
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

CREATION OF MULTIMEDIA CONTROL SYSTEM IN
GNU/LINUX

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE MICHAL MINÁŘ
AUTHOR

BRNO 2010

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

VYTVOŘENÍ MULTIMEDIÁLNÍHO OVLÁDACÍHO SYSTÉMU
V LINUXU
CREATION OF MULTIMEDIA CONTROL SYSTEM IN GNU/LINUX

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE MICHAL MINÁŘ
AUTHOR

VEDOUCÍ PRÁCE Doc. Ing., Dipl.-Ing. MARTIN DRAHANSKÝ, Ph.D.
SUPERVISOR

BRNO 2010

Abstrakt
Práce poukazuje na problémy týkaj́ıćı se vytvořeńı multimediálńıho systému, výběru jeho
hardwarových a softwarových komponent, jeho zapojeńı do větš́ıho celku a vede k jejich
řešeńı. Současně popisuje kroky zvolené v implementaci reálného systému.

Abstract
This thesis summarizes problems concerning the creation of multimedia system, selection of
its hardware and software components, its inclusion into bigger system and provides advices
leading to their solution. At the same time it describes implementation of such existing
system.

Kĺıčová slova
dotykový panel, elektroinstalace, kalibrace, multimédia, linux

Keywords
touch panel, electroinstallation, calibration, multimedia, linux

Citace
Michal Minář: Creation of multimedia control system in GNU/Linux, bakalářská práce,
Brno, FIT VUT v Brně, 2010

Creation of multimedia control system in GNU/Linux

Prohlášeńı
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedeńım doc. Mar-
tina Drahanského

. .
Michal Minář
May 18, 2010

Poděkováńı
T́ımto bych chtěl poděkovat řediteli společnosti Elko ep, Jǐŕımu Konečnému, za možnost
pod́ıleńı se na vývoji imm systému, za poskytnut́ı hardwarových komponent a možnosti
práce př́ımo ve firmě. Dále bych chtěl poděkovat bc. Jǐŕımu Stýskaĺıkovi, Danielu Smičkovi a
daľśım z této společnosti za odbornou asistenci. Zvláště bych chtěl poděkovat ing. Miroslavu
Kub́ızckovi za jeho ochotu, při zodpov́ıdáńı mých dotaz̊u, a pomoc. A v neposledńı řadě
mému vedoućımu doc. Martinu Drahanskému za jeho rady, co se týče této práce, a
trpělivost.

c© Michal Minář, 2010.
Tato práce vznikla jako školńı d́ılo na Vysokém učeńı technickém v Brně, Fakultě in-
formačńıch technologíı. Práce je chráněna autorským zákonem a jej́ı užit́ı bez uděleńı
oprávněńı autorem je nezákonné, s výjimkou zákonem definovaných př́ıpad̊u.

Contents

1 Preface 3
1.1 About . 3
1.2 Intelligent homes . 3
1.3 Interfaces . 4

2 System components 5
2.1 INELS . 5

2.1.1 Central unit . 5
2.2 EPSNET . 6

2.2.1 Configuration . 6
2.2.2 Common sctructure of protocol . 7
2.2.3 Communication requirements . 7
2.2.4 Data format . 9
2.2.5 Data security . 9
2.2.6 Comunication services . 9

2.3 IDM . 10
2.3.1 Configuration . 10
2.3.2 Actions . 11
2.3.3 Export . 12

2.4 IMM . 13
2.5 Touch panels . 13

2.5.1 Touch panel communication . 13

3 Bring it to life 14
3.1 Objective . 14
3.2 Operating system . 14

3.2.1 Requirements . 14
3.2.2 Previous installation . 14

3.3 Ubuntu 9.10 “Karmic Koala” . 15
3.3.1 Driver changes . 15

3.4 Touch screen input . 16
3.4.1 inputattach . 17
3.4.2 Touch screen driver . 18
3.4.3 X server configuration . 19
3.4.4 evtouch . 19

3.5 Calibration . 21
3.6 Packaging . 21

3.6.1 sctouchscreen-dkms . 22

1

3.6.2 inputattach-scts . 23
3.6.3 evtouch-calibrate . 23

3.7 Installation . 23
3.7.1 Disk partitioning . 24
3.7.2 Disk cloning . 24

4 Main application 25
4.1 Screens . 25

4.1.1 Main screen . 25
4.1.2 Multimedia . 26
4.1.3 Other screens . 27

4.2 Implementation . 28
4.2.1 Object design . 28

4.3 Start of application . 29

5 Conclusion 31

2

Chapter 1

Preface

1.1 About

This bachelor thesis focuses on making touch panels part of bigger system such as intelligent
home 1.2. It summarizes requirements on such devices, software components and user
interface. Thesis contains description of existing functional system for intelligent homes,
and concrete touch panels. It guides through the process of selecting suitable software
components 3, installing them to target platform, designing and implementing user interface
4.

After reading this work, reader should be acquainted with possible problems, he/she
might face, when trying to implement interactive user interface to integrated automated
system. Thesis should give him/her hints, how to solve or evade these problems. Reader
should also get notion on how real system for home automation works and what components
is composed of.

Note that this is a truncated version of thesis. The content published here is made
publicly available with permission from Elko Ep, ltd. The full version includes content,
that is not meant for public reading, as it contains company’s secrets.

1.2 Intelligent homes

Over decades electronic gadgets are providing us comfort of simplifying tedious daily tasks.
They are steadily evolving to bring us new functionality, which we need or want. Intelligent
home is a neat colligation of household appliances, embedded systems, mobile devices etc.
forming an integrated system with artificial intelligence automatting [16] tasks connected
with house keeping (for example heating, ventilation, security, houseplant watering, energy
saving), enterteinment etc. Bringing this automation to homes is the next step in making
electronic devices useful.

Among devices used in home automation belongs: time relays, time switches, staircase
switches, dimmers, twilight switches, power and auxiliary relays, power supplies, controlling
and signalling devices, thermostats, gsm gateways and much more. As amount of different
appliances is ceaselessly increasing, there is necessity for centered, systematic control, pro-
viding user friendly interfaces to manipulate these devices on smaller or larger scale. One
of systems mediating these features is INELS 2.1.

3

1.3 Interfaces

Interfaces to home automated systems provid users (in this case residents of home) ways to
configure or to set state of particular devices. For example turn on and off the light bulb, set
its intension, open a garage door or set currently playing FM radio to other station of player
in other room. This process involves translation of user’s presses of keys/screen to desired
command, which is send across some kind of system bus to desired device, containing a
microprocessor, setting or reading it’s register’s state.

Commonly used interfaces to intelligent home’s control systems are televisions, flat
panels, touch panels, or just switches. Current direction of development aims mobile devices
(smart phones) and web services for remote control, which allows for instance setting the
house’s room temperature to desired value for expected time of arrival of system user, or
just controlling security measures, house state, when nobody’s home. In the future we may
also expect more systems supplied with voice recognition and probably another different
ways of interacting with humans.

4

Chapter 2

System components

Touch panels, on which this thesis is focused on 2.5 are to be part of existing system of
intelligent electroinstallation 2.1. This chapter describes what this system takes care of,
what components are part of it and how can be configured to suit the needs of its users.

2.1 INELS

Means Intelligent electroinstallation. It’s a system developed by Elko Ep, ltd. It’s designed
to control runnings of all kinds of structres from small family houses, apartments across
administration spaces to large complex buildings. From ordinary electroinstallations it
differs[3] mainly in configuration of sensors and actors (units later on), which is done after
their connection with central unit by 2-wired bus, that is shared by all devices supporting
INELS protocol (EPSNET 2.2). This greatly simplifies installation. Units can just be
plugged anywhere to this bus and later be configured. They can also be plugged or removed
anytime, even at runtime, which also applies to their configuration.

This system has a central unit 2.1.1. It acts as a mediator between higher artificial
intelligence and units. Can be connected with pc, or other facility with ethernet cabel.
Configuration is done in software application INELS designer and Manager 2.3 or through
web interface available by built-in webserver.

2.1.1 Central unit

Will be refered to as CPU from now on. Currently there are two supported central units
by INELS. It’s CU2-1M or FOXTROT PLC from Teco corp. Both support communication
by EPSNET 2.2. Both of them support communication over serial channels in multiple
modes. For example FOXROT PLC supports:

EIO connection of additional framework
modules

PC attaching of superior system1.

PLC connection of multiple systems of
TECOMAT/TECOREG for the pur-
pose of quick data exchange.

MPC connection of multiple systems 2 for
purpose of data exchange

UNI user channel for universal usage

MDB connection of superial system by pro-
tocol MODBUS

1PC or superior TECOMAT, TECOREG or EPSNET system
2EPSNET multimaster2.2.1

5

PFB connection of PROFIBUS DP slave
station

UDP handling of special submodules

DPS realization of station PROFIBUS DP
slave

CAN attaching of station CANopen to
PLC

CAS realization of station CANOPEN

CAB attaching of bus CAN

CSJ attaching of bus CAN

Modes PC, PLC and MPC are used with EPSNET 2.2 network. These modes are
also used in communication over ethernet interface, which uses EPSNET udp packets.
This interface can operate in multiple modes simultaneously. Modes PC and MDB are
permanently active.

There is one more communication mode supported by this interface. It’s UNI, which
serves for transmission and reception of arbitrary data over network protocols TCP and
UDP.

Last interface to mention is USB. Data exchange conforms to PC communication mode.

2.2 EPSNET

Is an industrial network used among other things in INELS system. There are two kinds
of stations in EPSNET network:

master active participant, controls the communication

slave passive participant, it answers the questions of superior station

Communication between stations is based on “challenge-response” principle, where chal-
lenge can be generated only by master station. This allows connection of larger amount of
participants through half-duplex interface RS-485.

2.2.1 Configuration

Two basic configurations are supported:

monomaster There is only one superior station in network.

multimaster There are more superior stations with several subsidiary.

monomaster

Most common configuration. If we need to exchange data among subsidiary stations, we
must do so with help of master station, which can be PC with driver providing support for
communication with systems TECOMAT/TECOREG or station TECOMAT/TECOREG
with serial channel in MAS or MPC 3 modes.

Subsidiary stations are systems TECOMAT/TECOREG with serial channel in PC
mode. There may be 126 of them at most.

3transmittion of token message (paremeter MT) is Off

6

multimaster

The bus is controlled by a single master unit at once. After it settles all it’s requests, it
passes on the control to other superior station. All of the other stations, which are not
controling the bus at a moment, act as a slave units. As in previous mode, the subsidiary
stations can communicate with each other with the help of master station. But if we
reconfigure one of them to be a superior station, we can exchange data directly.

Superior units can be PC with driver supporting communication with systems TECO-
MAT/TECOREG with multimaster mode, or systems TECOMAT/TECOREG with serial
channel in MPC 4 mode.

There may be up to 127 stations overall.

2.2.2 Common sctructure of protocol

SD1 DA SA FC FCS ED
0 7 15 23 31 39 47

(a) message without data array

SD2 LE LER SD2R DA SA
0 7 15 23 31 39 47

FC DATA FCS ED
55 x x+8 x+16

(b) message with data array

SD4 DA SA
0 7 15 23

(c) message token

Figure 2.1: communication master =⇒ slave

SAC
0 7

(a)
short
ack.

SD1 DA SA FC FCS ED
0 7 15 23 31 39 47

(b) long acknowledge

SD2 LE LER SD2R DA SA
0 7 15 23 31 39 47

FC DATA FCS ED
55 x x+8 x+16

(c) answer with data array

Figure 2.2: communication slave =⇒ master

Figures 2.1 and 2.2 shows datagram structures used for communication over EPSNET
protocol. Particular datafields are described in table 2.1.

2.2.3 Communication requirements

transmittion from master station

• The delay between sending single bytes must be shorter, than 3 ∗ t, where t is a time
period necessary for transmittion of single byte. 5

4transmittion of token message (parameter MT) is On
5there is an exception for mode PC, for details please refer to [4]

7

field description value

SD1 start delimiter11 $10

SD2 start delimiter 2 $68

SD4 start delimiter 4 $DC

LE data length, count of bytes in fields DA, SA, FC, DATA 3 ... 249
LER length repeat, same value as LE 3 ... 249
SD2R opening character reteated $68

DA destination address 0 ... 126
SA source address 0 ...126
FC frame control - to distinguish message type 0 ...126
DATA message data, max. 246 bytes —

FCS frame check sum over fields: DA, SA, FC, DATA
END2∑
i=DA

mod 256

ED end delimiter $16

SAC short acknowledge $E5

1 constant opening character
2 END is FC for SD1 and FCS− 1 for SD2

Table 2.1: Datafields descriptions

• The delay between received answer and transmittion of next message must be longer,
then t.

common principles

• There must always be an answer to message send by master. If not, it is a serious
failure in communication.

• The delay between transittion of last byte and reception of the first byte of answer
must be at least t. The maximum time is chosen by programmer of master station.

• The adresses of all paricipants of communcation must be unique.

principles for multimaster mode

• If there is no traffic, master station can begin transmittion without a challenge after
a certain amount of time, which must be longer, then the longest timeout 6. This
amount must depend on address of superior station to avoid possible collisions, when
more stations begin transmittion at once. The formula used to compute it is folowing:

wait time = timeout + 500 + 10 · address [ms] (2.1)

• Upon reception of token message 2.1(c), the superior station waits for time period
longer, than t 2.2.3 and then can begin transmittion as master.

• After settling down all of its requests, the master sends the token message to the
other superior station.

6time between the query and answer from slave station

8

2.2.4 Data format

All of the messages have given format:

• 1 start bit

• 8 data bits

• even parity

• 1 stop bit

CPU s supports switching-off the parity usage.

2.2.5 Data security

Data in message are protected with odd parity, checksum (FCS field) and by the correct
sequence of values in frame. If check of any of these arrangements fail, the message will be
thrown away.

CRC polynom

When dealing with modems not supporting parity check, that is for this reason switched
off, we face the danger of data corruption. To evade it, epsnet protocol supports optional
security measure. The CRC polynom. The length of field with it is 16 bits.

As this is not subject of this thesis, the detailed description is omitted, you may refer
for example to [12].

2.2.6 Comunication services

There are two groups of services for communication with systems TECOMAT/TECOREG.
Those are:

1. system communication services

2. public communication services

system communication services

Are available on all communication channels in PC mode. But there is a limitation, that
only one channel can use these services at once.

They are used for configuration of devices and debugging.

public communication services

Available on all communication channels in modes PC and MPC. Overview of available
services is listed in table 2.2.

For detailed description of above commands, please refer to [4]. Because our main
application 4 will not be sending these requests directly, as will be noted later on 7 , we
will omit the details.

7reference was removed due to protection of corporate secrets

9

service code 1 name description

$08 SETTID set time
$0A GETSW read state word
$0B READN read from memory
$0C WRITEN write to data memory
$0D WANDRN write and read to/from data memory
$0E GETERR read error stack
$0F READB read a single bit from data memory
$10 WRITEB write a single bit to data memory
$90 READBD destructive read of bits from data memory
$91 READND descructive read from data memory
$93 WANDRND write to and descructive read from data memory

1 FCS field 2.1

Table 2.2: Overview of supported public services

2.3 IDM

Stands for INELS Designer & Manager. It’s a graphical application designed for configuring
INELS system [14]. It keeps notion about system as a project. These projects contains
common informations about building along with plans of floors stored as images. These can
be further divided into rooms. Upon these floor plans, user can place widgets with asso-
ciated devices and specify them actions performed upon user’s interfactions with widgets.
By interaction is meant clicking on the widget shown on floorplan.

Different actions can be specified for changes of states of different sensors. This can be
for example excessing minimal or maximal value of thermal sensor.

It supports following modes of configuration:

administrator Provides complete management of system and project. Connection to CPU
is optional, as in this mode, user can manage the project off-line and the later upload
it to CPU.

configurator Provides basic configuration of system. This mode needs active connection
to CPU.

user No configuration of system is allowed here. This mode serves purely for interaction
with system. Connection to CPU is also needed here.

Access to these modes is allowed after authorization by password.

2.3.1 Configuration

Configuration of system is divided into several sections:

Inputs are further divided to sections digital, analog, thermometers, cardreaders

Outputs again, these are divided to digital (on-off actors) and analog

Heating let us control house heating systems. Menus of this section allows us to assign
different scenarios to operation modes.

10

Alarms allows to define settings for electronic signalling system. We specify “secured
zones/entries” and assign them detectors connected to INELS system by their digital
inputs.

System provides us with configuration of counters and timers, together with settings of
special events in system

The above list is not complete as it lists only items, we are currently interested in.

2.3.2 Actions

IDM lets us assign actions to various events in INELS system. These can be divided to:

• system actions

• time actions

• user actions

• alarm actions

• input actions

• output actions

• Sophy actions

• heating actions

There are two kinds of actions we can define:

1. build-in action

2. user action

First kind of actions operate upon unit itself meanwhile the second lets us set the commands
sent, upon triggering, to other units.

build-in action

Menu of commands to set here differs based on whether we deal with on-off actors or
“dimmers”8.

user action

With this kind of action we can change state of another units.

user action we can trigger already defined user action

(un)set system bit change the system bit

send sms to phone number defined in GSM

drop-call means to dial a phone number and let it ring for 20 seconds

alarm change states of alarm groups

counter/timer various commands to alter their states, running and stopping them

lightning groups commands for predefined groups of lights

relay groups commands for groups of units with digital outputs

heating lets us change operation modes

8these refer to units providing analog output as noted in

11

2.3.3 Export

Application also supports export of configured devices. There are several different options.
Common feature of these options is that output is one of more plain text files containing
list of devices with their properties. One device per line. Follows list of export options.

1. Inputs and Outputs

2. Time program

3. Time events

4. Counters and Timers

5. Events for vizualization

In terms of our main application 4, we will focus only on the first option. This export
produces output in format shown by table 2.3 Where particular fields, divided by spaces

inels_item REG CF ADDR [.B] TYPE PUB_INOUT

Table 2.3: Format of export.pub

mean:

inels item name generated by IDM 2.3, which is a composition of user defined names for
unit and input/output

REG can be X, Y or R, that stand for: input, output and user data register

CF this is a compability field, in which we are not interested

ADDR address of register mapped in address space of CPU

[.B] present only if type of value is BOOL. The B stands for position9 of bit in register.

TYPE type of variable. Possible values for this field are:

REAL floating point number

BOOL single bit in register

BYTE 8-bit value

PUB INOUT compability field

The snippet of generated export file by IDM is shown in listing 2.1.

Listing 2.1: export.pub

1 room 3 1 IN 1 X B 4 . 0 BOOL PUB INOUT
2 room 3 1 IN 1 Counter R B 17673 BYTE PUB INOUT
3 room 3 1 IN 2 X B 4 . 1 BOOL PUB INOUT
4 room 3 1 IN 2 Counter R B 17701 BYTE PUB INOUT
5 room 3 2 UP1 X B 6 . 0 BOOL PUB INOUT
6 room 3 2 UP1 Counter R B 17729 BYTE PUB INOUT
7 room 3 2 DOWN1 X B 6 . 1 BOOL PUB INOUT
8 room 3 2 DOWN1 Counter R B 17757 BYTE PUB INOUT
9 room 3 2 GREEN1 OFF R B 22207 . 1 BOOL PUB INOUT

10 room 3 2 GREEN1 TRIG R B 22207 . 2 BOOL PUB INOUT
11 room 3 2 GREEN1 R B 22217 . 0 BOOL PUB INOUT
12 room 3 3 TERM X F 12 REAL PUB INOUT

9possible values are 0 ... 7

12

2.4 IMM

Content was removed due to protection of corporate secrets.

2.5 Touch panels

Follows detailed description of two touch panels, which were selected as platforms for main
application:

• SofCon’s TOUCH11/PC • SofCon’s TOUCH51/PC

Specifications for both panels is listed by table 2.4.

Touch11/PC Touch51/PC

Display LCD 5,7
”

touch LCD 10,4“ touch

Resolution 640x480 800x600

Colors 262144

Processor AMD Geode LX800/500MHz VIA EDEN, INTEL ATOM 667Mhz

Ram 256MB

Storage Compact Flash 2-8GB

Interfaces Ethernet 1Gbit/s, 2 x RS232, 4 x USB

1 x PS2 (keyboard + mouse), Centronics (LTP)

— VGA 1024x768, RS232/RS422/RS485, PC104Bus

Table 2.4: Touch panels specifications

2.5.1 Touch panel communication

Operating system communicates[9] with panel through serial port RS232. Folows parame-
ters of communication:

• 8 bits data

• even parity

• 1 stop bit

• speed 9600 Baud/s

13

Chapter 3

Bring it to life

Making touch panel part of INELS 2.1 is a task composed of few non-trivial tasks.

1. Choosing an appropriate operating system according to requirements. 3.2

2. Make sure, that operating system correctly handles all peripherals and subdevices of
chosen hardware platform. 3.4

3. Implement a user interface not necessarily dependend on selected operating system.

4. Make it easy to install all needed software components. 3.7

3.1 Objective

Create user interface for controlling intelligent home devives through epsnet protocol with
touch panel as targeted platform. This includes choosing suitable operating system, make
necessary changes to it to provide access to units via EPSNET 2.2 protocol. Application
is to be controled by interacting with device’s touchscreen.

3.2 Operating system

3.2.1 Requirements

OS must be stable, easy to configure and it must support needed software programming
enviroment and tools for running main application. Also it should support natively all
hardware of targeted platform.

3.2.2 Previous installation

Producer of targeted touch panels 2.5, company SofCon, distributes with them one of
default installations of operating systems, based on customer’s preferences:

• Microsoft Windows XP Embedded 3.2.2

• Debian GNU/Linux 4.0 voyage 3.2.2

14

MS Windows XP Embedded

With regard to operating system, which is targeted by main application IMM 2.4, and to
the fact, that application for these touch panels is offering subset of features of the main
application, and so it can reuse the already done code of it, and considering, that main
application’s target operating system is linux, then MS Windows it not a good choice.

Debian GNU/Linux 4.0 voyage

The problem with second default installation of Debian Linux, is that company is providing
support only for this particular version of distribution, this includes provided source code
of drivers needed to communicate with touch screen peripheral. This distribution is out-
dated and does not meet the requirement of supporting necessary programming tools. In
particular at least the version 2.6 of python is needed. This distribution provides package
with version 2.4.4 at most, which is not acceptable. Absence of other minimal versions of
the rest of needed packages need not to be mentioned. This leaves us with few options:

1. compile desired packages by ourselfs

2. select another more appropriate distribution

First option does not meet requirement of easy configuration. Compiling packages from
sources is difficult task by itself. But most difficult would be managing needed dependencies,
when package A depends on p. C, which on the other hand depends on packages D and E.
Compiling single software component (for instance python) could result in need to compile
other n packages. This would soon leave us with our own distribution of GNU/linux, which
is certainly not, what we want.

Based on previous statements, the second option was selected. Downside of this decision
is that linux driver for touch screen, since it’s not part of official kernel source tree, will need
to be managed to fit with paricular versions of linux kernel used by selected distribution, if
producer of touch panels does not decide to support this distribution later on.

3.3 Ubuntu 9.10 “Karmic Koala”

Is a chosen distribution for touch panels 2.5. Current version of it’s kernel installed is 2.6.31,
which is 13 versions newer than one provided with default installation 3.2.2. This means
that many changes were made to linux kernel since the touch screen driver were made. And
slight changes were made even to linux kernel driver interface, which made the driver not
compilable.

3.3.1 Driver changes

Follows few examples of such changes in c code.

• Removing proc root entry of device from proc file system had been done calling this
function:

1 remove proc entry (const char ∗name
2 , struct p r o c d i r e n t r y ∗parent
3) ;

15

passing as the second argument macro proc_root_driver, which expanded to NULL.
This macro was removed in later versions. Thus it’s occurencies needed to be replaced
by NULL directly.

• Also from struct proc_dir_entry was removed attribute owner due to security
reasons. This attribute specified owner module, which was usually set to macro
THIS_MODULE, as in our case. Occurences of this assignment had to be removed.

• struct input_dev representing input device had attribute event of type

1 void (∗) (struct input dev ∗dev
2 , unsigned int type
3 , unsigned int code
4 , int value
5) ;

that is used to specify event handler for particular input device. It’s type was later
changed to

1 int (∗) (struct input dev ∗dev
2 , unsigned int type
3 , unsigned int code
4 , int value
5) ;

Thus event handler needed to be modified to return 0, if event is handled and -1
otherwise.

As can be seen, needed changes to the driver, due to kernel api changes, are rather cos-
metic. All changes made were supplied with conditional compilation statements depending
on version of kernel, to support earlier ones. Especially to preserve the compability with
version of kernel of mentioned Debian GNU/linux distribution 3.2.2. To allow producer of
touch panels 2.5 to merge the changes with their base source code without side effects, and
thus support wider range of different linux kernel versions.

3.4 Touch screen input

As noted before, touch screen is connected to system bus via serial port RS232. X server
is not alone able to communicate with touch screen through this port. Protocol for com-
munication with it is special to touch panels from SofCon.

Allowing input from touch screen to be handled by X server, can be achieved by multiple
ways:

write driver for X This driver would have to handle the communication with touch
screen directly through serial port.

write driver for linux kernel In this case, driver would create a translation layer be-
tween any user space application, that would want to communicate with device
through standard linux kernel input system api.

First method is not recommended as noted in [2]. When input device is a “common”
one (touchscreen, mouse, keyboard, etc.), as in this case, a better solution is to make proper

16

linux kernel driver and let the X server pick up its general driver for it automatically. Also
second solution is more general one, because it lets multiple user space applications to
access the device. In this case second option was selected.

Touch screen driver registers itself in kernel after loading its module, to handle con-
nection, disconnection and event processing. But loading this module and connecting the
touch screen to serial port is not enough for kernel to attach them together. First the
settings for the serial port as noted in 2.5.1 and protocol number (described below) must
be set by calling ioctl function on particular file descriptor of openned serial port device.

3.4.1 inputattach

This is actually a common process of attaching input devices connected via serial port to
their respective linux kernel driver. Standalone application was made to handle this process.
It’s name is inputattach. It does a simple job, taking device and connection type name as
parameters and attaching it to kernel input system. Internally it has predefined protocol
numbers for each device it supports (actually these numbers are defined in linux/serio.h

headers distributed with vanilla kernel). One of which is assigned to device, when making
connection, by calling this program. It then runs as a daemon. Sequence of events triggered
by attaching device is illustrated on figure 3.1.

Figure 3.1: Attaching serial device to input system

Since our kernel driver is not part of official kernel source tree, it’s not even one of
recognized devices of this application. But company SofCon modified it to include support
for their touch panels. Protocol number assigned to this device by company is 0x36. Which
is the same number as of driver for Zhen Hua PPM-4CH RC transmitter, assigned to it
by linux kernel’s developpers. This makes a problem, since protocol numbers for different
devices must by unique. When device is attached, kernel defautly loads zhenhua module,
because protocol number matches the one assigned to device by inputattach 1. To cir-
cumvent this, zhenhua module needs to be blacklisted, and then our driver takes its place,
when inputattach is called.

1inputattach has in our case the same protocol id number for two different devices

17

3.4.2 Touch screen driver

When driver is loaded, it registers two input devices in kernel input system (the third step
in figure 3.1). One provides access to one way motion events with absolute coodinates
yielded from driver to user space. The second is two-way control event.

Virtual devices (in this case input events) are by udev daemon added to /dev/input

directory with name eventX, where X is a number dynamicly assigned to this input event
by udev. Through the virtual device (the one providing motion events), X server’s driver
is handling all user input from touch screen. But because X server is not smart enough
to assign this virtual device driver we want, this driver needs to be assign to it explicitly.
This can be done statically by editing X server’s configuration file typically located in
/usr/X11/xorg.conf or using hal (hardware abstraction layer), but more general way
is to create symlink to this virtual device with constant name pointing to specific event
in /dev/input. And then configure X server to assign this symlink a driver we prefer.
Creation of this symlink can be achieved by writing udev rules file.

udev

udev [10] is a daemon running in a user space, which listens to the events reported to user
space from kernel typically through netlink, which is the “prefered interface between user
space and kernel for IP networking configuration” [6]. It keeps state of files located in /dev

directory actual, based on currently connected devices supported by running kernel. What
epsecially insterests us is the fact, that it allows administrator of system to specify rules
of naming schemes for individual devices or for set of them with common attributes. And
also create symbolic links refering to real virtual devices.

This means, that we can create a symlink for virtual device in form /dev/input/scts,
which points to one of /dev/input/eventX virtual device and from now on, refer only to
this symlink, whose name does not change.

Rules are kept in text files typically located in /lib/udev/rules.d (files provided di-
rectly with udev package or by other distribution’s packages) and in /etc/udev/rules.d

(local system rules). For exact format of rules file see [8]. Rules used to create a symlink
for our input event devices are these:

Listing 3.1: Udev rules file

1 SUBSYSTEM==” input ” , ATTRS{name}==”SofCon S e r i a l TouchScreen” , \
2 SYMLINK+=” input / s c t s ”
3 SUBSYSTEM==” input ” , ATTRS{name}==”SofCon S e r i a l TouchScreen Control ” , \
4 SYMLINK+=” input / sc t s−c o n t r o l ”

Rules needed to be divided to multiple lines for the sake of readibility, but in udev rule
files, one rule must occupy one line at most.

First two fields (SUBSYSTEM and ATTRS) represents matches, by which desired device
is searched for. There can be arbitrary number of them, but in this case, two are suffi-
cient. First filters only those devices belonging to kernel’s input subsystem, while the other
matches attribute name assigned to input device by our kernel driver.

18

3.4.3 X server configuration

Since /usr/X11/xorg.cong is not implicitly present in distribution 3.3 and prefered method
of its configuration is to use hal 2. We will obey this convention.

hal

Stands for “hardware abstraction layer”. It’s another process in user space dealing with
connecting, disconnecting and configuring devices in linux and in various forms is present
at majority of operating systems. While udev manages virtual device files, hal takes care
of additional tasks concerning it’s administration. For example [10]:

• Loading driver modules.

• Managing virtual model of hardware and different views attached to it.

• Communication with processes concerning changes in device states.

• Creation of mount points for filesystems.

As in case with udev 3.4.2, hal collects information about what to do with particular
device from its configuration files. These files are written us xml files according to dtd
definition. To tell X server to assign desired driver (in this case evtouch3.4.4) to particular
device, rules like listing 3.2 shows,

Listing 3.2: Hal policy file

1 <match key=” @info . p a r e n t : i n f o . subsystem ” s t r i n g=” s e r i o ”>
2 <match key=” @info . p a r e n t : i n f o . l i nux . d r i v e r ” s t r i n g=” s c t s ”>
3 <match key=” i n f o . c a p a b i l i t i e s ” conta in s=” input . touchpad”>
4 <merge key=” input . x 11 d r i v e r ” type=” s t r i n g ”>evtouch</merge>
5 </match>
6 </match>
7 </match>

needs to be written to hal policy file.
Also this configuration composes of matching part and rule part. This time we first

search for parent device of one, we are focused on. Concretely line 2 requires, that its
parent device belongs to subsystem serio. While line 3 filters from matched parents those,
with scts linux driver, which is the identification name of our driver. And because we are
interested only in input device providing us with user input and not configuration, we apply
last filter rule asking for device with touchpad capabilities. And to this device is assigned
an attribute input.x11_driver with value evtouch, which tells the X server, that this is
the driver we want to use.

3.4.4 evtouch

evtouch is a linux-touchscreen driver for X. From evdev, which is a generic input driver for
X, it differs by providing few additional options concerned with touch screens [1]:

TapTimer This timer starts when the state MAYBETAPPED is entered. When this timer
expires a tap-event is issued and the state changes to UNTOUCHED. Default value
is 200ms.

2Currently hal is being marked as deprecated and all configuration is to be done via udev in future
versions of X.

19

LongTouchTimer This timer is always started when the state TOUCHED is entered.
When the timer expires before you untouch the screen again the state moves to
LONGTOUCHED and on entering that state a longtouch-event is issued. Default
values is 400ms.

MoveLimit If the pen moves out of this radius a “mouse-press”-event becomes impossible.
Default value is 30 Pixels.

Rotate There are two valid values:

CW Rotate the screen clockwise

CCW Rotate the screen counter-clockwise

Everything else will be treated as “no rotation”. Default values is “no rotation”.

Calibrate This option starts driver in calibration mode. In this mode, driver opens a
FIFO file 3.4.4 for writing and when another process opens this same file for reading,
it writes there input events in this format (in C code):

1 struct Point {
2 int x ; int y ;
3 } ;

The other process reading input events can obtain the x and y coordinates this way:

1 i f (read (m fd // f i l e d e s c r i p t o r o f f i f o f i l e
2 , &p /∗ i n s t a n c e o f above s t r u c t
3 ∗ r e p r e s e n t i n g p o i n t ∗/
4 , sizeof (p) // s i z e o f t h i s s c t r u c t
5) == −1) {
6 i f (er rno == EAGAIN) {
7 /∗ f i l e was openned in nonb lock ing mode
8 ∗ and read ing would b l o c k ∗/
9 break ;

10 }
11 // er ror p r o c e s s i n g
12 }

Events are generated only upon pressing touch screen and moving pressing object
around.

The use of this option will be covered later on 3 .

It also provides calibration tool, which utilises calibration mode noted above. This tool is
in more detail described in 4 .

FIFO file Stands for first in, first out queue. In operating system such a file represents
named pipe [10]. It’s an interprocess communication object, which has its place in OS’s file
system, even if no process actually use it. As such, it can have its own permission access
settings as any other regular file. It can be even packed to archiver and later be restored.

But let’s be concerned with communication possibilities. From the application’s point
of view, sending data to other process via pipe is the same as writing to file or socket. Pipe

3reference was removed due to protection of corporate secrets
4reference was removed due to protection of corporate secrets

20

has two ends. Both ends can be openned by multiple processes or even threads of the same
process, although it’s rarely used.

It can be described as an interface to memory buffer, which is limited by its size, so
in order not to fill it up, pipe must be read at the same time as it is written to. When
buffer is filled up, the next attempt to write data to pipe will block, until the same size of
data chunk is read from it. When openned in nonblocking mode, this same attempt would
generate error EAGAIN. It should be noted, that when writing to pipe, which has the second
end closed, process will receive the signal SIGPIPE from kernel and default action upon
receiving this signal is to end the program. To prevent this, a handling function should be
registred.

Before communication can begin, this pipe must be constructed:

1 i f (mkf i fo (p ipe path // path (name) o f p ipe
2 , S IRUSR | S IWUSR // permiss ions o f produced f i l e
3) != 0) {
4 // er ror hand l ing
5 }

Then we can open it just as a regular file:

1 FILE ∗ f = fopen (pipe path , ” r ”) ;
2 i f (f == NULL) {
3 // er ror hand l ing
4 }
5 . . .
6 f c l o s e (f) ;

This code opens the pipe for reading only. The other process writing data to it would
supply the fopen function "w" as a second argument.

A special characteristic this pipe has is that it must be openned by both processes at
once. So this open operation would block until second process opens up the other end of
pipe. To evade this blocking, we can open the pipe in nonblocking mode. In that case, pipe
would decline any attempt for communication until it’s fully openned.

3.5 Calibration

Content was removed due to protection of corporate secrets.

3.6 Packaging

To simplify the process of installation of needed software components for mentioned dis-
tribution, packages were made. This simplifies not only installation process, but especially
updating packages, when new version of software is released. Thanks to packaging system
on package-based distribtions we don’t need to worry about cleaning up the system after
removal of certain applications [13].

To create a package for your distribution, please refer to the packaging guide of that
distribution. Here we will be only scratching the surface of creating the packages for Ubuntu.

Packages the were up to now made, to make the touch panel functional, are following:

1. sctouchscreen-dkms

2. inputattach-scts

21

3. evtouch-calibrate

3.6.1 sctouchscreen-dkms

This package installs touch screen driver 3.4.2 to system. Actually it leaves all the work to
DKMS.

DKMS

Stands for Dynamic Kernel Module Support [11]. It allows to automatically compile linux
drivers, when the new version of kernel is installed to system. This is particularly helpful for
proprietary drivers, because without DKMS, the user must wait for the release of particular
driver compiled with the version of kernel, he is running, for him to use desired hardware.
With DKMS the driver is compiled transparently without the need of user intervention.

Since we are expecting to update touch panel’s installations, this greatly simplifies
administration.

To make a package using this system, we may employ the dkms tool directly in this
process with this command:

$ dkms mkdsc -m ${PKG_NAME} -v ${PKG_VERSION} --source-only

or use a standard packaging procedure covered by packaging guide [5]. In the end, we end
up with debian directory with files to edit such as:

control defines compile time and runtime dependencies in form of packages for this dis-
tribution

rules this file is actually a makefile, which is run by GNU make and controls the build
process together with installation to directory, which will be later packed

postinst a shell script taking care of postinstallation actions

We will focus on postinst, the snippet showing important lines is shown in listing 3.3.
With these lines set, the driver is, after installation of package, added to kernel source tree
and from that point on is actualized upon any update of kernel.

Listing 3.3: postinst script

1 NAME=sctouchsc r een
2 VERSION=1.4
3

4 case ”$1” in
5 c o n f i g u r e)
6 echo ”Adding Module to DKMS bui ld system”
7 dkms add −m ”$NAME” −v ”$VERSION”
8 echo ”Doing i n i t i a l module bu i ld ”
9 dkms bu i ld −m $NAME −v $VERSION

10 echo ” I n s t a l l i n g i n i t i a l module”
11 dkms i n s t a l l −m $NAME −v $VERSION −−f o r c e
12 echo ”Done . ”
13 ; ;
14 esac

To later remove driver from tree, these few lines of code are enough:

22

dkms remove -m $NAME -v $VERSION --all

depmod

rm -rf "/usr/src/$NAME-$VERSION"

These should be part of removal scripts for package (prerm and postrm).

3.6.2 inputattach-scts

This is the glue for other packages. It installs following configuration files:

40-scts.fdi the destination directory is

/usr/share/hal/fdi/policy/20thirdparty

this file is shown in listing 3.2. Thanks to it the X server assigns device the evtouch
driver.

blacklist-scts.conf is installed to /etc/modprobe.d. It contains simple line forbidding
loading of zhenhua module as mentioned before 3.4.1. Thanks to it our sctouchscreen
driver will be assigned to serial device, after inputattach is run.

inputattach-scts.rules is installed to /lib/udev/rules.d Listing 3.1 shows the con-
tents of this file. Thanks to it, we may refer to virtual input device file by name.

inputattach-scts.conf is installed to etc. It contains the path to serial port device,
that is used to communicate with touch panel’s screen and mode, in which to run the
daemon (scts mode).

3.6.3 evtouch-calibrate

The implementation of application, this package provides, is covered in section 3.5. This
package just installs executable to /usr/bin and initialization script to /etc/init.d. This
script starts the application together with X server and after successful calibration, it stores
configuration settings in /etc/evtouch/config for evtouch driver to load them upon X
server’s start. It also takes care of setting the correct environment for this application to
work, sush as setting the calibration mode of evouth driver.

3.7 Installation

Compact flash disk present in touch panel has capacity ranging from 2GB to 8GB. This is
enough for embedded device, as long as we deal with it economically.

Disk partitioning will be covered later. Otherwise, the process of installation is not much
different from installation on desktop computer, except, that we use minimal configuration,
leaving us with naked system, that we use as a base.

After installation of distribution to compact flash on touch panel device 5. The steps
needed to take are following:

1. install necessary packages from official repositories

5this is currently done by traditional way of installation from CD, which is inserted to CD-rom mechanics
connected via SATA → IDE convertor

23

2. install our own packages 3.6

3. create new user

4. install main application

3.7.1 Disk partitioning

The partitioning we are going to do is for the sake of distribution of working system to
other touch panels. It would be tearsome to install the distribution with all the required
packages all over again to multimple disk drives, when most of the contents would be the
same. This is dealt with by cloning of compact flash, which is covered later. Since we
don’t want to clone all of the contents of compact flash, when we’ll be performing update
of distribution, but we want to preserve user configurations, he made. It is wise do divide
the disk to partitions, from which some can be overwritten, when update comes, and others
will stay the same. Listing 3.4 shows selected partition scheme for 4GB compact flash disk.

Listing 3.4: cfdisk disk partition scheme

1 Name Flags Part Type FS Type [Label] S i z e (MB)
2 −−
3 sd f1 Boot Primary Linux 78 .45
4 sd f2 Primary Linux 3501.20
5 sd f3 Primary Linux 437.65

The sdf means, that we are manipulating partition 1 of block device sdf, which represents
our compact flash. On your system, you may confront different naming scheme. The first
partition is bootable and will contain boot loader 6. The second partition, which is the
largest, will contain system installation files. Last parition will keep home directory of
main application. This partition will hold data, that we want to preserve. Other partitions
can be overwritten, when we’ll perform update of system by disk cloning.

3.7.2 Disk cloning

Cloning of the contents of one compact flash is easy as long, as it has the same size. Before
cloning, we have to recreate the same disk partition scheme on the destitation flash card.
Then we can use these commands to do the copy:

dd if=/dev/sdf1 of=/dev/sdg1

dd if=/dev/sdf2 of=/dev/sdg2

This example assumes the /dev/sdf to be the same device as on listing 3.4. Second device
(/dev/sdg) is the distination. These two commands copy first two entire partitions to the
second disk.

Beware

Above commands work in case, that corresponding partitions on both disks are of the same
size, or the partitions on the second disk are larger. Otherwise it would not work and you
would have to select another method.

6GRUB in our case

24

Chapter 4

Main application

As noted before 2.4, this is an IMM client, which uses the epsnet server to communicate
with INELS units. Currently it is not an IMM player suited for playing audio or video.
This may change in future version. It will also depend on hardware capabilities of supported
touchpanels, since playing video files is computationally expensive.

Thanks to abstraction provided by epsnet server from communication with CPU, this
application becames very simple.

The application is not complete yet at the time, these lines are written. And a lot of
things presented here can change in near future. So we won’t go deep into implementation
details, rather we will focus on main concepts, that should stay the same.

4.1 Screens

Functionality, or rather actions, the user can trigger, are divided to number of screens. Here
is their list:

main screen figure 4.1

music screen figure 4.2(a)

movie screen figure 4.2(b)

tv screen figure 4.2(c)

web screen figure 4.3(a)

camera screen figure 4.3(b)

foto screen figure 4.2(d)

Main screen is the opening one. It is basically a crossroad to the other screens and at
the same time it provides the quick access to important devices in the house, which can be
instantly controled. As noted before 1 , devices listed on this screen depends on current
room context.

4.1.1 Main screen

We will now describe the buttons user can interact with on the main screen. The buttons
marked with red rectangles on picture of main screen 4.1, represents INELS items. As
you can see, the button Lamp is highlighted. This marks, that lamp is turned on. When
user presses this button, a slider may show up, depending on the settings in rooms.cfg file

1reference was removed due to protection of corporate secrets

25

inels

room context

user

Figure 4.1: Main screen

shown in listing 2 and export.pub (listing 2.1). If the type for the device represented by
this button 3 is REAL, the slider shows up and user can manipulate the intensity. Otherwise
4 this simply turns off the lamp.

All of these items are shown only if they were defined for current room context, which is
marked on the figure. Room context is one of rooms listed in file rooms.cfg. Implicitly it
is set for the room, in which the touch panel is placed. When user presses this button, the
next room context is shown. And all of the buttons represening INELS are reloaded. This
applies also to the music bar showing currently played track on player defined for current
room context and to temperature indicator displayed directly below shown room context.

The other buttons are self-explanatory, most of them trigger displaying of another
screen. Some of those screens are shown on figures 4.2 and 4.3.

4.1.2 Multimedia

Figures 4.2 shows multimedia screens. These does not operate upon INELS items, but
also needs epsnet server running. This is actually true for first three screens. The last
needs only configured NAS storage or network shared storage on remote host 5 to show the
photos.

Music, movie and tv screens use player_man 6 object to get status of player. Pressing
the controls on right panel would trigger expected action on player of current room context.
As noted before, database of music files, movies, tv stations and photos are stored on remote
host or NAS storage in simple directories, which are mounted upon boot.

26

(a) music screen (b) movie screen

(c) tv screen (d) foto screen

Figure 4.2: Multimedia screens

4.1.3 Other screens

These provide various functionality, that can be discerned by simple look. Figure 4.3 does
not list all of the available screens in application. But their number and functionality will
be most certainly modified in near future, so they serve us as a bare outline of possible
functionality.

Most interesting is the camera screen. This uses embedded mplayer 7, which draws
frames of stream from ip camera into provided widget.

The list of cameras is obtained from remote storage . The mounted directory contains
files with similar line:

rtsp://{LOGIN}:{PASSWORD}@{IP_ADDRESS}:{PORT}/mpeg4/media.amp

After mplayer is started with this address, it logs in to the ip camera and starts playing

2reference was removed due to protection of corporate secrets
3which is stated in export.pub
4the type would be BOOL
5in very simple configuration, fotos could be present only on hard disk of touch panel
6reference was removed due to protection of corporate secrets
7a moview player for linux [15]

27

(a) web screen (b) camera screen

Figure 4.3: Various other screens

the stream. The previous address is different for various ip cameras. To access this stream,
refer to official manual for you ip camera.

4.2 Implementation

This IMM client is also implemented in python. From IMM HD client it differs in used
graphical toolkit. This uses Qt, “Qt is a C++ class library and GUI toolkit for Unix,
Windows, and embedded systems (with the latter running on Linux)” [7].

4.2.1 Object design

Object design follows the separation of functionality to screens. The main classes used are
following:

MainMenu is the main window of application. It actually does not render anything on
screen by itself. It only changes panels (QWidgets) in its layout.

MainPanel renders the main screen.

CamPanel renders the camera screen.

MusicPanel renders music screen.

MoviePanel renders movie screen.

Above classes except for MainMenu have in common, that they define a Qt signal show_main
which is emitted, when user triggers a closing action. This action may be defined by various
ways in different widgets. When this signal is emitted, it is catched in Qt slot showMain of
MainMenu object, that hides currently set panel and shows instance of MainPanel instead.
For description of Qt signals/slots mechanism, please refer to Qt ’s documentation.

Simplified object design is illustrated on figure 4.4. Follows a description of selected
classes.

28

Figure 4.4: Object design

Resources

This class is modeled as singleton. It provides methods to access application settings, which
are stored in ini configuration file. Settings contain address of epsnet server with its port,
paths to some images and floorplans, path to skin directory and currently selected skin.
Currently there is only one available skin, but it may change in the future. Configuration
of IMM clients is stored in the same file /etc/imm/imm.cfg as the configuration of server.
This is not true for this application, since there are many options different compared to
IMM HD client.

Most important thing skin defines are path to icons, colors of fonts depending on context
and dimensions of several widgets. There is no need to define background colors, because
background is rendered from bitmap images.

CommonBar

Is a top bar common to most of the panels. It renders current date and time together with
bitmap image in background. As you can see, it’s owned by MainMenu, because there is no
need to include this bar in every panel, since it’s shared by them. When a request, to show
a screen without this bar, comes, MainMenu must recognize it and hide it in order to let the
child panel occupy all of the screen.

FunctionSideBar

This is a bar to the left of the screen and is shared by most of the panels. Currently it does
not have assigned any special functionality apart from bringing user to the main panel. But
this will probably change in the future versions.

4.3 Start of application

Application is started with optional argument -c as this:

29

./imm.py [-c CONF]

where CONF is configuration file loaded by Resources object.
It is started as full screen application occupying all available space of display.

30

Chapter 5

Conclusion

The creation of multimedia system is not a simple job. The reason for it is that it’s composed
of a lot of smaller tasks, of which some may prove as much more difficult to overcome, than
the implementator would thought. Some of these tasks include crucial decisions, which
may render the outcome unusable. This includes selection of hardware platform, operating
system, the object design of main application. And we are not taking into account the
other systems, that our application needs to communicate with.

Reader should especially note, that choosing a hardware platform, is not just a mere
selection of hardware components. Software support for this platform is at least at the same
level of importancy. User should be confident, that such support won’t diminish in years
to come, for that would left him with hardly mantainable piece of hardware. In this sense,
the open source drivers may be a solution. But again, proper support from manufacturer
will make developers of main application and in the end, the client, contented.

As with any other application, the developer should predict the future need for modifica-
tions, because of different client’s preferences, that may vary accross time, as clients become
more familiar with application. For it the application should be modular and configurable.
Modularity does not necessarily bring complexity to project. It may, on the contrary, re-
sult in more synoptical design. The posibility for configuration is unfortunatelly a more
demanding feature. Since it represents hidden dangers in form of not handled combinations
of options. Application, especially for embedded devices, must be stable and must handle
all possible combinations of configuration options correctly. For when it ends in undefined
state, and operating system kills the application forcibly, the user may not be able to start
it again or just fix the configuration, that caused it to fall.

From the developer’s point of view, this area of development is challenging and at the
same time rewarding. It’s not an easy task to implement all desired features when dealing
with a big range of users demanding various extensions to program. But this is actually
an advantage, since there is always something to modify, improve or add to satisfy new
demands. Simply put, there’s always something to do, and developer does need to worry
about shortage of work for years to come.

31

Bibliography

[1] Linux-touchscreen driver for x. http://www.conan.de/touchscreen/evtouch.html,
November 2008.

[2] http://www.x.org/wiki/Development/Documentation/XorgInputHOWTO, October
2009.

[3] Přehled sortimentu, March 2009.

[4] Sériová komunikace programovatelných automat̊u tecomat - model 32 bit̊u. Technical
Report TXV 004 03.01, Teco corp, Teco a.s. Havĺıčkova 260, 280 58 Koĺın 4, March
2009. version 15.

[5] Ubuntu: Packaging guide/complete.
https://wiki.ubuntu.com/PackagingGuide/Complete, 2010.

[6] Christian Benvenuti. Understanding Linux Network Internals. O’Reilly Media, Inc.,
2005. ISBN 0596002556.

[7] Matthias Kalle Dalheimer. Programming with Qt. O’Reilly Media, 2nd edition,
January 2002. ISBN 978-0596000646.

[8] Daniel Drake. Writing udev rules.
http://reactivated.net/writing_udev_rules.html, 2008.

[9] Jan Hvozdovič. Touch software, aplikace pro práci s dotykovou obrazovkou, př́ıručka
uživatele a programátora. Technical Report 4.00, SofCon, spol., s.r.o., Křenova 11,
162 00 Praha 6 Czech Republic, February 2006.

[10] Jeĺınek Lukáš. Jádro systému Linux. Computer Press, a.s., May 2008. ISBN
978-80-251-2084-2.

[11] Richard Petersen. Ubuntu 9.04 Desktop Handbook. May 2009. ISBN 978-0982099841.

[12] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach.
Morgan Kaufmann, 3rd edition, May 2003. ISBN 978-1558608320.

[13] Ubuntu Documentation Project. Ubuntu 9.04: Packaging Guide. Fultus Corporation,
2009. ISBN 1-59682-153-1.

[14] Jǐŕı Stýskaĺık. Př́ıručka pro software inels designer & manager. Technical Report 2,
2008.

[15] MPlayer team. Mplayer - the movie player.
http://www.mplayerhq.hu/DOCS/HTML/en/intro.html, 2009.

32

http://www.conan.de/touchscreen/evtouch.html
http://www.x.org/wiki/Development/Documentation/XorgInputHOWTO
https://wiki.ubuntu.com/PackagingGuide/Complete
http://reactivated.net/writing_udev_rules.html
http://www.mplayerhq.hu/DOCS/HTML/en/intro.html

[16] Wikipedia. Home automation.
http://en.wikipedia.org/wiki/Intelligent_home, September 2009. [Online;
accessed 10-April-2010].

33

http://en.wikipedia.org/wiki/Intelligent_home

	Preface
	About
	Intelligent homes
	Interfaces

	System components
	INELS
	Central unit

	EPSNET
	Configuration
	Common sctructure of protocol
	Communication requirements
	Data format
	Data security
	Comunication services

	IDM
	Configuration
	Actions
	Export

	IMM
	Touch panels
	Touch panel communication

	Bring it to life
	Objective
	Operating system
	Requirements
	Previous installation

	Ubuntu 9.10 ``Karmic Koala''
	Driver changes

	Touch screen input
	inputattach
	Touch screen driver
	X server configuration
	evtouch

	Calibration
	Packaging
	sctouchscreen-dkms
	inputattach-scts
	evtouch-calibrate

	Installation
	Disk partitioning
	Disk cloning

	Main application
	Screens
	Main screen
	Multimedia
	Other screens

	Implementation
	Object design

	Start of application

	Conclusion

