
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

KLASIFIKACE ZVEŘEJNĚNÉHO OBSAHU
A CLASSIFICATION OF A SYNDICATED CONTENT

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE IZIDOR MATUŠOV
AUTHOR

VEDOUCÍ PRÁCE Ing. ALEŠ SMRČKA, Ph.D.
SUPERVISOR

BRNO 2011

Abstrakt
Tato práce pojednává o klasifikaci zveřejněného obsahu jako o způsobu jeho organizace.
Klasifikace využívá algoritmy pro zpracování přirozeného jazyka, speciálně pro angličtinu.
Hlavním přínosem práce je aplikace algoritmu pro odstraňování nejednoznačnosti významů
slov z textu. Pro zpříjemnění práce s výslednou aplikací je snaha o eliminaci fáze učení
a možnost organizace obsahu na základě stylu, kterým je napsán. Aplikace je implemen-
tována jako rozšiřitelný server-klient model. V rámci práce byli vytvořeni dva klienti:
webová čtečka zpráv a export článků prostředníctvím RSS formátu. V závěru práce se
pojednává o možném pokračování v budoucnu.

Abstract
This work deals with a classification of a syndicated content as the possible way of or-
ganizing the content. The classification uses algorithms for natural language processing.
The main contribution is applying word sense disambiguation algorithm for enhancing
the classification, eliminating the learning stage, and using a readability test for improv-
ing user experience. The application is implemented as an extensible server-client model.
The future work is discussed in the end.

Klíčová slova
klasifikace textu, zveřejněný obsah, RSS, NLP, anglický jazyk

Keywords
text classification, syndicated content, RSS, NLP, English language

Citations
Izidor Matušov: A Classification of a Syndicated Content, bakalářská práce, Brno, FIT
VUT v Brně, 2011

A Classification of a Syndicated Content

Declaration
I declare that this thesis is my own account of my research and contains as its main content
work which has not been previously submitted for a degree at any tertiary educational
institution

. .
Izidor Matušov

May 18, 2011

Acknowledgements
Many Thanks to my thesis advisor Ing. Ales Smrčka, Ph.D. for his willingness, support,
guidance, and priceless advices.

c© Izidor Matušov, 2011.
This work was created as a school project at Brno University of Technology, Faculty of In-
formation Technology. The work is protected by copyright laws and its use without author’s
permission is prohibited, except for the cases defined by law.

Contents

1 Introduction 3

2 State of the art 4
2.1 Syndicated Content . 4

2.1.1 Applications for a Syndicated Content 4
2.2 Natural Language Processing . 6

2.2.1 The Standford Parser . 6
2.2.2 Natural Language Toolkit . 6
2.2.3 Word Sense Disambiguation . 7

2.3 Text Classification . 7
2.3.1 Manual Tagging Services . 9
2.3.2 Readability Tests . 10

2.4 Similar Work . 10

3 Design of the System 12
3.1 Architecture . 12

3.1.1 Web News Reader . 12
3.1.2 Exporting an RSS Feed . 13

3.2 Classification . 13
3.2.1 Multi-label Classifier . 14
3.2.2 Adding a new Feed . 16
3.2.3 Fetching New Articles . 16
3.2.4 Enhanced Classification . 16

4 Implementation of the Classification System 18
4.1 Programming Language . 18

4.1.1 Programming Style . 18
4.1.2 Pylint tool . 18

4.2 Server Side . 19
4.2.1 Persistent Database . 19
4.2.2 Classification Part . 20
4.2.3 Delicious.com Tagging Service . 21
4.2.4 Tags form New York Times Keywords 22
4.2.5 Readability Test . 22
4.2.6 XML-RPC interface . 22

4.3 Web News Reader . 23
4.4 Export RSS feed . 23

1

5 Testing the Application 26
5.1 Testing of Web News Reader . 26
5.2 Testing Export of an RSS Feed . 28
5.3 Experimenting with the Classification . 29

6 Conclusion 31
6.1 Future work . 31

A Content of CD 34

B Installation 35
B.1 Installing dependencies on Ubuntu 11.04 . 35
B.2 Installing dependencies on FreeBSD 8.2 . 36
B.3 Installing on Windows XP . 37

2

Chapter 1

Introduction

Nowadays mankind suffers from information overload. The amount of available information
increases rapidly. The proliferation is caused by availability of the Internet and by lowering
barriers of publishing content. A publisher just needs to register to one of online blogging
services and to start publishing without any technical expertise.

Formats for syndicating contents like RSS and Atom easily deliver users new articles,
blog posts, videos, and podcasts right to the aggregator. Just couple sources of information
can generate tens or hundreds pieces of a new content in one day.

However, the user is not usually interested in every piece of a new information. She
wants to choose the most appealing articles and ignore others. Sources offer a content of
different quality and topic. Typically, the political articles in an online version of newspapers
goes with sport articles which are not exciting for every user. Another situation is a big
amount of similar articles reacting to the same community, national, or worldwide event.
The articles came from different sources, and thus has a different point of view on the event.
The reasons described above imply a need for an efficient way of organizing of a syndicated
content.

This work proposes a classification of a syndicated content using algorithms for natural
language processing, in particular, for English language. Online services which provide man-
ually tagged content like Delicious.com and NYTimes.com, are used to eliminate a learning
stage of the classification. If the user has more articles with a similar content, she can
choose one regarding the way an article is written. So-called readability tests determine
requirements on a reader to fully understand the text. The user is offered two interfaces to
a content: exporting an RSS feed to user’s news reader or a web page where she can filter
the content by tags and correct classifying algorithm.

Different approaches for organizing a syndicated content are discussed in the next chap-
ter. Algorithms for a text classification and natural language processing are briefly ex-
plained. The description of proposed extensions are followed by comparing this work to
already existing, similar work. Chapter 3 deals with the design of the system. Proposed
algorithms and extensions are combined to improve user experience. The choice of pro-
gramming language and libraries and the protocol for communication between different
parts of the system are documented in Chapter 4. In Chapter 5, a test suite for confirming
the system quality is described.

3

Chapter 2

State of the art

In this chapter, a syndicated content and its formats are described. There is a description
of existing applications which deal with a syndicated content. The rest of the chapter is
dedicated to the introduction of used technologies.

2.1 Syndicated Content

A syndicated content is a set of changes which a website announces to its visitors. A syn-
dication from one website, also called a feed, allows the user to be notified about a new or
updated already existing content. The user does not have to check the website regularly
but she is informed about every change. It is comfortable for the user to watch several
websites without need to check them.

A syndication is widely used by publishers on the Internet. To set up a syndication,
a file in the special format is created. Such a file is distributed through HTTP protocol.
Modern content management systems like WordPress update such a file every time a new
content is created, updated, or deleted. The work with a syndication is fully automatic and
a publisher has no additional work with it.

The most used formats are RSS (Really Simple Syndication) [16] in several versions and
Atom [8]. Both of them consists of information about the website they come from and set
of articles. Every article has a set of attributes which depends on the format. An article is
provided with a title, a link, and a content—abstract or full text of the article.

2.1.1 Applications for a Syndicated Content

There are many application created for a syndicated content. Most of them are designed
for subscribing and working with several feeds. Just a several feeds could bring to the user
tens or hundreds of articles. There is need for an efficient way of organizing articles.

Organizing by a Category

The basic approach is to organize feeds into categories. New articles are then placed into
a category regardless of the actual content.

It is sufficient for feeds which are dedicated to just one topic. However, it does not
apply to all feeds. For example, an online newspaper publishes articles of many topics in
the same feed. If the user is interested just in sport, articles about the current political
situation are still presented in sport category.

4

Application for KDE desktop environment called Akregator supports organizing by
a category.

Organizing by Tags

A few application go further and allow a feed to belong into multiple categories called tags.
It is convenient especially for mixed sources.

The user could put a feed from the online newspaper into tags sport and political
situation. Articles about political situation are still present in sport but the user can skip
them and read them later in political situation.

This approach is used by Google Reader—a web-based application.

Organizing by Rules

There is a possibility to create a set of rules and organize articles by them. An example of
such a rule:

Put in a special category called Sport the content from cnn.com which contains
the word

”
goal“.

Achievable effects are various and strongly depend on possibilities of the application.
The user can organize the content by its title, date of publishing or a presence of words in
an abstract of the article. Rules are created in a simple language which is very similar to
computer language for defining mail filters.

Although it allows organizing articles based on their content, the user intervention is
needed to create a set of rules. To create a definition is laborious work and the features
of articles which articles should be organized by, are not always obvious. This approach is
suitable just for experienced users.

The feature is presented in open-source application Liferea where it is called Search
Folder.

Organizing by Text Classification

In the past, administrators of mail servers had similar problems with creating rules which
separate spam e-mails from other e-mails. In year 2002, Paul Graham reduced the problem
by applying Naive Bayes filtering [3]. Nowadays, the administrators use this approach to
distinguish spam e-mails. Naive Bayes filtering is an example of the text classification.

When an administrator wants to deploy Naive Bayes filtering, she must provide two sets
of e-mails: spam and non-spam e-mails. The text classifier creates the rules by learning
from data. It determines statistical dependences between features of the e-mail and whether
the e-mail is or is not spam. The dependences could be interpreted as a rule:

If an e-mail contains word
”
watch“, the probability it is spam is 70%.

When a new e-mail arrives, it is classified by its features. The details of Naive Bayes
classification are covered in Section 2.3. This work uses the text classification for organizing
articles.

5

2.2 Natural Language Processing

Text classification can leverage Natural language processing (NLP). The aim of NLP is to
create algorithms for a processing of human language and an understanding the written
text.

The classification is not able to work with a text as the whole. There come NLP
algorithms which transform a document into a set of features of the document. The text
is firstly tokenized, i.e. split into list of words, tokens. Natural language contains words
with no particular meaning called stop words which are often omitted. The stemming—
transforming words into their very basic form, is often applied. It prevents having several
tokens for the same word. For example, experience, experiences and experienced would be
replaced by the same token although their meaning could be different.

Afterwards the list of tokens is transformed into features. There are several formats of
features:

1. boolean features based on the presence in the text;

2. number of occurrences of a word in the text, almost always is used relative percentage
to the whole text;

3. special features like collocations (groups of tokens) or length of text;

4. combination of previous options.

The choice of the format of features depends mainly on the usage. In articles, writers
want to prevent repetition of words and they use variety of synonyms. Therefore the first
option is suitable for common text. The algorithms are described in more details in [6].

2.2.1 The Standford Parser

The Standford Parser [4] is a natural language parser created by The Stanford Natural
Language Processing Group. It works out the grammatical structure of sentence. At first,
the parser determines part of speech (so-called POS tagging) for each word, i.e. whether
the word is used as noun or verb. Afterwards, tagged words are parsed to the tree where
the subject or the object of the sentence could be easily found. Dependencies between
words also known as grammatical relations are generated from the tree in the last step.

The Standford Parser is written in Java programming language and distributed under
GPL licence. The parser is dedicated to just one task of NLP—parsing sentences.

2.2.2 Natural Language Toolkit

Natural Language Toolkit (NLTK) is an open source library for Python programming lan-
guage which provides common algorithms for natural language processing, text classifica-
tion and information retrieval. It also provides an interface for grammar collections, trained
models and corpora like WordNet.

NLTK is well documented. The first steps with NLP and practical examples using
NLTK library are described in [2]. The most common problems are solved in [9]. This book
is a great inspiration for working with classification by using NLTK.

The library is published under Apache License. Corpora, trained models, and other data
are published under various licenses and must be installed by the first time of usage. The aim
of NLTK is to be a general library which provides solid foundation for NLP application. It is

6

not so task-specific as the Standford Parser. Because of the requirements of this thesis and
Python programming language, NLTK has been chosen instead of the Standford Parser.

2.2.3 Word Sense Disambiguation

A natural language is ambiguous. A single word could have more meanings, e.g.
”
church“

could mean a building or a religious service. On the other side, two single words like

”
dollar“,

”
buck“ could describe in certain countries the same thing—money. The goal of

word sense disambiguation is to assign a correct sense, meaning to every word in a text.
There are several approaches how to solve this problem. Rada Mihalcea proposes a so-

lution in [7, 11] using graph algorithms. A sense of a word depends on its context—a few
words around the word. For every possible combination of senses of two words is created
a dependence. Every dependence has a weight which is based on a similarity of two senses.
If the weight is very low, the dependence is destroyed. Otherwise, it is added to a graph
which represents connections between senses. When the graph is completed, a graph al-
gorithm determines a weight of each sense. In the last step, each word is assigned a label
with the highest weight.

There are several possible metrics for dependencies between senses. They are described
in [11]: Leacock & Chodorow, Lesk, Wu & Palmer, Resnik, Lin, and Jiang & Conrath.
Lesk metric and its adaptations is described in dmore etail in [1]. The cited sources use
WordNet, a large lexical database of English, for list of possible senses for each word. Some
metrics for dependencies are also accessible through WordNet.

2.3 Text Classification

Classification works in two stages:

• learning stage — a classifier finds statistically important features of known documents
and their assigned tags;

• classifying stage — a classifier determines a probable tags for an unknown document.

The overall diagram is in Figure 2.1. On the left side is the input of classification, on
the right side is the output. In the learning stage, a set of documents—articles represented
as a vector of features and set of tags associated with that article are given as a training
set to a classifier. The classifier finds dependencies between features and assigned tags. In
the classifying stage, a new vector of features is assigned tags based on those dependencies.
The output of the classification is a set of tags which should be assigned to the article.
An example of the classifier is Naive Bayes classifier.

Naive Bayes Classifier

Naive Bayes classifier is based on Bayes theorem which is well explained in [17]. Let have
situation:

10% of the user e-mails are spam. 87% of spam e-mails contain word
”
watch“.

However, 6% of e-mail which are not spam, also contain word
”
watch“. The user

has got a new e-mail which contains word
”
watch“. What is the probability that

it is a spam?

7

Learn

Classify

To
 fe

a
tu

re
s

Article

Tags

Article

To
 fe

a
tu

re
s

Tags

Figure 2.1: Stages of a text classification. Firstly, a classifier learns and then classifies
unknown articles.

To write down mathematical probabilities, we need to use conditional probability P (B|A)
which says the probability of event A if event B has occurred. Probability of incoming spam
is P (S) = 0.1. The probability that a spam e-mail contains word watch is P (W |S) = 0.87.
The probability that a non-spam e-mail contains word watch is P (W |¬S) = 0.06. The an-
swer to the question is P (S|W).

The problem could be solved without using any formal notation. The total ratio of
e-mails which contains watch and are spam, is 0.1 · 0.87 = 0.087. The total ratio of e-mails
which are not spam and contain watch is (1− 0.1) · 0.06 = 0.054. In this case, the count of
all e-mails with word watch is 0.087 + 0.054 = 0.141. The probability it is a spam is

0.087

0.141

.
= 0.617 = 61.7%

The process can be formalized by using Bayes theorem for two events:

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|A)P (¬A)

Substitute probabilities with the give ones and the result is:

P (S|W) =
P (W |S)P (S)

P (W |S)P (S) + P (W |¬S)(1− P (S))
=

0.87 · 0.1
0.87 · 0.1 + 0.06 · 0.9

.
= 0.617 = 61.7%

Extend situation:

. . . 1% of spam e-mails contain a word
”
TV“. 30% of non-spam e-mails con-

tain the word
”
TV“. What is the probability that an e-mail containing TV is

a spam?

The same approach could be applied:

P (S|T) = P (T |S)P (S)

P (T |S)P (S) + P (T |¬S)(1− P (S))
=

0.01 · 0.1
0.01 · 0.1 + 0.3 · 0.9

.
= 0.0037 = 0.37%

However, both words could be in a same e-mail:

8

. . . What is the probability that an e-mail containing words
”
TV“ and

”
watch“

is a spam?

If a naive assumption that the words in the e-mails do not depend on each other is made,
the events are independent. The probability a spam e-mail contains both of the words is
P (W |T |S) = 0.87 · 0.01 = 0.0087 . The probability a non-spam e-mail contains both of
the words is P (W |T |¬S) = 0.06 · 0.3 = 0.018. The problem could be solved with those
pieces of information:

P (S|T |W) =
P (W |T |S)P (S)

P (W |T |S)P (S) + P (W |T |¬S)(1− P (S)

=
0.0087 · 0.1

0.0087 · 0.1 + 0.018 · 0.9
.
= 0.051 = 5.1%

Formal declaration is

P (label|features) =
P (label)

∏
f∈features

P (f |label)

P (label)
∏

f∈features
P (f |label) + P (¬label)

∏
f∈features

P (f |¬label)

(2.1)
How does Naive Bayes classifier work? In the learning stage, documents are transformed

into a set of binary features. For each feature is computed a probability P (feature|label).
The probability P (label) is based on the ratio of the training set.

When classifying, an unknown document is transformed again into a set of binary
features. For each label P (label|features) is computed according 2.1. The article is assigned
a label with the highest probability.

Naive Bayes classifier supports only binary features and is able to classify into several
labels. The accuracy of classification depends on the training set and the set of unknown
documents. More details about this classifier and Bayes theorem is in [17, 9].

NLTK also provides classifiers based on decision tree, maximum entropy. All of them
extends the same interface. Classifiers could be easily changed according the needs of task.

2.3.1 Manual Tagging Services

There are several initiatives where people manually assign tags to articles. The approach
could be divided in two different approaches:

Writers assigning tags

Some writers assign tags, keywords to their articles. An example could be New York
Times and its online portal NYTimes.com where an article is assigned a set of tags before
publishing. Tags are assigned by professional journalists. Tags are easily accessible in
metadata of HTML code of web page.

Some CMS systems like WordPress allow people to assign tags to articles. Not every
writer is using this feature. A writer and a reader could have different opinion whether
tags are placed correctly to the article or not. Tags must be parsed from HTML code of
different themes for CMS what complicates their extraction.

9

Readers assigning tags

There are communities which share articles among them and assigned tags manually. Read-
ers read an article and if the article is interesting for them, they assign tags to article and
share it to their friends.

The disadvantage is a delay while enough users read the article and assign tags to it. It
is slow but relatively accurate way how to determine the list of tags.

Such a service is Delicious.com which is popular in the United States and provides
a public interface to resolve the most assigned tags to an article.

2.3.2 Readability Tests

Readability tests are widely used in the United States, mainly by government and phar-
maceutical companies. The goal of readability tests is to determine minimal reading skills
and education to fully understand a text.

The algorithm of a readability test takes a text as an input and results with a number
representing how much difficult is to read the text. Easily said, the algorithm compares
how long sentences and how complicated words are, while the definition of a complicated
word is based on a consequence of the Zipf’s law such that the longer words are used less
and not so easily understood as the shorter words. In the system proposed in this work,
the readability test inform the user how difficult the text is by assigning a special set of
tags. When more articles with similar content are available, the user can choose which
article read first with regard to how the text is written. DuBay explains readability tests,
their reasons and history in [14].

An example of a such test is Flesch Reading Ease test which is computed as:

score = 206.835− 1.015
total words

total sentences
− 84.6

total syllables
total words

Score is a number from scale 0 — 100. The score could be represented according
Table 2.1.

Score Meaning

0 — 60 Very difficult
60 — 90 Suitable for adult audience

90 — 100 Very easy

Table 2.1: Levels of reading ease. Based on [14].

2.4 Similar Work

A similar approach to a text classification is the usage of term extraction. It determines
the most important words or groups of words, terms, which represent a document. It is
a part of Information retrieval [5] and the most obvious usage is crawling the Internet to
fill databases of search engines.

Term extraction works just on the level of words. Relation between terms could be
lost by the extraction. On the other side, a text classification works on higher level where
dependencies between words and tags are looked for.

10

There is already a work which uses a text classification for a syndicated content [10].
The authors set up a service which puts articles into one of three different categories:
business, sport, and politics. It is hard to classify an article to just one category if it
is about two topics and even if the list of categories is fixed. In this work, the system
is proposed where the user have her own set of tags which could be edited by adding or
removing a tag. Every article is classified and assigned one or more tags based on the topic
of the article.

11

Chapter 3

Design of the System

In this chapter, the architecture of the system, algorithms, and interconnection between
used technologies are described. In the beginning, let us define terms which will be used
for describing the design.

Notions

Feed is an arbitrary file with a syndicated content. A feed must be valid according one
of RSS or Atom standards [16, 8]. A syndicated content in feed consists of several items
which represent articles. Every article has a title, a link and associated text—abstract.
An article is categorized into several tags. An article is represented for the classifier as
a vector of binary features—presence of words.

3.1 Architecture

The system for classification should work as a server-client application. The standalone
server regularly refresh subscribed feeds and classify new articles. The server should support
several users. Communication between the server and clients should be done through XML-
RPC1. The system would be easily extensible for writing a new user client. The algorithms
for classifying articles and user interface are separated.

As depicted in Figure 3.1, there are several possible clients: a feature rich news reader
on the web, exporting articles with certain tags through an RSS feed to already existing
news reader, or there is room for other clients like desktop applications.

3.1.1 Web News Reader

The web news reader should support several users. A new user can sign up into the system
through the web user interface. The user can log in to the system, change her password or
logout from system. The first time she logs in, an tutorial video shows her how to work
with the system.

The main part of the web reader is a page where the user could read articles. There is
a panel where the user could filter articles by clicking on tags. She could choose more tags
at the same time. The filtering works as logical conjunction, i.e. every shown article has to

1XML-RPC is Remote Procedure Call protocol which encode communication in XML format and uses
HTTP for transporting requests.

12

XML RPC

Server

Web UI RSS feed CLI

Figure 3.1: Architecture of the system: an usage of server-client model and communicating
over XML-RPC.

have assigned all chosen tags. After choosing an article to read, it is marked as read and
opened in a new window. User could also mark as read all shown articles.

3.1.2 Exporting an RSS Feed

If the user prefers an existing news reader, she could subscribe to a special RSS feed.
The feed contains articles which have assigned certain tags. This exporting is useful when
the user is interested just in certain tags and other articles are not interesting for her.

<E> → (<E>) | n <E> | <E> a <E> | <E> o <E> | [0-9]+

Figure 3.2: Grammar of the language for defining export an RSS feed.

The filtering articles is based on a parameter of the feed. It supports a simple language
for selecting articles. The language is generated by a grammar in Figure 3.2. The language
contains boolean operations AND, OR, and NOT, grouping expressions by parentheses.
Language works with identification numbers of tags.

An example of such feed could be http://localhost/?u=42&q=(45a64)o(n45a54)
which exports articles of the user #42 which have tag #45 and #64 or in case article
does not have tag #45 but have #54.

3.2 Classification

The classification works with the text of the articles. An article could contain other in-
formation than text like pictures, sounds or video linked to article using HTML code.
The classification works with the text of the articles and therefore any HTML code is
dismissed.

We suppose every article is written in English language. English is widely used on
the Internet and the most of the content is written in this language. The presented algo-
rithms could be used on other languages with some edits as well. Some languages need
different processing due the different grammar structures. For example German contains

13

many compound words which should be split into simple words during transformation for
higher efficiency.

Classifiers do not work with the text of an article. Every time an article is on the inputs
of an algorithm, the article must be transformed into vector of features. Transformation is
described in Algorithm 1. The final vector of features is sparse. It contains just positive
features because the count of words is theoretically unlimited.

Algorithm 1: Transformation of an article into the vector of features.
Input: article (an article)
Output: vector (a vector of features for the article)

vector := ∅
text := title of article + abstract of article
words := perform Word Sense Disambiguation (text)
words := omit stop words (words)
words := omit duplicate words (words)
for each word in words do

feature := a positive feature (
”
contain “ + word)

vector := add to vector (vector, feature)
end for each
return vector

In comparison with the regular transformation of a document into a vector of features
described in Section 2.2, the tokenizing of the text is replaced by word sense disambigua-
tion algorithm. Word sense disambiguation is described in Algorithm 2 and is based on
algorithms proposed in papers [7, 11].

Dependence between two senses uses combined metrics as suggested in [11]. Comparing
two nouns is done through Jiang and Conrath method. Two verbs are compared using
Leacock and Chodorow method. Other cases use Lesk method which is based just only on
overlapping of words in definitions of senses. Although it is a simple method, it is best for
cases where other methods can not be used.

Page Rank algorithm is used as a graph algorithm. It provides satisfiable results and
was used in the very first version of algorithm in [7]. Page Rank is an iterative algorithm.
In each step, every verticle of the graph distributes its score to neighbor verticles:

WP (Va) = (1− d) + d
∑

Vb∈In(Va)

wba∑
Vc∈Out(V b

WP (Vb) (3.1)

where Vx is a verticle of the graph, WP (x) is the score of a verticle, In(x) and Out(x)
are functions which return the list of neighbor verticles with an oriented edge which goes
in/out. In this case, the graph is symmetric and therefore In(x) and Out(x) could be
replaced by Edge(x) which returns the list of neighbors. d is a constant from 0 to 1 which
ensure convergence of the algorithm. Larry Page, the author of the algorithm, used d = 0.85
for his implementation and it is the typical value. Page Rank algorithm is covered in detail
in [7].

3.2.1 Multi-label Classifier

A regular classifier is able to put an article into one of many categories. However, a single
article could be about several topics. There is a need for more sophisticated classifier.

14

Algorithm 2: Word Sense Disambiguation based on [7]

Input: text, windowsSize (size of the surrounding window)
Output: senses (list of senses of the words)

graph := ∅
words := tokenize (text)

{ Build graph }
for i := 1 to count(words) do

for j := i+1 to i+windowSize do
aWordSenses := list of possible senses from WordNet (word[i])
bWordSenses := list of possible senses from WordNet (word[j])
for each aSense to aWordSenses do

for each bSense to bWordSenses do
weight := Dependency(aSense, bSense)
if weight > 0 then

graph := add edge to graph(graph, i, aSense, j, bSense, weight)
end

end for each
end for each

end for
end for

{ Page Rank Algorithm }
d := 0.85 { the typical value of d for PageRank implementation }
repeat

for each Va in V erticles(graph) do
WP (Va) = (1−d)+d ·

∑
Vb∈Edges(Va)

(weightbaWP (Vb)/(
∑

Vc∈Edges(Vb)

weightbc))

end for each
until convergence of scores of WP (Va)

{Assign senses }
senses := ∅
for each i := 1 to count(words) do

bestSense := get sense of word with the highest score (graph, i)
senses := add to list (senses, bestSense)

end for each
return senses

15

The final classifier should be able to assign several tags from the set of known tags to
the article.

According to a recipe from [9], every tag gets a devoted binary classifier. A such classifier
is able to determine whether an article should have or should not have that tag. Those
classifiers could be encapsulated in one big classifier. When training the classifier, training
data must be transformed into training data for each binary classifier and trained alone.

The classification is done by calling classification on each classifier. The result is a set
of tags which are associated with classifiers with positive results.

3.2.2 Adding a new Feed

When the user subscribes to his first feed, there are no articles to compare with. When
she subscribes to the next feeds, new articles could differ significantly from current set of
articles—different topic, different used words. To eliminate learning stages, we use existing
services for manual tagging like Delicious.com or NYTimes.com.

The newly subscribed feed usually contains older articles. The articles with manu-
ally assigned tags from web services could enrich training set. The system learns without
assistance of the user. The user is still able to correct results of classification later.

Algorithm of adding a new feed is described by Algorithm 3.

Algorithm 3: Adding a new feed
Input: url (URL of new feed), trainingSet
Output: classifier (retrained classifier)

articles := fetch articles from feed (url)
for each article in articles do

tags := download tags from online services (article.url)
features := perform transformation of an article into vector of features (article)
trainingSet := add to training set(trainingSet, features, tags)

end for each
classifier := retrain classifer (trainingSet)
return classifier

3.2.3 Fetching New Articles

Once in a while the server checks subscribed feeds for new articles. If a feed has new articles,
they are fetched and assigned tags according the result of classification. To enhance user
experience, tags get a special readability tag which is based of the result of Flesch Reading
Ease readability test. Articles are marked as unread and stored. Algorithm 4 describes
the whole process.

3.2.4 Enhanced Classification

The enhanced classification proposed in this work is depicted in Figure 3.3. It extends
the common model which is shown in Figure 2.1. Again, on the left side there are the in-
puts of classification, the outputs is located on the right side. Tags assigned to the articles
in the training set come from online services or the previous user correction of classification.
The articles use for the transformation word sense disambiguation. The features of the ar-
ticles and assigned tags are passed to the classifier in the learning stage. In the classifying

16

Algorithm 4: Fetching new articles
Input: feeds (List of feeds), classifier (user trained classifier)
Output: newArticles (New classified articles)

newArticles := ∅
for each feed in feeds do

articles := fetch articles (feed)
for each article in articles do

features := perform transformation into vector of features (article)
tags := classify article (classifier, features)
readabilityTag := perform Flesch Reading Ease readability test(article)
article := assign tags(article, tags, readabilityTag)

end for each
end for each
return newArticles

stage, an unknown article is transformed to a vector of features using word sense disam-
biguation and is classified. Also the text of article—its title and abstract, are classified by
Flesch Reading Ease readability test and assigned a special, readability tag.

Learn

Classify

To
 fe

a
tu

re
s

Article

Tags

Article

To
 fe

a
tu

re
s

Tags

Delicious.com

NYTimes.com

User
Corrections

Readability
test

W
o
rd

 S
e
n
se

D

isa
m

b
ig

u
a
tio

n
W

o
rd

 S
e
n
se

D

isa
m

b
ig

u
a
tio

n

Read. tag

Figure 3.3: Enhanced model of the text classification. Comparing to Figure 2.1 tags come
from online services or the user correction, transforming uses word sense disambiguation
and the readability test is used for a special tag.

17

Chapter 4

Implementation of
the Classification System

In this chapter, implementation details are documented. At first, the choice of programming
language is described. Then, the way how parts of the system communicate with each other
and additional changes to the design are described.

4.1 Programming Language

Python programming language has been chosen for implementation. It has a suit of libraries
for RSS and atoms feeds, library for MySQL, multiprocessing and NLTK library. Python is
a tool for creating elegant code by using indentation for identifying begin and end of blocks
of code instead of typical marks {, }. It also offers Generator expressions and functions like
sum() which allows write blocks of code in a similar manner as in functional programming
paradigm.

There are two available major version of Python—Python 2 and Python 3, which are
not compatible. Although many people work on rewriting libraries, some libraries are still
not ready for Python 3, e.g. NLTK library. Therefore Python version 2 has been chosen.

4.1.1 Programming Style

The code was written according PEP 8 style [13]. There are several ways how to write some
language constructions in Python, e.g. indentation could be done by 2 spaces, 4 spaces, or
a tabulator. The document describes the recommendation style for coding which is used
by the majority of programmers. It specifies preferred naming conventions: CamelCase for
name of classes and names with underscores for variables.

4.1.2 Pylint tool

Pylint is tool which checks code standards and warn for possible bug prone code. The out-
put of codes are suggestions for enhancing code in the form of comments, warnings, and
errors. The tool also makes metrics of codes including documentation, duplicated codes
and the actual count of lines of codes. Another important output is the score of code which
is up to 10 points.

The final code is scored by 8.78 which is according to pylint comment feature:
”
That’s

pretty good. Good work mate.“.

18

4.2 Server Side

Server is compounded of two parts: XML-RPC interface for clients and classification part.
The server runs as 3 processes:

1. process for classification;

2. process for XML-RPC interface;

3. process which runs previous processes and catch their exit codes.

Data are stores in persistent relational database MySQL. The most communication is
done through a database engine. When the user corrects assigned tags, the classifier must
be retrained before classifies additional articles. Requests for retraining do not have to be
persistent and they are sent through an interprocesses queue. The inner architecture of
server is depicted in Figure 4.1.

Server

MySQL db
Retraining
requests

New
subscription

Retraining Check new
articles

Main loop

XML-RPC interface

Figure 4.1: The inner architecture of server.

4.2.1 Persistent Database

MySQL database is used as a persistent database. Schema of database is described in Fig-
ure 4.2. Database allows multiple users in the system. Database is prepared for additional
extensions. If there were many users, every article could be fetched and stored in database
just once. This could be significant improvement for saving database storage and network
traffic. It is not implemented in the current version and left for future work.

19

MySQL-python library is used for connection to database. Unfortunately, it has not so
comfortable interface. Therefore MySQLdbWrapper has been created. It is a wrapper class
of MySQL-python library which offers more comfortable interface. The wrapper supports
transactions by turning autocommit feature off and turning on after commit. There are
also special methods for fetching all rows, first row, or just a single value—first value of
first row. They enhance semantic of the code and encapsulate boilerplate code.

Source
+source_id
+title
+url
+lastupdate
+updatetime

tag
+tag_id
+name
+tag_type

user
+user_id
+login
+password

article
+article_id
+source_id
+title
+url
+abstract
+published

subscription
+user_id
+source_id
+new_subscription

assigned_tag
+user_id
+article_id
+tag_id

unread_article
+user_id
+article_id

article_training
+user_id
+article_id

article_feature
+article_id
+feature

*

*
*

*

*

*

*

*

1

1

1

1

*

*

1

1

*

1

1

1

1

1

Figure 4.2: Schema of database.

4.2.2 Classification Part

This part is responsible for subscribing to feeds and fetching new articles. The main loop
is based on planning with a calendar in Algorithm 5.

When the server starts, training data are loaded and classifiers for every users are
trained. Afterwards, the time of next update is computed from the last update and delay
between them. Until this moment is reached, server waits. Once in minute it is waken to
check whether new feeds are waiting for subscription. If they are, they are handled.

Requests for retraining are also accepted, but they are cached until the next check for
new articles. When the user wants to replace a wrong assigned tag, she remove the tag and
add a new one—the user makes two operations. The classifier is needed just for classifying
new articles and therefore it is sufficient to retrain it just before checking new articles.

Work with RSS and Atom is delegated to library feedparser which is able to parse
both formats and provides common interface to both of them.

Classifiers from NLTK library extends the same interface nltk.classify.ClassifierI.
The consequence is that the classifier could be change according the requirements and prefer
computing time over the accuracy or vice versa.

20

Algorithm 5: Main loop
Input: None
Output: None

classifiers := train classifiers for users
nextUpdate := find time of next update ()
while True do

while time() < nextUpdate or hasNewSubscriptions() do
handle new subscriptions—Algorithm 3
sleep()

end while
classifiers := retrain classifiers for users (classifiers,
check and fetch new articles—Algorithm 4
nextUpdate := find time of next update()

end while

4.2.3 Delicious.com Tagging Service

Delicious.com offers public interface where the most assigned tags to an article at an URL
address are revealed. The address is encoded as MD5 hash. It means, that a single changed
character leads to a different address.

Publishers use special services like Google FeedBurner at feedburner.google.com to
track the number of subscriber, count of read articles and similar statistics. Those services
serve as a proxy where link to article is hidden behind an address of service. To reveal
a real address, the page of article must be loaded.

The services append a special parameters to address like the source of the visit and other
useful information for other tracking. However, additional part of address change MD5 hash
of address and Delicious.com does not track that address. Therefore the query part of URL
must be filtered. Google FeedBurner appends a several parameters with the prefix utm_
which are removed. Afterwards, a new, updated URL is a build which is used for MD5
hash. The process of revealing is illustrated in Figure 4.3.

http://feedproxy.google.com/~r/fluentin3months/~3/x6vzFMJD8hA/

(proxy address)
⇓

http://www.fluentin3months.com/learning-materials/?utm_source=feedburner&

utm_medium=feed&utm_campaign=Feed%3A+fluentin3months+%28Fluent+in+3+months%29

(real address)
⇓

http://www.fluentin3months.com/learning-materials/

(clean address)

Figure 4.3: Revealing and cleaning the real address.

Another problem was dealing with meta tags which were assigned to articles. Some
people use tags like toread, to read, or read later for managing their reading list. Ap-
plications based on top of Delicious.com can add their own tags for tracking their entries,
e.g. via:packrati.us. Therefore, there is a list of meta tags which are removed from

21

the list of received tags. The list is stored in file src/server/stop-tags.txt and could be
easily extended.

4.2.4 Tags form New York Times Keywords

If an article is placed on New York Time servers, tags are collected from keywords of articles.
The article is loaded from the server. Keywords are listed in <meta name="keywords">
HTML tag.

Articles published in New York Times are assigned keywords by certain rules. The key-
words consists of several words, e.g. Middle East and North Africa Unrest (2010-).
On the other side, tags from Delicious.com are just one-word long. Therefore tags shown
in web newsreader have to be shorten.

4.2.5 Readability Test

Computing of Flesch Reading Ease is based on the already existing code from nltk contrib
library. nltk_contrib is an additional library to NLTK which implements more NLP
algorithms. However, the code does not meet the code standard of the library or is not
tested enough. The module is not officially supported by NLTK developers.

There is a code for readability tests which was written by two students of University of
Agder, Netherlands as their school project. During the implementation of the classification
system, I have rewritten the code to meet PEP 8 standard, removed a few redundant
features, and polished the interface. The rewritten code was offered back to the community.1

4.2.6 XML-RPC interface

XML-RPC interface is the only way for clients to communicate with server. It encapsulates
internal structures of server. The consequence is that they could be easily changed without
need of changing clients which could be written by other developers. Developers do not
need to known database schema to program clients what lower entrance barrier.

Creating an XML-RPC server is fairly easy thanks to Python’s built-in library Simple-
XMLRPCServer. The public methods of class XMLRPCInterfaceAPI are registered as func-
tions of XML-RPC server. Available functions are:

• register_user(login, password) creates a new user and returns her id;

• authenticate_user(login, password) authenticate user by credentials and re-
turns her id;

• change_user_password(user, old_password, new_password) change user pass-
word;

• add_source(user, url) subscribes user to a feed located at URL;

• remove_source(user, source) un-subscribe user from a feed located at URL;

• get_sources(user) return a list of sources in tuple (id, title, url);

• mark_as_read(user, selected_tags, page) mark all shown articles as read;

1The request for an inclusion in NLTK and the source code is available at http://code.google.com/p/
nltk/issues/detail?id=677

22

• get_tags(user, selected_tags) returns a list of tags which should be visible
with selected tags, in format tag_id, name

• get_readability_tags(user, selected_tags) returns a list of readability tags
which should be visible with selected tags, in format tag_id, name;

• add_tag(user, article, tag_name) adds a new tag to an article and return id
of tag, requests retraining of the classifier;

• remove_tag(user, article, tag_id) removes a tag from article and requests
retraining of the classifier;

• get_articles(user, tags, page) return a list of articles as tuple
(article_id, title, publisher, url, abstract, published, article_tags)

and allows grouping articles by page;

• get_articles_by_expression(user, expression, page) same as
get_articles but instead of tags is given an valid expression of grammar defined in
Figure 3.2, more details in Section 4.4;

• mark_article_as_read(user, article) marks an article as read;

• get_article_url(article) returns URL of an article;

• read_article_and_get_url(user, article) combination for
markArticleAsRead and getArticleUrl.

The XML-RPC interface does not deal with possible security concerns. It is assumed
communication between server and client is on secure connection. Security could be im-
proved by providing interface using HTTPS and Basic Authentication what is left as a future
work.

4.3 Web News Reader

The web user interface uses lightweight web framework for Python—web.py. The home-
page of web.py [12] says:

”
It’s the anti-framework framework. web.py doesn’t get in

your way.“ web.py provides URL handling, templates, database interface, handling forms.
The implementation tries to be as small as possible and just transform user’s requests to
XML-RPC interface and generates web page.

On the side of browser, HTML and CSS are used for creating user interface which is in
Figure 4.4. For positioning, CSS framework 960.gs is used. It creates a 12- or 16-column
grid suitable for easier creating of columns. The framework assumes at least 960-pixel
window.

4.4 Export RSS feed

For exporting, we need to parse a string generated by the grammar in Figure 3.2. The gram-
mar is simple enough for using Shunting-yard algorithm [15]. The algorithm was invented
by Edsger W. Dijkstra and used in Algol 60 compiler. Shunting-yard algorithm is able to
convert infix notation into reverse polish notation or into a tree structure.

23

Figure 4.4: A screenshot of web newsreader—the main screen with unread articles on
the right side and toolbar on the left side with tags used for filtering the articles.

Shunting-yard algorithm parses a string (45a64)o(n45a54) to a decision tree depicted
in Figure 4.5. The tree is represented as the list [’o’, [’a’, [45], [64]], [’a’, [’n’,
[45]], [54]]].

(45a64)o(n45a54)

45

45 64 54

or

and and

not
~~

Figure 4.5: An example of a decision tree representing the expression.

The first attempt to solve server part was generating an SQL code form the decision
tree. Every atomic operation can be represented as an SQL code:

• select a tag

(select article_id from assigned_tag

where user_id = <user> and tag_id = <tag>)

24

• not operation

(select article_id from assigned_tag

where user_id = <user> and tag_id not in <expression>)

• and operation

(select article_id from <left_expression> join <right_expression>

using(article_id))

• or operation

(<left_expression> UNION <right_expression>)

The query can be generated by combining these atomic operation. However, it would
generate the very long query. The query for selecting just one tag has 82 characters.
A longer expression wold generate too long query and hit limit constrains of library or
database management system.

The next attempt was to use several simple queries as is shown in Algorithm 6. The in-
terpretation of the expression is done by the client, not database engine. The program just
fetch a list of the articles and a list of tags for each article. This solution is more attainable
and therefore it was implemented.

Algorithm 6: Filter articles by an expression
Input: userId, expression, maximumArticles (the top limit of articles, usually 20)
Output: articles (List of articles which meets the expression)

unreadArticles := fetch list of unread articles (userId)
articles := ∅
while count(articles) < maximumArticles do

article := get next article (unreadArticles)
tags := fetch associated tags (article)
isValid := evaluate (expression, tags)
if isValid then

articles := add to articles (articles, article)
end

end while
return articles

25

Chapter 5

Testing the Application

In this chapter the implemented system is tested. The test suite used for confirming the sys-
tem quality is described.

5.1 Testing of Web News Reader

By default web news reader is available at the address http://localhost:8080. Every
test cases consists of 3 parts. Description illustrate the user intention and the current state.
Input describes data which are sent to server to complete the transaction. Expected result
is the reaction of the system to the action.

Since all tests successfully passed, the actual results are not commented.

Test 1
Description: The user loads web newsreader and log in
Input: Her credentials — her username and password
Expected result: User is logged in.

Test 2
Description: The user loads web newsreader and log in
Input: Random username and password
Expected result: The warning is shown and the user could repeat the action

Test 3
Description: The user filled and submitted register form—registration
Input: Username, Passwords are not same
Expected result: The warning is shown and the user could fill passwords once again

Test 4
Description: The user filled and submitted register form—registration
Input: Username and The same password two times
Expected result: The warning is shown and the user could fill passwords once again

Test 5
Description: User is logged in and click on Log out
Input: None
Expected result: The user is logged out and the homepage is shown

26

Test 6
Description: User is logged in and changes password
Input: Correct old password and new password filled two times
Expected result: The password is changed

Test 7
Description: User is logged in and adds a new feed of articles
Input: The URL of feed
Expected result: The feed is accepted and in up to 5 minutes are available articles

from that feed

Test 8
Description: User is logged in and wants to check subscribed feeds
Input: None
Expected result: The list of subscribed feeds is shown with link for unsubscribing

a feed

Test 9
Description: User is logged in and wants unsubscribe a feed. From the list of

subscribed feeds chooses the feed and press Unsubscribe link.
Input: Identification of feed
Expected result: Feed is unsubscribed, articles from that feed are not shown in

reading page.

Test 10
Description: User is logged and loads screen with articles
Input: None
Expected result: On the lef side is shown list of readability tags, normal tags, and

form for adding a new feed. On The right side is show the list of
articles. Every article has its title, publisher, date of publishing,
abstract, and list of assigned tags.

Test 11
Description: User is logged, on screen with articles and click on a normal or

readability tag
Input: Identification of the tag
Expected result: Only articles which have assigned The tag are shown. In the tool-

bar just tags assigned to shown articles are shown. The process
could be repeated several times to filter by two or more tags.

Test 12
Description: User is logged, on screen with articles, and have clicked on a tag.

He wants to discard the filtering and click again on the tag.
Input: Identification of The tag
Expected result: the tag is removed from selected tags and the screen is created

with The current list of tags by which it is filtered.

27

Test 13
Description: User is logged, on screen with articles. She wants to remove a bad

assigned tag.
Input: Identification of the tag and article
Expected result: the tag is removed from The article. Affected articles are just new

ones. The user classifier is retrain before fetching new articles.

Test 14
Description: User is logged, on screen with articles. She wants to add a missing

tag.
Input: Name of the tag.
Expected result: The tag is added to the article. The classification of new articles

will be affected by this change. The user classifier is retrain before
fetching new articles.

Test 15
Description: User is logged, on screen with articles. She clicks on the title of

the article.
Input: Identification of the article
Expected result: The article is marked as read and will not be shown in the future.

The original page is opened in the new window of browser.

Test 16
Description: User is logged, on screen with articles. She clicks on the link

”
Mark articles as read“.

Input: The selected list of tags
Expected result: All shown articles—articles which contain all selected tags or in

case no tag is selected all articles—are marked as read and will
not be shown in the future.

5.2 Testing Export of an RSS Feed

Export an RSS feed client provides a list of articles in a form of an valid RSS feed. Articles
must be filtered by an expression which is generated by the grammar in Figure 3.2.

Let have situation like in Table 5.1. The user has 6 unread articles with one or two
assigned tags. Every test case of following contains a query which is a part of URL address of
feed. The address of a feed is by default http://localhost:8081/?u=<USER>&q=<QUERY>.
When such an URL is requested, the list of articles defined in Expected result should be
returned. There is assumption that a new article is not fetched or assignments of tags are
changed during testing.

Test 17
Description: The user wants articles about summer
Input: Query: 101
Expected result: Articles 501, 503, and 504

Test 18
Description: The user does not want articles about Japan’s earthquake
Input: Query: n104
Expected result: Articles 501, 503, 504, 505, and 506

28

Article Assigned tags

Summer holidays are there! (501) summer (101)
Earthquake in Japan (502) disaster (104)
The best places for summer holidays (503) summer (101), advice (102)
10 best ways how to pack for summer holidays (504) summer(101), tips(103)
5 tips how to avoid girlfriend you have broken up with (505) advice (102), tips (103)
The most useful shortcut in Firefox (506) tips (103)

Table 5.1: Testing situation. Every article and tag has its identification number in brackets.

Test 19
Description: The user wants to prepare for summer holidays and is looking for

some advices or tips
Input: Query: 101a(102o103)
Expected result: Articles 503 and 504

5.3 Experimenting with the Classification

The manual classification by readers is a very subjective thing. Many articles can be
classified differently by users because of different points of view. Also the training set and
user’s correction have a great impact on the performance of the classifier.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 10 20 30 40 50 60 70 80 90 100

C
o
u
n
t

o
f

fe
e
d
s

Number of articles with assinged tags [per cent]

Figure 5.1: Articles with assigned tags at Delicious.com.

I have exported a list of feeds in English from my personal news reader. It was imported
into the implemented system. The list has 50 feeds, 16 of which use Google FeedBurner

29

proxy for tracking statistics. Figure 5.1 shows how many articles of a feed has assigned
tags at Delicious.com. For every feed of those 50 feeds, the list of articles is fetched and
Delicious.com is asked whether the article has at least one tag. Afterwards, the count of
how many artices of the feed has assigned tags is aggregated and divided by the count of
articles. For example, if the feed has 10 articles and 4 of them has assigned tags, the result
will be 40%. The figure represents a histogram of how many articles of a feed are assigned
tags.

The graph could be transformed into probabilistic distribution if the count of experiment
feeds would be higher. On the left side there are 16 feeds which has no entry at Delicious.com
for any article, because they are mostly the small and no so famous blogs. On the right
side, there are 3 blogs which has tagged all of their articles. The average count of tagged
articles per feed is 26.49%.

The experiment with 50 feeds provides 832 articles from which 285 were tagged. If
an article is tagged, it has assigned 6.62 tags in average. There were 681 different tags.
Figure 5.2 shows the histogram how many times a single tag is reused. Although a few
tags were often reused, 473 tags were used just once. This number is really huge. User’s
classifier is compounded of a binary classifier for every tag. If a user has 681 tags, user’s
classifier has 681 binary classifier and every of them spent memory resources and time
during classification.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30

C
o
u
n
t

o
f

ta
g
s

Number of articles with a tag

473

75

3221912107 5 5 2 7 9 2 1 1 2 1 1 1 1 1 1

Figure 5.2: Histogram of how many times a single tag is reused. The different users
use different names of tags and has different opinions how the article should be tagged—
the result graph was expected.

30

Chapter 6

Conclusion

In this work, the system for a text classification of a syndicated content has been pro-
posed. The system consists of a server which regularly checks and fetches new articles
from the server and automatically assigns them tags. On the client-side, two applications
have been developed: the web news reader which allows filtering articles based on tags and
correct user’s classifier, and the exporter of an RSS feed. Exported articles satisfy an ex-
pression in the simple language. The feed could be imported into a regular news reader.
The communication between the client and the server is over XML-RPC and could be easily
extended for a new client.

The classification has a few non-standard expansions. Learning stage is greatly reduced
thanks to online manual tagging services like Delicious.com and NYTimes.com. If the user
has more similar articles, she can decide by the style of writing which is determined by
a readability test.

The clients were tested with the test suite described in Chapter 5. Service Delicious.com
helps to reduced the learning stage. However, many tags are used just for one article and
it is a scalability issue.

6.1 Future work

There are few problems which could be enhanced in future.
The communication over XML-RPC is sent over insecure HTTP instead of HTTPS.

The assumption is that communication between server and client is on the local network.
Also the authentication of user is done just on the side of client.

Room for improvement is also on handling the enormous count of tags which are used
just once. An heuristic could be created to determine unused tags, prune them and save
system resources.

31

Bibliography

[1] S. Banerjee. Adapting the Lesk Algorithm for Word Sense Disambiguation to
WordNet. In In Proceedings of the Third International Conference on Intelligent
Text Processing and Computational Linguistics, pages 136–145, 2002.

[2] S. Bird and et al. Natural Language Processing with Python. O’Reilly Media, 2009.

[3] P. Graham. A Plan for Spam [online]. http://www.paulgraham.com/spam.html,
August 2002 [cit. 2011-04-29].

[4] Dan Klein and et al. The stanford parser: A statistical parser [online].
http://nlp.stanford.edu/software/lex-parser.shtml, [cit. 2011-05-01].

[5] C. D. Manning and et al. Introduction to Information Retrieval. Cambridge
University Press, 2008. ISBN 9780521865715.

[6] C. D. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing. The MIT Press, Cambridge, London, 1999. ISBN 02-621-3360-1.

[7] R. Mihalcea. Unsupervised Large-Vocabulary Word Sense Disambiguation with
Graph-based Algorithms for Sequence Data Labeling. In Proceedings of the
conference on Human Language Technology and Empirical Methods in Natural
Language Processing, HLT ’05, pages 411–418, Stroudsburg, PA, USA, 2005.
Association for Computational Linguistics.

[8] M. Nottingham and R. Sayre. The Atom Syndication Format. RFC 4287 (Proposed
Standard), December 2005. Updated by RFC 5988.

[9] J. Perkins. Python Text Processing with NLTK 2.0 Cookbook. Pack Publishing,
Birmingham, 2010. ISBN 978-1-849513-60-9.

[10] S. Saha and et al. Delivering categorized news items using rss feeds and web services.
Computer and Information Technology, International Conference on, 0:698–702,
2010.

[11] R. Sinha and R. Mihalcea. Unsupervised Graph-basedWord Sense Disambiguation
Using Measures of Word Semantic Similarity. In Proceedings of the International
Conference on Semantic Computing, pages 363–369, Washington, DC, USA, 2007.
IEEE Computer Society.

[12] A. Swartz. Homepage of web.py framework [online]. http://webpy.org/, [cit.
2011-05-01].

32

[13] G. van Rossum and B. Warsaw. PEP 8 – Style Guide for Python Code [online].
http://www.python.org/dev/peps/pep-0008/, July 2001 [cit. 2011-05-01].

[14] W. H. DuBay. The Principles of Readability. Impact Information, Costa Messa, CA,
August 2004.

[15] Wikipedia. Shunting-yard algorithm [online].
http://en.wikipedia.org/wiki/Shunting-yard algorithm, [cit. 2011-05-01].

[16] D. Winner. Rss 2.0 specification [online].
http://cyber.law.harvard.edu/rss/rss.html, July 2003 [cit. 2011-04-29].

[17] E. S. Yudkowsky. An intuitive explanation of bayes’ theorem [online].
http://yudkowsky.net/rational/bayes, 2003 [cit. 2011-04-30].

33

Appendix A

Content of CD

• README — requirements, installation guide

• thesis.pdf — an electronic version of this text

• src/ — source code

• tex/ — LATEX source code of this text

• livecd.iso — prepared LiveCD with installed and deployed system

The final product has special requirements for its deployment which are listed in Ap-
pendix B. Therefore an image of Live CD with installed and deployed system is on the CD.
Live CD is based on GNU/Linux distribution Ubuntu 11.04 (i386) in particular.

When the system is loaded, servers can be started by clicking on an icon RUNSERVERS.
It starts XML-RPC server listening on port 8000, web newsreader on 8080 and RSS ex-
porting server on 8081. The servers are listening on every address and therefore the servers
are not started when the system boots up.

When the user click on an icon OPENBROWSER, a web browser is opened at
http://localhost:8000 and the user can start using the web news reader.

34

Appendix B

Installation

Requirements:

• python 2 at least in version 2.6

• nltk at least in version 2.0

• nltk contrib at least in version 2.0.1rc1

• feedparser at least in version 5.0.1

• processing at least in version 0.52

• web.py at least in version 0.34

• mysql-python at least in version 1.2.3

• MySQL server at least in version 5.1

• server must be online to contact services like Delicious.com and NYTimes.com

B.1 Installing dependencies on Ubuntu 11.04

1. Install packages:

sudo apt-get install python-nltk python-mysqldb python-feedparser \

python-setuptools python-webpy mysql-client mysql-server python-dev

sudo easy_install processing

sudo service mysql start

2. Corpora data must be installed manually by calling NLTK function:

python

>> import nltk

>> nltk.download()

d wodnet

d wordnet_ic

d stopwords

>> exit()

35

3. Run MySQL deployment script:

mysql -u root

mysql> \. src/server/struct.sql

4. Launch server, web newsreader and RSS exporter:

python src/server/main.py &

python src/webui/code.py &

python src/exporter/code.py &

5. Open http://localhost:8080 in your web browser.

B.2 Installing dependencies on FreeBSD 8.2

1. Install MySQL client and server:

cd /usr/ports/databases/mysql51-client/ && make install clean

cd /usr/ports/databases/mysql51-server/ && make install clean

/usr/local/etc/rc.d/mysql start

2. Install libraries for Python:

easy_install pyyaml

easy_install mysql-python

easy_install feedparser

easy_install web.py

easy_install processing

3. Install NLTK library:

pkg_add -r nltk

4. Corpora data must be installed manually by calling NLTK function:

python

>> import nltk

>> nltk.download()

d wodnet

d wordnet_ic

d stopwords

>> exit()

5. Run MySQL deployment script:

mysql -u root

mysql> \. src/server/struct.sql

6. Launch server, web newsreader and RSS exporter:

python src/server/main.py &

python src/webui/code.py &

python src/exporter/code.py &

7. Open http://localhost:8080 in your web browser.

36

B.3 Installing on Windows XP

1. In Windows XP we need to install:

• Python 2.7 from http://www.python.org/download/,

• setuptools for Python 2.7 from http://pypi.python.org/pypi/setuptools.

• MinGW from http://www.mingw.org/wiki/Getting Started,

• MySQL from http://dev.mysql.com/tech-resources/articles/mysql-installer-for-windows.html
1

2. The next step is to append
”
;C:\Python27;C:\Python27\Scripts;C:\MinGW\bin“

to PATH variable.2 Create configuration file
C:\Python27\Lib\distutils\distutils.cfg for setuptools to use MinGW com-
piler:

[build]

compiler=mingw32

Install Python libraries:

easy_install processing

easy_install feedparser

easy_install pyyaml

easy_install web.py

3. For mysql-python could be easily used unoffical build for Python 2.7 from
http://www.codegood.com/archives/129.

4. Install NLTK library from http://www.nltk.org/download. Corpora data must be
installed manually by calling NLTK function:

python

>> import nltk

>> nltk.download()

In the newly opened windw download packages wordnet, wordnet ic, and stopwords.

5. Start MySQL server and deploy database schema:

mysql -u root

mysql> \. D:\src\server\struct.sql

6. Launch servers:

• src\server\main.py for server,

• src\webui\code.py for web newsreader,

• src\exporter\code.py for RSS exporter.

7. Open http://localhost:8080 in your web browser.

1It requires .NET Framework 3.5 from
http://www.microsoft.com/downloads/cs-cz/details.aspx?FamilyID=333325fd-ae52-4e35-b531-508d977d32a6

2The content of the variable could be changed by right clicking on My Computer⇒ Properties, choosing
tab Advanced, button Environment Variables.

37

