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BIFURCATION OF POSITIVE PERIODIC SOLUTIONS TO
NON-AUTONOMOUS UNDAMPED DUFFING EQUATIONS

JIŘÍ ŠREMR

Abstract. We study a bifurcation of positive solutions to the parameter-dependent
periodic problem

u′′ = p(t)u− h(t)|u|λ sgnu+ µf(t); u(0) = u(ω), u′(0) = u′(ω),
where λ > 1, p, h, f ∈ L([0, ω]), and µ ∈ R is a parameter. Both the coefficient p
and the forcing term f may change their signs, h ≥ 0 a. e. on [0, ω]. We provide
sharp conditions on the existence and multiplicity as well as non-existence of positive
solutions to the given problem depending on the choice of the parameter µ.

1. Introduction

Consider the parameter-dependent problem

u′′ = p(t)u− h(t)|u|λ sgn u+ µf(t); u(0) = u(ω), u′(0) = u′(ω), (1.1)

where p, h, f ∈ L([0, ω]), h ≥ 0 a. e. on [0, ω], λ > 1, and µ ∈ R is a parameter.
By a solution to problem (1.1), as usual, we understand a function u : [0, ω] → R
which is absolutely continuous together with its first derivative, satisfies the given
equation almost everywhere, and meets the periodic conditions.

We first note that the differential equation in (1.1) with λ = 3 is derived, for
example, when approximating a non-linearity in the equation of motion of the
oscillator illustrated in Fig. 1. Consider a forced undamped oscillator consisting of
a mass body of weight m and a linear spring of characteristic k and non-deformed
length `. Assume that the mass body moves horizontally without any friction
and the spring’s base point B oscillates vertically, i.e., d is a positive ω-periodic
function. This is a system with a single degree of freedom, described by the
coordinate x, whose equation of motion is of the form

x′′ = k

m
x

(
`√

d2(t) + x2
− 1
)

+ F (t)
m

. (1.2)

A classical approach to deriving Duffing equation is to approximate the non-
linearity in (1.2) by a third-order Taylor polynomial centred at 0. We thus get the
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Figure 1. Forced undamped oscillator.

equation

x′′ = k(`− d(t))
md(t) x− k`

2md3(t) x
3 + F (t)

m
, (1.3)

which is a particular case of the differential equation in (1.1). It is worth men-
tioning that the results of the present paper can be applied, for instance, to the
forcing terms

F (t) := −f0, F (t) := A

(
sin 2πt

ω
− 1

2

)
, (1.4)

where f0, A > 0. Hence, Theorem 3.1 below provides information about the exact
multiplicity of positive ω-periodic solutions to equation (1.3) depending on the
value of f0, resp. A (for discussion, see Section 6).

For the results covering the multiplicity and local/global bifurcations of peri-
odic solutions to Duffing equations, we refer readers, for instance, to [2,4,5,8] (see
also references therein). In [2, 4, 8], the authors study the parameter-dependent
problems for second-order differential equations assuming a strong damped con-
dition and a sign-constant forcing term. In the present paper, we consider an
undamped non-autonomous Duffing equation with a linear part of the class V−(ω)
(see Definition 2.1, Remark 3.2) and a forcing term f , which may change its sign.
We use the results presented in [9] and show the existence and multiplicity as well
as non-existence of positive solutions to problem (1.1) depending on the choice of
the parameter µ.

Let us show, as a motivation, what happens in the autonomous case of (1.1).
Hence, consider the equation

x′′ = ax− b|x|λ sgn x− µ, (1.5)
where a, b > 0 and µ ∈ R. By direct calculation, the phase portraits of this
equation can be elaborated depending on the choice of the parameter µ and, thus,
one can prove the following proposition concerning the positive periodic solutions
to equation (1.5).

Proposition 1.1. Let λ > 1 and a, b > 0. Then, the following conclusions
hold:

(i) If µ ≤ 0, then equation (1.5) has a unique positive equilibrium (center) and
non-constant positive periodic solutions with different periods.

(ii) If 0 < µ < (λ−1)a
λ

(
a
λb

) 1
λ−1 , then equation (1.5) possesses exactly two positive

equilibria x2 > x1 (x1 is a saddle and x2 is a center) and non-constant
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positive periodic solutions with different periods. Moreover, all non-constant
positive periodic solutions are greater than x1 and oscillate around x2.

(iii) If µ = (λ−1)a
λ

(
a
λb

) 1
λ−1 , then equation (1.5) has a unique positive equilibrium

(cusp) and no non-constant positive periodic solution occurs.
(iv) If µ > (λ−1)a

λ

(
a
λb

) 1
λ−1 , then equation (1.5) has no positive periodic solution.

Proposition 1.1 shows that, if we consider µ as a bifurcation parameter, then,
crossing the value (λ−1)a

λ

(
a
λb

) 1
λ−1 , a bifurcation of positive periodic solutions to

equation (1.5) occurs. In Section 3, we extend conclusions (ii)–(iv) of Proposi-
tion 1.1 for the non-autonomous problem (1.1) with the forcing term f satisfying∫ ω

0 f(s)ds < 0.

2. Notation and definitons

The following notation is used throughout the paper:
• R is the set of real numbers. For x ∈ R, we put [x]+ = 1

2 (|x| + x) and [x]− =
1
2 (|x| − x).

• C(I) denotes the set of continuous real functions defined on the interval I ⊆ R.
For u ∈ C([a, b]), we put ‖u‖C = max{|u(t)| : t ∈ [a, b]}.

• AC 1([a, b]) is the set of functions u : [a, b]→ R which are absolutely continuous
together with their first derivatives.

• AC `([a, b]) (resp. AC u([a, b])) is the set of absolutely continuous functions
u : [a, b] → R such that u′ admits the representation u′(t) = γ(t) + σ(t) for
a. e. t ∈ [a, b], where γ : [a, b] → R is absolutely continuous and σ : [a, b] → R
is a non-decreasing (resp. non-increasing) function whose derivative is equal to
zero almost everywhere on [a, b].

• L([a, b]) is the Banach space of Lebesgue integrable functions p : [a, b] → R
equipped with the norm ‖p‖L =

∫ b
a
|p(s)|ds. The symbol IntA stands for the

interior of the set A ⊂ L([a, b]).

Definition 2.1. ([6, Definitions 0.1 and 15.1, Proposition 15.2]) We say that
a function p ∈ L([0, ω]) belongs to the set V−(ω) if, for any function u ∈ AC 1([0, ω])
satisfying

u′′(t) ≥ p(t)u(t) for a. e. t ∈ [0, ω], u(0) = u(ω), u′(0) ≥ u′(ω),
the inequality u(t) ≤ 0 holds for t ∈ [0, ω].

Remark 2.2. Let ω > 0. If p(t) := p0 for t ∈ [0, ω], then one can show
by direct calculation that p ∈ V−(ω) if and only if p0 > 0. For non-constant
functions p ∈ L([0, ω]), efficient conditions guaranteeing the inclusion p ∈ V−(ω)
are provided in [6] (see also [1, 10]).

Remark 2.3. It is well known that, if the homogeneous problem
u′′ = p(t)u; u(0) = u(ω), u′(0) = u′(ω) (2.1)

has only the trivial solution, then, for any f ∈ L([0, ω]), the problem
u′′ = p(t)u+ f(t); u(0) = u(ω), u′(0) = u′(ω) (2.2)
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possesses a unique solution u and this solution satisfies

|u(t)| ≤ ∆(p)
∫ ω

0
|f(s)|ds for t ∈ [0, ω],

where ∆(p), depending only on p, denotes a norm of the Green’s operator of
problem (2.1). Clearly, ∆(p) > 0.

Remark 2.4. If p ∈ V−(ω), then problem (2.1) has only the trivial solution
and the number ∆(p) defined in Remark 2.3 can be estimated, for example, by
using a minimal value of the Green’s function of problem (2.1) (see, e. g., [10]).

For instance, if p(t) := p0 for t ∈ [0, ω] and p0 > 0, then

∆(p) ≤
(

2√p0 tanh
ω
√
p0

2

)−1
<

(
ωp0

cosh ω
√
p0

2

)−1

. (2.3)

Definition 2.5 ([6, Definition 16.1]). Let p, f ∈ L([0, ω]). We say that the pair
(p, f) belongs to the set U(ω) if problem (2.2) has a unique solution which is
positive.

3. Main results

Theorem 3.1. Let λ > 1, p ∈ V−(ω), and

h(t) ≥ 0 for a. e. t ∈ [0, ω], h(t) 6≡ 0, (3.1)

(p, f) ∈ U(ω),
∫ ω

0
f(s)ds < 0. (3.2)

Then, there exists µ0 ∈ ]0,+∞[ such that the following conclusions hold:
(1) If µ = 0, then problem (1.1) has at least one positive solution and, for any

couple of distinct positive solutions u1, u2 to (1.1), the conditions
min{u1(t)− u2(t) : t ∈ [0, ω]} < 0,
max{u1(t)− u2(t) : t ∈ [0, ω]} > 0

(3.3)

hold. If, moreover,

e
−1+

√
1+ω

∫ ω
0
p(s)ds

(
−1 +

√
1 + ω

∫ ω

0
p(s)ds

)
≤ 8λ∗,

where

λ∗ :=
{⌊ 1

λ−1
⌋

for λ ∈ ]1, 2],
1

dλ−1e for λ > 2,
in which b·c and d·e denote the floor function and ceiling function, respectively,
then problem (1.1) with µ = 0 has a unique positive solution.

(2) If 0 < µ < µ0, then problem (1.1) has solutions u1, u2 such that

u2(t) > u1(t) > 0 for t ∈ [0, ω] (3.4)

and, for any non-negative solution u to problem (1.1) satisfying

u(t) 6≡ u1(t), u(t) 6≡ u2(t), (3.5)
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the conditions
u(t) > u1(t) for t ∈ [0, ω] (3.6)

and
min{u(t)− u2(t) : t ∈ [0, ω]} < 0,
max{u(t)− u2(t) : t ∈ [0, ω]} > 0

(3.7)

hold.
(3) If µ = µ0, then problem (1.1) has a unique positive solution.
(4) If µ > µ0, then problem (1.1) has no positive solution.

Open questions. The following two questions remain open in Theorem 3.1:
(1) Does there exist, for any ω > 0, a positive solution u to problem (1.1) satisfying

(3.5) in conclusion (2)?
(2) What happens in the case of µ < 0?

Remark 3.2. By virtue of [6, Theorem 11.1], the hypothesis p ∈ V−(ω) of
Theorem 3.1 is satisfied, for instance, if one of the following conditions hold:
(a)

p(t) ≥ 0 for a. e. t ∈ [0, ω], p(t) 6≡ 0,

(b)

0 <
∫ ω

0
[p(s)]−ds < 4

ω
,

∫ ω

0
[p(s)]+ds ≥

∫ ω
0 [p(s)]−ds

1− ω
4
∫ ω

0 [p(s)]−ds
.

Other efficient conditions guaranteeing the inclusion p ∈ V−(ω) and their con-
sequences for particular cases of the coefficient p are available in [6].

Remark 3.3. Let p ∈ V−(ω). It follows from [6, Theorem 16.2] that hypothesis
(3.2) of Theorem 3.1 holds, provided that∫ ω

0
[f(s)]−ds > e

ω
4

∫ ω
0

[p(s)]+ds
∫ ω

0
[f(s)]+ds. (3.8)

In particular, if

f(t) ≤ 0 for a. e. t ∈ [0, ω], f(t) 6≡ 0, (3.9)

then (3.2) is satisfied.

We now provide lower and upper estimates of the number µ0 appearing in the
conclusion of Theorem 3.1.

Proposition 3.4. Let λ > 1, p ∈ V−(ω), h satify (3.1), and f be such that
(3.8) holds. Then, the number µ0 appearing in the conclusion of Theorem 3.1
satisfies

µ0 ≥
(λ− 1) [∆(p)]−

λ
λ−1

λ
[
λ
∫ ω

0 h(s)ds
] 1
λ−1

∫ ω
0 [f(s)]−ds

, (3.10)
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where ∆ is defined in Remark 2.3, and

µ0 <

(λ− 1)
[
e
ω
4

∫ ω
0

[p(s)]+ds ∫ ω
0 [p(s)]+ds−

∫ ω
0 [p(s)]−ds

] λ
λ−1

λ
[
λ
∫ ω

0 h(s)ds
] 1
λ−1

[∫ ω
0 [f(s)]−ds− e

ω
4

∫ ω
0

[p(s)]+ds ∫ ω
0 [f(s)]+ds

] . (3.11)

Remark 3.5. If p ∈ V−(ω), then [6, Proposition 10.8] yields
∫ ω

0 p(s)ds > 0.
Therefore, inequality (3.11) in Proposition 3.4 is consistent.

Remark 3.6. Theorem 3.1 extends conclusions ((ii))–((iv)) of Proposition 1.1
for the non-autonomous Duffing equations with a sign-changing forcing term. In-
deed, let ω > 0 and

p(t) := a, h(t) := b, f(t) := −1 for t ∈ [0, ω],
where a, b > 0. Then, p ∈ V−(ω) (see Remark 2.2), h and f satisfy (3.1) and (3.9),
respectively, and conclusions ((2))–((4)) of Theorem 3.1 coincide with those in
Proposition 1.1. Moreover, the number ∆(p) satisfies (2.3) and, thus, the number
µ0 appearing in Proposition 3.4 satisfies(

1
cosh ω

√
a

2

) λ
λ−1 (λ− 1)a

λ

( a
λb

) 1
λ−1

< µ0 <
(

eω
2a
4

) λ
λ−1 (λ− 1)a

λ

( a
λb

) 1
λ−1 ;

compare it with the number appearing in Proposition 1.1.

4. Auxiliary statements

We first recall some results stated in [9].

Lemma 4.1 ([9, Theorem 3.6]). Let λ > 1, µ ∈ R, p ∈ V−(ω), (p, µf) ∈ U(ω),
and h satisfy (3.1). Let, moreover, there exist a positive function β ∈ AC u([0, ω])
such that

β′′(t) ≤ p(t)β(t)− h(t)βλ(t) + µf(t) for a. e. t ∈ [0, ω], (4.1)
β(0) = β(ω), β′(0) = β′(ω). (4.2)

Then, problem (1.1) has a positive solution u∗ such that every non-negative solu-
tion u to problem (1.1) satisfies

either u(t) > u∗(t) for t ∈ [0, ω], or u(t) ≡ u∗(t).
Moreover, for any couple of distinct positive solutions u1, u2 to (1.1) satisfying

u1(t) 6≡ u∗(t), u2(t) 6≡ u∗(t),
conditions (3.3) hold.

Lemma 4.2 ([9, Theorem 3.7]). Let λ > 1, µ ∈ R, p ∈ V−(ω), (p, µf) ∈ U(ω),
and h satisfy (3.1). Let, moreover, there exist functions β1 ∈ AC 1([0, ω]) and
β2 ∈ AC u([0, ω]) such that

0 < β1(t) < β2(t) for t ∈ [0, ω], (4.3)
β′′k (t) ≤ p(t)βk(t)− h(t)βλk (t) + µf(t) for a. e. t ∈ [0, ω], k = 1, 2, (4.4)
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βk(0) = βk(ω), β′k(0) = β′k(ω), k = 1, 2. (4.5)
Then, there exist solutions u1, u2 to problem (1.1) such that (3.4) is fulfilled and,
for any non-negative solution u to problem (1.1) satisfying (3.5), conditions (3.6)
and (3.7) hold.

Lemma 4.3 ([9, Corollary 3.9(ii)]). Let λ > 1, µ ∈ R, p ∈ V−(ω), (p, µf) ∈
U(ω), and h satisfy (3.1). If∫ ω

0
[µf(s)]−ds < λ− 1

λ [∆(p)]
λ
λ−1

[
λ
∫ ω

0 h(s)ds
] 1
λ−1

,

where ∆ is defined in Remark 2.3, then the conclusion of Lemma 4.2 holds.

Lemma 4.4 ([9, Theorem 3.11]). Let λ > 1, µ ∈ R \ {0}, p ∈ V−(ω), h satisfy
(3.1), and∫ ω

0
[µf(s)]−ds− e

ω
4

∫ ω
0

[p(s)]+ds
∫ ω

0
[µf(s)]+ds

≥ λ− 1
λ

[
e
ω
4

∫ ω
0

[p(s)]+ds ∫ ω
0 [p(s)]+ds−

∫ ω
0 [p(s)]−ds

] λ
λ−1

[
λ
∫ ω

0 h(s)ds
] 1
λ−1

.

Then, problem (1.1) has no non-negative solution.

Lemma 4.5 ([6, Theorem 16.2]). Let p ∈ V−(ω). Then, there exists ν > 0
such that, for any non-positive function q ∈ L([0, ω]), the problem

z′′ = p(t)z + q(t); z(0) = z(ω), z′(0) = z′(ω) (4.6)
has a unique solution z and this solution satisfies

z(t) ≥ ν
∫ ω

0
|q(s)|ds for t ∈ [0, ω].

Lemma 4.6. Let λ > 1, conditions (3.1) and (3.2) hold, {µn}∞n=1 be a sequence
of positive numbers and let, for any n ∈ N, un be a positive solution to problem
(1.1) with µ = µn. Then, the sequences {‖un‖C}∞n=1 and {µn}∞n=1 are bounded.

Proof. We first show that
sup

{
‖un‖C : n ∈ N

}
< +∞. (4.7)

Suppose on the contrary that (4.7) does not hold. Then, we can assume without
loss of generality that

lim
n→+∞

‖un‖C = +∞. (4.8)

Put
vn(t) := un(t)

‖un‖C
for t ∈ [0, ω], n ∈ N.

Clearly,
‖vn‖C = 1, vn(t) > 0 for t ∈ [0, ω], n ∈ N. (4.9)

It follows from (1.1) with µ = µn that, for any n ∈ N,

v′′n(t) = p(t)vn(t)− ‖un‖λ−1
C h(t)vλn(t) + µn

‖un‖C
f(t) for a. e. t ∈ [0, ω], (4.10)
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which yields

0 =
∫ ω

0
p(s)vn(s)ds− ‖un‖λ−1

C

∫ ω

0
h(s)vλn(s)ds+ µn

‖un‖C

∫ ω

0
f(s)ds

for n ∈ N. In view of (3.2) and (4.9), from the latter equality, we get

‖un‖λ−1
C

∫ ω

0
h(s)vλn(s)ds+ µn

‖un‖C

∣∣∣∣∫ ω

0
f(s)ds

∣∣∣∣ ≤ ∫ ω

0
|p(s)|ds for n ∈ N. (4.11)

Put

A := sup
{
‖un‖λ−1

C

∫ ω

0
h(s)vλn(s)ds : n ∈ N

}
, B := sup

{
µn
‖un‖C

: n ∈ N
}
.

(4.12)
By virtue of (3.1), (3.2) and (4.9), it follows from (4.11) that A ∈ ]0,+∞[ , B ∈
]0,+∞[ , and we can assume without loss of generality that

lim
n→+∞

‖un‖λ−1
C

∫ ω

0
h(s)vλn(s)ds = h0, lim

n→+∞

µn
‖un‖C

= µ0, (4.13)

where
h0 ≥ 0, µ0 ≥ 0.

For any n ∈ N, we choose tn ∈ [0, ω] such that v′n(tn) = 0. In view of (3.1), (4.9),
and (4.12), integrating (4.10) from tn to t, we get

|v′n(t)| =
∣∣∣∣∫ t

tn

[
p(s)vn(s)− ‖un‖λ−1

C h(s)vλn(s) + µn
‖un‖C

f(s)
]
ds
∣∣∣∣

≤
∫ ω

0
|p(s)|ds+ ‖un‖λ−1

C

∫ ω

0
h(s)vλn(s)ds+ µn

‖un‖C

∫ ω

0
|f(s)|ds

≤
∫ ω

0
|p(s)|ds+A+B

∫ ω

0
|f(s)|ds for t ∈ [0, ω], n ∈ N.

Therefore, the sequences {‖vn‖C}∞n=1 and {‖v′n‖C}∞n=1 are bounded and, thus, by
the Arzelà–Ascoli theorem, we can assume without loss of generality that

lim
n→+∞

vn(t) = v0(t) uniformly on [0, ω], (4.14)

where v0 ∈ C([0, ω]). From (4.9), we get

v0(t) ≥ 0 for t ∈ [0, ω], ‖v0‖C = 1. (4.15)

It follows from the hypothesis (p, f) ∈ U(ω) that the problem

v′′ = p(t)v + f(t); v(0) = v(ω), v′(0) = v′(ω) (4.16)

has a unique solution v which is positive. According to Lemma 4.5 (with q(t) :=
−‖un‖λ−1

C h(t)vλn(t)), there exists ν > 0 such that, for any n ∈ N, the problem

w′′ = p(t)w − ‖un‖λ−1
C h(t)vλn(t); w(0) = w(ω), w′(0) = w′(ω)

has a unique solution wn and

wn(t) ≥ ν‖un‖λ−1
C

∫ ω

0
h(s)vλn(s)ds for t ∈ [0, ω], n ∈ N. (4.17)
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It is clear that vn = wn + µn
‖un‖C v for n ∈ N. Therefore, (4.17) yields

vn(t) ≥ ν‖un‖λ−1
C

∫ ω

0
h(s)vλn(s)ds+ µn

‖un‖C
v(t) for t ∈ [0, ω], n ∈ N,

and, thus, passing the limit for n→ +∞ and taking into account (4.13) and (4.14),
we get

v0(t) ≥ h0 + µ0v(t) for t ∈ [0, ω]. (4.18)
Let us show that h0 + µ0 > 0. Indeed, suppose on the contrary that h0 = 0

and µ0 = 0. Then, by the hypothesis p ∈ V−(ω), it follows from (4.10) and
Remarks 2.3 and 2.4 that

|vn(t)| ≤ ∆(p)
(
‖un‖λ−1

C

∫ ω

0
h(s)vλn(s)ds+ µn

‖un‖C

∫ ω

0
|f(s)|ds

)
for t ∈ [0, ω], n ∈ N, and, therefore, passing the limit for n→ +∞ and taking into
account (4.13) and (4.14), we obtain

|v0(t)| ≤ ∆(p)
(
h0 + µ0

∫ ω

0
|f(s)|ds

)
= 0 for t ∈ [0, ω].

However, this contradicts (4.15). Hence, we have proved that h0 + µ0 > 0, which,
together with (4.18) and the positivity of v, leads to the condition

v0(t) > 0 for t ∈ [0, ω]. (4.19)

On the other hand, (4.11) yields∫ ω

0
h(s)vλn(s)ds ≤ 1

‖un‖λ−1
C

∫ ω

0
|p(s)|ds for n ∈ N,

and, therefore, passing the limit for n → +∞ and taking into account (4.8) and
(4.14), we get ∫ ω

0
h(s)vλ0 (s)ds ≤ 0.

However, in view of (4.19), the latter inequality contradicts (3.1). The obtained
contradiction proves that (4.7) holds.

Now we show that the sequence {µn}∞n=1 is bounded. Suppose on the contrary
that sup

{
µn : n ∈ N

}
= +∞. Then, we can assume without loss of generality

that
lim

n→+∞
µn = +∞. (4.20)

Integrating the equation in (1.1) with µ = µn over the interval [0, ω], we get

0 =
∫ ω

0
p(s)un(s)ds−

∫ ω

0
h(s)uλn(s)ds+ µn

∫ ω

0
f(s)ds for n ∈ N,

which, in view of (3.1) and the positivity of un and µn, yields

−
∫ ω

0
f(s)ds ≤ ‖un‖C

µn

∫ ω

0
|p(s)|ds for n ∈ N.

Taking into account (4.7), (4.20) and passing the limit for n → +∞, we obtain
−
∫ ω

0 f(s)ds ≤ 0, which contradicts the second condition in (3.2). �
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Lemma 4.7. Let p ∈ V−(ω) and z ∈ AC 1([0, ω]) be such that

z′′(t) ≤ p(t)z(t) for a. e. t ∈ [0, ω], z(0) = z(ω), z′(0) = z′(ω), (4.21)
meas

{
t ∈ [0, ω] : z′′(t) < p(t)z(t)

}
> 0. (4.22)

Then, z(t) > 0 for t ∈ [0, ω].

Proof. It follows from the hypotheses of the lemma that z is a solution to prob-
lem (4.6), where q(t) ≤ 0 for a. e. t ∈ [0, ω] and q(t) 6≡ 0. Therefore, Lemma 4.5
yields z(t) > 0 for t ∈ [0, ω]. �

Lemma 4.8. Let λ > 1, µ0 > 0, p ∈ V−(ω), (p, f) ∈ U(ω), h satisfy (3.1), and
there exist a positive function β ∈ AC 1([0, ω]) such that (4.1) with µ = µ0 and
(4.2) hold. Then, for any µ ∈ ]0, µ0[ , there exist functions β1, β2 ∈ AC 1([0, ω])
satisfying conditions (4.3), (4.4), and (4.5).

Proof. Let µ ∈ ]0, µ0[ be arbitrary and put β2(t) := µ
µ0
β(t) for t ∈ [0, ω]. It

follows from (4.1) with µ = µ0 and (4.2) that β2 ∈ AC 1([0, ω]) and

β2(t) > 0 for t ∈ [0, ω], (4.23)
β2(0) = β2(ω), β′2(0) = β′2(ω), (4.24)

β′′2 (t) ≤ p(t)β2(t)−
(
µ0

µ

)λ−1
h(t)βλ2 (t) + µf(t)

≤ p(t)β2(t)− h(t)βλ2 (t) + µf(t) for a. e. t ∈ [0, ω],
(4.25)

and

meas
{
t ∈ [0, ω] : β′′2 (t) < p(t)β2(t)− h(t)βλ2 (t) + µf(t)

}
> 0, (4.26)

because 0 < µ < µ0 and h satisfies (3.1). By the hypothesis (p, f) ∈ U(ω) and the
condition µ > 0, the problem

v′′ = p(t)v + µf(t); v(0) = v(ω), v′(0) = v′(ω) (4.27)

has a unique solution v which is positive. In view of (3.1) and (4.23), conditions
(4.25) and (4.27) yield

v′′(t) ≥ p(t)v(t)− h(t)vλ(t) + µf(t) for a. e. t ∈ [0, ω] (4.28)

and (
β2(t)− v(t)

)′′ ≤ p(t)(β2(t)− v(t)
)

for a. e. t ∈ [0, ω].
Therefore, by (4.24), (4.27), and the hypothesis p ∈ V−(ω), we get

v(t) ≤ β2(t) for t ∈ [0, ω]. (4.29)

Now, by virtue of (4.24), (4.25), (4.27), (4.28), and (4.29), we conclude that the
functions v and β form a well-ordered pair of lower and upper functions of (1.1)
and, thus, problem (1.1) has a solution β1 such that

v(t) ≤ β1(t) ≤ β2(t) for t ∈ [0, ω] (4.30)

(see, e. g., [3, Chapter I]). Consequently, the functions β1, β2 satisfy conditions
(4.4) and (4.5). We finally show that (4.3) holds as well. Indeed, let z(t) :=
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β2(t)− β1(t) for t ∈ [0, ω]. Since β1 is a solution to problem (1.1) and β2 satisfies
(4.24), (4.25), and (4.26), we get

z(0) = z(ω), z′(0) = z′(ω),

z′′(t) = p(t)z(t)− h(t)
(
βλ2 (t)− βλ1 (t)

)
− `(t) for a. e. t ∈ [0, ω],

where ` ∈ L([0, ω]) is such that

`(t) ≥ 0 for a. e. t ∈ [0, ω], `(t) 6≡ 0.

Therefore, in view of (3.1) and (4.30), the function z satisfies (4.21) and (4.22).
Consequently, Lemma 4.7 implies that β2(t) > β1(t) for t ∈ [0, ω], which, together
with (4.30) and the positivity of v, results in (4.3). �

Lemma 4.9. Let λ > 1, µ0 > 0, p, h, f ∈ L([0, ω]), h satisfy (3.1), and there
exist functions β1, β2 ∈ AC 1([0, ω]) such that (4.3), (4.4) with µ = µ0, and (4.5)
hold. Then, there exist µ > µ0 and a positive function β ∈ AC 1([0, ω]) satisfying
(4.1) and (4.2).

Proof. It is clear that there exist the numbers d1 > c1 > 0 and d2 > c2 > 0
such that

c1 ≤ β1(t) ≤ d1, c2 ≤ β2(t)− β1(t) ≤ d2 for t ∈ [0, ω]. (4.31)

Let ϑ ∈ ]0, 1[ be arbitrary. Put

M :=
{

(x1, x2) ∈ R2 : c1 ≤ x1 ≤ d1, c2 ≤ x2 − x1 ≤ d2
}

and

`(x1, x2) := ϑxλ1 + (1− ϑ)xλ2[
ϑx1 + (1− ϑ)x2

]λ for (x1, x2) ∈M.

Since the function x 7→ xλ is strictly convex on ]0,+∞[, we have[
ϑx1 + (1− ϑ)x2

]λ
< ϑxλ1 + (1− ϑ)xλ2 for 0 < x1 < x2,

which implies that `(x1, x2) > 1 for (x1, x2) ∈M . The function ` is continuous on
the compact set M and, thus, there exists ε > 1 such that

ελ−1[ϑx1 + (1− ϑ)x2
]λ ≤ ϑxλ1 + (1− ϑ)xλ2 for (x1, x2) ∈M. (4.32)

We now put
β(t) := εϑβ1(t) + ε(1− ϑ)β2(t) for t ∈ [0, ω].

In view of (4.3) and the conditions ϑ ∈ ]0, 1[ and ε > 1, the function β is positive
and satisfies (4.2). Moreover, from (3.1), (4.4) with µ = µ0, (4.31), and (4.32), we
get

β′′(t) ≤ p(t)β(t)− h(t)ε
[
ϑβλ1 (t) + (1− ϑ)βλ2 (t)

]
+ εµ0f(t)

≤ p(t)β(t)− h(t)ελ
[
ϑβ1(t) + (1− ϑ)β2(t)

]λ + εµ0f(t)

= p(t)β(t)− h(t)βλ(t) + εµ0f(t) for a. e. t ∈ [0, ω],

i. e., β satisfies also (4.1) with µ = εµ0 > µ0. �
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5. Proofs of main results

Proof of Theorem 3.1. Conclusion (1) of the theorem follows immediately from
[7, Corollary 2.11].

Put
A :=

{
µ > 0 : problem (1.1) has a positive solution

}
.

In view of Lemma 4.3, it is clear that A 6= ∅. Let

µ0 := supA. (5.1)

Then, µ0 > 0 and Lemma 4.6 implies that µ0 < +∞. Therefore, conclusion (4) of
the theorem holds.

We now show that
µ0 ∈ A. (5.2)

Indeed, let {µn}∞n=1 be a sequence of positive numbers such that

µn ∈ A for n ∈ N, lim
n→+∞

µn = µ0.

Moreover, for any n ∈ N, let un be a positive solution to problem (1.1) with
µ = µn. Then, Lemma 4.6 yields (4.7). By the standard arguments used in the
proof of a well-posedness of the periodic problem for second-order ODEs, one can
show that there exists a subsequence {unk}∞k=1 of {un}∞n=1 such that

lim
k→+∞

u(i)
nk

(t) = u
(i)
0 (t) uniformly on [0, ω], i = 0, 1,

where u0 ∈ AC 1([0, ω]) is a solution to problem (1.1) with µ = µ0. All the
functions unk are positive and, thus, it is clear that

u0(t) ≥ 0 for t ∈ [0, ω]. (5.3)

By virtue of the hypothesis (p, f) ∈ U(ω), problem (4.16) has a unique solution
v which is positive. Since u0 is a solution to problem (1.1) with µ = µ0, by
(3.1), (5.3), and (4.16), we get (4.21), where z(t) := u0(t) − µ0v(t) for t ∈ [0, ω].
Therefore, the hypothesis p ∈ V−(ω) yields z(t) ≥ 0 for t ∈ [0, ω]. Hence, we have

u0(t) ≥ µ0v(t) > 0 for t ∈ [0, ω]

and, thus, condition (5.2) holds.
Having a positive solution u0 to problem (1.1) with µ = µ0, it is clear that

all the hypotheses of Lemma 4.8 (with β(t) := u0(t)) are fulfilled. Consequently,
for any µ ∈ ]0, µ0[ , (p, µf) ∈ U(ω) and there exist functions β1, β2 ∈ AC 1([0, ω])
satisfying (4.3), (4.4), and (4.5). Therefore, conclusion (2) of the theorem follows
from Lemma 4.2.

Since u0 is a positive solution to problem (1.1) with µ = µ0, to prove conclusion
((3)) of the theorem, it is sufficient to show that problem (1.1) with µ = µ0 has at
most one positive solution. Suppose on the contrary that there exists a positive
solution to problem (1.1) with µ = µ0 different from u0. Since µ0 > 0, (3.2) yields
(p, µ0f) ∈ U(ω) and, thus, it follows from Lemma 4.1 (with β(t) := u0(t) and
µ := µ0) that problem (1.1) with µ = µ0 possesses solutions u∗, u∗ such that

u∗(t) > u∗(t) > 0 for t ∈ [0, ω].
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Therefore, Lemma 4.9 (with β1(t) := u∗(t) and β2(t) := u∗(t)) guarantees that
there exist µ̃ > µ0 and a positive function β ∈ AC 1([0, ω]) satisfying (4.1) with
µ = µ̃ and (4.2). Consequently, in view of the hypothesis (p, f) ∈ U(ω) and the
positivity of µ̃, it follows from Lemma 4.1 (with µ := µ̃) that problem (1.1) with
µ = µ̃ has at least one positive solution. However, this implies µ̃ ∈ A, which
contradicts (5.1). �

Proof of Proposition 3.4. By Remark 3.3, it follows from (3.8) that condition
(3.2) holds. Let µ0 be the number appearing in the conclusion of Theorem 3.1.

We first show that µ0 satisfies (3.10). Suppose on the contrary that (3.10) does
not hold, i. e.,

µ0 <
(λ− 1) [∆(p)]−

λ
λ−1

λ
[
λ
∫ ω

0 h(s)ds
] 1
λ−1

∫ ω
0 [f(s)]−ds

.

Then, it follows from Lemmas 4.3 and 4.2 that problem (1.1) with µ = µ0 has at
least two positive solutions, which contradicts conclusion (3) of Theorem 3.1.

Now we show that µ0 satisfies (3.11). Suppose on the contrary that (3.11) does
not hold, i. e.,

µ0 ≥
(λ− 1)

[
e
ω
4

∫ ω
0

[p(s)]+ds ∫ ω
0 [p(s)]+ds−

∫ ω
0 [p(s)]−ds

] λ
λ−1

λ
[
λ
∫ ω

0 h(s)ds
] 1
λ−1

[∫ ω
0 [f(s)]−ds− e

ω
4

∫ ω
0

[p(s)]+ds ∫ ω
0 [f(s)]+ds

] .
Then, it follows from Lemma 4.4 that problem (1.1) with µ = µ0 has no positive
solution, which contradicts conclusion (3) of Theorem 3.1. �

6. Model examples

In this section, we consider the model equation (1.3) with F given by the relations
in (1.4) in order to demonstrate a possible use of Theorem 3.1.

Let us choose ω > 0 and consider the equation

x′′ = k(`− d(t))
md(t) x− k`

2md3(t) x
3 − f0

m
, (6.1)

where m, k, `, f0 > 0 and d : R → ]0,+∞[ is a positive ω-periodic function such
that d(t) 6≡ ` and∫ ω

0

[
`− d(s)
d(s)

]
−

ds < 4m
ωk

,

∫ ω

0

[
`− d(s)
d(s)

]
+

ds <
∫ ω

0
[ `−d(s)
d(s)

]
−ds

1− ωk
4m
∫ ω

0
[ `−d(s)
d(s)

]
−ds

.

Observe that equation (6.1) is a Duffing equation with non-constant coefficients
and a constant forcing term. By Remarks 3.3 and 3.5, we get

k(`− d(·))
md(·) ∈ V−(ω),

(
k(`− d(·))
md(·) ,− 1

m

)
∈ U(ω).

Therefore, assuming that f0 is a bifurcation parameter, it follows from Theorem 3.1
that there exists a critical value f∗0 > 0 of f0 such that, crossing the value f∗0 ,
a bifurcation of positive ω-periodic solutions to (6.1) occurs.



92 J. ŠREMR

As a second example, we consider the equation

x′′ = k(`− d0)
md0

x− k`

2md3
0
x3 + A

m

(
sin 2πt

ω
− 1

2

)
, (6.2)

where A,ω > 0 and m, k, `, d0 > 0 such that d0 < ` and∫ ω

0

[
sin 2πs

ω
− 1

2

]
−

ds > e
ω2k(`−d0)

4md0

∫ ω

0

[
sin 2πs

ω
− 1

2

]
+

ds.

Unlike the first example, equation (6.2) is a Duffing equation with constant coef-
ficients and a sign-changing forcing term. By Remarks 2.2 and 3.5, we get

k(`− d0)
md0

∈ V−(ω),
(
k(`− d0)
md0

,
g(·)
m

)
∈ U(ω),

where g(t) := sin 2πt
ω −

1
2 . Therefore, if we consider A as a bifurcation parameter,

it follows from Theorem 3.1 that there exists a critical value A∗ > 0 of A such
that, crossing the value A∗, a bifurcation of positive ω-periodic solutions to (6.2)
occurs.

We finally mention that Proposition 3.4 provides lower and upper estimates of
the critical values f∗0 and A∗ of bifurcation parameters f0 and A.
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