATION)

&:ceeded

(NAVIGATE_TO_PLUG_AND_CONTROL)

aborted preempted succeeded

aborted | preempted

STOP_ROBOT

preempted

velocity_published
retry

aborted

\. '\Q ; A!
X

Figure 5.13: State machine for navigation to plug in charging station: Robot navi-
gates before station (State machine NAVIGATE_BEFORE_STATION is normal naviga-
tion as shown in fig. 4.9) and then navigates moving backward (State machine NAVI-
GATE_-TO_PLUG_AND_CONTROL is shown and described in fig. 5.14) to plug in charging
station. The latch in the charging station does not place any resistance on the robot on the
way to the station. When docking is successful, robot stops and state machines outcome is
successful. Concurrently with this runs time countdown. If whole navigation takes a longer
time then set time, TIMING_OUT state returns either retry (in which the whole process is
repeated) or aborted, based on the set number of maximal repetitions and already unsuccessful
attempts.

NAVIGATE_TO_PLUG_AND_CONTROL

/

[NAVIGATE_2_PLUG J

WAIT_FOR_ENDSTOP

preempted

aborted

Figure 5.14: NAVIGATE_-TO_PLUG_AND_CONTROL: Goal pose for navigation (state NAV-
IGATE_TO_PLUG) is deliberately set farther than the actual pose of plug due to not ending
navigation as successful before endstop in charging station (status of endstop is published by
RPi in charging station) is hit. State machine outcome is successful only if endstop is hit.

markers. Therefore an error of estimation pose from marker is increasing, and as for successful
docking accuracy of around 5 ¢m is needed, the visible markers when moving backward should
be placed as precisely as possible. The biggest problem was arising when the yaw angle of
the real marker did not correspond sufficiently accurate with the yaw angle of the marker in

29

5 IMPLEMENTATION ON REAL ROBOT 5.4 NAVIGATION TO CHARGING STATION

MechLAB_markers.yaml.

When marker’s pose is measured accurately enough, the robot performs successful naviga-
tion to plug in most cases at first attempt. Data from one successful navigation are shown in
fig. 5.15. In view of these findings, two conclusions can be drawn: Charging station should be
placed in such a place, that when moving backwards, markers are near and visible preferably
on both sides of the robot. The second one is that markers should be measured in such a way
that ensures, that markers near the station are measured most accurately. For example, map
origin could be in charging station.

plug

]

Figure 5.15: Navigation to and from plug in charging station: Black line represents the actual
path of the robot, the red line shows the global plan to the pose before the station computed
from Normal_planner, and the green represents planned path from pose before the station to
the plug and back created by Charging_station_planner. Also, the markers that the robot saw
along the path are shown. Their position is based on the last transformation before they were
no longer seen.

pose before
station

All settings as pose before charging station, the pose of the plug in charging station, maximal

60

5 IMPLEMENTATION ON REAL ROBOT 5.5 COMPLEX BEHAVIOR SMACH

time for one attempt for navigation for charging, and number of repetitions before aborting
navigation for charging are accessible as ROS parameters, and therefore their value can be
easily changed in navig_flex_real.launch file that launches all needed nodes on Working station
for complete navigation and charging cycle described here and in the following section.

5.5 Complex Behavior SMACH

As the robot is intended to operate partially autonomously, the state machine
NAVIGATION-TO_-CHARGE_WITH_CONTROL introduced in the previous section builds only
part (serves as one state) of the complex state machine that controls the robot. The top layer
of the created state machine is visible in fig. 5.16.

START

l charge
i 1 ded ded retry
(NAVIGATION_LOOP = e[CHARGING Je——— NAVIGATION_TO_CHARGE_WITH_CONTROL DJ

preempted (preempted aborted aborted preempted aborted
2OA A A v

Figure 5.16: The top layer of state machine that controls robot

CHARGING

NAVIGATION_LOOP

WAIT_FOR_RECHARGE

level_reached

<
WHOLE_NAVIGATION

SET_POSE_KALMAN

succeeded

MOVE_BACKWARDS

velocity_published

UNLOCK_SOLENOID

succeeded

preempted

preempted

level_reached preempted

NAVIGATE

preempted aborted

preempted aborted /succeeded

Figure 5.17: The concurrent state machine that mon- (i) (o)
itors robot’s battery level and navigates to the user- Figure 5.18: Sequence of states
defined goals or allows to manually control robot. after docking

The state machine NAVIGATION_LOOP depicted in fig. 5.17 is a concurrent state ma-

chine. It simultaneously subscribes to topic /volt_battery containing the value of robot bat-
tery voltage and either navigates the robot to the user defined-goal or allows to manually

61

5 IMPLEMENTATION ON REAL ROBOT 5.6 MINI-GAMES FOR USERS

control the robot to drive. If the battery voltage level reaches the set value, it pre-empts
the WHOLE_NAVIGATION state and the NAVIGATION_-TO_-CHARGE_-WITH_-CONTROL
takes control.

After successful execution of the above-mentioned state, robot is plugged in charging station
and is being charged. Then in state machine CHARGING, the battery voltage level is monitored
and when it reaches the defined threshold, pose of the plug is set as robot’s current pose
to ekf_abs through robot_localization/SetPose service to correct an error in pose estimation
acquired when navigating to charging station. Then robot is commanded to move backward
to alleviate the load on the latch actuated by a solenoid. More on charging station design in
[2]. After that, the signal is sent to charging station RPi to release the latch, and then robot
navigates to the pose in front of the station and NAVIGATION_LOOP becomes the active
state.

This whole state machine runs on the working station but subscribes and publishes to topics
or services also hosted on the robot or the charging station.

5.6 Mini-games for Users

In accordance with the project aim described in section 3, some entertaining tasks for the
visitors of the Exhibition must be developed. Tasks for users concerning the use of AR are
created and described in [2]. Here are further characterized two tasks that are focused more on
the robotic aspect of the project. These tasks are not included in the state machines described
above.

/— starting pose

concealment
of marker

goal pose
in area
before station

Figure 5.19: Marker following: ArUco marker was held by hand and moved in such a way that
the robot followed the marker in the position before the charging station. On that way, the
marker was deliberately hidden 3 times, moved and then again shown to test if the robot can
handle it. The aim of this experiment was to guide the robot to the desired pose, not to let the
robot precisely follow the same path as the marker’s path. The red line with orientation arrows
represent the marker’s time-varying pose and the black line shows the path of the robot.

62

5 IMPLEMENTATION ON REAL ROBOT 5.6 MINI-GAMES FOR USERS

5.6.1 Navigation of Malfunctioned Robot

This task will be presented to visitors as follows: Due to the simulated malfunction of the
robot’s global navigation system, the robot must be guided to charging station. The guide is
performed by another robot, which has the ArUco marker attached to the rear part of the robot,
controlled by the user. The manually controlled robot is slowly driving from an initial position
(where its marker was visible to malfunctioned robot’s camera) followed by the malfunctioned
robot. If malfunctioned robot reaches a defined area before the station, the task is fulfilled.

As at the time of the writing this thesis, only one robot was available; this task is not
completely developed and tested. However the most significant part - following an ArUco
marker, is implemented and tested. For this functionality was the script from Ubiquity Robotics
[61] under BSD license used and modified to work alongside other custom nodes. Modified
node subscribes to the topic containing pose estimation of ArUco markers and then compute
necessary velocity to reach the desired pose in front of the selected marker. Main loop of the
script is shown in simplified form in algorithm 1.

Algorithm 1 Main loop for velocity computation

1: while ROS is running do

2 if markerSpotted() then

3 lostCount < 0 > set number of times the marker was not spotted to 0
4: x; v < getCurrentMarkerPosition() > x is forward, y is lateral distance
5: if x > maxDistance then

6 linSpeed; angSpeed < 0; 0

7 else

8 yaw < atan2(y, x)

9: angSpeed < yaw-angularRate — angSpeed/2 > Damping for smoother motion
10: angSpeed < adjustToLimits(angSpeed)

11: linSpeed < (x—minDistance)-linearRate

12: linSpeed <« adjustToLimits(linSpeed)

13: end if

14: else if 0 < lostCount < maxHysteresis then

15: linSpeed <« linSpeed-linearDecay

16: lostCount < lostCount—+1

17: else if maxHysteresis < lostCount < maxRotations then

18: angSpeed < sign(angSpeed)-lost AngularSpeed

19: lostCount < lostCount—+1

20: else

21: linSpeed; angSpeed < 0; 0

22: end if

23: publish Velocity(linSpeed, angSpeed)
24: sleep(20 Hz)
25: end while

where maxDistance, minDistance, maxRotations, maxHysteresis, lostAngularSpeed, angular-
Rate, linearRate are adjustable parameters, here renamed for better readability.

To sum up algorithm: based on distance and angle of the marker with respect to the robot,
velocity is computed; when the marker is lost, linear velocity decreases. If set marker to follow
is not visible for an even bigger amount of time, the robot rotates for a set time to find the

63

5 IMPLEMENTATION ON REAL ROBOT 5.6 MINI-GAMES FOR USERS

marker. If marker is still not found, the robot stops moving and waits for the marker to reappear
in the image.

As was written above, another robot is not available, thus, the functionality of this task
was tested manually. Selected marker was held by hand and moved from arbitrary position to
position in front of the charging station. Data from this experiment are shown in fig. 5.19.

Script implementing this behavior is called Follow_target_marker.py.

5.6.2 Creating Map of Environment

Next task is designed to show the participants how the real world sensors are not exact, and
therefore, some error is always introduced when working with robots. With settings coarsely
described in 2.3.3 and 5.3, nodes necessary to perform SLAM will be launched, and the person
performing this task will manually control the robot equipped with the Lidar by a joystick in
such a way that the whole environment is mapped. The current state of the map will be shown
live in Rviz. When the user is satisfied with the created map, the map is saved and its location
path sent through mech_ros_msgs/Map_comparsion service. Automatically saving the map and
sending its path is not implemented yet, but the automatic comparison of the created map with
the ground truth map through service is already programmed and is further described.

Figure 5.20: The created map of the part of Figure 5.21: The ground truth map of the
the Mechatronics Laboratory part of the Mechatronics Laboratory

As inputs to map comparison serves two separate maps. As is shown in figures 5.20 and 5.21,
these maps are saved in different rotations and different positions with respect to the image.
These attributes are dependent on the initial pose of the robot when starting SLAM. Therefore
the maps have to be aligned to be compared. The procedure to compute transformations is
shown as pseudo code in algorithm 2. Most functions’ purpose should be apparent from the
name of the function. Function matchTemplate is an OpenCV function that slides smaller image

64

5 IMPLEMENTATION ON REAL ROBOT 5.6 MINI-GAMES FOR USERS

over bigger through every possible translation and based on selected type of metric returns best
transformation and value that represents how similar the images are.

To account for rotation, template image (cropped ground truth map) is rotated and then
matched against the bigger image. To speed up the algorithm; the best two angles using coarse
resolution are found, and then is the angle between these two refined.

Algorithm 2 Find best matching angle and coordinates between maps

1: function compareMaps(createdMap, groundTruthMap, coarseAngle, refAngle)

2 bValue; bAngle; sBestAngle < 1e10; 0; 0

3 template < cropImage(groundTruthMap)

4: croppedMap < cropImage(createdMap)

5: for i < 0 to 360/coarseAngle do

6 rotatedTemplate < rotateImage(template, i-coarseAngle)

7 value; coord < matchTemplate(croppedMap, rotated Template)

8 if value < bValue then

9: bValue; bAngle; sBestAngle; bCoord < value; i-coarseAngle; bAngle; coord
10: end if
11: end for

12: signum <= sign(sBestAngle—bAngle)

13: for i < 0 to int (coarseAngle/refAngle) do

14: rotated Template < rotateImage(template, bAngle+signum-i-refAngle)

15: value; coord < matchTemplate(croppedMap, rotated Template)

16: if value < bValue then

17: bValue; bAngleRef; bCoord <« value; bAngle+signum-i-refAngle; coord
18: end if

19: end for

20: return bAngleRef; bCoord
21: end function

The assumption for this algorithm to work correctly is that both map have a same grid
resolution. The resulting angle and coordination for template transformation are used for
visualization. To visualize the resulting map, as shown in fig. 5.22, several bitwise, threshold,
and other operations are used on both images. Then the map with marked pixels differences is
visualized in a separate window with a percentage and written evaluation of the created map.
The percentage is counted as a ratio of differentiating pixels to pixels of template subtracted
from 1.

The above-described functionalities are implemented in script Compare_maps.py with brief
comments.

65

5 IMPLEMENTATION ON REAL ROBOT 5.6 MINI-GAMES FOR USERS

Figure 5.22: The resulting comparison of created map with ground truth map: Red pixels show
the differentiating pixels.

66

6 Conclusion

The outcome of this thesis is a functional state machine that allows to manually control the
robot, to give goal positions for navigation, and if needed, takes care of autonomous charging
of the robot. After the agreement with the thesis’s supervisor, the software was created with
the aim to include only one robot, working station and charging station with the possibility to
extend it to incorporate several robots, working and charging stations in the future.

The first part of the thesis serves as a brief introduction to the Gazebo and ROS framework,
describes several ROS packages and principles behind them. Next, characteristics of sensors of
the robot and some theory of how to use them in the localization system are presented.

The following part is focused on the creation of the model of the robot and the design of
the simulation environment in Gazebo. The environment is modelled in such a way that it
resembles intended settings in its final destination. Some of the program adjustable parameters
are discussed. Twenty ArUco markers were placed in the environment to allow for successful
localization of robot through image processing from the mounted camera’s image. Robot’s parts
are modelled using Xacro language together with sensors plugin to obtain a fully functional
simulation model. This is followed by the description of the used settings for localization and
navigation packages.

In the experimental part, the hardware on the working station, charging station, and robot is
listed. Several experiments were performed to estimate unknown parameters for the kinematics
model and to calibrate IMU and obtain the yaw angle. Following experiments are focused on
determining the accuracy of the marker’s pose estimation with respect to the camera. To
fuse the camera measurement in the localization node, the procedure to convert all camera
measurements in one pose estimation in the global coordinate system is introduced. Created
maps of the environment from SLAM are shown and utilized in localization and navigation. For
successful navigation to the plug in the charging station, a state machine created in SMACH,
is used. Expansion of this state machine allows the robot to function autonomously with the
possibility of manual control by the user.

The interaction can also be composed of the two created mini-games. The first mini-game
is based on following the target ArUco marker. The aim of this task is to guide the robot to
the charging station by moving the target marker. The movement is performed manually in
the meantime, but as more than one robot is available, the marker can be placed to the rear
part of one of the robots and manually control this robot to be followed by another robot. In
the second mini-game, the user controls the robot to create a map of the environment using
described settings for SLAM. After that, the created map is automatically compared with the
ground truth map, and the resulting comparison is shown with evaluation.

With regard to the above-given summary of accomplished work, it can be said that Master’s
thesis goals were fulfilled. The selected type and amount of sensors have proven sufficient for the
basic navigation, however, for more robust robot behavior, some suggestions for improvement
are given in the last section.

67

6 CONCLUSION 6.1 SUGGESTIONS FOR FURTHER WORK

6.1 Suggestions for Further Work

While working on this thesis, many additional ideas, suggestions, and fixtures came to mind.
These suggestions can be divided into two sections. First incorporates knowledge about mis-
takes in design both hardware and software part:

e Read data from IMU and encoders at a higher rate, average them and send them at same
rate as is now

e Implement additional sensor to have at least basic knowledge about obstacles in front of
robot

e Implement and test additional controller for very narrow spaces — dwa does not perform
quite well in that environment

The second section represents interesting ideas for further project development:

e Create a map of ArUco markers automatically as part of the SLAM

Estimate pose of camera based on all visible markers by minimizing reprojection error of
all markers in image in OpenCV solvePnP function

Detect obstacles from image based on features extraction

Extend created software to incorporate several robots, working and charging stations

68

List of Abbreviations

SAE
ROS
BSD
OGRE
GUI
RT
HIL
TCP/IP
ODE
REP
SI
ENU
IMU
EKF
AMCL
SLAM
DWA
MBF
BT
SMACH
Lidar
DOF

Society of Automotive Engineers

Robot Operating System

Berkeley Software Distribution
Object-Oriented Graphics Rendering Engine
Graphical User Interface

Real time

Hardware-in-the-loop

Transmission Control Protocol/Internet Protocol
Open Dynamics Engine

ROS Enhancement Proposal

System of Units

East-North-Up

Inertial measurement unit

Extended Kalman Filter

Adaptive Monte Carlo Localization
Simultaneous Localization and Mapping
Dynamic Window Approach
Move_base_flex

Behavior Tree

State machine or SMACH package
Light Detection and Ranging

Degrees of Freedom

ICR Instantaneous Center of Rotation

AR Augmented Reality

SDF

Simulation Description Format

69

6 CONCLUSION 6.1 SUGGESTIONS FOR FURTHER WORK

XML Extensible Markup Language
URDF Universal Robot Description Format
Xacro XML macro
RPi Raspberry Pi
HAT Hardware attached on top
USB Universal Serial Bus
SPI Serial Peripheral Interface
UART Universal Asynchronous Receiver and Transmitter

I2C Inter-Integrated Circuit

70

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.14
2.15
2.16
2.17
2.18

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
2.3
5.4
2.5
5.6
5.7
5.8
2.9
5.10
5.11
5.12
5.13

Overview of the gazebo_ros_pkgs interface 14
Relationship between frames for single robot 16
Comparison of the Euclidean and Mahalanobis distance in 2D 18
Block diagram of the complete Madgwick algorithm 19
An overview of move_base setup 21
The move_base_flex architecture 22
The Inflation layer 23
Navigation Sub-Tree 24
SMACH introspection 25
ArUco marker 26
ChArUco board 26
Pin hole camera model oo 27
Hard iron errors Lo 29
Soft iron errors Lo 29
Comparison of uncalibrated and calibrated measurement of the magnetic field . 30
Hokuyo URG-04LX-UGO1 31
Kinematics model 32
Gazebo Building Editor 35
Created simulation world oL 36
ArUco markers in detail 37
Model of robot without Lidar 38
Collision geometry and contacts L. 40
Transformations tree 42
Created map of simulation environment 44
Navigation in the simulation environment 45
Basic SMACH for navigationo 46
Schematic of used hardware, 48
ChArUco board mounted on robot 48
Kinematics parameter estimation 49
Experimental verification of Madgwick filter orientation estimate 51
Transformation between global frame and camera 52
Measurement setup of ArUco marker pose estimation accuracy analysis 52
Dependence of measurement error variance on marker’s surface 52
Dependence of measurement error variance on angle 53
Function B (ay) 54
Created map of the seventh floor of the A3 building 56
Photo of placement of ArUco markers in the Mechatronics Laboratory 57
Photo of charging station Lo 58
State machine for navigation to plug in charging station 59

71

LIST OF FIGURES LIST OF FIGURES

5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

6.1
6.2
6.3

State NAVIGATE_TO_PLUG_AND_CONTROL 59
Navigation to and from the plug in the charging station 60
The top layer of state machine that controls robot 61
The navigation loop 61
Sequence of states after dockingo 61
Marker following 62
The created map of the part of the Mechatronics Laboratory 64
The ground truth map of the part of the Mechatronics Laboratory 64
The resulting comparison of created map with ground truth map 66
Localization 80
Validation of the estimated parameters for the kinematics model 81
Dependence of measurement error variance on (,: angle from optical axes in

horizontal plane 82

72

List of Tables

5.1 Estimated parameters for forward and inverse kinematics

73

Bibliography

[1]

[10]

[11]

MODEL S OWNER’S MANUAL. In: Tesla.com [online]. December 17, 2018 [cit. 2019-
05-18]. Available: https://www.tesla.com/sites/default /files/
model_s_owners_manual north_america_en_us.pdf

ADAMEK, Roman. Ndvrh mobilntho robotu s uzZivatelskym rozhranim vyuZivajicim
rozsirenou realitu. Brno, 2019. Diplomova prace. Vysoké uceni technické v Brné. Vedouci
prace Ing. Michal Bastl.

ZANCHIN, Betina Carol, Rodrigo ADAMSHUK, Max Mauro SANTOS a Kathya Silvia
COLLAZOS. On the instrumentation and classification of autonomous cars. In: 2017 IEEE
International Conference on Systems, Man, and Cybernetics (SMC) [online]. IEEE, 2017,
2017, s. 2631-2636 [cit. 2019-05-18]. DOI: 10.1109/SMC.2017.8123022. ISBN 978-1-5386-
1645-1. Available: http://ieeexplore.ieee.org/document,/8123022/

Gazebo Tutorials. Gazebosim [online]. Open Source Robotics Foundation, 2014 [cit. 2019-
04-13]. Available: http://gazebosim.org/tutorials?cat=install

Gazebo_ros_api. In: Gazebosim: ROS overview [online].
Open Source Robotics Foundation, [cit. 2019-04-13]. Available:
http://gazebosim.org/tutorials?tut=ros_overview&cat=connect_ros

FOOTE, Tully a Mike PURVIS. Standard Units of Measure and Coordinate
Conventions. ROS: REPS J|online]. 31-Dec-2014 [cit. 2019-04-14]. Available:
http://www.ros.org/reps/rep-0103.html

MEEUSSEN, Wim. Coordinate Frames for Mobile Platforms. ROS: REPS [online]. 27-
Oct-2010 [cit. 2019-04-14]. Available: http://www.ros.org/reps/rep-0105.html

FOOTE, Tully. Tf: The transform library. In: 2013 IEEE Conference on Tech-
nologies for Practical Robot Applications (TePRA) [online|. IEEE, 2013, 2013, s. 1-6
[cit. 2019-05-21]. DOT: 10.1109/TePRA.2013.6556373. ISBN 978-1-4673-6225-2. Available:
http://ieeexplore.ieee.org/document /6556373 /

BOVBEL, Paul. Conventions for IMU Sensor Drivers: REP 145. ROS: REPS [online].
02-Feb-2015 [cit. 2019-04-14]. Available: http://www.ros.org/reps/rep-0145.html

THRUN, Sebastian, Wolfram BURGARD a Dieter FOX. Probabilistic Robotics. [1st ed.].
Cambridge: The Mit Press, 2006. ISBN 978-0-262-20162-9.

DE MAESSCHALCK, R., D. JOUAN-RIMBAUD a D.L. MASSART. The Mahalanobis
distance. Chemometrics and Intelligent Laboratory Systems [online]. 2000, 50(1), 1-
18 [cit. 2019-05-21]. DOI: 10.1016/S0169-7439(99)00047-7. ISSN 01697439. Available:
https://linkinghub.elsevier.com /retrieve/pii/S0169743999000477

4

BIBLIOGRAPHY BIBLIOGRAPHY

[12]

[13]

[18]

[19]

[20]

[21]

[22]

AHN, Joseph, Moonseo PARK, Hyun-Soo LEE, Sung Jin AHN, Sae-Hyun JI, Kwonsik
SONG a Bo-Sik SON. Covariance effect analysis of similarity measurement methods for
early construction cost estimation using case-based reasoning. Automation in Construc-
tion [online]. 2017, 81, 254-266 [cit. 2019-05-21]. DOI: 10.1016/j.autcon.2017.04.009. ISSN
09265805. Available: https://linkinghub.elsevier.com /retrieve/pii/S0926580517303242

GALEANO, Pedro, Esdras JOSEPH a Rosa E. LILLO. The Mahalanobis Distance for
Functional Data With Applications to Classification. Technometrics [online]. 2015, 57(2),
281-291 [cit. 2019-05-05]. DOI: 10.1080/00401706.2014.902774. ISSN 0040-1706. Available:
http://www.tandfonline.com/doi/full /10.1080/00401706.2014.902774

MOORE, Thomas a Daniel STOUCH. A Generalized Extended Kalman Filter Implemen-
tation for the Robot Operating System. MENEGATTI, Emanuele, Nathan MICHAEL,
Karsten BERNS a Hiroaki YAMAGUCHI, ed. Intelligent Autonomous Systems 13 [online].
Cham: Springer International Publishing, 2016, 2016-9-3, s. 335-348 [cit. 2019-05-21]. Ad-
vances in Intelligent Systems and Computing. DOI: 10.1007/978-3-319-08338-4_25. ISBN
978-3-319-08337-7. Available: http://link.springer.com/10.1007/978-3-319-08338-4_25

Robot_localization wiki [online]. [cit. 2019-04-25]. Available: http://docs.ros.org/kinetic/
api/robot_localization /html/index.html

Robot_localization: Kinetic. GitHub [online]. 2019, 15 Feb 2019 [cit. 2019-04-25]. Available:
https://github.com/cra-ros-pkg/robot_localization /tree/kinetic-devel

O.H. MADGWICK, Sebastian. An efficient orientation filter for in-
ertial and inertial/magnetic sensor arrays. 2010. Available: http://x-
io.co.uk/res/doc/madgwick_internal report.pdf

Laser_scan_matcher: Package Summary. ROS.org [online]. Open Source Robotics Founda-
tion, 1 Jan 2019 [cit. 2019-05-01]. Available: http://wiki.ros.org/laser_scan_matcher

SANTOS, Joao Machado, David PORTUGAL a Rui P. ROCHA. An evaluation of 2D
SLAM techniques available in Robot Operating System. In: 2013 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR) |online]. IEEE, 2013, 2013,
s. 1-6 [cit. 2019-05-21]. DOI: 10.1109/SSRR.2013.6719348. ISBN 978-1-4799-0880-6. Avail-
able: http://ieeexplore.ieee.org/document /6719348 /

GRISETTI, Giorgio, Cyrill STACHNISS a Wolfram BURGARD. Improved Techniques for
Grid Mapping With Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics
[online]. 2007, 23(1), 34-46 [cit. 2019-05-21]. DOI: 10.1109/TR0O.2006.889486. ISSN 1552-
3098. Available: http://iceexplore.ieece.org/document /4084563 /

GERKEY, Brian. Gmapping: Package Summary. ROS.org [online]. Open Source Robotics
Foundation, 4 Feb 2019 [cit. 2019-05-01]. Available: http://wiki.ros.org/gmapping

ABDELRASOUL, Yassin, Abu Bakar Sayuti HM SAMAN a Patrick SEBASTTAN.
A quantitative study of tuning ROS gmapping parameters and their effect on per-
forming indoor 2D SLAM. In: 2016 2nd IEEE International Symposium on Robotics
and Manufacturing Automation (ROMA) [online]. IEEE, 2016, 2016, s. 1-6 [cit.
2019-05-21]. DOI: 10.1109/ROMA.2016.7847825. ISBN 978-1-5090-0928-2. Available:
http://ieeexplore.ieee.org/document /7847825 /

5

BIBLIOGRAPHY BIBLIOGRAPHY

[23]

[24]

[27]

28]

[29]

[30]

MARDER-EPPSTEIN, Eitan. Move_base. Wiki.ROS.org [online]. 2018-09-27 [cit. 2019-
05-21]. Available: http://wiki.ros.org/move_base

PUTZ, Sebastian a Simon JORGE. Move Base Flex — A Highly Flexible Navigation Frame-
work for Mobile Robots. Proc. IROS 2018. IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS-2018), October 1-5, Madrid, Spain. IEEE, 2018.

LU, David. Inflation: Inflation Costmap Plugin. Wiki.ROS.org [online]. 2013-04-25 [cit.
2019-04-27]. Available: http://wiki.ros.org/costmap_2d /hydro/inflation

MARDER-EPPSTEIN, Eitan, David LU a Dave HERSHBERGER. Costmap_2d:
Package Summary. Wiki.ROS.org [online]. 2018-01-10 [cit. 2019-04-27]. Dostupné z:
http://wiki.ros.org/costmap_2d

ZHENG, Kaiyu. ROS Navigation Tuning Guide. 2017. Available: http://kaiyuzheng.me/
documents/navguide.pdf

FOX, D., W. BURGARD a S. THRUN. The dynamic window approach to
collision avoidance. IEEE Robotics & Automation Magazine [online]. 4(1),
23-33 [cit. 2019-05-21]. DOI: 10.1109/100.580977. ISSN 10709932. Available:
http:/ /ieceexplore.ieece.org/document /580977 /

MARDER-EPPSTEIN, Eitan. Dwa_local_planner: Package Sum-
mary. Wiki.ROS.org ~ |online]. ~ 2018-06-14 [cit. ~ 2019-04-27]. Available:
http://wiki.ros.org/dwa_local_planner?distro=kinetic

BOHREN, Jonathan a Steve COUSINS. The SMACH High-Level Executive [ROS
News|. [EEE Robotics & Automation Magazine [online]. 2010, 17(4), 18-20
[cit. 2019-05-21]. DOI: 10.1109/MRA.2010.938836. ISSN 1070-9932. Dostupné z:
http:/ /ieeexplore.ieee.org/document /5663871 /

Camera Module. Raspberrypi.org: Documentation [online]. Raspberry Pi Foundation [cit.
2019-04-29]. Dostupné z: https://www.raspberrypi.org/documentation/hardware/
camera,/

The 3-Clause BSD License. Opensource.org [online]. Open Source Initiative [cit. 2019-04-
29]. Available: https://opensource.org/licenses/BSD-3-Clause

CARRIDO-JURADO, S., R. MUNOZ-SALINAS, F.J. MADRID-CUEVAS a M.J.
MARIN-JIMENEZ. Automatic generation and detection of highly reliable fidu-
cial markers under occlusion. Pattern Recognition [online]. 2014, 47(6), 2280-
2292 [cit. 2019-05-21]. DOI: 10.1016/j.patcog.2014.01.005. ISSN 00313203. Available:
https://linkinghub.elsevier.com /retrieve/pii/S0031320314000235

GARRIDO-JURADO, S., R. MUNOZ—SALINAS, F.J. MADRID-CUEVAS a R.
MEDINA-CARNICER. Generation of fiducial marker dictionaries using Mixed
Integer Linear Programming. Pattern Recognition [online]. 2016, 51, 481-491
[cit. 2019-05-21]. DOI: 10.1016/j.patcog.2015.09.023. ISSN 00313203. Available:
https://linkinghub.elsevier.com /retrieve/pii/S0031320315003544

Detection of ArUco Markers. Docs.opencuv.org [online]. 22 Dec 2017 [cit. 2019-04-29]. Avail-
able: https://docs.opencv.org/3.4.0/d5/dae/tutorial_aruco_detection.html

76

BIBLIOGRAPHY BIBLIOGRAPHY

[36]

[37]

[38]

[39]

[40]

[41]

[44]

[45]

[46]

[47]

[48]

Detection of ChArUco Corners. Docs.opencv.org [online]. Open
Source Computer Vision, 4 Jul 2018 [cit. 2019-04-29]. Available:
https://docs.opencv.org/3.4.2/df/d4a/tutorial_charuco_detection.html

Camera Calibration and 3D Reconstruction. Docs.opencv.org [online]. opencv dev team,
29 Apr 2019 [cit. 2019-04-30]. Available: https://docs.opencv.org/2.4/modules/calib3d/
doc/camera_calibration_and_3d_reconstruction.html

Calibration ~ with ~ ArUco and ChArUco. Docs.opencv.org [online]. Open
Source Computer Vision, 22 Dec 2017 [cit. 2019-04-30]. Available:
https://docs.opencv.org/3.4.0/da/d13 /tutorial _aruco_calibration.html

Cameralntrinsics. In: Mathworks.com [online]. The MathWorks [cit. 2019-04-30]. Avail-
able: https://www.mathworks.com/help/vision/ref/cameraintrinsics.html

STMICROELECTRONICS. LSM9DS1: iNEMO inertial module. 2015. Available:
https://www.st.com/content/ccc/resource/technical /document/datasheet /1e/3f/2a/d6/
25/eb/48/46/DM00103319.pdf/files/DM00103319.pdf/jcr:content /translations/
en.DM00103319.pdf

TEDALDI, David, Alberto PRETTO a Emanuele MENEGATTI. A robust and easy to
implement method for IMU calibration without external equipments. In: 2014 IEEE In-
ternational Conference on Robotics and Automation (ICRA) |online]. IEEE, 2014, 2014,
s. 3042-3049 [cit. 2019-05-21]. DOI: 10.1109/ICRA.2014.6907297. ISBN 978-1-4799-3685-4.
Available: http://ieeexplore.ieee.org/document /6907297 /

RENAUDIN, Valérie, Muhammad Haris AFZAL a Gérard LACHAPELLE. Complete Tri-
axis Magnetometer Calibration in the Magnetic Domain. Journal of Sensors [online].
2010, 2010, 1-10 [cit. 2019-05-21]. DOI: 10.1155/2010/967245. ISSN 1687-725X. Avail-
able: http://www.hindawi.com/journals/js/2010/967245/

MARKOVSKY, I, A. KUKUSH a S. Van HUFFEL. Consistent least squares
fitting of ellipsoids. Numerische Mathematik [online]. 2004, 98(1), 177-194
[cit. 2019-05-21]. DOI: 10.1007/s00211-004-0526-9. ISSN 0029-599X. Available:
http://link.springer.com/10.1007 /s00211-004-0526-9

SIEGWART, Roland a Illah Reza NOURBAKHSH. Introduction to autonomous mobile
robots. Cambridge, Mass.: MIT Press, 2004. ISBN 0-262-19502-x.

Scanning Laser Range Finder URG-04/LX-UGO01: Specifications. Hokuyo Automatic,
2009. Available: https://www.robotshop.com/media/files/pdf/hokuyo-urg-041x-ug01-
specifications.pdf

Hokuyo URG-04LX-UGO1 Scanning Laser Rangefinder. In: Robotshop.com [online]. [cit.
2019-04-29]. Available: https://www.robotshop.com/en/hokuyo-urg-041x-ug01-scanning-
laser-rangefinder.html

NAJMAN, Jan. Rozsireni robotu Car4 o palubni pocitac a snimace Kinect a Hokuyo. Brno,
2013. Bakalatrska prace. Vysoké uceni technické v Brné. Vedouci prace Ing. Josef Vejlupek.

Magnetic Encoder Pair Kit for 20D mm Metal Gearmotors, 20 CPR, 2.7-18V. Pololu.com
[online]. Pololu [cit. 2019-04-28]. Available: https://www.pololu.com/product /3499

7

BIBLIOGRAPHY BIBLIOGRAPHY

[49]

[52]

[53]

[54]

[55]

WANG, Tianmiao, Yao WU, Jianhong LIANG, Chenhao HAN, Jiao CHEN a Qiteng
ZHAQO. Analysis and Experimental Kinematics of a Skid-Steering Wheeled Robot Based
on a Laser Scanner Sensor. Sensors [online|. 2015, 15(5), 9681-9702 [cit. 2019-05-
21]. DOI: 10.3390/s150509681. ISSN 1424-8220. Available: http://www.mdpi.com/1424-
8220/15/5/9681

Documentation: SDF Specification. SDFormat.org [online]. Open Source Robotics Founda-
tion, 2019 [cit. 2019-05-03]. Available: http://sdformat.org/tutorials?cat=specification&

Gazebo_models. GitHub [online]. 25 Apr 2018 [cit. 2019-05-03]. Available:
https://github.com/mikaelarguedas/gazebo_models

Physics Parameters. Gazebosim.org [online]. Open Source Robotics Foundation, 2014 [cit.
2019-05-03]. Available: http://gazebosim.org/tutorials?tut=physics_params&cat=physics

Urdf/Tutorials. Wiki.ROS.org [online]. Open Source Robotics Foundation, 11 Apr 2016
[cit. 2019-05-03]. Available: http://wiki.ros.org/urdf/Tutorials

Xacro: Package Summary. Wiki.ROS.org [online]. Open Source Robotics Foundation, 23
Jul 2018 [cit. 2019-05-03]. Available: http://wiki.ros.org/xacro

HOFFMAN, David. Tvorba simulacnich modeli mobilnich roboti pro framework ROS.
Brno, 2017. Bakalafska prace. Vysoké uceni technické v Brné. Vedouci prace Doc. Ing.
Stanislav Véchet, Ph.D.

Ubiquity Robotics Downloads: Raspberry Pi Images. Ubiquityrobotics.com [online]. 2018
[cit. 2019-05-08]. Available: https://downloads.ubiquityrobotics.com/pi.html

XAVIER, Rodrigo S., Bruno M. F. DA SILVA a Luiz M. G. GONCALVES. Accu-
racy Analysis of Augmented Reality Markers for Visual Mapping and Localization.
In: 2017 Workshop of Computer Vision (WVC) |online]. IEEE, 2017, 2017, s. 73-
77 [cit. 2019-05-12]. DOI: 10.1109/WVC.2017.00020. ISBN 978-1-5386-1451-8. Available:
http:/ /ieeexplore.ieee.org/document/8278082/

BLANCO, José-Luis. A tutorial on SE(3) transformation parameterizations and on-
manifold optimization [online]. In: . University of Malaga, 12-09-2010 [cit. 2019-03-18].
Available: http://ingmec.ual.es/ jlblanco/papers/jlblanco2010geometry3D_techrep.pdf

PETERSEN, K.B. a M.S. PEDERSEN. The Matriz Cookbook [online]. In: .
Technical University of Denmark, 16 Feb 2008 [cit. 2019-05-21]. Available:
http://math.xmu.edu.cn/group/nona/books/meb.pdf

BROMILEY, P. A. Products and Convolutions of Gaussian Distributions [online].
In: . Machester: University of Manchester, 22. 6. 2018 [cit. 2019-05-21]. Available:
http://www.tina-vision.net/docs/memos,/2003-003.pdf

GitHub: Ubiquity — Robotics [online]. 2019 [cit. 2019-05-15]. Available:
https://github.com/UbiquityRobotics

Wiki.ROS.org: ROS [online]. Open Source Robotics Foundation [cit. 2019-05-23]. Avail-
able: http://wiki.ros.org/ROS

Gazebo Architecture. Gazebosim [online]. Robotics Foundation [cit. 2019-05-23]. Available:
http://gazebosim.org/tutorials?tut=architecture&cat=get_started

78

Appendix

A Electronic Appendixes

The enclosed DVD contains:
e / - root folder with electronic version of this thesis and following subfolders
e /Config_ ARuco - calibration files for real and simulated camera
e /control - configuration for package twist_muz and control of velocity in simulation
e /launch - all launch files described in the thesis
e /localization - calibration file for IMU
e /map - grid map of simulation environment and ArUco markers map
e /msg - created custom messages
e /navigation - configurations file for move_base_flex
e /robot_description - files for creating model of robot
e /rviz - configuration files for visualization
e /SMACH - state machines
e /src - script files
e /srv - created custom services

e /Worlds - created world in Gazebo

B Figures

1. Localization
2. Validation of the estimated parameters for the kinematics model

3. Dependence of measurement error variance on (,: angle from optical axes in horizontal
plane

79

APPENDIX B FIGURES

pose from markers

ekf _abs

ekf rel

Figure 6.1: Localization: Shown are the ellipses that represents covariance matrix of position
of output state from ekf abs and ekf-rel, and the ellipse representing covariance matrix of pose
from image processing. 80

APPENDIX B FIGURES

1 T T T T T

U S S
0u..u.m....-t.v'.::':.'.:.: : o Pl o '""""“""""'"v'"'r-m..-.-.,," - *:z:“;.:m‘m.—-m-m-mlmlmlmlm
ey, T oy ey, Rl e L g
"14.“‘ R L it
.
= -1 .]
3 e,
~ ""s.,
&~ _2 [_ .’L'g -.,\\ _
= ""'n.,h
— 3 =Y e, _
g e
- % P,
4+ Tim, _
> v 0 "'"h
~ | e y "’.fﬂ$
—~ 5L P, -
g T
u-.uuw .y,
=, .
.,
-6 ~ —
= -6 o,
™~
.
™
-7 iy
-8 | | | | |

t [s]

Figure 6.2: Validation of the estimated parameters for the kinematics model

81

APPENDIX B FIGURES

x107

Figure 6.3: Dependence of measurement error variance on (,: angle from optical axes in hori-
zontal plane

82

	Introduction
	Theoretical Survey
	Basic Information about ROS Framework
	Gazebo Simulation Environment
	ROS Packages Description
	Conventions in ROS
	Localization
	SLAM
	Navigation
	SMACH

	Sensors and Their Usage in Robotics
	Camera
	IMU
	Lidar
	Wheel Encoders

	Problem Analysis
	Division of the Work on the Project

	Simulation in Gazebo
	Creation of Simulation Environment
	Robot Modelling
	Robot Parts Modelling
	Sensors and Control

	Integration with ROS
	Localization using Extended Kalman Filters
	SLAM using Gmapping
	Navigation using Move Base Flex

	Implementation on Real Robot
	Brief Description of Used Hardware
	Experiments with Sensors
	Kinematics Parameter Estimation
	IMU Calibration and Usage
	Pose Estimation from Image Processing

	Experimental SLAM
	Navigation to Charging Station
	Complex Behavior SMACH
	Mini-games for Users
	Navigation of Malfunctioned Robot
	Creating Map of Environment

	Conclusion
	Suggestions for Further Work

	List of Abbreviations
	List of Figures
	List of Tables
	Bibliography
	Appendix
	Electronic Appendixes
	Figures

