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Abstract. Inductance simulator is a useful component in 
the circuit synthesis theory especially for analog signal 
processing applications such as filter, chaotic oscillator 
design, analog phase shifters and cancellation of parasitic 
element. In this study, new four inductance simulator 
topologies employing a single current feedback operational 
amplifier are presented. The presented topologies require 
few passive components. The first topology is intended for 
negative inductance simulation, the second topology is for 
lossy series inductance, the third one is for negative lossy 
parallel inductance (-R) (-L) and the fourth topology is for 
negative parallel (-R) (-L) (-C) simulation. The per-
formance of the proposed CFOA based inductance simula-
tors is demonstrated on both a second-order low-pass filter 
and inductance cancellation circuit. PSPICE simulations 
are given to verify the theoretical analysis.  
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1. Introduction 
The current feedback operational amplifier and 

current-conveyor integrated circuits have been given great 
importance, because these circuits have several advantages 
like greater linearity and wider bandwidth over the 
conventional voltage mode operational amplifiers. 

Actively simulated grounded inductors have been 
found in several applications ranging from filter to 
oscillator design to cancellation of parasitic inductances. 
There are several publications on the realization of 
inductance simulators using high performance active 
building blocks such as operational transconductance 
amplifiers (OTA), second generation current conveyors 
(CCII), current-feedback op-amps (CFOA), four terminal 
floating nullors (FTFN), differential voltage current 
conveyor (DVCC), current differencing buffer amplifer 
(CDBA), operational transresistance amplifier (OTRA), 
dual-X current conveyors (DXCCII), fully differential 
current conveyors (FDCCII), etc. [1] ‒ [24]. In [16], two 
active elements, one dual-output second-generation cur-
rent-controlled current conveyor (DO-CCCII) and one 
operational amplifier (Op-Amp) are used. The circuit of 
[17] uses six current conveyors and five passive elements. 
Three CCII+s and two external resistors are used in [18]. 
The circuit of [19] employs three current differencing 

buffered amplifiers (CDBAs) and three MOS resistors. The 
circuit of [20], [21] provides a negative inductance simula-
tor.  

In this paper four inductance simulator topologies 
employing a single CFOA and a various number of passive 
elements are presented. The first topology is intended for 
negative inductance simulation, the second topology is for 
lossy series inductance, the third one is for negative lossy 
parallel inductance (-R) (-L) and the fourth topology is for 
negative parallel (-R) (-L) (-C) simulation. Finally, a sec-
ond-order low-pass filter and inductance cancellation 
circuit are constructed using the proposed series inductance 
and negative inductance simulator. Simulation results are 
included to verify the theory. 

2. Proposed Circuits 
The current feedback operational amplifier symbol is 

shown in Fig. 1. This element is constructed by using the 
second generation current conveyor and voltage buffer. 

 
Fig. 1. Circuit symbol of current feedback operational 

amplifier. 

The current-voltage terminal characteristic of an ideal 
CFOA can be modeled as 
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Deviations from the ideal characteristics will affect 
the performance of the circuits realized with CFOA. 
Taking the current and voltage tracking errors into account, 
the current- voltage terminal characteristic of the non-ideal 
CFOA becomes 
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Tab. 1. Actively realizable inductance forms. 
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Tab.2. CFOA-based grounded inductance circuits for the non-ideal case. 
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where α, β and γ are the non-ideal current and voltage 
gains. 

The proposed circuits are shown in Fig. 2. Routine 
analysis of these circuits yields the relations for the input 
impedances, equivalent inductances and equivalent resist-
ances, illustrated in Tab. 1. The circuits illustrated in 
Fig. 2(b) can simulate series (+L) with (+R). The circuit of 
Fig. 2(c) simulates parallel (-L) with (-R). The last circuit 
in Fig. 2(d) simulates parallel (-L), (-C) and (-R). Besides 
the positive inductance simulator circuits, which can be 
considered as useful topologies for a circuit designer, the 
negative inductance simulators are also important. It can be 
found in many applications such as active filter design, 
oscillator design, and analog phase shifters, to minimize 
reflection at the input of antenna, to compensate bond wire 
inductance and cancellation of undesirable inductance. 
Impedance of the proposed circuits and conditions given 
for the ideal case in the previous table are modified if non-
idealities are included. Non-ideality analysis considering 
current and voltage tracking errors taken into account are 
carried out for each circuit separately. Equations modeling 
non-ideal elements are given in Tab. 2. 

3. CFOA Parasitic Effects 
Using standard notation, the CFOA depicted in Fig. 1 

can be defined as IY = 0, IZ = IX, VX = VY and VW = VZ. 
Likewise, a non-ideal CFOA can be represented in the s-
domain by the following equations: 

 IY = (sCY + 1/RY )VY,  (3a) 

 IZ = αIX + (sCZ +1/RZ)VZ, (3b) 

 VX = βVY +RXIX, (3c) 

 VW = γVZ +RWIW (3d) 

where RX, RY , RZ, RW and CY , CZ are parasitic resistances 
and capacitances at corresponding ports of the CFOA, 
respectively. Note that a plus-type CCII (CCII+) is repre-
sented by the equations (3a) through (3c). Thus, a CFOA is 
a buffered output CCII+. A CF can be obtained from the 
CCII by grounding the Y terminal of the CCII. 

The parasitic resistances RX and RW appearing in 
series, respectively, at terminals X and W are ideally equal 
to zero. On the other hand, the parasitic resistances 
RZ = 1/GZ and RY = 1/GY , respectively, in parallel with 
1/(sCZ) and 1/(sCY ) are ideally infinite. These parasitic 
elements bring extra terms to the impedances of the 
inductor simulator circuit. Therefore, reduction methods 
can be used in simulator circuits to improve their frequency 
performance. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Inductance simulators realized using single CFOA. 

4. Applications and Simulation Results 
All of the circuits illustrated in Fig. 2 are tested with 

SPICE simulations. The test circuits were constructed with 
AD844. The circuit in Fig. 2 (b) was supplied with sym-
metrical voltages of 10 V. The element values are chosen 
as C1 = 10 nF, R1 = R2 = 1 kΩ to obtain an inductance of 
Leq = 10 mH and a series resistance of Req = 0.5 kΩ. The 
frequency response of the topology in Fig. 2(b) is chosen as 
an example to demonstrate the performance of the derived 
inductance simulators. Fig. 3 shows that the magnitudes of 
the impedances of an ideal inductor and a lossy inductor 
that is a series RL circuit can be made very close for a set 
of selected values over many decades.  

 
Fig. 3. Ideal and simulated frequency responses of the series 

(RL) inductor simulator. 

Negative inductance is especially important if the 
parasitic effects have to be cancelled. The magnitude of the 
negative inductance increases with frequency in the same 
way as for positive inductances. However, a negative in-
ductance provides a negative 90° phase shifting. Typical 
waveforms of the voltage and current through the proposed 
negative inductance simulator are shown in Fig. 4. 

 
Fig. 4. Waveforms of voltage and current of the proposed 

negative inductance. 

To illustrate an application of the negative inductance 
simulator, it is employed in an inductance cancellation 
circuit shown in Fig. 5 [20], where Vin = 1 V, R = 100 kΩ 
and L = 5 mH. Applying a sinusoidal input signal of 
1.59 MHz with an amplitude of VIN = 1 V, the transient 
responses of output current IR and input voltage are 
obtained and illustrated in Fig. 6. It is shown that the 
inductance in the circuit has been cancelled by the negative 
inductance simulator. 
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Fig. 5. Inductance cancellation circuit using negative 

inductance simulator. 

 
Fig. 6. Transient responses of the inductance cancellation 

circuit. 

In order to demonstrate the performances of the 
proposed circuits, the second circuit with traditional CFOA 
is chosen as an example. Furthermore a low-pass filter 
circuit was realized as an application example by 
connecting a series capacitor to the circuit illustrated in 
Fig. 2(b). The proposed inductance simulator was used for 
constructing a second-order voltage mode low-pass filter 
shown in Fig. 7. The circuit is designed to simulate a series 
R-L combination consisting of an inductor with 
Leq = 0.1 mH and a resistance Req = 0.5 kΩ. To obtain these 
values, the following values are chosen: R1 = R2 = 1 kΩ 
and C = 0.1 nF. Choosing the capacitor with CL = 100 pF 
and driving the resulting RLC circuit with voltage of 1 V, 
the frequency responses of the ideal and simulated low-
pass filter circuits are investigated.  The circuit was sup-
plied with symmetrical voltages of ±10 V. PSPICE 
simulations were performed using AD844.  

 
Fig. 7. Voltage-mode low-pass filter application of the series 

+L with +R lossy inductor simulators.  

The frequency response of the actual circuit obtained 
from SPICE simulations is given with the response of the 
ideal circuit in Fig. 8. The simulation results show that 
filter characteristics are in good agreement with the 
predicted theoretical values. There is little difference 

between ideal and non-ideal responses in the high 
frequency region of the frequency response of this filter. 
Time domain analysis result is given in Fig. 9 for peak-to-
peak 2 V, 1 MHz sine wave input for low-pass filter con-
figuration for the circuit in Fig. 7. 

 
Fig. 8. Ideal and simulated frequency response of low-pass 

filter. 

 
Fig. 9. Time domain response of circuit in Fig. 7 for 2 V 

peak-to-peak 1 MHz sine wave input for low-pass 
filter configuration. 

5. Conclusion 
In this paper four different inductance simulating 

topologies employing a current feedback operational 
amplifier are proposed. Each presented topology employs 
only one CFOA. Examples of applications are given in 
order to illustrate the practical use of the topologies. 
Simulation results are included to verify the theory. It is 
expected that the proposed series and parallel inductance 
simulators will be useful in analog signal processing 
applications such as filter and chaotic oscillator design. 
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