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Abstract. The paper deals with techniques for a computer 
simulation of nonuniform multiconductor transmission 
lines (MTLs) based on the implicit Wendroff and the state-
variable methods. The techniques fall into a class of finite-
difference time-domain (FDTD) methods useful to solve 
various electromagnetic systems. Their basic variants are 
extended and modified to enable solving both voltage and 
current distributions along nonuniform MTL’s wires and 
their sensitivities with respect to lumped and distributed 
parameters. An experimental error analysis is performed 
based on the Thomson cable whose analytical solutions are 
known, and some examples of simulation of both uniform 
and nonuniform MTLs are presented. Based on the Matlab 
language programme, CPU times are analyzed to compare 
efficiency of the methods. Some results for nonlinear MTLs 
simulation are presented as well.  
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1. Introduction 
The simulation of multiconductor transmission lines 

(MTL) plays an important role in a design of today’s high-
speed electronic systems, especially due to continuously 
increasing clock frequencies resulting in signal integrity 
problems at the transmission structures [1]. Here not only 
possibilities to evaluate waveforms of voltage or current 
signals propagated, but also to determine their sensitivities 
with respect to various parameters are needed to be able to 
optimize the design. Besides more frequent uniform MTLs, 
the nonuniform ones should sometimes be considered to 
model more general transmission structures.  

The paper focuses its attention to two principles of the 
computer simulation of the nonuniform MTLs. First, the 
implicit Wendroff method [2], [3], originally used to solve 
transient phenomena on single and three-phase TLs in field 
of a power engineering, is discussed and further extended 
to enable such the solution. The uniform MTLs considered 
in [4] have served as a starting point for generalizing the 

method towards nonuniform MTLs [5]. To show further 
potential of the method, first experiments with a simulation 
of nonlinear MTLs are also shortly discussed. Second, the 
state-variable methods [6], [7], [8] are presented and ex-
tended for nonuniform MTLs simulation, here both in the 
time and the Laplace domain. The latter is connected with a 
proper technique of the numerical inversion of Laplace 
transforms to get the required time-domain solution. To 
evaluate computational efficiencies of the methods the 
CPU times have been assessed depending on the number of 
MTL’s wires and points of discretization. Both approaches 
are in relation to a broad class of similar finite-difference 
time-domain (FDTD) techniques being elaborated for 
solving various electromagnetic systems in the time do-
main, [9], [10], including the MTLs, [11], [12].  

Let us consider a simple MTL system containing an 
(n+1)-conductor transmission line, terminated by lumped-
parameter circuits, left (L), right (R), as shown in Fig. 1. 
 

 
Fig. 1.  MTL system containing (n+1)-conductor transmission 

line. 

Let us first consider a linear MTL defined by its 
length l and per-unit-length (p.-u.-l.) n × n matrices R0(x), 
L0(x), G0(x) and C0(x), i.e. nonuniform in general. The 
MTL telegraphic equations are [13] 
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where v(t,x) and i(t,x) are n × 1 column vectors of voltages 
and currents of n active wires at the distance x from the 
MTL’s left end, respectively. Equation (1) is supplemented 
by boundary conditions reflecting terminating lumped-
parameter circuits, by using their generalized Thévenin or 
Norton equivalents, for example, as will be shown later. 
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2. MTL via Implicit Wendroff Method 
The principle of the implicit Wendroff formula lies in 

following operations on (1). For the j-th time step and k-th 
spatial coordinate, (1) is modified by substitutions 
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where u(t,x) denotes either the voltage v(t,x) or current 
i(t,x) vectors. The indexes have ranges k = 1,2,...,K, and 
j = 1,2,...,J, with K and J as the numbers of intervals 
Δx = l/K and Δt = T/J in space and time, respectively, and 
where l denotes the MTL’s length and T the upper limit of 
the time interval of interest. So we have chosen equidistant 
intervals to simplify the notation, although they could vary 
in general. Substituting (2) into (1) leads to 
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with coefficients matrices 
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Here R0k = R0(ξk), L0k = L0(ξk), G0k = G0(ξk), C0k = C0(ξk), 
with ξk  (xk, xk+1), often ξk = (xk + xk+1)/2. Defining further 
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as column vectors of the order n(K+1) × 1, and finally 
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as the 2n(K+1) × 1 column vector, T  as the transposition, 
we can write a recursive formula 

  1 1j j j  x A Bx D  . (7) 

Formula (7) expresses the solution in incoming time tj, 
based on the values in preceding time tj-1. The matrices A 
and B are formed by (4) and by boundary conditions, the 
column vector Dj depends on values of external sources 
taken in time tj. A constitution of the matrices is explained 
by (8), when the MTL is divided only on K = 3 parts.  

The terminating circuits are supposed linear resistive, 
and they can be replaced by their generalized Thévenin 
equivalents with matrices of internal resistances RiL and 
RiR, and vectors of internal voltages viL(t) and viR(t). 
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They are located in two downmost lines of (8) accordant 
with the boundary conditions incorporation. Generally, 
when reactive elements are included, ordinary differential 
equations will be considered instead of the algebraic ones. 
To test computational efficiencies of the methods in view, 
just resistive circuits will be used. Finally, I and 0 are the 
n-th order identity and zero matrices, respectively.  

Equation (7) will now be used to derive a formula for 
evaluation of sensitivities. Let us consider a parameter γ 
which can be an element of the MTL p.-u.-l. matrices, the 
MTL length l or some lumped parameter of the terminating 
circuits. After some arrangements, we have 
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It is clear (7) is also needed in (9) thus their simultaneous 
recursive processing leads to both voltage and current 
distributions and their sensitivities. Firstly, if we exclude 
sensitivities with respect to voltages of external sources, 
∂Dj/∂γ = 0. The ∂A/∂γ and ∂B/∂γ are computed submatrix-
wise as is obvious from their decomposed forms in (8). 
Finally, ∂RiL(R)/∂γ = 0 if γ is a distributed parameter, see 
Tab. 1, or it is determined easily if γ is a lumped parameter. 
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Tab. 1. Derivatives of matrices (4) with respect to parameters γ. 
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3. MTL via State-Variable Method 
While the implicit Wendroff method represents a ful-

ly discrete MTL model, when both geometrical and time 
variables are discretized simultaneously, a model based on 
a state variable method ranks among semidiscrete ones as 
only geometrical variable is discretized at the first step. 
A corresponding MTL circuit model, a cascade connection 
of generalized Π networks, is shown in Fig. 2, with possi-
ble external circuits connected. 

The voltage vectors vk, k = 1,...,K+1, with v1 ≡ vL and 
vK+1 ≡ vR, and the current vectors ik, k = 1,...,K, are the 
vectors of state variables unknown. The lumped parameters 
of the model are set up by Cdk = C0(xk)Δx, Gdk = G0(xk)Δx, 
Ldk = L0(xk+Δx/2)Δx, Rdk = R0(xk+Δx/2)Δx, with Δx = l/K, 
and l as the MTL length. The current vectors of external 
sources are stated by iik = Rik

-1(vik – vk), when the internal 
Thévenin matrices are supposed as regular, i.e. Gik = Rik

-1 
exists. To explain a constitution of state equations, К = 2 is 
considered, while mixed cut-set and loop analyses lead to 
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Fig. 2.  MTL semidiscrete model for state-variable method based on generalized Π sections. 
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Based on (10), a general description can be written as 
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as the vector of unknown state variables. Generally, for the 
K-sectional model, we have n(2K+1) elements inside x(t), 
grouped into n × 1 column vectors, namely vC(t) holds K+1 
vectors of state voltages and iL(t) holds K vectors of state 
currents. The memory M and memoryless H matrices are 
formed based on (10) via the MTL p.-u.-l. matrices  
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and E as the diagonal-constant matrix, namely the block-
bidiagonal matrix formed by n-th order identity matrices 
according to (10). The coefficients matrix 
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is dependent on the external terminating circuits, namely 
Zi = diag(Ri1,...,Ri(K+1)) is a block-diagonal matrix formed 
by Thévenin resistive matrices, and the column vector 

  
TT

i( ) ( ),t t  u = v 0  (16) 

contains internal voltages vi(t) = [vi1(t),..., vi(K+1) (t)]
T. 

3.1 Direct Time-Domain Solution 

The first-order ordinary matrix differential equation 
(11) has the well-known solution in the time-domain [14] 
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when choosing t = 0 as the initial instant of time. To evalu-
ate this formula two key parts must be solved: the matrix 
exponential function and the convolution integral. Both are 
becoming harder to perform due to large orders of matrices 
used. From computational point of view it is therefore 
more advantageous to use a procedure as follows. When 
choosing an equidistant time division ∆t = tj – tj-1, j , and 
using the rectangular rule of the integration, an approxi-
mate recursive formula can be developed as 
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 1 ( )j t j t je e    A Ax x I Bu  (18) 

where denotations were introduced as 

  -1A = M H + P  ,     1
B = H + P P  , (19) 

with xj ≈ x(tj), u
j = u(tj) and I denoting the identity matrix. 

In case of u(t) = 0, i.e. when finding response to the initial 
condition x(0)  0 only, the recursive formula leads to the 
exact solution xj = x(tj), independently on a choice of ∆t. 
The matrix exponential function can be stated by various 
techniques, e.g. via the Taylor series expansion [15]. 

To find sensitivity with respect to parameter γ we can 
proceed as follows. First, if we exclude sensitivities with 
respect to the elements of external circuits voltages uj, i.e. 
when ∂uj/∂γ = 0, (18) can be differentiated leading to  
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It is clear that (20) must be evaluated together with (18). 
To get a derivative of a matrix exponential function in (20), 
more techniques can be used [16]. For each one, however, 
the derivative of A in the exponent is needed. Hence, both 
∂A/∂γ and ∂B/∂γ are shown in Tab. 2 depending on γ. 
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Tab. 2.   Derivatives of matrices (19) with respect to parameters γ. 

Finally, the ∂M/∂γ and ∂H/∂γ are done submatrix-wise as 
follows from  (13) and (14), see Tab. 3, 
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Tab. 3.   Derivatives of matrices (13) with respect to parameters γ. 

 

and the ∂P/∂γ follows (15) and results in 
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with ∂Zi/∂γ = diag(∂Ri1/∂γ,...,∂Ri(K+1)/∂γ) being the block-
diagonal matrix. 

3.2 Solution via Laplace Domain and NILT 

Applying Laplace transformation onto (11) and doing 
some arrangements we get an s-domain solution 

    1

0( ) ( )s s s
   x H P M Mx Pu  (22) 

where x(s) = Ł{x(t)} and u(s) = Ł{u(t)} denote Laplace 
transforms of time-dependent variables, and x0 = x(t)|t = 0 is 
the vector of initial conditions defined by (12). Note that 
the s-domain solution can be generalized towards the 
MTLs driven or terminated by memory-element circuits 
easily, through the matrix P ≡ P(s), and possible frequency 
dependences of the MTL primary parameters could be 
incorporated, resulting in M ≡ M(s) and H ≡ H(s).   

Herein formulae for the Laplace-domain sensitivities 
with respect to either MTL parameters or external circuits 
parameters can be stated. Namely, the differentiation of 
(22) with respect to a parameter γ leads to a formula  
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  (23) 

The above derivatives are again stated via Tab. 3 and (21), 
in case of distributed- and lumped-parameter sensitivities, 
respectively. If zero initial conditions are considered, i.e. 
x0 = 0, (23) can slightly be simplified. The further solution 
continues with a usage of the numerical inversion of 
Laplace transforms (NILT) method to get the solution in 
the time domain, here [17] will be used in the examples. 

4. Basic Experimental Error Analysis 
An accuracy of the methods will experimentally be 

evaluated through known analytical solutions for voltage 
and current distributions on a Thomson cable, a uniform 
single TL with negligible L0 and G0 parameters. The cable 
is driven from a unit step voltage as shown in Fig. 3. 

 

Fig. 3.  Transmission line system with Thomson cable. 
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For an infinitely long cable, when no reflected waves exist, 
analytical solutions have the forms [7] 
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a t R t C R b t x x R C t
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  

  

 (24) 

with erfc as a complementary error function. To ensure a 
validity of the above equations at the TL of a finite length 
l, it is terminated by a time-dependent resistance riR(t) 
matching it perfectly in the time interval of interest. The 
relative errors evaluated in case of K = J = 256 are shown 
in Fig. 4 for all methods. 

  

 

  

  

Fig. 4. Thomson cable relative errors (Wendroff vs. state 
variables). 

The semirelative sensitivities based on (24) have been 
derived, see Tab. 4, and some graphical results are shown 
in Fig. 5. Relative errors increase generally at beginning of 
a time interval where discontinuities occur. In this special 
case, when a terminating resistance riR(t) is time dependent, 
as defined in Fig. 3, the matrix A in (7) has to be evaluated 
repeatedly in each time step with the help of (24), for x = l 
substituted, when the Wendroff method is used. Similarly, 
in case of the state-variable method in the time-domain, P 
in (15) must repeatedly be determined. For the s-domain 
solution (22), ZiR(s) = √R0/sC0 is used to match the load. 
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Tab. 4.  Semirelative sensitivities for Thomson cable. 

  

  

  
Fig. 5. Thomson cable semirelative sensitivities and relative 

errors. 

5. Examples & CPU Time Evaluation 
The following examples will process a simple (2+1)-

conductor transmission line system in Fig. 6. The Thévenin 
internal resistance matrices and voltage vectors are  
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Fig. 6.  Simple (2+1)-conductor transmission line system. 

First, the MTL is considered under zero initial conditions, 
i.e. v(x,0) = 0 and i(x,0) = 0, while viL1(t) = sin2(πt/2·10-9), 
0 ≤ t ≤ 2·10-9, and viL1(t) = 0, otherwise. The MTL’s length 
l = 0.4 m and P0(x)  {R0(x), L0(x), G0(x), C0(x)} is any of 
its p.-u.-l. matrix defined as 

 11 12
0 0

12 22

( ) px pxP P
x e e

P P

 
   

 
P P   (26) 

with the individual primary parameters R11 = R22 = 0.1 Ω/m, 
R12 = 0.02 Ω/m, L11 = L22 = 494.6 nH/m, L12 = 63.3 nH/m, 
G11 = G22 = 0.1 S/m, G12= -0.01 S/m, C11 = C22 = 62.8 pF/m, 
and C12 = -4.9 pF/m [18]. If p = 0, for all the matrices, an 
MTL becomes uniform. An inhomogeneity is introduced 
by the value p = ln(2)/l ≈ 1.733 to get two-time greater    
p.-u.-l. parameters at the MTL‘s end compared to its 
beginning. The examples for both uniform and nonuniform 
MTLs are shown in Fig. 7. 

  

  

  
Fig. 7. Voltage distributions (left) and their semirelative 

sensitivities with respect to L12  L0(x) (right) for 
uniform and nonuniform MTL. 

It can be seen when doubling all p.-u.-l. parameters (2P0 in 
Fig. 7) the MTL time delay increases, roughly twice (as 
reactive parameters are increased). In case of a nonuniform 
MTL, a wave velocity is not constant, but it decreases 
gradually along the line leading to intermediate time delay.  

The methods can easily be adapted to get responses to 
MTL initial voltage or current distributions. The examples 
in case of the voltage distribution on the first wire 
v1(x,0) = sin2(π(4x/l – 3/2)), if 3l/8 ≤ x ≤ 5l/8, or v1(x,0) = 0, 
otherwise, with all the other quantities equal zero, are 
shown in Fig. 8. All the results for linear MTLs were also 
compared with a Laplace transform method [12], with very 
good matching. 

  
Fig. 8.  Voltage (left) and current (right) responses to unitial 

v1(x,0). 

In the end, some experiments with the simulation of 
nonlinear MTLs via the Wendroff method are shown in 
Fig. 9. In this case, the equation (7) is modified on a form 
xj = (Aj-1)-1(Bj-1xj-1+Dj), when Aj-1 and B j-1 depend on live 
x j-1 and must be evaluated repeatedly in each time step. 
The nonlinearity is introduced through C0 matrix, in which 
C11 = C22 p.-u.-l. capacitances are replaced by the voltage-
dependent ones, namely C(vi) = Cii/(1+|vi|/Vp)

2, i = 1,2, for 
Vp = 0.75 V. The MTL excitation corresponds to that used 
for the example in Fig. 7. 

  
Fig. 9.  Voltage distributions for nonlinear uniform/non-

uniform MTL. 

To evaluate efficiencies of the above techniques the 
CPU times have been assessed for increasing numbers of 
grid points (the Wendroff method) and MTL sections (the 
s-domain state-variable method and NILT), as a function of 
the numbers of MTL’s wires, see Fig. 10 and 11. 

 
Fig. 10.  CPU times for implicit Wendroff method in Matlab. 
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Fig. 11. CPU times for s-domain state-variable method in 

Matlab. 

6. Conclusions 
All the computer experiments have been performed 

on a PC 2GHz/2GB, in the Matlab language. It seems from 
an error analysis the Laplace-domain state-variable method 
connected with an NILT technique is the most accurate 
one, at least when discontinuities occur. It will depend, of 
course, on the type of the NILT. The direct time-domain 
approaches seem to be comparable, but the state-variable 
technique depends on a method of a matrix exponential 
function evaluation which can rather be a problem for 
high-order matrices. Besides, both the discussed state-vari-
able approaches are only intended for linear MTLs, al-
though its time-domain formulation can be processed by 
more general case taking also a non-linearity into account. 
The implicit Wendroff method is simpler to be used for 
nonlinear MTL cases, and based on the first experiments, 
just this direction will further be investigated. As follows 
from CPU times in Fig. 10 and 11, the implicit Wendroff 
method seems to be the fastest. The time-domain state-
variable method depends strongly on a matrix exponential 
evaluation process, and is markedly more time and RAM 
consuming. Based e.g. on a Taylor series and taking 256 
sections, a CPU time reached up to 370 s for a 10-wire TL, 
and RAM did not allow more sections. Further works are 
planned in future to analyze the error levels vs. discretiza-
tion parameters in both methods. 
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