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Abstract. Edge detection is an often used procedure in 
digital image processing. For some practical applications 
it is desirable to detect edges with sub-pixel accuracy. In 
this paper we present edge detection method for 1-D 
images based on approximation of real image function 
with Erf function. This method is verified by simulations 
and experiments for various numbers of samples of simu-
lated and real images. Results of simulations and experi-
ments are also used to compare proposed edge detection 
scheme with two often used moment-based edge detectors 
with sub-pixel precision.  
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1. Introduction 
Physical contour is one of the most important proper-

ties of an object. In order to extract the contour of an ob-
ject, we must detect the edges forming that object. So a lot 
of methods were developed to detect edges. One can use 
simple edge detectors like Sobel, Kirsch, Prewit [1], more 
sophisticated Canny edge detector [2] or robust morpho-
logical edge detectors [3], [4]. All these methods perform 
edge detection with a pixel accuracy.  

Sometimes it is useful to detect edges with sub-pixel 
precision. Most edge detectors at sub-pixel level fall in 
three groups: fitting, moment-based and interpolation-
based methods. The methods of the first group use con-
tinuous functions, such as hyperbolic tangent [5] or B-
spline [6], to fit samples of image function. Then sub-pixel 
edge location is found as inflection point of continuous 
function. Another fitting methods use a local energy func-
tion [7] or wavelets [22] to determine the edge parameters. 

Interpolation-based methods achieve the sub-pixel ac-
curacy by interpolating the image data to obtain a finer grid 
of pixels. Then usual edge detectors, such as Canny [8] or 
LoG operator [9], are applied to resized image. 

Moment-based methods apply statistical moments to 
determine unknown edge model parameters. One can use 

gray level moments [10, 11], spatial moments [12, 13], 
Fourier-Mellin moments [14] or Zernike moments [15, 16]. 

Some industrial applications, e.g. measurement of the 
objects with high precision, need to detect edges with sub-
pixel accuracy in 1-D images. For such a task we introduce 
in this paper sub-pixel edge detection method based on 
approximation of real image function with Erf function. 
We compare the proposed algorithm with two often used 
sub-pixel edge detectors: gray level moment (GLM) edge 
operator [10] and spatial moment (SM) edge detector [12]. 

This paper is organized as follows. Section 2 includes 
edge models. In section 3 we describe moment-based edge 
detection methods which we use for comparison with our 
proposed algorithm. This algorithm is introduced in sec-
tion 4 results. Section 5 and section 6 include simulations 
and experiments. In section 7 conclusions are made. 

2. Edge Models 
For analysis of proposed edge detectors and their 

verification by simulations three basic models are mostly 
used. Step edge (Fig. 1) is a simplest model and is 
represented by step function [12]: 
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The model is characterized by three parameters: back-
ground intensity h, edge contrast k, and edge location l. 

 
Fig. 1. Step edge. 

In real images the brightness changes gradually and 
ramp edge (Fig. 2) is more suitable [7]: 
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Ramp edge has four parameters: background intensity 
h, edge contrast k, edge beginning l1 and edge end l2. 
Location of the edge l is equal to the arithmetic average of 
l1 and l2. 

 
Fig. 2. Ramp edge. 

The third model is closest to real edge because it re-
spects defocusing, or blurring due to the effects of the 
point spread function of the optic system. This model 
(Fig. 3) is called blurred edge and is represented by func-
tion [17]: 
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where erf(x) is defined as [18]: 
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This model has four parameters: background intensity 
h, edge contrast k, edge location l and edge blurring σ. 

 
Fig. 3. Blurred edge. 

3. Moment-Based Edge Operators 
Tabatabai and Mitchel proposed gray level moment 

(GLM) edge operator for 1-D image [10] based on the first 
three moments m1, m2, m3 of the input data sequence: 

 1,2,3   ... ... 
1

1

 


ix
n

m
n

j

i
ji

 (5) 

where x1, x2, ... xn are image samples. Let suppose that they 
are the samples of ideal step edge (Fig. 1) and ph is a num-
ber of samples with gray level h (they are the pixels on the 
left of the edge). If we define the densities p1 and p2 as: 

 
n

p
p h1

, (6) 

 
12 1 p

n

pn
p h 


 , (7) 

then solution of three equations: 
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with three unknown variables h, k, p2 results in: 
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In the case of real image, ph=n.p1 is not integer and 
represents sub-pixel edge location. 

Another sub-pixel edge detector [12] is based on 
spatial moments (SM) of continuous function f(x) of order 
p, which are defined: 
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Let function f(x) represents step edge (Fig. 4) and x is from 
-1 to +1 (to simplify calculations). Then equation (16) for 
p=0, 1 and 2 can be written as: 
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The solution of these equations results in formulas for edge 
location l: 
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and background intensity h 
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Fig. 4. Edge model for spatial moment edge detector. 

4. Edge Detector Based on Approxima-
tion with Erf Function (AEF) 
We propose the sub-pixel edge detector based on 

approximation of real image function fr(i) with function 
fa(i), which is equal to blurred edge model (3) and has four 
parameters - h, k, l and σ. The core of this AEF edge 
detector is parametric fitting by minimizing a difference 
between the real image function fr(i) and function fa(i). 
This difference is defined: 
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where N is a number of samples. Minimizing the difference 
E(h,k,l,σ) gives subpixel edge location l. Edge detection 
algorithm based on approximation consists of three steps: 

 Edge detection with pixel accuracy. 

 Initial values estimation of parameters h, k, l and σ. 

 Parametric fitting by minimizing difference function 
E(h,k,l,σ). 

The first step can be done by any edge detection 
method with pixel accuracy. We use the simplest way, we 
find maximum of discrete derivative of function fr(i): 

 )()1()( ififidf rrr   (24) 

and we denote imax for which dfr(i) reaches its maximum as 
the edge position. 

Initial value of edge location we set to l0 = imax. To 
estimate initial value of σ we apply derivation of 
continuous function fa(x) [18]:  
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For xmax=l, xd=(l-2σ) and xu=(1+2σ) we can derive: 
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In the case of fr(i) if we find id < imax and iu > imax which 
satisfy: 
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and are as close as possible to imax, we can estimate 
σ0= 0.25(iu - id) and also h0= fr(id)  and k0= fr(iu)- fr(id). 

For parametric fitting by minimizing difference func-
tion E(h,k,l,σ) we apply Matlab function fminsearch which 
uses the simplex search method [19]. 

5. Simulations 
We did all simulations in program Matlab (version 

7.3.0.267). Let there is 1-D image sensor which consists of 
elements with width w and gap g between two sensor ele-
ments (Fig. 5b). Let the brightness around the edge is con-
stant in time and varies only in the direction x according to 
(3) (Fig. 5a). Then simulated noiseless output signal frs(i) 
of the i-th sensor element (Fig. 5c) can be calculated: 
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where c is sensor integral sensitivity and Ta is accumula-
tion time. For simulations we can set cTa =1. Because the 
gap between two sensor elements is very small we can set 
w=1. Then noiseless output signal frs(i) of the i-th sensor 
element is: 
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For all simulations in this section the background 
intensity used in (30) is h=0.1 and edge contrast is k=1.  

The first simulations of noiseless signal inspect how 
the edge location error depends on actual position of the 
edge for different values of blurring parameter σ = 0.5, 1, 2 
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and 5. Number of samples of output signal frs(i) is N = 41. 
The results of these simulations are presented in Tab. 1, 
and graphically are interpreted in Fig. 6.  

 
Fig. 5. a) Brightness around the edge, b) elements of image 

sensor, c) simulated noiseless output signal. 
 

 σ  = 0.5 σ  = 1 
l  AEF  GLM  SM  AEF  GLM  SM 

-0,5 0 0,0002 0,001 0 0,0007 0,0028 
-0,4 0,0007 -0,0096 0,0008 0 0,0005 0,0022 
-0,3 0,0012 -0,0156 0,0006 0 0,0004 0,0017 
-0,2 0,0013 -0,0157 0,0004 0 0,0002 0,0011 
-0,1 0,0009 -0,0097 0,0002 0,0001 0,0001 0,0006 
0 0 0 0 0 0 0 

0,1 -0,0009 0,0097 -0,0002 -0,0001 -0,0001 -0,0006 
0,2 -0,0013 0,0157 -0,0004 0 -0,0002 -0,0011 
0,3 -0,0011 0,0156 -0,0006 0 -0,0004 -0,0017 
0,4 -0,0007 0,0096 -0,0008 0 -0,0005 -0,0022 
0,5 0 -0,0002 -0,001 0 -0,0007 -0,0028 

 σ  = 2 σ  = 5 
l  AEF  GLM  SM  AEF  GLM  SM 

-0,5 0 0,0028 0,01 0 0,0243 0,0637 
-0,4 0 0,0023 0,008 0 0,0194 0,0509 
-0,3 0 0,0017 0,006 0 0,0146 0,0382 
-0,2 0 0,0011 0,004 0 0,0097 0,0255 
-0,1 0 0,0006 0,002 0 0,0049 0,0127 
0 0 0 0 0 0 0 

0,1 0 -0,0006 -0,002 0 -0,0049 -0,0127 
0,2 0 -0,0011 -0,004 0 -0,0097 -0,0255 
0,3 0 -0,0017 -0,006 0 -0,0146 -0,0382 
0,4 0 -0,0023 -0,008 0 -0,0194 -0,0509 
0,5 0 -0,0028 -0,01 0 -0,0243 -0,0637 

Tab. 1. Edge location error of simulated noiseless signal. 

The edge with blurring σ = 0.5 is very close to step 
function and such a case does not occur in real images. 
Real values of blurring in well-focused images are 
approximately equal to σ = 1. One can see from simulation 
results that for this value the precision of all three methods 
presented in this paper is theoretically very high. For 

slightly unfocused images (σ = 2) the theoretical accuracy 
of GLM and SM is pretty good (better then 0.01), for 
strongly unfocused images (σ = 5) come close to 0.07. AEF 
method has (except for σ = 0.5) zero location error. It's 
understandable, because the function under which an out-
put signal is generated for simulation is equal to the func-
tion used for approximation. Simulations with noisy signal 
and experiments with real images help to determine real 
properties of AEF. 

 
Fig. 6. Edge location error of simulated noiseless signal for 

blurring parameter: a) σ =0.5, b) σ =1, c) σ =2 and 
d) σ =5. 

To add noise to signal defined in (30) we apply Mat-
lab function randn, which returns a pseudorandom, scalar 
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value drawn from a normal distribution with mean 0 and 
standard deviation 1. Values of function randn we multiply 
with 0.008, so we get signal-to-noise ratio 37dB. We cal-
culated noisy signal hundred times and for each noisy sig-
nal we used successively 41, 21 and 11 samples around the 
edge to find sub-pixel edge location. Then we calculated 
edge location error for all hundred realizations. For these 
hundred errors we determined the standard deviation and 
upper qu and lower qd 5% quantiles. Upper 5% quantile qu 
means, that there is 5% probability that the error will be 
bigger than qu. Lower 5% quantile qd means, that there is 
5% probability that the error will be smaller than qd. 

We did calculations mentioned above for different 
values of blurring parameter σ = 0.1, 1, 2 and 5. The results 
are presented in Tab. 2 and Tab. 3, some of them are 
graphically interpreted in Fig. 7 and Fig. 8. 
 

 σ  = 0.5 σ  = 1 
N  AEF  GLM  SM  AEF  GLM  SM 
41 0,0121 0,0127 0,0442 0,0161 0,0167 0,0454 
21 0,0123 0,0128 0,0327 0,0163 0,0169 0,0335 
11 0,0129 0,0133 0,0236 0,0187 0,0187 0,0241 
 σ  = 2 σ  = 5 

N  AEF  GLM  SM  AEF  GLM  SM 
41 0,0236 0,0244 0,0462 0,0438 0,0436 0,0482 
21 0,0253 0,0262 0,0335 0,0714 0,0553 0,0431 
11 0,0371 0,0318 0,0278 0,2377 0,0722 0,0447 

Tab. 2. Standard deviation of edge location error of simulated 
noisy signal. 

 

σ  = 0.5  
AEF GLM SM 

N qu qd qu qd qu qd 
41 0,022 -0,0207 0,024 -0,0239 0,091 -0,0921 
21 0,0225 -0,0217 0,025 -0,0242 0,0652 -0,0639 
11 0,0235 -0,0234 0,0267 -0,0249 0,0472 -0,0471 

σ  = 1  
AEF GLM SM 

N qu qd qu qd qu qd 
41 0,0324 -0,0326 0,0335 -0,0323 0,0928 -0,0867 
21 0,0341 -0,0327 0,0341 -0,0329 0,0644 -0,0695 
11 0,0363 -0,0354 0,037 -0,0365 0,0445 -0,0478 

σ  = 2  
AEF GLM SM 

N qu qd qu qd qu qd 
41 0,0452 -0,0461 0,0473 -0,0471 0,0993 -0,0852 
21 0,0523 -0,0545 0,0509 -0,0518 0,0649 -0,0675 
11 0,0722 -0,0727 0,0616 -0,061 0,0544 -0,0538 

σ  = 5  
AEF GLM SM 

N qu qd qu qd qu qd 
41 0,0883 -0,0858 0,0876 -0,0816 0,1 -0,097 
21 0,1412 -0,149 0,1026 -0,109 0,081 -0,0876 
11 0,5017 -0,5093 0,1369 -0,1484 0,0865 -0,0921 

Tab. 3. Upper qu and lower qd 5% quantiles of edge location 
error of simulated noisy signal. 

From the presented results it is clear that for small 
blurring parameters (σ = 0.5 and 1) the number of samples 
used for calculations is not significant. This is because 
visual function in this case varies only in the vicinity of 
edge. For sufficient number of samples the precision of 
AEF and GLM methods depends only on blurring pa-
rameter (see Fig. 7 and Fig. 8). By contrast, SM method 

has better precision for smaller number of samples. How-
ever, for sufficient number of samples AEF and GLM are 
more precise than SM. 

 
Fig. 7. Standard deviation of edge location error of simulated 

noisy signal. 

 
Fig. 8. Upper qu and lower qd 5% quantiles of edge location 

error of simulated noisy signal. 

6. Experiments 

 
Fig. 9. Source for test images (car engine valve). 

For experimental verification we shot few images of 
car engine valve (Fig. 9). As a background we used PC 
monitor so we got good edge contrast. Monitor was not 
immediately behind the valve to get background without 
texture (due to un-focusing). We used camera Nikon D300 
with 12 mega-pixel resolution. We shot some images with 
automatic focusing and some with manual focusing so we 
got images with different values of blurring parameter. 
Uncompressed images were converted from original NEF 
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format to 24 bits color TIFF format. For computations we 
used detail of 150x80 pixels around the edge (Fig. 10). We 
worked only with green channel of image. 

     

               a)                             b)                            c) 

Fig. 10. Test images: a) “valve1.tiff”,  b) “valve2.tiff” and c) 
“valve3.tiff”. 

We applied AEF, GLM and SM edge detection 
methods to one hundred adjacent rows to compute the edge 
location with the sub-pixel accuracy. Since the valve must 
be perfectly straight, computed sub-pixel edge positions 
should create a straight line, which can be represented as 
polynomial p(x) = a1x + a0. We used the Matlab function 
polyfit to find the coefficients a1 and a0 of a polynomial 
p(x) that fits the data. Difference between the computed 
edge position and the value of the polynomial can be con-
sidered to be the edge location error. In such a way we 
computed the edge location errors for all processed rows. 
Standard deviation and 5% quantiles were also computed. 

 
Fig. 11. Row n.36 of test image “valve1.tiff”. 

 
Fig. 12. Row n.36 of test image “valve2.tiff”. 

 
Fig. 13. Row n.36 of test image “valve3.tiff”. 

To illustrate examples, there are selected rows of test 
images “valve1.tiff”, “valve2.tiff” and “valve3.tiff” in 
Fig. 11, Fig. 12 and Fig. 13. Computed edge locations and 
approximating straight lines are in Fig. 14, Fig. 15 and 
Fig. 16. 

For each row of the test image the edge position was 
calculated using a different number of pixels around the 
edge N = 41, 21 and 11. Calculated polynomial coefficients 
a1 and a0, standard deviation, 5% upper qu and lower qd 
quantiles of edge location error of test images are presented 
in Tab. 4. 

 
Fig. 14. Edge locations and approximating straight line of test 

image “valve1.tiff”: a) AEF, b) GLM, c) SM. 
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Fig. 15. Edge locations and approximating straight line of test 

image “valve2.tiff”: a) AEF, b) GLM, c) SM. 

 

 
Fig. 16. Edge locations and approximating straight line of test 

image “valve3.tiff”: a) AEF, b) GLM, c) SM. 
 

valve1.tiff (σ = 0,85)  
N 

 
a1 a0 std qu qd 

AEF 0,0084 39,84 0,033 0,048 -0,048 
GLM 0,0083 39,84 0,039 0,055 -0,052 

 
41 

SM 0,0084 39,73 0,058 0,088 -0,099 
AEF 0,0084 39,85 0,033 0,048 -0,043 
GLM 0,0083 39,85 0,039 0,057 -0,048 

 
21 

SM 0,0085 39,76 0,052 0,086 -0,095 
AEF 0,0084 39,86 0,034 0,044 -0,042 
GLM 0,0082 39,87 0,042 0,056 -0,057 

 
11 

SM 0,0080 39,81 0,051 0,074 -0,085 
valve2.tiff (σ = 2,16)  

N 
 

a1 a0 std qu qd 
AEF 0,0058 43,23 0,063 0,104 -0,104 
GLM 0,0058 43,21 0,073 0,127 -0,124 

 
41 

SM 0,0059 43,33 0,071 0,107 -0,126 
AEF 0,0057 43,18 0,068 0,112 -0,106 
GLM 0,0058 43,13 0,078 0,115 -0,140 

 
21 

SM 0,0061 43,21 0,088 0,138 -0,160 
AEF 0,0059 42,87 0,093 0,145 -0,165 
GLM 0,0061 42,78 0,133 0,218 -0,237 

 
11 

SM 0,0064 42,73 0,179 0,282 -0,285 
valve3.tiff (σ = 4,50)  

N 
 

a1 a0 std qu qd 
AEF 0,0080 44,97 0,088 0,118 -0,157 
GLM 0,0074 44,90 0,104 0,133 -0,182 

 
41 

SM 0,0062 45,24 0,165 0,242 -0,326 
AEF 0,0071 44,27 0,148 0,214 -0,279 
GLM 0,0053 44,23 0,235 0,423 -0,427 

 
21 

SM 0,0037 44,33 0,359 0,775 -0,605 
AEF 0,0050 43,54 0,452 0,431 -0,323 
GLM 0,0014 43,77 0,497 1,114 -0,746 

 
11 

SM 0,0003 43,83 0,632 1,460 -0,972 

Tab. 4. Polynomial coefficients a1 and a0, standard deviation, 
5% upper qu and lower qd quantiles of edge location 
error of test images. 

 
Fig. 17. Dependence of accuracy (upper and lower quantiles) 

on the blurring parameter σ (for AEF with N = 41). 
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Fig. 18. Dependence of accuracy (upper quantile) on the 

number of pixels used for computation (for AEF).  

From the obtained results one can see that the accu-
racy of all presented methods (AEF,GLM,SM) get worse 
with increasing blurring parameter σ (Fig. 16). Also, it can 
be concluded that for small values of σ the number of pix-
els used for computation is not important (Fig. 17). This is 
not true for larger values of σ and according to the experi-
ments we can say that required number of pixels is ap-
proximately equal to 8÷10 σ. 

7. Conclusion 
In this paper, sub-pixel edge detection method based 

on approximation of real image function with Erf function 
(AEF) is presented. This method is verified through simu-
lations and experiments and compared with two other 
methods: GLM and SM. Although these methods are not 
recent, we chose them for comparison because they are 
designed primarily for 1-D images. Newer methods that are 
mentioned in the introduction are geared towards the 2-D 
images and for 1-D images do not achieve such accuracy. 
There are also few methods specifically designed for 1-D 
images [20], [21] but they are hardware oriented in order to 
achieve greater speed and their accuracy is not very high. 

The results obtained from experiments are fairly well 
consistent with the results of simulation for small values of 
the blurring parameter (σ ≈ 1), which correspond to the 
well-focused images. Achieved accuracy of edge location 
for real images is about ±0.05 of pixel. For slightly (σ ≈ 2) 
and strongly (σ ≈ 5) unfocused real images the experimen-
tal results are more different from the results of simulation. 
This may be because the brightness around the edge does 
not fit exactly the used Erf function. It looks like the image 
on the right of the edge has different parameter σ as the 
image on the left, probably due to different distances of 
background and foreground from the camera. But it is 
typical for the real situations. However, the accuracy of 
AEF method is about 15÷20 % better than GLM and much 
better than SM. We also found that detection accuracy can 
be affected by the insufficient number of pixels used for 
computation and we recommend working with the number 
of pixels that is 8÷10 bigger then blurring parameter σ. 
How to estimate this parameter one can find in section 4. 

For some industrial applications such as contactless 
measurement of objects to improve the resolution of sys-

tem can be desirable. As an example we can give magne-
site bricks, which are used in blast furnace as lining. These 
bricks are manufactured by compression and transverse 
dimension has to be checked with great accuracy. Im-
provement of installed hardware is usually limited by the 
cost and realization. In the case, that computational cost is 
not a critical attribute, the presented method for sub-pixel 
edge detection can constitute an appropriate solution to this 
problem. 
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