BIFURCATION OF POSITIVE PERIODIC SOLUTIONS TO NON-AUTONOMOUS UNDAMPED DUFFING EQUATIONS

JIŘÍ ŠREMR

Abstract

We study a bifurcation of positive solutions to the parameter-dependent periodic problem $$
u^{\prime \prime}=p(t) u-h(t)|u|^{\lambda} \operatorname{sgn} u+\mu f(t) ; \quad u(0)=u(\omega), u^{\prime}(0)=u^{\prime}(\omega)
$$ where $\lambda>1, p, h, f \in L([0, \omega])$, and $\mu \in \mathbb{R}$ is a parameter. Both the coefficient p and the forcing term f may change their signs, $h \geq 0$ a.e. on $[0, \omega]$. We provide sharp conditions on the existence and multiplicity as well as non-existence of positive solutions to the given problem depending on the choice of the parameter μ.

1. Introduction

Consider the parameter-dependent problem

$$
\begin{equation*}
u^{\prime \prime}=p(t) u-h(t)|u|^{\lambda} \operatorname{sgn} u+\mu f(t) ; \quad u(0)=u(\omega), u^{\prime}(0)=u^{\prime}(\omega) \tag{1.1}
\end{equation*}
$$

where $p, h, f \in L([0, \omega]), h \geq 0$ a.e. on $[0, \omega], \lambda>1$, and $\mu \in \mathbb{R}$ is a parameter. By a solution to problem (1.1), as usual, we understand a function $u:[0, \omega] \rightarrow \mathbb{R}$ which is absolutely continuous together with its first derivative, satisfies the given equation almost everywhere, and meets the periodic conditions.

We first note that the differential equation in (1.1) with $\lambda=3$ is derived, for example, when approximating a non-linearity in the equation of motion of the oscillator illustrated in Fig. 1. Consider a forced undamped oscillator consisting of a mass body of weight m and a linear spring of characteristic k and non-deformed length ℓ. Assume that the mass body moves horizontally without any friction and the spring's base point B oscillates vertically, i.e., d is a positive ω-periodic function. This is a system with a single degree of freedom, described by the coordinate x, whose equation of motion is of the form

$$
\begin{equation*}
x^{\prime \prime}=\frac{k}{m} x\left(\frac{\ell}{\sqrt{d^{2}(t)+x^{2}}}-1\right)+\frac{F(t)}{m} . \tag{1.2}
\end{equation*}
$$

A classical approach to deriving Duffing equation is to approximate the nonlinearity in (1.2) by a third-order Taylor polynomial centred at 0 . We thus get the

[^0]

Figure 1. Forced undamped oscillator.
equation

$$
\begin{equation*}
x^{\prime \prime}=\frac{k(\ell-d(t))}{m d(t)} x-\frac{k \ell}{2 m d^{3}(t)} x^{3}+\frac{F(t)}{m}, \tag{1.3}
\end{equation*}
$$

which is a particular case of the differential equation in (1.1). It is worth mentioning that the results of the present paper can be applied, for instance, to the forcing terms

$$
\begin{equation*}
F(t):=-f_{0}, \quad F(t):=A\left(\sin \frac{2 \pi t}{\omega}-\frac{1}{2}\right) \tag{1.4}
\end{equation*}
$$

where $f_{0}, A>0$. Hence, Theorem 3.1 below provides information about the exact multiplicity of positive ω-periodic solutions to equation (1.3) depending on the value of f_{0}, resp. A (for discussion, see Section 6).

For the results covering the multiplicity and local/global bifurcations of periodic solutions to Duffing equations, we refer readers, for instance, to $[2,4,5,8]$ (see also references therein). In $[2,4,8]$, the authors study the parameter-dependent problems for second-order differential equations assuming a strong damped condition and a sign-constant forcing term. In the present paper, we consider an undamped non-autonomous Duffing equation with a linear part of the class $\mathcal{V}^{-}(\omega)$ (see Definition 2.1, Remark 3.2) and a forcing term f, which may change its sign. We use the results presented in [9] and show the existence and multiplicity as well as non-existence of positive solutions to problem (1.1) depending on the choice of the parameter μ.

Let us show, as a motivation, what happens in the autonomous case of (1.1). Hence, consider the equation

$$
\begin{equation*}
x^{\prime \prime}=a x-b|x|^{\lambda} \operatorname{sgn} x-\mu, \tag{1.5}
\end{equation*}
$$

where $a, b>0$ and $\mu \in \mathbb{R}$. By direct calculation, the phase portraits of this equation can be elaborated depending on the choice of the parameter μ and, thus, one can prove the following proposition concerning the positive periodic solutions to equation (1.5).

Proposition 1.1. Let $\lambda>1$ and $a, b>0$. Then, the following conclusions hold:
(i) If $\mu \leq 0$, then equation (1.5) has a unique positive equilibrium (center) and non-constant positive periodic solutions with different periods.
(ii) If $0<\mu<\frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}$, then equation (1.5) possesses exactly two positive equilibria $x_{2}>x_{1}$ (x_{1} is a saddle and x_{2} is a center) and non-constant
positive periodic solutions with different periods. Moreover, all non-constant positive periodic solutions are greater than x_{1} and oscillate around x_{2}.
(iii) If $\mu=\frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}$, then equation (1.5) has a unique positive equilibrium (cusp) and no non-constant positive periodic solution occurs.
(iv) If $\mu>\frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}$, then equation (1.5) has no positive periodic solution.

Proposition 1.1 shows that, if we consider μ as a bifurcation parameter, then, crossing the value $\frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}$, a bifurcation of positive periodic solutions to equation (1.5) occurs. In Section 3, we extend conclusions (ii)-(iv) of Proposition 1.1 for the non-autonomous problem (1.1) with the forcing term f satisfying $\int_{0}^{\omega} f(s) \mathrm{d} s<0$.

2. Notation and definitons

The following notation is used throughout the paper:

- \mathbb{R} is the set of real numbers. For $x \in \mathbb{R}$, we put $[x]_{+}=\frac{1}{2}(|x|+x)$ and $[x]_{-}=$ $\frac{1}{2}(|x|-x)$.
- $C(I)$ denotes the set of continuous real functions defined on the interval $I \subseteq \mathbb{R}$. For $u \in C([a, b])$, we put $\|u\|_{C}=\max \{|u(t)|: t \in[a, b]\}$.
- $A C^{1}([a, b])$ is the set of functions $u:[a, b] \rightarrow \mathbb{R}$ which are absolutely continuous together with their first derivatives.
- $A C_{\ell}([a, b])$ (resp. $\left.A C_{u}([a, b])\right)$ is the set of absolutely continuous functions $u:[a, b] \rightarrow \mathbb{R}$ such that u^{\prime} admits the representation $u^{\prime}(t)=\gamma(t)+\sigma(t)$ for a.e. $t \in[a, b]$, where $\gamma:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous and $\sigma:[a, b] \rightarrow \mathbb{R}$ is a non-decreasing (resp. non-increasing) function whose derivative is equal to zero almost everywhere on $[a, b]$.
- $L([a, b])$ is the Banach space of Lebesgue integrable functions $p:[a, b] \rightarrow \mathbb{R}$ equipped with the norm $\|p\|_{L}=\int_{a}^{b}|p(s)| \mathrm{d} s$. The symbol Int A stands for the interior of the set $A \subset L([a, b])$.

Definition 2.1. ([6, Definitions 0.1 and 15.1 , Proposition 15.2]) We say that a function $p \in L([0, \omega])$ belongs to the set $\mathcal{V}^{-}(\omega)$ if, for any function $u \in A C^{1}([0, \omega])$ satisfying

$$
u^{\prime \prime}(t) \geq p(t) u(t) \quad \text { for a. e. } t \in[0, \omega], \quad u(0)=u(\omega), \quad u^{\prime}(0) \geq u^{\prime}(\omega),
$$

the inequality $u(t) \leq 0$ holds for $t \in[0, \omega]$.
Remark 2.2. Let $\omega>0$. If $p(t):=p_{0}$ for $t \in[0, \omega]$, then one can show by direct calculation that $p \in \mathcal{V}^{-}(\omega)$ if and only if $p_{0}>0$. For non-constant functions $p \in L([0, \omega])$, efficient conditions guaranteeing the inclusion $p \in \mathcal{V}^{-}(\omega)$ are provided in [6] (see also $[1,10]$).

Remark 2.3. It is well known that, if the homogeneous problem

$$
\begin{equation*}
u^{\prime \prime}=p(t) u ; \quad u(0)=u(\omega), u^{\prime}(0)=u^{\prime}(\omega) \tag{2.1}
\end{equation*}
$$

has only the trivial solution, then, for any $f \in L([0, \omega])$, the problem

$$
\begin{equation*}
u^{\prime \prime}=p(t) u+f(t) ; \quad u(0)=u(\omega), u^{\prime}(0)=u^{\prime}(\omega) \tag{2.2}
\end{equation*}
$$

possesses a unique solution u and this solution satisfies

$$
|u(t)| \leq \Delta(p) \int_{0}^{\omega}|f(s)| \mathrm{d} s \quad \text { for } t \in[0, \omega]
$$

where $\Delta(p)$, depending only on p, denotes a norm of the Green's operator of problem (2.1). Clearly, $\Delta(p)>0$.

Remark 2.4. If $p \in \mathcal{V}^{-}(\omega)$, then problem (2.1) has only the trivial solution and the number $\Delta(p)$ defined in Remark 2.3 can be estimated, for example, by using a minimal value of the Green's function of problem (2.1) (see, e. g., [10]).

For instance, if $p(t):=p_{0}$ for $t \in[0, \omega]$ and $p_{0}>0$, then

$$
\begin{equation*}
\Delta(p) \leq\left(2 \sqrt{p_{0}} \tanh \frac{\omega \sqrt{p_{0}}}{2}\right)^{-1}<\left(\frac{\omega p_{0}}{\cosh \frac{\omega \sqrt{p_{0}}}{2}}\right)^{-1} \tag{2.3}
\end{equation*}
$$

Definition 2.5 ([6, Definition 16.1]). Let $p, f \in L([0, \omega])$. We say that the pair (p, f) belongs to the set $\mathcal{U}(\omega)$ if problem (2.2) has a unique solution which is positive.

3. Main results

Theorem 3.1. Let $\lambda>1, p \in \mathcal{V}^{-}(\omega)$, and

$$
\begin{gather*}
h(t) \geq 0 \quad \text { for a. e. } t \in[0, \omega], \quad h(t) \not \equiv 0, \tag{3.1}\\
(p, f) \in \mathcal{U}(\omega), \quad \int_{0}^{\omega} f(s) \mathrm{d} s<0 . \tag{3.2}
\end{gather*}
$$

Then, there exists $\left.\mu_{0} \in\right] 0,+\infty[$ such that the following conclusions hold:
(1) If $\mu=0$, then problem (1.1) has at least one positive solution and, for any couple of distinct positive solutions u_{1}, u_{2} to (1.1), the conditions

$$
\begin{align*}
& \min \left\{u_{1}(t)-u_{2}(t): t \in[0, \omega]\right\}<0 \\
& \max \left\{u_{1}(t)-u_{2}(t): t \in[0, \omega]\right\}>0 \tag{3.3}
\end{align*}
$$

hold. If, moreover,

$$
\mathrm{e}^{-1+\sqrt{1+\omega \int_{0}^{\omega} p(s) \mathrm{d} s}}\left(-1+\sqrt{1+\omega \int_{0}^{\omega} p(s) \mathrm{d} s}\right) \leq 8 \lambda^{*}
$$

where

$$
\lambda^{*}:= \begin{cases}\left\lfloor\frac{1}{\lambda-1}\right\rfloor & \text { for } \lambda \in] 1,2], \\ \frac{1}{\lceil\lambda-1\rceil} & \text { for } \lambda>2,\end{cases}
$$

in which $\lfloor\cdot\rfloor$ and $\lceil\cdot\rceil$ denote the floor function and ceiling function, respectively, then problem (1.1) with $\mu=0$ has a unique positive solution.
(2) If $0<\mu<\mu_{0}$, then problem (1.1) has solutions u_{1}, u_{2} such that

$$
\begin{equation*}
u_{2}(t)>u_{1}(t)>0 \quad \text { for } t \in[0, \omega] \tag{3.4}
\end{equation*}
$$

and, for any non-negative solution u to problem (1.1) satisfying

$$
\begin{equation*}
u(t) \not \equiv u_{1}(t), \quad u(t) \not \equiv u_{2}(t) \tag{3.5}
\end{equation*}
$$

the conditions

$$
\begin{equation*}
u(t)>u_{1}(t) \quad \text { for } t \in[0, \omega] \tag{3.6}
\end{equation*}
$$

and

$$
\begin{align*}
& \min \left\{u(t)-u_{2}(t): t \in[0, \omega]\right\}<0, \\
& \max \left\{u(t)-u_{2}(t): t \in[0, \omega]\right\}>0 \tag{3.7}
\end{align*}
$$

hold.
(3) If $\mu=\mu_{0}$, then problem (1.1) has a unique positive solution.
(4) If $\mu>\mu_{0}$, then problem (1.1) has no positive solution.

Open questions. The following two questions remain open in Theorem 3.1:
(1) Does there exist, for any $\omega>0$, a positive solution u to problem (1.1) satisfying (3.5) in conclusion (2)?
(2) What happens in the case of $\mu<0$?

Remark 3.2. By virtue of [6, Theorem 11.1], the hypothesis $p \in \mathcal{V}^{-}(\omega)$ of Theorem 3.1 is satisfied, for instance, if one of the following conditions hold:
(a)

$$
p(t) \geq 0 \quad \text { for a. e. } t \in[0, \omega], \quad p(t) \not \equiv 0,
$$

(b)

$$
0<\int_{0}^{\omega}[p(s)]_{-} \mathrm{d} s<\frac{4}{\omega}, \quad \int_{0}^{\omega}[p(s)]_{+} \mathrm{d} s \geq \frac{\int_{0}^{\omega}[p(s)]_{-} \mathrm{d} s}{1-\frac{\omega}{4} \int_{0}^{\omega}[p(s)]_{-} \mathrm{d} s}
$$

Other efficient conditions guaranteeing the inclusion $p \in \mathcal{V}^{-}(\omega)$ and their consequences for particular cases of the coefficient p are available in [6].

Remark 3.3. Let $p \in \mathcal{V}^{-}(\omega)$. It follows from [6, Theorem 16.2] that hypothesis (3.2) of Theorem 3.1 holds, provided that

$$
\begin{equation*}
\int_{0}^{\omega}[f(s)]_{-} \mathrm{d} s>\mathrm{e}^{\frac{\omega}{4} \int_{0}^{\omega}[p(s)]_{+} \mathrm{d} s} \int_{0}^{\omega}[f(s)]_{+} \mathrm{d} s . \tag{3.8}
\end{equation*}
$$

In particular, if

$$
\begin{equation*}
f(t) \leq 0 \quad \text { for a. e. } t \in[0, \omega], \quad f(t) \not \equiv 0 \tag{3.9}
\end{equation*}
$$

then (3.2) is satisfied.
We now provide lower and upper estimates of the number μ_{0} appearing in the conclusion of Theorem 3.1.

Proposition 3.4. Let $\lambda>1, p \in \mathcal{V}^{-}(\omega)$, h satify (3.1), and f be such that (3.8) holds. Then, the number μ_{0} appearing in the conclusion of Theorem 3.1 satisfies

$$
\begin{equation*}
\mu_{0} \geq \frac{(\lambda-1)[\Delta(p)]^{-\frac{\lambda}{\lambda-1}}}{\lambda\left[\lambda \int_{0}^{\omega} h(s) \mathrm{d} s\right]^{\frac{1}{\lambda-1}} \int_{0}^{\omega}[f(s)]_{-} \mathrm{d} s} \tag{3.10}
\end{equation*}
$$

where Δ is defined in Remark 2.3, and

$$
\begin{equation*}
\mu_{0}<\frac{(\lambda-1)\left[\mathrm{e}^{\frac{\omega}{4} \int_{0}^{\omega}[p(s)]_{+} \mathrm{d} s} \int_{0}^{\omega}[p(s)]_{+} \mathrm{d} s-\int_{0}^{\omega}[p(s)]_{-} \mathrm{d} s\right]^{\frac{\lambda}{\lambda-1}}}{\lambda\left[\lambda \int_{0}^{\omega} h(s) \mathrm{d} s\right]^{\frac{1}{\lambda-1}}\left[\int_{0}^{\omega}[f(s)]_{-} \mathrm{d} s-\mathrm{e}^{\frac{\omega}{4} \int_{0}^{\omega}[p(s)]_{+} \mathrm{d} s} \int_{0}^{\omega}[f(s)]_{+} \mathrm{d} s\right]} \tag{3.11}
\end{equation*}
$$

Remark 3.5. If $p \in \mathcal{V}^{-}(\omega)$, then [6, Proposition 10.8] yields $\int_{0}^{\omega} p(s) \mathrm{d} s>0$. Therefore, inequality (3.11) in Proposition 3.4 is consistent.

Remark 3.6. Theorem 3.1 extends conclusions ((ii))-((iv)) of Proposition 1.1 for the non-autonomous Duffing equations with a sign-changing forcing term. Indeed, let $\omega>0$ and

$$
p(t):=a, \quad h(t):=b, \quad f(t):=-1 \quad \text { for } t \in[0, \omega]
$$

where $a, b>0$. Then, $p \in \mathcal{V}^{-}(\omega)$ (see Remark 2.2), h and f satisfy (3.1) and (3.9), respectively, and conclusions $((2))-((4))$ of Theorem 3.1 coincide with those in Proposition 1.1. Moreover, the number $\Delta(p)$ satisfies (2.3) and, thus, the number μ_{0} appearing in Proposition 3.4 satisfies

$$
\left(\frac{1}{\cosh \frac{\omega \sqrt{a}}{2}}\right)^{\frac{\lambda}{\lambda-1}} \frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}<\mu_{0}<\left(\mathrm{e}^{\frac{\omega^{2} a}{4}}\right)^{\frac{\lambda}{\lambda-1}} \frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}
$$

compare it with the number appearing in Proposition 1.1.

4. Auxiliary statements

We first recall some results stated in [9].
Lemma 4.1 ([9, Theorem 3.6]). Let $\lambda>1, \mu \in \mathbb{R}, p \in \mathcal{V}^{-}(\omega),(p, \mu f) \in \mathcal{U}(\omega)$, and h satisfy (3.1). Let, moreover, there exist a positive function $\beta \in A C_{u}([0, \omega])$ such that

$$
\begin{gather*}
\beta^{\prime \prime}(t) \leq p(t) \beta(t)-h(t) \beta^{\lambda}(t)+\mu f(t) \quad \text { for a. e. } t \in[0, \omega], \tag{4.1}\\
\beta(0)=\beta(\omega), \quad \beta^{\prime}(0)=\beta^{\prime}(\omega) . \tag{4.2}
\end{gather*}
$$

Then, problem (1.1) has a positive solution u_{*} such that every non-negative solution u to problem (1.1) satisfies

$$
\text { either } u(t)>u_{*}(t) \quad \text { for } t \in[0, \omega], \quad \text { or } \quad u(t) \equiv u_{*}(t)
$$

Moreover, for any couple of distinct positive solutions u_{1}, u_{2} to (1.1) satisfying

$$
u_{1}(t) \not \equiv u_{*}(t), \quad u_{2}(t) \not \equiv u_{*}(t),
$$

conditions (3.3) hold.
Lemma 4.2 ([9, Theorem 3.7]). Let $\lambda>1, \mu \in \mathbb{R}, p \in \mathcal{V}^{-}(\omega),(p, \mu f) \in \mathcal{U}(\omega)$, and h satisfy (3.1). Let, moreover, there exist functions $\beta_{1} \in A C^{1}([0, \omega])$ and $\beta_{2} \in A C_{u}([0, \omega])$ such that

$$
\begin{align*}
0<\beta_{1}(t)<\beta_{2}(t) & \text { for } t \in[0, \omega] \tag{4.3}\\
\beta_{k}^{\prime \prime}(t) \leq p(t) \beta_{k}(t)-h(t) \beta_{k}^{\lambda}(t)+\mu f(t) & \text { for a.e. } t \in[0, \omega], \quad k=1,2 \tag{4.4}
\end{align*}
$$

$$
\begin{equation*}
\beta_{k}(0)=\beta_{k}(\omega), \quad \beta_{k}^{\prime}(0)=\beta_{k}^{\prime}(\omega), \quad k=1,2 . \tag{4.5}
\end{equation*}
$$

Then, there exist solutions u_{1}, u_{2} to problem (1.1) such that (3.4) is fulfilled and, for any non-negative solution u to problem (1.1) satisfying (3.5), conditions (3.6) and (3.7) hold.

Lemma 4.3 ([9, Corollary 3.9(ii)]). Let $\lambda>1, \mu \in \mathbb{R}, p \in \mathcal{V}^{-}(\omega),(p, \mu f) \in$ $\mathcal{U}(\omega)$, and h satisfy (3.1). If

$$
\int_{0}^{\omega}[\mu f(s)]-\mathrm{d} s<\frac{\lambda-1}{\lambda[\Delta(p)]^{\frac{\lambda}{\lambda-1}}\left[\lambda \int_{0}^{\omega} h(s) \mathrm{d} s\right]^{\frac{1}{\lambda-1}}}
$$

where Δ is defined in Remark 2.3, then the conclusion of Lemma 4.2 holds.
Lemma 4.4 ([9, Theorem 3.11]). Let $\lambda>1, \mu \in \mathbb{R} \backslash\{0\}, p \in \mathcal{V}^{-}(\omega)$, h satisfy (3.1), and

$$
\begin{aligned}
& \int_{0}^{\omega}[\mu f(s)]_{-} \mathrm{d} s-\mathrm{e}^{\frac{\omega}{4}} \int_{0}^{\omega}[p(s)]_{+} \mathrm{d} s \\
& \int_{0}^{\omega}[\mu f(s)]_{+} \mathrm{d} s \\
& \geq \frac{\lambda-1}{\lambda} \frac{\left[\mathrm{e}^{\frac{\omega}{4} \int_{0}^{\omega}[p(s)]_{+} \mathrm{d} s} \int_{0}^{\omega}[p(s)]_{+} \mathrm{d} s-\int_{0}^{\omega}[p(s)]_{-} \mathrm{d} s\right]^{\frac{\lambda}{\lambda-1}}}{\left[\lambda \int_{0}^{\omega} h(s) \mathrm{d} s\right]^{\frac{1}{\lambda-1}}}
\end{aligned}
$$

Then, problem (1.1) has no non-negative solution.
Lemma 4.5 ([6, Theorem 16.2]). Let $p \in \mathcal{V}^{-}(\omega)$. Then, there exists $\nu>0$ such that, for any non-positive function $q \in L([0, \omega])$, the problem

$$
\begin{equation*}
z^{\prime \prime}=p(t) z+q(t) ; \quad z(0)=z(\omega), z^{\prime}(0)=z^{\prime}(\omega) \tag{4.6}
\end{equation*}
$$

has a unique solution z and this solution satisfies

$$
z(t) \geq \nu \int_{0}^{\omega}|q(s)| \mathrm{d} s \quad \text { for } t \in[0, \omega] .
$$

Lemma 4.6. Let $\lambda>1$, conditions (3.1) and (3.2) hold, $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive numbers and let, for any $n \in \mathbb{N}$, u_{n} be a positive solution to problem (1.1) with $\mu=\mu_{n}$. Then, the sequences $\left\{\left\|u_{n}\right\|_{C}\right\}_{n=1}^{\infty}$ and $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ are bounded.

Proof. We first show that

$$
\begin{equation*}
\sup \left\{\left\|u_{n}\right\|_{C}: n \in \mathbb{N}\right\}<+\infty . \tag{4.7}
\end{equation*}
$$

Suppose on the contrary that (4.7) does not hold. Then, we can assume without loss of generality that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|u_{n}\right\|_{C}=+\infty \tag{4.8}
\end{equation*}
$$

Put

$$
v_{n}(t):=\frac{u_{n}(t)}{\left\|u_{n}\right\|_{C}} \quad \text { for } t \in[0, \omega], n \in \mathbb{N}
$$

Clearly,

$$
\begin{equation*}
\left\|v_{n}\right\|_{C}=1, \quad v_{n}(t)>0 \quad \text { for } t \in[0, \omega], n \in \mathbb{N} . \tag{4.9}
\end{equation*}
$$

It follows from (1.1) with $\mu=\mu_{n}$ that, for any $n \in \mathbb{N}$,

$$
\begin{equation*}
v_{n}^{\prime \prime}(t)=p(t) v_{n}(t)-\left\|u_{n}\right\|_{C}^{\lambda-1} h(t) v_{n}^{\lambda}(t)+\frac{\mu_{n}}{\left\|u_{n}\right\|_{C}} f(t) \quad \text { for a. e. } t \in[0, \omega] \tag{4.10}
\end{equation*}
$$

which yields

$$
0=\int_{0}^{\omega} p(s) v_{n}(s) \mathrm{d} s-\left\|u_{n}\right\|_{C}^{\lambda-1} \int_{0}^{\omega} h(s) v_{n}^{\lambda}(s) \mathrm{d} s+\frac{\mu_{n}}{\left\|u_{n}\right\|_{C}} \int_{0}^{\omega} f(s) \mathrm{d} s
$$

for $n \in \mathbb{N}$. In view of (3.2) and (4.9), from the latter equality, we get

$$
\begin{equation*}
\left\|u_{n}\right\|_{C}^{\lambda-1} \int_{0}^{\omega} h(s) v_{n}^{\lambda}(s) \mathrm{d} s+\frac{\mu_{n}}{\left\|u_{n}\right\|_{C}}\left|\int_{0}^{\omega} f(s) \mathrm{d} s\right| \leq \int_{0}^{\omega}|p(s)| \mathrm{d} s \quad \text { for } n \in \mathbb{N} . \tag{4.11}
\end{equation*}
$$

Put

$$
\begin{equation*}
A:=\sup \left\{\left\|u_{n}\right\|_{C}^{\lambda-1} \int_{0}^{\omega} h(s) v_{n}^{\lambda}(s) \mathrm{d} s: n \in \mathbb{N}\right\}, \quad B:=\sup \left\{\frac{\mu_{n}}{\left\|u_{n}\right\|_{C}}: n \in \mathbb{N}\right\} \tag{4.12}
\end{equation*}
$$

By virtue of (3.1), (3.2) and (4.9), it follows from (4.11) that $A \in] 0,+\infty[, B \in$] $0,+\infty$ [, and we can assume without loss of generality that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|u_{n}\right\|_{C}^{\lambda-1} \int_{0}^{\omega} h(s) v_{n}^{\lambda}(s) \mathrm{d} s=h_{0}, \quad \lim _{n \rightarrow+\infty} \frac{\mu_{n}}{\left\|u_{n}\right\|_{C}}=\mu_{0} \tag{4.13}
\end{equation*}
$$

where

$$
h_{0} \geq 0, \quad \mu_{0} \geq 0
$$

For any $n \in \mathbb{N}$, we choose $t_{n} \in[0, \omega]$ such that $v_{n}^{\prime}\left(t_{n}\right)=0$. In view of (3.1), (4.9), and (4.12), integrating (4.10) from t_{n} to t, we get

$$
\begin{aligned}
\left|v_{n}^{\prime}(t)\right| & =\left|\int_{t_{n}}^{t}\left[p(s) v_{n}(s)-\left\|u_{n}\right\|_{C}^{\lambda-1} h(s) v_{n}^{\lambda}(s)+\frac{\mu_{n}}{\left\|u_{n}\right\|_{C}} f(s)\right] \mathrm{d} s\right| \\
& \leq \int_{0}^{\omega}|p(s)| \mathrm{d} s+\left\|u_{n}\right\|_{C}^{\lambda-1} \int_{0}^{\omega} h(s) v_{n}^{\lambda}(s) \mathrm{d} s+\frac{\mu_{n}}{\left\|u_{n}\right\|_{C}} \int_{0}^{\omega}|f(s)| \mathrm{d} s \\
& \leq \int_{0}^{\omega}|p(s)| \mathrm{d} s+A+B \int_{0}^{\omega}|f(s)| \mathrm{d} s \quad \text { for } t \in[0, \omega], n \in \mathbb{N} .
\end{aligned}
$$

Therefore, the sequences $\left\{\left\|v_{n}\right\|_{C}\right\}_{n=1}^{\infty}$ and $\left\{\left\|v_{n}^{\prime}\right\|_{C}\right\}_{n=1}^{\infty}$ are bounded and, thus, by the Arzelà-Ascoli theorem, we can assume without loss of generality that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} v_{n}(t)=v_{0}(t) \quad \text { uniformly on }[0, \omega], \tag{4.14}
\end{equation*}
$$

where $v_{0} \in C([0, \omega])$. From (4.9), we get

$$
\begin{equation*}
v_{0}(t) \geq 0 \quad \text { for } t \in[0, \omega], \quad\left\|v_{0}\right\|_{C}=1 \tag{4.15}
\end{equation*}
$$

It follows from the hypothesis $(p, f) \in \mathcal{U}(\omega)$ that the problem

$$
\begin{equation*}
v^{\prime \prime}=p(t) v+f(t) ; \quad v(0)=v(\omega), v^{\prime}(0)=v^{\prime}(\omega) \tag{4.16}
\end{equation*}
$$

has a unique solution v which is positive. According to Lemma 4.5 (with $q(t):=$ $\left.-\left\|u_{n}\right\|_{C}^{\lambda-1} h(t) v_{n}^{\lambda}(t)\right)$, there exists $\nu>0$ such that, for any $n \in \mathbb{N}$, the problem

$$
w^{\prime \prime}=p(t) w-\left\|u_{n}\right\|_{C}^{\lambda-1} h(t) v_{n}^{\lambda}(t) ; \quad w(0)=w(\omega), w^{\prime}(0)=w^{\prime}(\omega)
$$

has a unique solution w_{n} and

$$
\begin{equation*}
w_{n}(t) \geq \nu\left\|u_{n}\right\|_{C}^{\lambda-1} \int_{0}^{\omega} h(s) v_{n}^{\lambda}(s) \mathrm{d} s \quad \text { for } t \in[0, \omega], n \in \mathbb{N} \tag{4.17}
\end{equation*}
$$

It is clear that $v_{n}=w_{n}+\frac{\mu_{n}}{\left\|u_{n}\right\|_{C}} v$ for $n \in \mathbb{N}$. Therefore, (4.17) yields

$$
v_{n}(t) \geq \nu\left\|u_{n}\right\|_{C}^{\lambda-1} \int_{0}^{\omega} h(s) v_{n}^{\lambda}(s) \mathrm{d} s+\frac{\mu_{n}}{\left\|u_{n}\right\|_{C}} v(t) \quad \text { for } t \in[0, \omega], n \in \mathbb{N}
$$

and, thus, passing the limit for $n \rightarrow+\infty$ and taking into account (4.13) and (4.14), we get

$$
\begin{equation*}
v_{0}(t) \geq h_{0}+\mu_{0} v(t) \quad \text { for } t \in[0, \omega] \tag{4.18}
\end{equation*}
$$

Let us show that $h_{0}+\mu_{0}>0$. Indeed, suppose on the contrary that $h_{0}=0$ and $\mu_{0}=0$. Then, by the hypothesis $p \in \mathcal{V}^{-}(\omega)$, it follows from (4.10) and Remarks 2.3 and 2.4 that

$$
\left|v_{n}(t)\right| \leq \Delta(p)\left(\left\|u_{n}\right\|_{C}^{\lambda-1} \int_{0}^{\omega} h(s) v_{n}^{\lambda}(s) \mathrm{d} s+\frac{\mu_{n}}{\left\|u_{n}\right\|_{C}} \int_{0}^{\omega}|f(s)| \mathrm{d} s\right)
$$

for $t \in[0, \omega], n \in \mathbb{N}$, and, therefore, passing the limit for $n \rightarrow+\infty$ and taking into account (4.13) and (4.14), we obtain

$$
\left|v_{0}(t)\right| \leq \Delta(p)\left(h_{0}+\mu_{0} \int_{0}^{\omega}|f(s)| \mathrm{d} s\right)=0 \quad \text { for } t \in[0, \omega] .
$$

However, this contradicts (4.15). Hence, we have proved that $h_{0}+\mu_{0}>0$, which, together with (4.18) and the positivity of v, leads to the condition

$$
\begin{equation*}
v_{0}(t)>0 \quad \text { for } t \in[0, \omega] . \tag{4.19}
\end{equation*}
$$

On the other hand, (4.11) yields

$$
\int_{0}^{\omega} h(s) v_{n}^{\lambda}(s) \mathrm{d} s \leq \frac{1}{\left\|u_{n}\right\|_{C}^{\lambda-1}} \int_{0}^{\omega}|p(s)| \mathrm{d} s \quad \text { for } n \in \mathbb{N}
$$

and, therefore, passing the limit for $n \rightarrow+\infty$ and taking into account (4.8) and (4.14), we get

$$
\int_{0}^{\omega} h(s) v_{0}^{\lambda}(s) \mathrm{d} s \leq 0
$$

However, in view of (4.19), the latter inequality contradicts (3.1). The obtained contradiction proves that (4.7) holds.

Now we show that the sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is bounded. Suppose on the contrary that $\sup \left\{\mu_{n}: n \in \mathbb{N}\right\}=+\infty$. Then, we can assume without loss of generality that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \mu_{n}=+\infty \tag{4.20}
\end{equation*}
$$

Integrating the equation in (1.1) with $\mu=\mu_{n}$ over the interval $[0, \omega$], we get

$$
0=\int_{0}^{\omega} p(s) u_{n}(s) \mathrm{d} s-\int_{0}^{\omega} h(s) u_{n}^{\lambda}(s) \mathrm{d} s+\mu_{n} \int_{0}^{\omega} f(s) \mathrm{d} s \quad \text { for } n \in \mathbb{N},
$$

which, in view of (3.1) and the positivity of u_{n} and μ_{n}, yields

$$
-\int_{0}^{\omega} f(s) \mathrm{d} s \leq \frac{\left\|u_{n}\right\|_{C}}{\mu_{n}} \int_{0}^{\omega}|p(s)| \mathrm{d} s \quad \text { for } n \in \mathbb{N} .
$$

Taking into account (4.7), (4.20) and passing the limit for $n \rightarrow+\infty$, we obtain $-\int_{0}^{\omega} f(s) \mathrm{d} s \leq 0$, which contradicts the second condition in (3.2).

Lemma 4.7. Let $p \in \mathcal{V}^{-}(\omega)$ and $z \in A C^{1}([0, \omega])$ be such that

$$
\begin{array}{cc}
z^{\prime \prime}(t) \leq p(t) z(t) \quad \text { for a.e. } t \in[0, \omega], \quad z(0)=z(\omega), \quad z^{\prime}(0)=z^{\prime}(\omega), \\
& \text { meas }\left\{t \in[0, \omega]: z^{\prime \prime}(t)<p(t) z(t)\right\}>0 . \tag{4.22}
\end{array}
$$

Then, $z(t)>0$ for $t \in[0, \omega]$.
Proof. It follows from the hypotheses of the lemma that z is a solution to problem (4.6), where $q(t) \leq 0$ for a. e. $t \in[0, \omega]$ and $q(t) \not \equiv 0$. Therefore, Lemma 4.5 yields $z(t)>0$ for $t \in[0, \omega]$.

Lemma 4.8. Let $\lambda>1, \mu_{0}>0, p \in \mathcal{V}^{-}(\omega),(p, f) \in \mathcal{U}(\omega)$, h satisfy (3.1), and there exist a positive function $\beta \in A C^{1}([0, \omega])$ such that (4.1) with $\mu=\mu_{0}$ and (4.2) hold. Then, for any $\mu \in] 0, \mu_{0}\left[\right.$, there exist functions $\beta_{1}, \beta_{2} \in A C^{1}([0, \omega])$ satisfying conditions (4.3), (4.4), and (4.5).

Proof. Let $\mu \in] 0, \mu_{0}\left[\right.$ be arbitrary and put $\beta_{2}(t):=\frac{\mu}{\mu_{0}} \beta(t)$ for $t \in[0, \omega]$. It follows from (4.1) with $\mu=\mu_{0}$ and (4.2) that $\beta_{2} \in A C^{1}([0, \omega])$ and

$$
\begin{gather*}
\beta_{2}(t)>0 \quad \text { for } t \in[0, \omega], \tag{4.23}\\
\beta_{2}(0)=\beta_{2}(\omega), \quad \beta_{2}^{\prime}(0)=\beta_{2}^{\prime}(\omega), \tag{4.24}\\
\beta_{2}^{\prime \prime}(t) \leq p(t) \beta_{2}(t)-\left(\frac{\mu_{0}}{\mu}\right)^{\lambda-1} h(t) \beta_{2}^{\lambda}(t)+\mu f(t) \tag{4.25}\\
\leq p(t) \beta_{2}(t)-h(t) \beta_{2}^{\lambda}(t)+\mu f(t) \quad \text { for a. e. } t \in[0, \omega],
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{meas}\left\{t \in[0, \omega]: \beta_{2}^{\prime \prime}(t)<p(t) \beta_{2}(t)-h(t) \beta_{2}^{\lambda}(t)+\mu f(t)\right\}>0 \tag{4.26}
\end{equation*}
$$

because $0<\mu<\mu_{0}$ and h satisfies (3.1). By the hypothesis $(p, f) \in \mathcal{U}(\omega)$ and the condition $\mu>0$, the problem

$$
\begin{equation*}
v^{\prime \prime}=p(t) v+\mu f(t) ; \quad v(0)=v(\omega), v^{\prime}(0)=v^{\prime}(\omega) \tag{4.27}
\end{equation*}
$$

has a unique solution v which is positive. In view of (3.1) and (4.23), conditions (4.25) and (4.27) yield

$$
\begin{equation*}
v^{\prime \prime}(t) \geq p(t) v(t)-h(t) v^{\lambda}(t)+\mu f(t) \quad \text { for a. e. } t \in[0, \omega] \tag{4.28}
\end{equation*}
$$

and

$$
\left(\beta_{2}(t)-v(t)\right)^{\prime \prime} \leq p(t)\left(\beta_{2}(t)-v(t)\right) \quad \text { for a. e. } t \in[0, \omega] .
$$

Therefore, by (4.24), (4.27), and the hypothesis $p \in \mathcal{V}^{-}(\omega)$, we get

$$
\begin{equation*}
v(t) \leq \beta_{2}(t) \quad \text { for } t \in[0, \omega] \tag{4.29}
\end{equation*}
$$

Now, by virtue of (4.24), (4.25), (4.27), (4.28), and (4.29), we conclude that the functions v and β form a well-ordered pair of lower and upper functions of (1.1) and, thus, problem (1.1) has a solution β_{1} such that

$$
\begin{equation*}
v(t) \leq \beta_{1}(t) \leq \beta_{2}(t) \quad \text { for } t \in[0, \omega] \tag{4.30}
\end{equation*}
$$

(see, e.g., $\left[3\right.$, Chapter I]). Consequently, the functions β_{1}, β_{2} satisfy conditions (4.4) and (4.5). We finally show that (4.3) holds as well. Indeed, let $z(t):=$
$\beta_{2}(t)-\beta_{1}(t)$ for $t \in[0, \omega]$. Since β_{1} is a solution to problem (1.1) and β_{2} satisfies (4.24), (4.25), and (4.26), we get

$$
\begin{gathered}
z(0)=z(\omega), \quad z^{\prime}(0)=z^{\prime}(\omega) \\
z^{\prime \prime}(t)=p(t) z(t)-h(t)\left(\beta_{2}^{\lambda}(t)-\beta_{1}^{\lambda}(t)\right)-\ell(t) \quad \text { for a. e. } t \in[0, \omega]
\end{gathered}
$$

where $\ell \in L([0, \omega])$ is such that

$$
\ell(t) \geq 0 \quad \text { for a. e. } t \in[0, \omega], \quad \ell(t) \not \equiv 0 .
$$

Therefore, in view of (3.1) and (4.30), the function z satisfies (4.21) and (4.22). Consequently, Lemma 4.7 implies that $\beta_{2}(t)>\beta_{1}(t)$ for $t \in[0, \omega]$, which, together with (4.30) and the positivity of v, results in (4.3).

Lemma 4.9. Let $\lambda>1, \mu_{0}>0, p, h, f \in L([0, \omega])$, h satisfy (3.1), and there exist functions $\beta_{1}, \beta_{2} \in A C^{1}([0, \omega])$ such that (4.3), (4.4) with $\mu=\mu_{0}$, and (4.5) hold. Then, there exist $\mu>\mu_{0}$ and a positive function $\beta \in A C^{1}([0, \omega])$ satisfying (4.1) and (4.2).

Proof. It is clear that there exist the numbers $d_{1}>c_{1}>0$ and $d_{2}>c_{2}>0$ such that

$$
\begin{equation*}
c_{1} \leq \beta_{1}(t) \leq d_{1}, \quad c_{2} \leq \beta_{2}(t)-\beta_{1}(t) \leq d_{2} \quad \text { for } t \in[0, \omega] . \tag{4.31}
\end{equation*}
$$

Let $\vartheta \in] 0,1[$ be arbitrary. Put

$$
M:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: c_{1} \leq x_{1} \leq d_{1}, c_{2} \leq x_{2}-x_{1} \leq d_{2}\right\}
$$

and

$$
\ell\left(x_{1}, x_{2}\right):=\frac{\vartheta x_{1}^{\lambda}+(1-\vartheta) x_{2}^{\lambda}}{\left[\vartheta x_{1}+(1-\vartheta) x_{2}\right]^{\lambda}} \quad \text { for }\left(x_{1}, x_{2}\right) \in M .
$$

Since the function $x \mapsto x^{\lambda}$ is strictly convex on $] 0,+\infty[$, we have

$$
\left[\vartheta x_{1}+(1-\vartheta) x_{2}\right]^{\lambda}<\vartheta x_{1}^{\lambda}+(1-\vartheta) x_{2}^{\lambda} \quad \text { for } 0<x_{1}<x_{2}
$$

which implies that $\ell\left(x_{1}, x_{2}\right)>1$ for $\left(x_{1}, x_{2}\right) \in M$. The function ℓ is continuous on the compact set M and, thus, there exists $\varepsilon>1$ such that

$$
\begin{equation*}
\varepsilon^{\lambda-1}\left[\vartheta x_{1}+(1-\vartheta) x_{2}\right]^{\lambda} \leq \vartheta x_{1}^{\lambda}+(1-\vartheta) x_{2}^{\lambda} \quad \text { for }\left(x_{1}, x_{2}\right) \in M . \tag{4.32}
\end{equation*}
$$

We now put

$$
\beta(t):=\varepsilon \vartheta \beta_{1}(t)+\varepsilon(1-\vartheta) \beta_{2}(t) \quad \text { for } t \in[0, \omega] .
$$

In view of (4.3) and the conditions $\vartheta \in] 0,1[$ and $\varepsilon>1$, the function β is positive and satisfies (4.2). Moreover, from (3.1), (4.4) with $\mu=\mu_{0}$, (4.31), and (4.32), we get

$$
\begin{aligned}
\beta^{\prime \prime}(t) & \leq p(t) \beta(t)-h(t) \varepsilon\left[\vartheta \beta_{1}^{\lambda}(t)+(1-\vartheta) \beta_{2}^{\lambda}(t)\right]+\varepsilon \mu_{0} f(t) \\
& \leq p(t) \beta(t)-h(t) \varepsilon^{\lambda}\left[\vartheta \beta_{1}(t)+(1-\vartheta) \beta_{2}(t)\right]^{\lambda}+\varepsilon \mu_{0} f(t) \\
& =p(t) \beta(t)-h(t) \beta^{\lambda}(t)+\varepsilon \mu_{0} f(t) \quad \text { for a.e. } t \in[0, \omega],
\end{aligned}
$$

i. e., β satisfies also (4.1) with $\mu=\varepsilon \mu_{0}>\mu_{0}$.

5. Proofs of main results

Proof of Theorem 3.1. Conclusion (1) of the theorem follows immediately from [7, Corollary 2.11].

Put

$$
\mathcal{A}:=\{\mu>0: \text { problem (1.1) has a positive solution }\} .
$$

In view of Lemma 4.3, it is clear that $\mathcal{A} \neq \emptyset$. Let

$$
\begin{equation*}
\mu_{0}:=\sup \mathcal{A} . \tag{5.1}
\end{equation*}
$$

Then, $\mu_{0}>0$ and Lemma 4.6 implies that $\mu_{0}<+\infty$. Therefore, conclusion (4) of the theorem holds.

We now show that

$$
\begin{equation*}
\mu_{0} \in \mathcal{A} . \tag{5.2}
\end{equation*}
$$

Indeed, let $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive numbers such that

$$
\mu_{n} \in \mathcal{A} \quad \text { for } n \in \mathbb{N}, \quad \lim _{n \rightarrow+\infty} \mu_{n}=\mu_{0}
$$

Moreover, for any $n \in \mathbb{N}$, let u_{n} be a positive solution to problem (1.1) with $\mu=\mu_{n}$. Then, Lemma 4.6 yields (4.7). By the standard arguments used in the proof of a well-posedness of the periodic problem for second-order ODEs, one can show that there exists a subsequence $\left\{u_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{u_{n}\right\}_{n=1}^{\infty}$ such that

$$
\lim _{k \rightarrow+\infty} u_{n_{k}}^{(i)}(t)=u_{0}^{(i)}(t) \quad \text { uniformly on }[0, \omega], i=0,1
$$

where $u_{0} \in A C^{1}([0, \omega])$ is a solution to problem (1.1) with $\mu=\mu_{0}$. All the functions $u_{n_{k}}$ are positive and, thus, it is clear that

$$
\begin{equation*}
u_{0}(t) \geq 0 \quad \text { for } t \in[0, \omega] . \tag{5.3}
\end{equation*}
$$

By virtue of the hypothesis $(p, f) \in \mathcal{U}(\omega)$, problem (4.16) has a unique solution v which is positive. Since u_{0} is a solution to problem (1.1) with $\mu=\mu_{0}$, by (3.1), (5.3), and (4.16), we get (4.21), where $z(t):=u_{0}(t)-\mu_{0} v(t)$ for $t \in[0, \omega]$. Therefore, the hypothesis $p \in \mathcal{V}^{-}(\omega)$ yields $z(t) \geq 0$ for $t \in[0, \omega]$. Hence, we have

$$
u_{0}(t) \geq \mu_{0} v(t)>0 \quad \text { for } t \in[0, \omega]
$$

and, thus, condition (5.2) holds.
Having a positive solution u_{0} to problem (1.1) with $\mu=\mu_{0}$, it is clear that all the hypotheses of Lemma 4.8 (with $\beta(t):=u_{0}(t)$) are fulfilled. Consequently, for any $\mu \in] 0, \mu_{0}\left[,(p, \mu f) \in \mathcal{U}(\omega)\right.$ and there exist functions $\beta_{1}, \beta_{2} \in A C^{1}([0, \omega])$ satisfying (4.3), (4.4), and (4.5). Therefore, conclusion (2) of the theorem follows from Lemma 4.2.

Since u_{0} is a positive solution to problem (1.1) with $\mu=\mu_{0}$, to prove conclusion ((3)) of the theorem, it is sufficient to show that problem (1.1) with $\mu=\mu_{0}$ has at most one positive solution. Suppose on the contrary that there exists a positive solution to problem (1.1) with $\mu=\mu_{0}$ different from u_{0}. Since $\mu_{0}>0$, (3.2) yields $\left(p, \mu_{0} f\right) \in \mathcal{U}(\omega)$ and, thus, it follows from Lemma 4.1 (with $\beta(t):=u_{0}(t)$ and $\mu:=\mu_{0}$) that problem (1.1) with $\mu=\mu_{0}$ possesses solutions u_{*}, u^{*} such that

$$
u^{*}(t)>u_{*}(t)>0 \quad \text { for } t \in[0, \omega] .
$$

Therefore, Lemma 4.9 (with $\beta_{1}(t):=u_{*}(t)$ and $\left.\beta_{2}(t):=u^{*}(t)\right)$ guarantees that there exist $\tilde{\mu}>\mu_{0}$ and a positive function $\beta \in A C^{1}([0, \omega])$ satisfying (4.1) with $\mu=\tilde{\mu}$ and (4.2). Consequently, in view of the hypothesis $(p, f) \in \mathcal{U}(\omega)$ and the positivity of $\tilde{\mu}$, it follows from Lemma 4.1 (with $\mu:=\tilde{\mu}$) that problem (1.1) with $\mu=\tilde{\mu}$ has at least one positive solution. However, this implies $\tilde{\mu} \in \mathcal{A}$, which contradicts (5.1).

Proof of Proposition 3.4. By Remark 3.3, it follows from (3.8) that condition (3.2) holds. Let μ_{0} be the number appearing in the conclusion of Theorem 3.1.

We first show that μ_{0} satisfies (3.10). Suppose on the contrary that (3.10) does not hold, i.e.,

$$
\mu_{0}<\frac{(\lambda-1)[\Delta(p)]^{-\frac{\lambda}{\lambda-1}}}{\lambda\left[\lambda \int_{0}^{\omega} h(s) \mathrm{d} s\right]^{\frac{1}{\lambda-1}} \int_{0}^{\omega}[f(s)]-\mathrm{d} s} .
$$

Then, it follows from Lemmas 4.3 and 4.2 that problem (1.1) with $\mu=\mu_{0}$ has at least two positive solutions, which contradicts conclusion (3) of Theorem 3.1.

Now we show that μ_{0} satisfies (3.11). Suppose on the contrary that (3.11) does not hold, i.e.,

$$
\mu_{0} \geq \frac{(\lambda-1)\left[\mathrm{e}^{\frac{\omega}{4} \int_{0}^{\omega}[p(s)]_{+} \mathrm{d} s} \int_{0}^{\omega}[p(s)]_{+} \mathrm{d} s-\int_{0}^{\omega}[p(s)]_{-} \mathrm{d} s\right]^{\frac{\lambda}{\lambda-1}}}{\lambda\left[\lambda \int_{0}^{\omega} h(s) \mathrm{d} s\right]^{\frac{1}{\lambda-1}}\left[\int_{0}^{\omega}[f(s)]_{-} \mathrm{d} s-\mathrm{e}^{\frac{\omega}{4} \int_{0}^{\omega}[p(s)]_{+} \mathrm{d} s} \int_{0}^{\omega}[f(s)]_{+} \mathrm{d} s\right]}
$$

Then, it follows from Lemma 4.4 that problem (1.1) with $\mu=\mu_{0}$ has no positive solution, which contradicts conclusion (3) of Theorem 3.1.

6. MODEL EXAMPLES

In this section, we consider the model equation (1.3) with F given by the relations in (1.4) in order to demonstrate a possible use of Theorem 3.1.

Let us choose $\omega>0$ and consider the equation

$$
\begin{equation*}
x^{\prime \prime}=\frac{k(\ell-d(t))}{m d(t)} x-\frac{k \ell}{2 m d^{3}(t)} x^{3}-\frac{f_{0}}{m}, \tag{6.1}
\end{equation*}
$$

where $m, k, \ell, f_{0}>0$ and $\left.d: \mathbb{R} \rightarrow\right] 0,+\infty[$ is a positive ω-periodic function such that $d(t) \not \equiv \ell$ and

$$
\int_{0}^{\omega}\left[\frac{\ell-d(s)}{d(s)}\right]_{-} \mathrm{d} s<\frac{4 m}{\omega k}, \quad \int_{0}^{\omega}\left[\frac{\ell-d(s)}{d(s)}\right]_{+} \mathrm{d} s<\frac{\int_{0}^{\omega}\left[\frac{\ell-d(s)}{d(s)}\right]_{-} \mathrm{d} s}{1-\frac{\omega k}{4 m} \int_{0}^{\omega}\left[\frac{\ell-d(s)}{d(s)}\right]_{-} \mathrm{d} s}
$$

Observe that equation (6.1) is a Duffing equation with non-constant coefficients and a constant forcing term. By Remarks 3.3 and 3.5 , we get

$$
\frac{k(\ell-d(\cdot))}{m d(\cdot)} \in \mathcal{V}^{-}(\omega), \quad\left(\frac{k(\ell-d(\cdot))}{m d(\cdot)},-\frac{1}{m}\right) \in \mathcal{U}(\omega)
$$

Therefore, assuming that f_{0} is a bifurcation parameter, it follows from Theorem 3.1 that there exists a critical value $f_{0}^{*}>0$ of f_{0} such that, crossing the value f_{0}^{*}, a bifurcation of positive ω-periodic solutions to (6.1) occurs.

As a second example, we consider the equation

$$
\begin{equation*}
x^{\prime \prime}=\frac{k\left(\ell-d_{0}\right)}{m d_{0}} x-\frac{k \ell}{2 m d_{0}^{3}} x^{3}+\frac{A}{m}\left(\sin \frac{2 \pi t}{\omega}-\frac{1}{2}\right), \tag{6.2}
\end{equation*}
$$

where $A, \omega>0$ and $m, k, \ell, d_{0}>0$ such that $d_{0}<\ell$ and

$$
\int_{0}^{\omega}\left[\sin \frac{2 \pi s}{\omega}-\frac{1}{2}\right]_{-} \mathrm{d} s>\mathrm{e}^{\frac{\omega^{2} k\left(\ell-d_{0}\right)}{4 m d_{0}}} \int_{0}^{\omega}\left[\sin \frac{2 \pi s}{\omega}-\frac{1}{2}\right]_{+} \mathrm{d} s
$$

Unlike the first example, equation (6.2) is a Duffing equation with constant coefficients and a sign-changing forcing term. By Remarks 2.2 and 3.5, we get

$$
\frac{k\left(\ell-d_{0}\right)}{m d_{0}} \in \mathcal{V}^{-}(\omega), \quad\left(\frac{k\left(\ell-d_{0}\right)}{m d_{0}}, \frac{g(\cdot)}{m}\right) \in \mathcal{U}(\omega)
$$

where $g(t):=\sin \frac{2 \pi t}{\omega}-\frac{1}{2}$. Therefore, if we consider A as a bifurcation parameter, it follows from Theorem 3.1 that there exists a critical value $A^{*}>0$ of A such that, crossing the value A^{*}, a bifurcation of positive ω-periodic solutions to (6.2) occurs.

We finally mention that Proposition 3.4 provides lower and upper estimates of the critical values f_{0}^{*} and A^{*} of bifurcation parameters f_{0} and A.

References

[1] A. Cabada, J. Á. Cid and L. López-Somoza, Maximum Principles for the Hill's Equation, Academic Press, London, 2018.
[2] H. Chen and Y. Li, Bifurcation and stability of periodic solutions of Duffing equations, Nonlinearity 21 (2008), 2485-2503.
[3] C. De Coster and P. Habets, Two-Point Boundary Value Problems: Lower and Upper Solutions, Mathematics in Science and Engineering 205, Elsevier Science, Amsterdam, 2006.
[4] C. Fabry, J. Mawhin and M. N. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. London Math. Soc. 18 (1986), 173-180.
[5] S. Gaete and R. F. Manásevich, Existence of a pair of periodic solutions of an O.D.E. generalizing a problem in nonlinear elasticity, via variational methods, J. Math. Anal. Appl. 134 (1988), 257-271.
[6] A. Lomtatidze, Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations, Mem. Differ. Equ. Math. Phys. 67 (2016), 1-129.
[7] A. Lomtatidze and J. Šremr, On a periodic problem for second-order Duffing type equations, Institute of Mathematics, Czech Academy of Sciences, Preprint No. 73-2015 (2015).
[8] R. Ortega, Stability and index of periodic solutions of an equation of Duffing type, Boll. Unione Mat. Ital., Ser. VII. B 3 (1989), 533-546.
[9] J. Šremr, Positive periodic solutions to the forced non-autonomous Duffing equations, Georgian Math. J., to appear.
[10] P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. Differ. Equations 190 (2003), 643-662.

Jiří Šremr, Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic
e-mail: sremr@fme.vutbr.cz

[^0]: MSC (2010): primary 34B08; secondary $34 \mathrm{C} 23,34 \mathrm{C} 25,34 \mathrm{~B} 18$.
 Keywords: periodic solution, second-order differential equation, Duffing equation, existence, multiplicity, bifurcation, positive solution.

 The research has been supported by the internal grant FSI-S-20-6187 of FME BUT.

