
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

ACCELERATION OF LATTICE-BOLTZMANN ALGORITHMS
FOR BLOODFLOW MODELING
AKCELERACE ALGORITMŮ LATTICE-BOLTZMANN PRO MODELOVÁNÍ TOKU KRVE V MOZKU

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. RADMILA KOMPOVÁ
AUTOR PRÁCE

SUPERVISOR Ing. JIŘÍ JAROŠ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2016



zadání diplomové pEce/1 8589/201 s/Xkompo91

Vysoké učení technické v Brně - FakuIta informačních technologií
Ústav počítačových systémŮ Akademický rok20l5/20t6

Zadání diplomové práce
Řešitel : Kompová Radmila, Bc.
Obor: B ioinformatika a biocomputing
Ť:__, Akcelerace algoritmŮ Lattice-Boltzmann pro modelování toku krve vlema: mozku

Acceleration of Lattice-Boltzmann Al gorithms for Bloodflow Modeli n9
Kategorie: Algoritmy a datové struktury

Pokyny:
1, Seznamte se s architekturou moderních vícejádrových procesorŮ. Zaměřte se

především na organizaci vyrovnávacích pamětí a vektorových rozšíření typu AVX.
2. Prostudujte simulační techniku Lattice-Boltzm an n urČenou pro simulaci proudění

kapalin a prostudujte její dostupné implementace, Zaměřte se především na
simulační software HemeLB.

3. Analyzujte výkonnost současné verze HemelB a identifikujte Časově kritické Části.
4. Navrhněte úpravy, které povedou ke zvýšení výkonnosti, Zaměřte se především na

efektivní reprezentaci dat a vektorizaci výpočtu.
5, Navržené úpravy realizujte a změřte jejich dopad na výkonnost,, 6, Zhodnoťte dosažené výsledky a diskutujte přínos práce,

Literatura:
. Wittmann, M,, Zeiser, T,, Hager, G., Wellein, G.: comparison of different

propagation steps for lattice Boltzmann methods, Computers & Mathematics with
Applications, vol 65(6), s. 924-935, 20t3.

. Dle pokynů vedoucího,
Při obhajobě semestrální části projektu je požadováno:

. Splnění bodů 1 až 3 zadání.

Podrobné závazné pokyny pro vypracování diplomové práce naleznete na adrese
http ://www.fit .vutbr.cz/inf o/ szz/

Technická zpráva diplomové práce musí obsahovat formulaci cíle, charakteristiku souČasného stavu,
teoretická a odborná Východiska řešených problémŮ a specifikaci etap, které byly vyieŠeny v rámci
dřívějších projektŮ (30 až 4oolo celkového rozsahu technické ZpráVy),

student odevzdá V jednom Výtisku technickou zprávu a V elektronické podobě zdrojový text technické
zprávy, úplnou programovou dokumentaci a zdrojové texty programŮ. Informace v elektronické podobě
budou utoženy na slandardním ne přeplsovatelné m paměťovém médiu (CD-R, DVD-R, apod.), které bude
vloženo do písemné zprávy tak, aby nemohlo dojít k jeho ztrátě při běžné manipulaci.

VedoucÍ: JaroŠ JiřÍ, Ing., Ph.D., UPSY FIT VUT
Datum zadánÍ: 1. listopadu 2015
Datum odevzdání:25. května 2016

ii?.§fi§[ il *Ei.li Tfťíjť;"cllli ! i]Fi!ii
. 
:j,|,,,,,,,ri(,|,,I i,.ll,,'l,,:,:i,l, ( it,ril

]5'a" ]úc,,k:6,J.:; ,/s].|,.:i u iit,:i , . cn l . ._ .,".l _,,lt i
,]

|(í'l-u:.-(_
doc. Ing. Zdeněk Kotásek, CSc.

vedoucí ústavu



Abstract
This thesis aims to explore possible implementations and optimizations of the lattice -
Boltzmann method. This method allows modeling of fluid flow using a simulation of fictive
particles. The thesis focuses on possible improvements of the existing tool HemeLB which
is designed and optimized for bloodflow modeling. Several vectorization and paralellization
approaches that could be included in this tool are explored. An application focused on
comparing chosen algorithms including optimizations for the lattice - Boltzmann method
was implemented as a part of the thesis. A group of tests focused on comparing this
algorithms according to performance, cache usage and overall memory usage was performed.
The best performance achieved was 150 millions of lattice site updates per second.

Abstrakt
Tato práce se zabývá implementací a možnými optimalizacemi metody lattice - Boltzmann.
Tato metoda umožňuje modelovat tok kapalin pomocí simulace pohybu fiktivních částic.
Práce se zaměřuje na možná vylepšení existujícícho nástroje HemeLB, který se specializuje
na simulaci proudění krve v mozku. V práci jsou mimo jiné zkoumány techniky vektorizace a
paralelizace jejichž implementace by mohla pro tento nástroj být přínosná. Součástí práce
je implementace aplikace srovnávající několik vybraných algoritmů pro metodu lattice -
Boltzmann včetně jejich možných optimalizací. Zahrnuty jsou rovněž testy zaměřené na
srovnání těchto algoritmů dle dosaženého výkonu, využití paměti cache a celkové spotřeby
paměti. Nejlepší dosažený výkon byl 150 milionů aktualizovaných bodů mřížky za sekundu.

Keywords
Lattice-Boltzmann method, bloodflow modeling, HemeLB, algorithm acceleration, vector-
ization, parallelization, OpenMP

Klíčová slova
Lattice-Boltzmann metoda, modelování toku krve, HemeLB, akcelerace algoritmů, vektor-
izace, paralelizace, OpenMP

Reference
KOMPOVÁ, Radmila. Acceleration of Lattice-Boltzmann Algorithms for Bloodflow Model-
ing. Brno, 2016. Master’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Jaroš Jiří.



Acceleration of Lattice-Boltzmann Algorithms for
Bloodflow Modeling

Declaration
I declare, that this thesis is my original work which I created under the leadership of Ing.
Jiří Jaroš Ph.D.

. . . . . . . . . . . . . . . . . . . . . . .
Radmila Kompová

May 23, 2016

Acknowledgements
This work was supported by The Ministry of Education, Youth and Sports from the
Large Infrastructures for Research, Experimental Development and Innovations project
„IT4Innovations National Supercomputing Center – LM2015070“

c○ Radmila Kompová, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author’s explicit consent is illegal, except for cases defined by law.



Contents

1 Introduction 3

2 Lattice - Boltzmann method 4
2.1 BGK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Fullway bounce - back . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Halfway bounce - back . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Implementation of the lattice - Boltzmann method 9
3.1 Addressing layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Basic implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Parallel computing 15
4.1 SIMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 AVX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Data alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 HemeLB 20

6 Implementation of the application 23
6.1 Application parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Two - step two - grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4 One - step two - grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.5 Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.6 Optimized shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.7 Structure of arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Testing 38
7.1 Performance for different algorithms . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Performance on Anselm and Salomon . . . . . . . . . . . . . . . . . . . . . 42
7.3 Cache miss rate for different algorithms . . . . . . . . . . . . . . . . . . . . 43
7.4 Processor cycles usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Conclusion 47

1



Bibliography 49

Appendices 52
List of Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A Content of the CD 54

2



Chapter 1

Introduction

Fluid dynamics simulation has a wide range of possible applications in several areas in-
cluding industry or medicine. Fluid simulation can be very useful in many cases but it
still remains a computationally intensive task even with a constant increase of computers
performance. One of the methods that can be used, is lattice - Boltzmann method. This
method simulates the fluid flow in a discretized space represented by a grid consisting of
individual lattice sites. The state of the fluid in the lattice site in the current time step is
defined by a probabilitity that a virtual particle with a defined velocity currently resides in
that lattice site.

In some applications, for example simulation of bloodflow for medical purposes, time
of the simulation is crucial. Even when using multi - core architectures, the computational
costs are still high, especially when modelling fluid flow in complex geometries. Therefore,
it is important to decrease the simulation time by using a range of optimizations.

The goal of this thesis is to explore the possible optimizations of the lattice - Boltzmann
method including the use of several algorithm modifications, addressing layouts, vectoriza-
tion and parallelization. The performance will be measured on two supercomputers - Anselm
(nodes with two 8 core Intel Sandy Bridge processors) and Salomon (nodes with two 12
core Intel Haswell processors).

Several possibilities of implementation and optimization of the lattice - Boltzmann method
have been explored and described in the text. One of the existing tools, which specializes
on bloodflow modeling, called HemeLB was also explored. An application focused on com-
paring several lattice - Boltzmann algorithms with various optimizations was implemented.
The application was tested with a number of different settings and the algorithms were
compared according to performance, cache usage and overall memory usage.

Chapter 2 covers a general introduction to the lattice - Boltzmann method, an overview
of the basic boundary counditions (2.2) and the BGK collision operator (2.1). Chapter 3 fo-
cuses on the lattice - Boltzmann method implementation and describes the basic addressing
layouts, the most common algorithms and the implemented application. The measurements
comparing the application performance for different domain sizes and number of available
processors are also a part of this chapter. Chapter 4 includes an overview of the avail-
able parallel computing techniques including SIMD, vectorization and OpenMP. Chapter 5
focuses on the description of the HemeLB and its capabilities. Chapter 6 describes imple-
mentation of the application focused on comparing several lattice - Boltzmann algorithms
and its possible optimizations. Chapter 7 gives information about performed tests and
comparison of the algorithms according to performance, cache usage and overall memory
usage.

3



Chapter 2

Lattice - Boltzmann method

Lattice - Boltzmann method (LBM) is a method for fluid dynamics simulation. The simu-
lated domain is discretized and represented by a grid consisting of lattice sites. To model
the flow, the method uses virtual particles. The current state of the fluid in a particular
lattice site is described by a particle distribution functions. The particle distribution func-
tions express the possibility that a particle with a specific velocity resides in the lattice site.
The LBM consists of two main parts, propagation and collision. During the collision step,
the particle distribution functions are updated according to the collision operator used. In
the propagation step, the values of the particle distribution functions are propagated to the
neighbouring lattice sites.

From a historical perspective, lattice - Boltzmann method has been evolved from lattice -
gas automata (LGA) [9]. LGA comprises a lattice, where the lattice sites can be in a certain
number of different states. The various states express the number of the particles with
certain velocities currently present in the lattice site. The states are boolean, meaning that
there either is or is not a particle moving in each defined direction. The main difference
is that LBM use discretized probability distribution functions for a particle in each lattice
point so it does not clearly state that a particle either is or is not in the lattice site. It
has been proved that the lattice - Boltzmann equation (2.3) can be directly derived from
the continuous Boltzmann equation by discretizing this equation in both time and phase
space in a specific way [14]. The Boltzmann equation (2.1) describes a change of a particle
distribution function 𝑓 in time 𝑡, 𝜉 is the microscopic velocity, 𝜆 is the relaxation time due
to collision, and 𝑔 is the Boltzmann - Maxwellian distribution function.

𝜕𝑢

𝜕𝑡
+ 𝜉.▽ 𝑓 = − 1

𝜆
(𝑓 − 𝑔) (2.1)

According to the type of the used lattice system, LBM can be characterized using a
𝐷𝛼𝑄𝛽 notation. In this notation, 𝛼 stands for the space dimension (usually two or three)
and 𝛽 for the number of particle distribution functions (PDFs). 𝛽 is defined by number of
links from each lattice site to its neighbour lattice sites. The considered lattice site itself
is included in this number as well, therefore the number of the links to its neighbours is
actually 𝛽 − 1. The length of the links is typically either equal to the lattice spacing 𝑟 (for
the closest neighbour sites having a difference in only one coordinate in the Cartesian grid),√

2𝑟 for the diagonal links or
√

3𝑟 for the more distant diagonal links. 𝐷2𝑄9 or 𝐷3𝑄19
belong to the most commonly used lattice models [26]. Picture 2.1 shows the links to the
neighbouring lattice sites in the 𝐷2𝑄9 and 𝐷3𝑄19 models.

The LBM uses virtual particles that can have a certain number 𝑁 of possible velocities

4



Figure 2.1: D2Q9 and D3Q19 models [15]

𝑐𝑖, 𝑖 = 0, 1..𝑁 to describe the current state of the fluid at a specific time. The number 𝑁
is defined by the number of links to the neigbors of the lattice site. The state of the fluid
in the lattice point 𝑥 at the time 𝑡 is described by means of a distribution function 𝑓𝑖(𝑥, 𝑡).
This function describes the probability that a particle with the velocity 𝑐𝑖 is in the point 𝑥
at the time 𝑡 [20]. The set of possible velocities for a particle is determined by the chosen
system of links to the neighbouring lattice sites. Formula 2.2 shows velocities for the 𝐷2𝑄9
model with 8 links to the neighbouring lattice sites [19].

𝑐𝜆 =

⎧⎨⎩
(0, 0) 𝜆 = 0

(𝑟, 0), (− 𝑟, 0), (0, 𝑟), (0, − 𝑟) 𝜆 = 1, 2, 3, 4
(𝑟, 𝑟), (𝑟, − 𝑟), (− 𝑟, 𝑟), (− 𝑟, − 𝑟) 𝜆 = 5, 6, 7, 8

(2.2)

The lattice - Boltzmann equation (2.3) then describes how 𝑓𝑖(𝑥, 𝑡) is changed after a
time step ∆𝑡, where Ω is the collision operator [20].

𝑓𝑖(𝑥 + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(𝑥, 𝑡) + Ω(𝑓𝑖(𝑥, 𝑡)) (2.3)

Several collision operators have been formulated, for example Bhatnagar–Gross–Krook
(BGK), two relaxation time scheme (TRT), or multiple relaxation time scheme (MRT) [26].
The algorithm of the lattice - Boltzmann method can be divided to three main steps.

1. Propagation: In this step, values of the particle distribution functions 𝑓𝑖 are shifted
according to their velocities 𝑐𝑖 to the corresponding adjacent lattice sites. This action
can be described by equation 2.4.

𝑓𝑖(𝑥 + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(𝑥, 𝑡) (2.4)

2. Collision: In the collision step, the values of the particle distribution functions are
updated according to the collision operator used. The output 𝑓𝑖

𝑜𝑢𝑡 of this step can
be described by equation 2.5.

𝑓𝑖
𝑜𝑢𝑡 = 𝑓𝑖

𝑖𝑛 + Ω(𝑓𝑖(𝑥, 𝑡)) (2.5)

3. Evaluation of macroscopic variables: In this step, several macroscopic variables
are computed and stored for an application in the next collision step. The fluid density
can be computed from the particle distribution functions using formula 2.6.

5



𝜌(𝑥, 𝑡) =

𝑁−1∑︁
𝑖=0

𝑓𝑖(𝑥, 𝑡) (2.6)

Macroscopic velocity is computed by using equation 2.7, where 𝜌 is the fluid density
in a particular lattice site. Depending on the collision operator used, there can be
several other macroscopic variables that are computed in this step.

𝑢(𝑥, 𝑡) =
1

𝜌

𝑁−1∑︁
𝑖=0

𝑓𝑖(𝑥, 𝑡)𝑐𝑖 (2.7)

Described steps do not have to be strictly separated and their order can also be modified.
For example, evaluation of the macroscopic variables can be performed before the collision
step. Frequently, evaluation of macroscopic variables is not even considered as a separated
step and this computation is performed as a part of the collision step. The order of the
propagation and collision step can also be switched or these steps can be merged into one
single step. LBM algorithms can then be categorized as having either one - step or two - step
approach.

2.1 BGK
One of the simplest collision operators which can be used for LBM is the BGK collision
operator, where BGK stands for the abbreviation of names of its authors - Bhatnager, Gross
and Krook. BGK can be described as a linear approximation of the collision integral from
the Boltzmann equation, therefore determination of the post - collisional state of the fluid
is simplified while the crucial constraints for collision operator are still fulfilled [11].

The first constraint demands the certainity of the conservation of the collisional invari-
ants. The second constraint states that the system evolves towards the local equilibrium
condition. The BGK collision operator can be described by formula 2.8 where 𝑓𝑒𝑞

𝑖 stands for
the local Maxwellian equilibrium distribution function and 𝜏 is the relaxation time constant
[19].

Ω(𝑓𝑖(𝑥, 𝑡) =
1

𝜏
(𝑓𝑒𝑞

𝑖 (𝑥, 𝑡) − 𝑓𝑖(𝑥, 𝑡)) (2.8)

Fulfillment of the second constraint is here ensured by the fact that the collision operator
is applied to the PDF, which is then changed by an amount proportional to the difference
between the value of this PDF and the local equilibrium [11]. Local equilibrium distribution
function 𝑓𝑒𝑞

𝑖 can be computed using equation 2.9, where 𝑤𝑖 is determined by the system of
links to the neighbouring lattice sites [9].

𝑓𝑒𝑞
𝑖 (𝑥, 𝑡) = 𝑤𝑖𝜌(1 + 3𝑢𝑐𝑖 +

9(𝑢𝑐𝑖)
2

2
− 3𝑢2

2
) (2.9)

The condition decribed by equation 2.10 has to be fulfilled for all models.

𝑁−1∑︁
𝑖=0

𝑤𝑖 = 1 (2.10)

6



In general it can be stated, that the farthest neighbouring lattice sites have the lowest
weights assigned. In case of model 𝐷2𝑄9 the weights are expressed by formula 2.11.

𝑤 =

⎧⎨⎩
𝑤𝑖=0 4/9

𝑤𝑖=1,2,3,4 1/9
𝑤𝑖=5,6,7,8 1/36

(2.11)

2.2 Boundary conditions
For simulation of fluids in real non - infinite environment, it is crucial to have a way in
which the boundaries of the space are defined as one of the inputs to the LBM algorithm.
The fluid dynamics near the specified boundaries then has to be handled in an appropriate
way in the implemented algorithm. Therefore„ the boundaries are specified by boundary
conditions. There are several boundary conditions that differ in complexity and accuracy.
The simplest one is a bounce - back boundary condition that can have several variants. In
all of them the collision process does not occur at the lattice sites within the solid boundary.

2.2.1 Fullway bounce - back

The most straightforward variant of the bounce - back is a fullway bounce - back condition.
In this case, the direction of the velocity is reversed for a particle, which is, according to its
velocity, supposed to enter the lattice site within a solid boundary. Using this method, two
time steps are needed for the particle to reach the boundary, flip direction of its velocity
and go back to a regular lattice site. Implementation of this boundary condition is simple
but it has been shown that the accuracy which can be achieved by this approach does not
have to be sufficient in case that a high precision of the algorithm results is demanded [11].

Figure 2.2: Halfway bounce - back [10]

7



2.2.2 Halfway bounce - back

Better accuracy has been observed for halfway bounce - back. In this case, the boundary
is considered to be placed in the center between two rows of the lattice sites. Thanks to
this modification, only one time step is needed for reversing the direction of the particle
velocity in the corresponding direction [11]. Therefore, the boundary condition can be
applied as a part of the propagation step, which makes it straightforward for integration.
If a particle is about to enter a non - fluid lattice site during the propagation step, then
instead of the standard propagation the PDFs are updated in a described way. The steps
of the bounce - back rule application are demonstrated in figure 2.2.

8



Chapter 3

Implementation of the
lattice - Boltzmann method

There are several variants how to implement LBM. Although the essential characteristics
of this method remain the same, significant differences in performance and memory usage
can be observed. No matter which particular variant is chosen, the main steps always have
to be performed in some way. If the collision and propagation are fused, the algorithm is
called one - step algorithm, otherwise they are referred to as two - step algorithm. The main
challenge arising from the implementation of various optimizations of the basic algorithm
is the data dependence between the adjacent lattice sites in the propagation step.

Another observed parameter is memory requirements. The main difference lies in the
fact whether the memory to store values of the particle distribution functions has to be
allocated only once or twice. Based on this condition, the algorithms are categorized as
one - grid or two - grid ones. Each algorithm uses various number of additional variables but
as the size of the domains modeled by LBM is usually large, these variables are usually not
considered as significant for performance.

Regardless of the particular algorithm, data which has to be stored is determined by
the essence of the LBM. The main structure is a grid containing individual lattice sites.
The size and dimension of the grid are determined by several parameters, including the size
of the particular domain and expected precision. For each lattice site, the values of the
corresponding PDFs have to be stored. These requirements lead to the necessity of storing
data in a generally multidimensional array.

The array can be either allocated directly as a multidimensional array or the multidi-
mensional data can be mapped into one direction and stored in a one - dimensional array.
In the latter case, an enumeration function has to be implemented to access the lattice sites
[20]. This approach offers more flexibility in how exactly data will be stored, which can be
convenient for improving memory and cache utilization.

Several data layouts for PDFs storage can be implemented depending on the exact
variant of the implemented algorithm. The values of the PDFs are then accessed using
access functions where a site index is used as a parameter. For example, data layouts which
are optimized specifically for the collision and streaming steps have been developed. In the
collision layout, the values of the PDFs are stored in a natural way subsequently to each
other together for each lattice site. With the streaming layout, the values of the PDFs are
grouped according to the direction of the velocity of each particle distribution function and
these groups and values within each group are then stored together. Another interesting

9



data layout is a bundle layout, where values of the PDFs are sorted into several groups of
the same size, but unlike the streaming layout, each group contains particles with more
than one direction, which then leads to a lower number of groups [20].

3.1 Addressing layouts
The values of PDFs can be stored and accessed using several addressing layouts. Which
layout is the best choice depends on several factors, including the algorithm used and the
characteristics of the domain, especially the amount and position of solid lattice sites. The
easiest solution is direct addressing. In this case the lattice site PDFs are accessed simply
using an enumeration function. To distinguish between the fluid and solid lattice sites,
another vector is required. During the propagation step, the information about neighbours
of the currently processed lattice site is retrieved and the propagation is handled accordingly.
When a direct addressing is used, a space for the solid lattice sites PDFs is also allocated.

The use of semi - direct addressing can decrease of memory requirements as only the
space for fluid lattice sites PDFs is allocated. The drawback of this approach is that
the PDFs can not be accessed directly using the enumeration function. Fortunately, the
solution is simple, as an additional vector can be used to create an exclusive enumeration.
To protect the consistency of the LBM algorithm, the exclusive enumeration has to preserve
the original enumeration of lattice sites. For this reason, an exclusive enumeration index is
stored in the positions of the fluid lattice sites in an additional vector. In the positions of
the solid lattice sites, this information is stated for example by storing a predefined constant
with a negative value [20].

When indirect addressing is used, no information is saved for the solid lattice sites. Even
the additional vector containing the information about each lattice site is not used. The
connection of the lattice sites and their positions can be stored in several ways depending
on the used algorithm, for example the connectivity of the lattice sites can be handled in
the preprocessing stage.

3.2 Algorithms
∙ Two - step two - grid Two - step two - grid is a naive and most straightforward imple-

mentation of LBM. In this case, the propagation and collision are treated as strictly
separated steps. First, the collision is performed for each lattice site and the post -
collision values of the PDFs are computed. In the propagation step, post - collision
values are streamed to the adjacent lattice sites. For storing the post - collision values
between the steps, the amount of memory allocated for the PDFs has to be doubled.
Together with a high memory usage, the algorithm also performs several transfers be-
tween the memory locations in each iteration, which makes it very memory bandwidth
demanding [26][20].

∙ One - step two - grid This implementation fuses the propagation and collision into
one step. The variant that is referred to as the push scheme performs the collision
before the propagation. In this case, the collision is performed for the lattice sites in
the first grid structure and the post - collision values are immediately streamed to its
neighbours and stored in the second grid structure [26]. The pull scheme performs the
propagation before the collision. In this variant, the corresponding values from the

10



lattice sites adjacent to the site being currently processed are gathered, and the post -
collision values are stored in the second grid structure at the position of this lattice
site. After each algorithm step, the pointers to the first and second grid structure
are swapped, which significantly decreases the memory traffic when compared to the
previous algorithm.

∙ Compressed grid (shift) Unlike the previously mentioned algorithms, the com-
pressed grid is a one - grid algorithm which implies that the required memory is almost
halved. Only one grid structure has to be stored in the memory plus an additional
row of lattice sites for each dimension. The data dependency between the adjacent
lattice sites is removed using some additional lattice sites. These sites are used for
the creation of an offset used for storing of the updated values of the PDFs so that
the values of the PDFs, which will be further needed are not overwritten. The order
in which the lattice sites are processed is different for even and odd time steps. In the
odd steps the iteration over lattice sites takes place from the top right to the bottom
left, in the even steps the direction is reversed [26][20]. Both the pull and the push
scheme can be used.

∙ Swap the swap algorithm is also a one - grid algorithm and unlike the compressed
grid it does not use any additional lattice sites. Data dependencies are handled by
swapping half of the lattice site PDFs with the PDFs of its neighbour. Which PDFs
are swapped depends on the used scheme, in both cases the iteration over the lattice
sites is the same and takes place from the grid corner to the opposing one in the
standard order of the lattice sites. If the push scheme is used, the PDFs of the lattice
sites which have not been yet updated are stored in the opposite locations within the
lattice site. When a lattice site is approached, the collision is performed and the post -
collision values are saved within the lattice site in a standard way. The PDFs pointing
after the collision to the adjacent lattice sites, which have already been visited in the
current iteration are swapped with the neighbour PDFs pointing at them. In this
way, the propagation is performed implicitly by gradual swapping of the PDFs [19].
If the pull scheme is used, PDFs of the adjacent lattice sites, that have not yet
been visited in the current iteration, have to first be swapped with the PDFs of the
currently processed lattice site pointing at them. Then all PDFs that are needed
for performing the collision are stored within the currently processed lattice site in
the opposite locations. The post collision values are then written in their natural
locations within the lattice site. A disadvantage of this algorithm is the necessity of
special treatment of the lattice sites within the solid boundary.

3.3 Basic implementation
In order to show the basic concepts described and explore the possibilities for further work, a
demo LBM application was created. The application was programmed in C++ and includes
a basic implementation of the LBM algorithm. For the simplicity, the D2Q9 model and
the two - step two - grid approach were used. The push scheme, the BGK collision operator
and the halfway bounce - back boundary condition were used for the implementation. The
application output in the form of an array of densities for each lattice site in each timestep
is stored in a HDF5 file.

11



The grid is stored in a C - style three dimensional array and is accessed by direct ad-
dressing. The first dimension is the domain width, the second dimension corresponds to
the domain height and the third dimension is used as a storage for the values of the PDFs.
Definitions of the main data structures can be seen in the code example 3.1.

Pseudocode 3.1: Data structures used in LBM
int v[9][2];
double t[9];
double fin[NX][NY][9];
double fout[NX][NY][9];

The arrays fin and fout store the grid, the variables NX and NY express the size of the
domain, the array v stores the velocities coefficients according to 2.2 where two values are
stored for each PDF: the velocity in the x and y direction. The array t is used for storing
weights of the neighbour lattice sites as stated in 2.11.

In the first step of the implemented algorithm, the arrays v and t together with other
constants as the relaxation time constant are initialized. The initial velocity and density
for the lattice sites are also set in this step. In the case that there are some non - fluid sites
in the domain, the domain map is also initialized. The domain map is implemented as a
two dimensional integer array with the size of the modeled domain. The values stored in
this array are either 0 for the fluid sites or 1 for the non - fluid sites.

In the next step, the algorithm of the lattice - Boltzmann method is performed. For
a specified number of iterations, collision and propagation are performed as can be ex-
pressed by the pseudocode 3.2 where iter is the number of the algorithm iterations and
collision() and propagation() are methods.

Pseudocode 3.2: Loop of the LBM algorithm
for (int i = 0;i < iter; i++) {

collision();
propagation();

}

The collision method pseudocode can be seen in the code example 3.5. The first step of
this method is computing the values of the macroscopic variables - the fluid density and the
macroscopic velocity. The fluid density is computed according to equation 2.6, the particle
velocity is computed using equation 2.7. A pseudocode of methods where both variables
are computed can be seen in code examples 3.3 and 3.4.

Pseudocode 3.3: Density
double getDensity(int i, int j){

Pseudocode 3.4: Macroscopic velocity
void getVelocity(int i, int j,

double result=0.0; double density, double *u) {
for (int k=0;k<9;k++) for (int d=0;d<2;d++) {
{ for (int k=0;k<9;k++)

result += fin[i][j][k]; {
} u[d]+=fin[i][j][k]*v[k][d];
return result; }

} u[d]=u[d]/density;
}

}

12



After the values of the macroscopic variables are evaluated, the collision can be per-
formed. The value of the local equilibrium distribution function is evaluated and this value
is then used to compute the new value of each PDF according to equation 2.8.

Pseudocode 3.5: Collision
void collision(){

for (int i=0;i<NX;i++)
{

for (int j=0;j<NY;j++) {
density=getDensity(i,j);
getVelocity(i,j,density,u);
u2 = u[0]*u[0]+u[1]*u[1];
for (int k=0;k<9;k++) {

for (d=0;d<dim;d++) {
p+=v[k][d]*u[d];

}
feq = t[k]*density*(1.0 + 3*p + (9/2)*p*p/2 - (3/2)u2/2) ;
fout[i][j][k] = fin[i][j][k] + 1/tau*(feq-fin[i][j][k]);

}}}}

The method performing propagtion also includes the bounce - back boundary condition
described in 2.2.2. The pseudocode of the method can be seen in code example 3.6. The
method isAFluidSite returns a boolean value according to whether the lattice site with
the given coordinates lies within the solid boundary or not. Accordingly, the values of
the PDFs of the currently processed lattice site are either streamed to the neighbouring
lattice sites or the halfway bounce - back rule is applied. The array oppositeOf stores the
coefficients of the opposite velocities. The code uses a periodic boundary condition meaning
that when the particle is about to leave the domain at the bottom, it is propagated to the
top of the domain instead.

Pseudocode 3.6: Propagation
void propagation(){

for (int i=0;i<NX;i++) {
for(int j=0;j<NY;j++) {

for (k=0;k<9;k++) {
ii=(i+v[k][0]+nx)%nx;
jj=(j+v[k][1]+ny)%ny;
if (isAFluidSite(ii,jj))

fin[ii][jj][k]=fout[i][j][k];
else

fin[i][j][oppositeOf[k]]= fout[i][j][k];
}}}}

3.3.1 Measurements

A few basic optimizations have been implemented in the basic code. All arrays are aligned
to 32 bytes to enable the vectorization of the code. To force the data alignment, the clauses
__declspec(align(32)) and __assume_aligned(x, BYTE) have been used. The propaga-
tion and collision method was parallelized using the #pragma omp parallel for pragma.

13



The pragma was placed above the most outer loop of both methods. Furthermore, the
#pragma omp simd pragma was placed above the most inner loop of the collision method.
Therefore„ this loop is vectorized. Vectorization was also performed in the method com-
puting fluid density by using the #pragma omp simd reduction pragma. The dimension
of the array fin and fout was also changed to 12 elements to enable vectorized processing.

Several measurements were performed to compare the basic and the vectorized version.
All measurements were done on Anselm supercomputer (8 core Intel Xeon processors with
the Sandy Bridge microarchitecture). For the measurements runs, the output of the ap-
plication into a HDF5 file was not performed. Both versions of the code were run with
the domain sizes 128 * 128, 256 * 256, 512 * 512, 1024 * 1024 and 2048 * 2048. For each
domain size, the optimized version was run with 1, 2, 4, 8 and 16 OpenMP threads. For
each application run, the number of the lattice sites updates per second was computed. All
the measurements have been performed ten times and an average value of this runs was
computed. The results were then compared with the basic version anc can be seen in figure
3.1. On the graph, the number of the processors is on the X axis and millions of lattice site
updates per second (MSUPS) is on the Y axis.

Figure 3.1: Performance of the basic version (labeled as no vec) and the optimized version
on a different number of processors

As could be expected, the performance of the application is the worst for the non -
optimized version. The performance of the optimized version is increasing with the increas-
ing number of processors. The differences in the performance between the different domain
sizes are in most cases not very significant. The big difference in performance between the
runs with the two smallest grid sizes on 8 and 16 CPUs is most likely caused by fitting the
small size of the domain and therefore its fitting into cache.

14



Chapter 4

Parallel computing

Parallelism can be implemented on several levels. Bit - level parallelism allows the processor
to work simultaneously on larger data and includes for example SIMD approach. Instruc-
tion - level parallelism uses instructions pipelining and is used on superscalar processors.
Thread - level parallelism includes multithreading techniques available in several program-
ming languages and multiprocessing techniques that can be implemented using OpenMP.
This text will mainly focus on bit - level parallelism in the form of SIMD and parallelization
using OpenMP.

4.1 SIMD
Single Instruction Multiple Data (SIMD) architectures can be described as a system of
processors controlled by a central unit where all currently working processors perform the
same instruction at the moment. Therefore, the SIMD allows the programmer to implement
data parallelism in a standardized way using defined pragmas and clauses. A scheme of
this technique is depicted in picture 4.1. Even though the SIMD architectures can offer
several advantages, they can not be always considered as the best and universal solution
for all computing tasks. For the possibility of exploitation of the available features, it may
be necessary to change or adjust the used algorithms in the particular application.

Figure 4.1: SIMD versus scalar operations [17]

The SIMD features are currently available on the most of the contemporary computer
architectures as an instruction set extension. To enable the use of the SIMD on standard

15



processors, a technique called SWAR is used. The abbreviation SWAR stands for SIMD
Within A Register and describes that the SIMD operations are performed within a group
of processor registers so that no special architecture is required. The most known SWAR
extensions on the x86 processors include MMX, SSE and AVX. The text will further focus
on the SIMD extensions available on the current Intel processors.

The first SIMD extension available was MMX, which supported only integer operations
and used the FPU registers and so it was difficult to simultaneously work with the float-
ing point numbers and to use SIMD instuctions within the same application. The next
introduced SIMD extension was SSE, which unlike the MMX used new 128 - bit registers
called XMM0 - XMM7 designated for the use with SIMD instructions and supporting float-
ing point operations. Later, the SSE2, SSE3 and SSE4 were introduced with the support
of both integer and floating point operations, larger registers and new instructions [5]. The
newest introduced SIMD extension is Intel Advanced Vector Extensions (AVX). AVX is
designed to extend the existing SIMD by offering several new features. One of the main
inovations is an increased size of the used registers to 256 bits. The overview of possible
data types which can be used by AVX and SSE instructions can be seen in figure 4.2.

Figure 4.2: SSE and AVX data types overview [17]

4.2 AVX
The hardware support of the AVX includes 16 registers called YMM0 - YMM15 and one
control and status register called MXSCR [18]. The YMM registers are aliased over the
old XMM registers and therefore offer backward compatibility for all versions of the SSE
instructions. When using the SSE instructions, the required registers are simply mapped to
the lower half of the corresponding YMM registers. Even though this feature is supported,
it is not recommended to often switch between the old legacy instructions and the new
AVX instructions as it can negatively influence the optimal throughput of the application.

AVX allows the use of several data types in several sizes. The number of the values of a
particular data type which can be processed by one SIMD instruction depends on the size
of the used data type, for example an instruction can be available to either eight floats or
four doubles. The new instructions use a two or three byte prefix called VEX prefix. This
prefix also allows the use of a three operand syntax, which is another highlite of the AVX.
With the three operand syntax it is possible to preform non - destructive operations that

16



do not overwrite the source operand so its value can be further used without the need of
storing it in a separate register before performing the operation. A few instruction even
allow the use of four operands.

In comparison to the SSE instructions, the requirements for the data alignment can be
considered as less strict in AVX. While for the SSE the data alignment was required for
most instructions, some new instructions also allow an unaligned access even though the
performance can decrease. That is why memory alignment is still strongly recommended
as a good practice even though in some cases is not mandatory [18].

4.3 Vectorization
There are several ways in which the vectorization of the code using the SIMD instructions
can be performed. The easiest way is to simply rely on the compiler to perform an automatic
vectorization. With this approach, it is necessary to follow several rules of writing the
code. For example it is necessary that the data are correctly aligned and there is no data
dependance between the steps that are likely to be vectorized. As it can be seen, this
approach might not be optimal for most applications where the vectorization is required.
The following approaches to vectorization of the code differ in the amount of control which
the programmer has over the code on one side and simplicity of the solution on the other
side.

To ensure that the code will be compiled using the SIMD instructions, it is possible
to use auto - vectorization hints which will be recognized by the compiler, for example the
#pragma ivdep directive [25]. This directive will make the compiler assume that there is no
data dependency between iterations of the following loop and so the code can be vectorized.
Even though this information is passed and recognized by the compiler, the dependencies
will still be checked and when the compiler assumes that a data dependency exists, the
code will still not be vectorized. The vectorization might not also be performed because the
compiler might not detect that the vectorization of the loop would increase the performance.
In this case, the #pragma vector always can be used to force the vectorization.

Another way of enforcing the vectorization is using the #pragma simd statement that
enforces the loop vectorization. Unlike the previous techniques, it can also be used in
case that there are proven data dependencies detected by the compiler [25]. Under these
circumstances, the code under the influence of the #pragma simd has to handle the data
dependencies itself to prevent generating of incorrect code. The statement also supports
several optional clauses that can be used for example for a specification of the vector length
or data type.

Using vector intrinsics can be also used for enforcing the code vectorization. Intrinsics
are functions which can be called directly from C/C++ code after the appropriate header
file is included. By using intrinsics, it can be directly controlled to which instructions the
code will be compiled. This can be also done by including the instructions as inline assembly
code.

4.4 Data alignment
Data alignment is a method used to force the compiler to store data object on a specific
byte positions in the memory. By specifying the suitable byte boundaries for data, it is
possible to increase the efficiency of memory operations because processors are designed to

17



move data efficiently from the specific byte boundaries (for example 32 byte). Thus the
compiler is able to produce more optimized code when memory operations work with the
aligned data. By default, the compiler can not assume that the data are aligned without
being explicitly informed by the programmer. Therefore, it is important to not only align
the data but also tell the compiler to assume the data to be aligned.

For static arrays, the data alignment can be implemented using the __declspec(align
(BYTE)) directive. For dynamically allocated arrays, the alignment can be ensured using
the _mm_malloc() function. The __assume_aligned(x, BYTE) clause then has to be used
to inform the compiler that the data have been aligned. Considering multidimensional
arrays, it is also beneficial to ensure that the row length of the matrix is padded out to be
a multiple of the chosen byte boundary. This step can then lead to significant performance
increase.

To indicate that all arrays within a particular loop are aligned, the #pragma vector
aligned directive can be used. This pragma applies only to the immediately following loop
and can be useful especially when the code is assumed to be vectorized by the compiler.
When using the pragma, the programmer is fully responsible for ensuring that the data
alignment was performed, otherwise segmentation faults can occur [16].

In general, there are two basic memory layouts that can be used for storing multiple
values into memory. The most straightforward variant is using an Array of Structures (AoS)
which is implemented simply as an array where the array elements are structures. When
accessing one field of the structure across the array elements to fetch the subsequent values
within a loop, expensive memory gather - scatter operations have to be performed. This
fact can increase the latency as well as the bandwidth usage and can also make it difficult
for the compiler to vectorize the loop.

Structure of Arrays (SoA) can prevent expensive memory operations because it keeps
separate arrays for each structure field. Thus it allows a continuous memory access when the
fields have to be accessed within a loop. Using the SoA can lead to better code vectorization
and increasing of the SIMD instructions efficiency. When accessing all fields within the same
structure is also needed, it can be convenient to combine both variants and implement
an Array Of Structure Of Arrays (AoSoA) which combines the two previously mentioned
approaches [6].

4.5 OpenMP
OpenMP (Open Multi - Processing) is an application programming interface which provides
support for creating multi - threaded applications. It is a set of compiler pragmas, direc-
tives, function calls, and environment variables that explicitly inform the compiler where
and in which way multiple threads should be used [12]. Therefore, the OpenMP offers a
multiplatform way of parallelizing the source code without the need of using the explicit
threading properties of the programming language. It also determines how many threads
should be created, how to synchronize them and it also destroys them when they are not
needed any more. However, many of these properties can also be explicitly set by the
programmer when needed.

All the OpenMP pragmas start with the #pragma omp followed by some of the clauses.
For example a parallelization of a for loop can be implemented using the #pragma omp
parallel for. When this pragma is processed by the compiler, the work done inside the
loop is distributed among the threads created by an OpenMP. For this approach, the term
work - sharing is used in the OpenMP terminology. For the loop parallelization possibility,

18



it is necessary for the loop to fullfill several requirements, for example a specific form of the
comparison operation when evaluating the loop condition. Therefore, it might be needed
to rewrite the loop that is likely to be parallelized to follow the given restrictions [12].

When creating multithreaded applications, it is necessary to avoid race condition for
instance when all the threads are supposed to use the same variable. Several techniques can
be used to prevent the race condition, for example the variable can be declared to be pri-
vate for each thread by using the clause #pragma omp parallel for private(VARIABLE).
The data dependency between the loop iterations can also cause significant problems with
parallelization.

By default, the OpenMP assumes that all loop iterations take the same amount of time.
If it is not true, it is possible to use a clause to specify how exactly the relevant loop should
be parallelized. The clause has the form #pragma omp parallel for schedule(kind
[, chunk size]) and allows to force the parallelization scheduling performation in the
defined way and thus improve the load balancing. Since OpenMP4.0, it is also possible to
use the API for vectorization. The vectorization of the loop can be enforced by using the
#pragma omp simd before the loop [23]. This pragma can especially be useful when the
auto - vectorization fails even after using the auto - vectorization hints.

The technique called SIMD - enabled functions can also be used to ensure that the code
will be vectorized. This approach makes it possible to define functions for vectorization
when called from within a vectorized loop or with an array notation of the arguments [24].
The SIMD - enabled functions concept allows to use standard scalar syntax to define the
function and then enables its vectorization by using predefined pragmas. The #pragma
omp declare simd pragma has to be placed before the function definition. When the

function is called later from a loop with the #pragma omp simd pragma, the compiler uses
a vectorized version of the method. The function can also still be normally used in a scalar
form. There are also linear and uniform clauses which have to be used when only some
of the function parameters are supposed to be in a vector form.

19



Chapter 5

HemeLB

HemeLB is a tool developed at the Centre for Computational Science at the University
College London. The tool is designed for predicting the fluid flow in complex geometries.
It is a massively parallel framework that is aimed to be used especially for blood flow
modeling. One of the goals is to offer a toolkit that provides assistance to surgeons for
example when treating patients with intracranial aneurysms. Therefore, a high precision
as well as a reasonable computational time is demanded.

One part of the framework is the HemeLB Setup Tool that allows to load angiographic
data from the patients and to choose the domain to be simulated using a graphical user
interface. The HemeLB Steering Client allows to connect remotely to the simulation and
to perform runtime visualization as well as the possibility of steering the simulation. The
visualization is implemented by a parallelised ray - tracing algorithm [13]. The snapshots
from the visualization can be seen in figure 5.1. The core of the HemeLB is written in
C++ and consists of an implementation of the lattice - Boltzmann method optimized for
modeling the fluid flow in sparse geometries.

Figure 5.1: Snapshots of the simulation results: velocity field (top left), stress field (top
right), wall pressure (bottom left), and wall shear stress (bottom right) [2]

20



The HemeLB simulation core uses the 𝐷3𝑄15 lattice - Boltzmann model with the BGK
collision operator. Several boundary conditions have been implemented in the application.
The biggest problem with choosing the right one is finding the right tradeoff between the
complexity and thus the computational costs and the accuracy of the condition. A new
boundary condition based on extrapolation was implemented in the core. This method is
confined by pressure and no - slip boundaries and has been observed to have the first - order
accuracy.

As HemeLB is designed to be used for sparse systems, it is important to use the data
structure that minimizes the necessity of storing information connected to the solid lattice
sites while ensuring a good data locality for the fluid lattice sites. The used approach
splits the grid into a two level representation - when there are any fluid cells present for a
particular coarse grid cell, then this cell is decomposed into a finer one. More precisely, the
HemeLB uses a two - level grid where each cell of a coarse grid, called block, is decomposed
into the chosen number of cells in the second level grid for each direction.

The example of a two - grid representation of a simple bifurcation for a block size of 4
cells can be seen in picture 5.2, where the lattice sites are depicted by squares with solid
edges. Only the data associated with the non - solid blocks and the solid ones represented
with thin dashed edges are allocated in the memory. The block size of 8 cells has been
identified as optimal to ensure a good cache use within the blocks while minimizing the
data exchange with the neighbouring blocks [21].

Figure 5.2: Two - level grid representation in HemeLB [22]

As a consequence of using the two - level grid representation, a mapping between the
coordinates of a lattice site in the single level representation and those ones in the two -
level representation is implemented. The essence of this mapping is not complicated and
consists of a few multiplications and additions for the conversion of the indexes, but for a
large domain sizes it can be too computationally extensive to preform this mapping during
each propagation step. Therefore„ a look - up table containing the precomputed indices was
implemented.

In the HemeLB implementation, the multidimensional data are stored in 1D arrays.
Several implementations of the simulation can be used. For storing information about the
non - fluid sites in the domain, a precomputed array is available. Considering the two - level
grid approach, it is important to identify the neighbouring lattice site effectively. This is
achieved by a construction of the neighbour map designed as a 1D look - up table. The

21



look - up table stores 83 * 15 for the block size of 8 cells and the 𝐷3𝑄15 model.
This array stores the increments in coordinates for accessing the neighbouring blocks

and their lattice sites. It is possible to avoid the use of the precomputed array for storing
information about the domain boundary conditions by extending the look - up table to store
the precomputed coordinates of a neighbouring block for each block separately. When a
neighbour lattice site resides in the wall, this fact can then be stated by storing a special
constant in the appropriate position. This implementation omits the array with boundary
information at the expense of increased memory consumption caused by the space needed
for the extended look - up table.

To enable parallelization that is needed for modeling of large domains, it is necessary to
perform a domain decomposition. The domain decomposition has to ensure good workload
and communication balancing during the parallel execution. The domain decomposition
algorithm is based on a graph growing partitioning algorithm.

After the domain decomposition is done, the blocks are assigned to the corresponding
processors. As the communication between the neighbouring processor sub - domains has
to be performed during each propagation step, the amount of information that has to be
exchanged needs to be minimized. This is achieved by precomputing buffers of indices that
allow to avoid several computational operations connected to indexing the neighbour lattice
sites on different processors.

HemeLB can also be used for cross - site simulation which allows to perform simulation
of a very large domain on different machines [21]. In this case, the domain decomposition
has to take into consideration the processors locality as the communications between the
processors on different machines take significantly more time. Therefore„ the algorithm
has to be able to deal with the high latency and low memory bandwidth when inter -
machine communication has to be performed. This is achieved by using MPI non - blocking
communications. All communications needed for each iteration (for example exchanges
required for the LB algorithm, steering and visualizations) are bundled into a single batch of
messages. As a result of this approach, each iteration requires only one MPI synchronization
point [13].

The output of the simulation are values of the effective pressure, velocity and von Mises
stress flow for each lattice site. HemeLB also offers the possibility of checkpointing, during
which the whole system is dumped. The stored values can then be used for continuing
the simulation after the crash without the necessity of starting it from the beginning.
Checkpointing also allows to monitor the results and to change the configuration parameters
during the simulation accordingly [13].

22



Chapter 6

Implementation of the application

After exploring the current HemeLB capabilities, a decision was made to aim the thesis
to compare several LBM algorithms with the use of vectorization and parallelization. The
algorithms were supposed to be compared not only according to their performance but also
on the basis of memory and cache utilization.

The final application was created based on the basic implementation described in chapter
3.3. The application has a command line interface. One of the biggest changes that were
implemented was adjusting the code to support 3D simulations. Therefore, the application
supports D3Q15 and D3Q19 models. The following three algorithms for the LBM simulation
were implemented: two - step two - grid, one - step two - grid and shift algorithm. Based on
the performance results, the shift was proven to be the fastest one and therefore it was
chosen for further optimization. The optimized version of this algorithm is the part of the
final application as a fourth variant of the LBM algorithm.

In the basic implementation, the arrays used for storing the values of the PDFs were
allocated as static 3D arrays. This approach had to be changed for the possibility of sup-
porting bigger sizes of the modeled domain. All arrays are therefore allocated dynamically.
This approach ensures that the user is informed at the start of the application if the re-
quested amount of memory can not be allocated. To provide a good vectorization support,
the arrays are allocated as aligned to 32 bytes using function _mm_malloc. An example of
allocation of an aligned array is shown in code example 6.1.

Pseudocode 6.1: Allocation of an aligned array
fin = (T *) _mm_malloc(size*sizeof(T), 32);
__assume_aligned((T*)fin, 32);

With this approach, an array is allocated as a 1D array while an abstraction of a 4D
array is needed for the simulation of a 3D domain (one dimension has to be added for
PDFs). This requirement was solved by implementing a mapping function that maps 4D
coordinates to a flat 1D array. The source code of the mapping function can be seen in
code example 6.2 where nx, ny and nz stand for the domain sizes in each dimension.

Pseudocode 6.2: Method for mapping 4D to 1D coordinates
inline int LBM<T>::mapp(int i, int j, int k, int l) {

return ny*nz*neighbor*i + nz*neighbor*j + neighbor*k + l;
}

Along with the change in the number of dimensions of the arrays for storing values of
the PDFs, the arrays for storing velocity coefficients (v) and the weights of the PDFs (t)

23



had to be changed as well. Both arrays are also allocated dynamically with as 1D arrays
aligned to 32 bytes. The array that is storing velocity coefficients has three values for each
PDF (velocity in x, y and z directions). Therefore, a mapping function which maps 2D
coordinates (PDF, dimension) to a 1D array was created to access these values. The source
code of the mapping function is shown in code example 6.3.

Pseudocode 6.3: Method for mapping from 2D to 1D coordinates
inline int LBM<T>::mapVelocity(int i, int j) {

return i*dim + j;
}

The array for storing macroscopic fluid density after each time step and the domain
map are 3D arrays which are also allocated dynamically as aligned 1D arrays. Therefore,
another mapping function to map 3D coordinates to a 1D array was needed in this case.
As the LBM algorithm requires frequent accesses to all arrays, all mapping functions were
declared as inline methods to ensure the least possible negative influence on the application
performance. The source code of the method used for mapping can be seen in code example
6.4.

Pseudocode 6.4: Method for mapping from 3D to 1D coordinates
inline int LBM<T>::mapp(int i, int j, int k) {

return ny*nz*i + nz*j + k;
}

The application prints several statics and information about the application run to the
standard output. The first measured value is the time spent on performing the chosen
algorithm. The time is measured using the module std::chrono::steady_clock from the
standard C++ library. The time point when the algorithm run was started is saved and
after the required number of iterations is completed, another time point is saved. The
elapsed time can then be computed simply as the difference between these two values.
The performance of the algorithm is measured in millions of lattice site updates per second
(MSUPS). This value is computed from the elapsed time and the total number of the lattice
sites updates. The number of the lattice site updates is computed during the intialization
as a multiplication of the number of fluid lattice sites and the number of iterations.

More detailed statistics are saved to a file when the corresponding parameter is used.
These statistics include L2 and L3 cache accesses and misses, branches prediction informa-
tion and processor cycles usage. This values are measured using PAPI (Performance Ap-
plication Programming Interface) [7]. Another measured statistic is memory usage which
is measured using function getrusage. This function is available in the header file sys/
resource.h.

The computations included in the LBM algorithms can be performed either with float
or double data type. This possibility is enabled with the use of C++ templates in the source
code. The user can determine which data type will be used by choosing the corresponding
parameter. The application source codes include a Makefile which ensures using all the
required compiler and linker flags. The Makefile is designed to be used with the Intel C++
Compiler (icpc) [3]. The used compiler flags include -O3 to ensure the maximum level
of optimizations and -std=c++11 to allow using of the features included in the C++11
standard. The flags -lpapi and -openmp ensure the correct linking of the PAPI and
OpenMP libraries. The parameter -xhost enables usage of the AVX instructions needed
for vectorization.

24



The whole application consists of three files. The implemented LBM algorithms includ-
ing the corresponding initialization routines are part of a class in the file lbm-demo.cc with
the header file lbm-demo.h. This file also comprises the definition of constants needed for
the computation. The application is run from the file main.cc, where the command line
parameters are parsed and the class is instantiated and initialized. The methods imple-
mented in this file also perform several performance measurements and print the statistics
about the application run both to the standard output and to a file.

The application always prints information about the current run to the standard out-
put. The printed information consists of the LBM model, the number of PDFs, the used
algorithm, the domain sizes, the number of iterations, the number of OpenMP threads,
the total number of lattice site updates, MSUPS and the elapsed time. An example of
the application output is shown in example 6.5. The results can be also saved to a file, if
corresponding parameters are used, as described in section 6.1.

Pseudocode 6.5: Example of the application standard output
D3Q15 shift 120x130x140 iterations: 100 cores: 24
total site updates: 214935000 time: 4.30476 MSUPS: 49.7124

6.1 Application parameters
The application has to be run with several parameters that specify the domain, the used
algorithm and the application output. The first three parameters -x, -y and -z, all followed
by a value, are used to describe domain sizes in three dimensions. The domain sizes have to
be positive integer values. The maximal supported size of a domain depends on the amount
of memory available on the computer where the application is run. The next parameter
is the number of PDFs for one lattice site. If the parameter -n is used, then the D3Q19
model is used, otherwise the model is set to D3Q15. The next parameter -i, followed by a
value, is used for the number of the iterations of the LBM algorithm. This value has to be
a positive integer.

Parameter -a, followed by a value, specifies the algorithm that will be used. This
algorithm can be either two - step two - grid, one - step two - grid, shift or optimized shift.
The parameter value has to be a number from 0 to 3, the numbers correspond to the
algorithms in the order given in the previous sentence. Parameter -f specifies that the
application will perform the computations using variables with float data type. If this
parameter is not used, double variables are used instead. Parameter -o switches on the
output to a HDF5 file. The output file is always named density.h5 and is stored in the
application folder. The file includes values of fluid density for all lattice site after each time
step.

Parameters -m, -c and -b define the type of statistic that will be saved. If none of these
parameters is used, no statistics are saved. As the statistics are measured using PAPI,
only one statistic can be saved within one application run, because the number of counters
which PAPI is using is limited. The first statistic describes cache use and can be switched
on by using the parameter -m. This statistic shows the number of L2 and L3 cache misses
and cache accesses. These values can then be used to compute the cache miss or hit rate.

The second statistic, that can be chosen, gives the information about cycles that have
been used on computations and cycles in which no instructions could be completed. The
statistic can be switched on by using parameter -c. It includes the number of cycles in which

25



the processor was stalled waiting for any resource, cycles stalled waiting for memory writes
and total cycles completed. Based on these values, it is possible to compute the percentage
of cycles where the processor was waiting. PAPI supports the use of more counters for
statistics which can measure processor cycles effectiveness but most of these counters were
unfortunately not available in the version of the Intel compiler that was currently available.

The last statistic, which is performed when parameter -b is used, gives an information
about branches execution and prediction. The statistic includes the number of branches
mispredicted and the number of branches correctly predicted. These values can then be
used to compute the percentage of mispredicted branches. All statistics require setting an
environment variable for PAPI before the application is run. The command for setting
this variable for each statistic is shown in the code example 6.6. The first line is for cache
statistic, the second line for a cycles statistic and the last line is for a branches statistic.

Pseudocode 6.6: Environment variables for PAPI
export PAPI_EVENTS=’PAPI_L3_TCM|PAPI_L3_TCA|PAPI_L2_TCM|PAPI_L2_TCA’
export PAPI_EVENTS=’PAPI_MEM_WCY|PAPI_RES_STL|PAPI_TOT_CYC’
export PAPI_EVENTS=’PAPI_BR_MSP|PAPI_BR_PRC’

All statistics are saved to a file. It is possible to specify a file name by using a non -
option argument. The file name has to be the last argument. If no file name is given, the
chosen statistic is saved to a file named res, which is created in the application folder.
If the file already exists, the values from the current run are appended to the end, each
application run on a new line. Therefore, the file can be easily used to save the data from
multiple runs. The values are delimited by the character | which ensures good possibilities
for parsing by a script. The formatting of the line is shown in example 6.7. Parameter -h
prints help with a descrtiption of possible parameters and their usage.

Pseudocode 6.7: Statistics file formatting
model | algorithm | x | y | z | iterations | time | MSUPS | threads

count | statistic type | statistics | memory usage

Field statistic type describes the statistic that was preformed, which can be useful
in case that the file is processed automatically. The field has the value of 0 for a cache
statistic, 1 for a cycles statistic and 2 for a branches statistic. The field statistics contains
the values of the chosen statistic again delimited by the character |. The order of values
for each statistic is shown in example 6.8. When the option -n is used, and therefore no
special statistic is produced, the output is saved to a file only when a filename is specified.
In this case, the field statistics is not present in the output data and the field statistic
type has the value of 3.

Pseudocode 6.8: Fields in statistics
//cache
L3 cache misses | L3 cache accesses | L2 cache misses | L2 cache

accesses
//cycles
cycles stalled waiting for memory writes | cycles stalled | total cycles

count
//branches
branches mispredicted | branches correctly predicted

26



The order of parameters is arbitrary but parameters for the domain sizes, the number of
iterations and the algorithm always have to be used. An example of running an application
with the domain size of 64x64x64, 100 iterations, shift algorithm, float variables and
statistics describing cache misses which are saved in a file named stats is shown in code
example 6.9.

Pseudocode 6.9: Example of running the application
./lbm-demo -x 64 -y 64 -z 64 -i 100 -a 2 -f -m stats

6.2 Initialization
At the start of the application, several variables need to be initialized according to the en-
tered command line parameters. The required parameters include the size of the simulated
domain in a 3D space, the type of the LBM model (D3Q15 or D3Q19), the number of iter-
ations, the selected LBM algorithm and optionally a parameter for measuring and saving
detailed statistics and a parameter for selecting the data type for computations (float or
double).

The size of arrays, needed for storing the values of the PDFs, is determined on the basis
of the size of the domain and the chosen algorithm. For two - step two - grid and one - step
two - grid algorithms, the size is computed from the following equation 𝑠𝑖𝑧𝑒 = 𝑥 * 𝑦 * 𝑧 * 𝑛,
where 𝑥, 𝑦 and 𝑧 stand for the sizes of the modeled domain in each dimension and 𝑛 stands
for the number of neighbor lattice sites (15 or 19). For shift algorithm, the array has an
additional row of cells in each dimension. Therefore, the size of the array is computed as
follows: 𝑠𝑖𝑧𝑒 = (𝑥 + 1) * (𝑦 + 1) * (𝑧 + 1) * 𝑛. When shift algorithm or optimized shift
algorithm is used, only one array for storing the values of the PDFs is allocated (fin), the
other algorithms require two arrays (fin and fout). The arrays are initialized with an
initial density. The initial value of each PDF is computed as a multiplication of the initial
density and the weight of the particular PDF.

The information about which nodes of the simulated domain are fluid and which ones
lay within the solid boundary is stored in an array. The array has a size equal to the
size of the domain and the information is stored as an integer constant - a zero values
means a fluid node, a values of one means a solid node. This array is initialized before
running the selected algorithm. The application also uses an array for storing the densities
at each lattice site after one step of the LBM algorithm. If the corresponding parameter is
used when running the application, the content of this array is saved in a HDF5 file after
each time step. All described arrays are initialized to default values at the start of the
application. The initialization is performed in parallel to ensure NUMA first touch policy.

After the initialization, the selected LBM algorithm is performed for the chosen number
of iterations. The method implementing the particular algorithm is called using a function
pointer which is set during the initialization. This is possible because all the implemented
algorithms have the same method signatures.

6.3 Two - step two - grid
This algorithm is based on the basic LBM implementation described in section 3.3. The
run of the algorithm is divided into two parts - collision and propagation. In the collision
part, the lattice sites in the array fin are accessed using three nested cycles, one for each

27



dimension. The cycles are executed in parallel, using an OpenMP pragma. Both parts are
performed only for fluid sites, therefore this fact is checked for each lattice site before the
computations are started. The pseudocode of the loops for accessing lattice sites in a 3D
space is shown in code example 6.10.

Pseudocode 6.10: Loops iterating through the modelled domain
#pragma omp parallel for reduction
for (int i=0;i<nx;i++) {

for(int j=0;j<ny;j++) {
for(int k=0;k<nz;k++) {

if(isAFluidSite(i,j,k)) {
//collision and/or propagation executed here

}
} } }

To allow better compiler optimizations, the variables were declared as const whenever
it was possible. The macroscopic variables are computed in the first part of the collision
method. Fluid density in the particular lattice site is computed in the method getDensity.
The principle of the computation is the same as in the basic implementation but the method
has been optimized using vectorization. Because each call of the mapping function for
translating the coordinates from a 4D space to a 1D array requires a significant number of
arithmetic operations, the address of the first PDF for the currently processed lattice site
is saved and the other PDFs are accessed on the basis of this value.

This is possible because the mapping ensures that the values of the PDFs for one lattice
site are saved subsequently in a row. This approach also allows better vectorization because
the values are accessed continuously and not using a mapping function that would require
generating gather instructions. The vectorization is performed using an OpenMP pragma.
Because the density is computed as the sum of all values of the PDFs for one lattice site,
the vectorization has to be performed as a reduction. The source code of the method can
be seen in code example 6.11.

Pseudocode 6.11: Optimized density
T LBM<T>::getDensity(const int i, const int j, const int k) {

T result = 0.0;
T const *finRow = &fin[mapp(i,j,k,0)];

#pragma omp simd reduction (+:result)
for (int l = 0; l < neighbor; l++) {

result += finRow[l];
}
return result;

}

The second macroscopic variable that has to be computed for each lattice site is the
fluid velocity. This value is computed in the method getVelocity. As in the case of
the fluid density, this method is an optimized variant of the method used in the basic
implementation. To avoid calling the mapping function more often than necessary and also
to allow a better vectorization, the values of the PDFs are again accessed in a row based on
the address of the first PDF. The method is optimized with the use of vectorization, more
precisely a reduction as in the previous case. The constant 1.0 is casted to the currently

28



used data type to avoid a run - time type casting. The source code of the method is shown
in code example 6.12.

Pseudocode 6.12: Optimized macroscopic velocity
void LBM<T>::getVelocity(const int i, const int j, const int k, const T

density, T *u) {
for (int d = 0; d < dim; d++) {

T uTmp = 0.0;
T const *finRow = &fin[mapp(i,j,k,0)];

#pragma omp simd reduction (+:uTmp)
for (int l = 0; l < neighbor; l++) {

uTmp += finRow[l]*v[mapVelocity(l,d)];
}
u[d] = uTmp * (((T)1.0)/density);

}
}

After the macroscopic variables are computed, the collision itself is performed. This
computation requires looping through all PDFs for the currently processed lattice site. In
each loop iteration, a local equilibrium distribution function is evaluated. Then the new
value of the PDF is computed as the difference between the equilibrium value and the
current value of the PDF, multiplied by the constant omega. The code of the described
loop can be seen in code example 6.13.

Pseudocode 6.13: Collision
#pragma omp simd
for (int l=0;l<neighbor;l++) {

const T p = v[mapVelocity(l,0)]*u[0] + v[mapVelocity(l,1)]*u[1] + v[
mapVelocity(l,2)]*u[2];

const T feq = t[l]*density*((T)1.0 + p/cs2 + p*p/(((T) 2.0)*cs2*cs2) -
u2/(((T) 2.0)*cs2));

foutRow[l] = finRow[l] + omega*(feq-finRow[l]);
}
densities[mapp(i,j,k)] = density;

The constant omega stands for a reciprocal value of the relaxation time constant. The
constant cs2 is the speed of sound. The loop was vectorized using the omp simd pragma.
The array u stores the values of fluid velocities in each dimension computed in the method
getVelocity. The variable u2 is used for the sum of squares of the macroscopic velocities
for each dimension as can be seen in code example 6.14. This value is the same for all PDFs
within one lattice site, therefore this value is precomputed and saved in this way. After
the computation is performed for all the PDFs for one lattice sites, the macroscopic fluid
density is saved to an array called densities. This array is then saved to the HDF5 file
after each time step.

Pseudocode 6.14: Sum of fluid velocity squares
const T u2 = u[0]*u[0]+u[1]*u[1]+u[2]*u[2];

In the propagation part, the new values of the PDFs are distributed to the neighbor lat-
tice sites. The bounce - back boundary condition is a part of the propagation method. There

29



are only minor differences between the propagation method in the basic implementation
described in the section 3.3 and the method in the final application. One of the differ-
ences is adjustment the method for a 3D space. Another difference is the usage of mapping
functions to access the values of the PDFs and also the velocity coefficients. To improve
the performance, the loops accessing the lattice sites are parallelized using OpenMP. The
source code of the propagation method is shown in code example 6.15.

Pseudocode 6.15: Propagation
for (int l=0;l<neighbor;l++) {

const int ii = (i + v[mapVelocity(l,0)] + nx) % nx;
const int jj = (j + v[mapVelocity(l,1)] + ny) % ny;
const int kk = (k + v[mapVelocity(l,2)] + nz) % nz;

if (isAFluidSite(ii,jj,kk))
fin[mapp(ii,jj,kk,l)] = fout[mapp(i,j,k,l)];

else {
const int opposite = oppositeOf[l];
fin[mapp(i,j,k,opposite)] = fout[mapp(i,j,k,l)];

}
}

Figure 6.1 shows a graph describing time spent in particular parts of the algorithm.
The graph was generated by an analysis in Intel VTune Amplifier [4]. It can be seen, that
a significant amount of time is spent in the collision and propagation methods. As these
are the main parts of the algorithm, this fact would not be a problem. There is however
also quite a lot of time spent in the mapping funcion, method computing fluid velocity
and method checking if the currently processed lattice site is a fluid site. This results are
partly caused by looping through the lattice sites twice, once in the collision and once in
the propagation part.

Figure 6.1: Two - step two - grid in Intel VTune Amplifier

30



6.4 One - step two - grid
The one - step two - grid algorithm performs propagation and collision within the same loop
through the lattice sites in the modeled domain. The collision if performed in the same way
as in two - step two - grid algorithm but newly computed values of the PDFs are immediately
propagated to the corresponding neighbor lattice sites. Current values of the PDFs are read
from the array fin and updated values are streamed to the array fout. After the collision
and propagation are done for all the lattice sites, the pointers to fin and fout are swapped
which ensures that the updated PDFs’ values are used in the next time step.

The methods computing macroscopic variables are the same as in the previous algo-
rithm, the differences are only in the most inner loop going through all PDFs for the
particular lattice site. The pseudocode of the loop is shown in code example 6.16. The loop
is optimized by vectorization using OpenMP as in the previous case.

Pseudocode 6.16: One-step two-grid inner loop
#pragma omp simd
for (int l = 0; l < neighbor; l++) {

//computation of the local equilibrium distribution function (feq)
//computation of the neighbour lattice sites indexes (ii,jj,kk)
...
if (isAFluidSite(ii,jj,kk))

fout[mapp(ii,jj,kk,l)] = finRow[l] + omega*(feq-finRow[l]);
else {

const int opposite = oppositeOf[l];
fout[mapp(i,j,k,opposite)] = finRow[l] + omega*(feq-finRow[l]);

} }

As can be seen in figure 6.2, performing only one loop through the lattice sites con-
tributes to a visible improvement in the processor usage. The most of the time is still spent
in the method performing collision and propagation but there is a significant decreasing of
time spent in the mapping function and the method checking if a lattice site is a fluid site.

Figure 6.2: One - step two - grid in Intel VTune Amplifier

31



6.5 Shift
The biggest difference between the shift algorithm and the previously described algorithms
lies in a significantly lower memory usage. The shift algorithm uses only one array for
storing the values of the PDFs, therefore only the array fin is used and the array fout is
not allocated at all. As already mentioned in section 6.2, in this case the size of the array is
one row of cells bigger in each direction. This change of size is necessary to ensure that the
values of the PDFs, which will be further needed, are not overwritten by newly computed
values.

This condition is accomplished by using a different offset for positions in the array in
odd and even time steps. The order in which the lattice sites are processed also differs. The
iteration over the array is performed as three nested loops that are again executed in parallel
by using an OpenMP pragma. In even time steps, the lattice sites are accessed starting
from the maximum value of all three coordinates lowered by one (𝑛𝑥−1, 𝑛𝑦−1, 𝑛𝑧−1) and
going to zero. A pseudocode of the loop for an even time step is shown in code example 6.17.
The offset for storing new PDFs’ values is +1. In odd time steps, the array is accessed with
coordinates going from (1, 1, 1) to the maximal values. In this case, the offset for storing
the new PDFs is −1. The pseudocode can be seen in code example 6.18.

Pseudocode 6.17: Shift - even time step
for (int i=nx-1; i >= 0; i--) {

for (int j=ny-1; j >= 0; j--) {
for (int k=nz-1; k >= 0; k--) {

}}}

Pseudocode 6.18: Shift - odd time step
for (int i=1; i <= nx; i++) {

for (int j=1; j <= ny; j++) {
for (int k=1; k <= nz; k++) {

}}}

As only one array is used, the collision and propagation are performed within one
iteration over the lattice sites as in the case of the one - step two - grid algorithm. The
use of only one array leads to decreasing the memory requirements almost by half. It also
ensures better cache utilization an decreasing the number of cache misses. The macroscopic
density and velocity are computed using the same methods as in the previously described
algorithms. The inner loop accessing the PDFs’ values and computing their new values was
again optimized using vectorization.

Because the coordinates to the array differ in even and odd time steps, the values of the
PDFs are not propagated over the border of the domain with the use of modulo operator
as in the previous algorithms. Instead, the computed coordinates are checked and then
propagated only if they fit within the domain borders. A pseudocode of the propagation
part with this change implemented is shown in code example 6.19.

Pseudocode 6.19: Propagation in the shift algorithm
const int ii = i + v[mapVelocity(l,0)];
const int jj = j + v[mapVelocity(l,1)];
const int kk = k + v[mapVelocity(l,2)];

32



if (ii >= 0 && ii < nx && jj >= 0 && jj < ny && kk >= 0 && kk < nz &&
isAFluidSite(ii,jj,kk))

fin[mapp(ii+1,jj+1,kk+1,l)] = finRow[l] + omega*(feq-finRow[l]);
else

fin[mapp(i+1,j+1,k+1,oppositeOf[l])] = finRow[l] + omega*(feq-finRow[l
]);

Figure 6.3 shows profiling of the algorithm in Intel VTune Amplifier. In comparison
with the results of the previous algorithms (figures 6.1 and 6.2), it can be seen that there
is a significant improvement in time spent in the mapping function and the method used
for checking if a particular lattice site is a fluid site.

Figure 6.3: Shift algorithm in Intel VTune Amplifier

6.6 Optimized shift
Based on several measurements and profiling, the shift algorithm was determined the one
with the highest performance. Therefore, it was chosen for further optimization. The
application was profiled using Intel VTune Amplifier [4]. According to the results, a signif-
icant amount of time was spent in the mapping method and the methods computing the
macroscopic density and velocity.

Therefore, the first matter on which the improvement effort was focused was the map-
ping method used for transforming coordinates in 4D space to 1D space. Because the
mapping method was used several times for each lattice site in each time step, high perfor-
mance of this method was critical. As the mapping method consists only of one line and
was already declared as inline, there was no more space for optimization within the method.
Therefore, it was necessary to try to minimize the number of calls of the method as much
as possible. This effort can also be beneficial for vectorization, as accessing the arrays using
a mapping function can negatively influence the vectorization effectiveness, because it leads
to the use of gather and scatter instructions. This is the reason why some of the attempts
to minimize the use of the mapping method were already performed as described in section
6.3.

Even though this approach led to significant improvements, the mapping function for
getting the address of the first PDF for the currently processed lattice site was still called
several times during each time step. Two calls were used in the methods computing the fluid

33



density and velocity and one was used before computing the values of the local equilibrium
and the new PDFs values. One call was also necessary for transforming the 3D coordinates
to 1D space used for checking if the currently processed lattice site is a fluid site. The
partial solution of this problem could be calling the mapping method only once and passing
the address to the array as a parameter to the methods which are computing fluid density
and velocity.

There is however one even better solution that allows calling only the method mapping
3D to 1D once and then getting an index to a 4D array based on the computed value. This
approach is possible because there is always a fixed number of PDFs (15 or 19) for each
lattice site and all PDFs for one lattice site are stored subsequently in a row. Therefore, it
is possible to get the index to 4D array simply by multiplying the index for the 3D array by
the number of the PDFs. Then the array fin for the particular lattice site can be accessed
as shown in code example 6.20. The index stored in the variable ind is then also used for
accessing the array used for storing the density of each lattice site.

Pseudocode 6.20: Using 3D mapping method for 4D mapping
const int ind = mapp(i,j,k);
T const *finRow = &fin[ind*neighbor];

The optimization efforts were focused on computations of the macroscopic fluid density
and velocity. As can be seen in code examples 6.11 and 6.12, both methods perform a
loop through all the PDFs of the particular lattice site to access its values. Therefore, it is
possible to perform the necessary computations within one loop. This optimization leads to
a significant decreasing of the number of the loops needed for computing the mascroscopic
variables. In the original method computing the macroscopic velocity, it was necessary to
loop through the PDFs once for every dimension plus once for computing the fluid density.
As the macroscopic velocity was computed in two nested loops, this approach required
unrolling of the outer loop. As the final application is designed for 3D domains, this could
be easily done manually. However, if there were a requirement to support 2D also, it would
be necessary to solve this issue for example by creating an overloaded method for 2D.

The loop can be vectorized by the OpenMP SIMD pragma. Because it is necessary to
use a reduction, the temporary values of the macroscopic velocity, which were used within
the loop, were created as float or double variables, instead of an array as in the original
method. With this approach, all three variables (one for each dimension), together with
the density variable, could be specified in the reduction clause of the pragma. After the
loop, it was necessary to multiply each temporary value of velocity by the reciprocal value
of computed fluid density to get the final macroscopic velocity. The pseudocode of the
optimized computation of macroscopic variables is shown in code example 6.21.

Pseudocode 6.21: Optimized computation of the macroscopic variables
#pragma omp simd reduction (+:density,uTmp0,uTmp1,uTmp2)
for (int l=0;l<neighbor;l++) {

density += finRow[l];
uTmp0 += finRow[l]*v[mapVelocity(l,0)];
uTmp1 += finRow[l]*v[mapVelocity(l,1)];
uTmp2 += finRow[l]*v[mapVelocity(l,2)];

}
uTmp0 *= ((T)1.0)/density;

34



As the access to the array containing the velocity coefficients is performed through a
mapping function, the compiler has to generate gather instructions to access these values to
make vectorization possible. This fact can be checked in the compiler vectorization report.
Because the array is accessed three times in each loop iteration, the use of such amount of
gather instructions could possibly have a negative influence on the application performance.
Therefore, a solution that does not require the use of a mapping function was suggested.

The original array containing velocity coefficients was arranged as a 2D array with
three values (one for each dimension) for each PDF. The values for one PDF were stored
subsequently. To avoid the need for a mapping function, the array was divided into three
arrays, each of them storing the values for all the PDFs for one dimension. This means
that the velocity coefficients for one PDF were stored at the same position in each array.
After this change, the loop can be adjusted as shown in code example 6.22.

Pseudocode 6.22: Computation of the macroscopic variables without mapping function
#pragma omp simd reduction (+:density,uTmp0,uTmp1,uTmp2)
for (int l=0;l<neighbor;l++) {

density += finRow[l];
uTmp0 += finRow[l]*vx[l];
uTmp1 += finRow[l]*vy[l];
uTmp2 += finRow[l]*vz[l];

}

The original array v had int data type. As the array fin (accessed through the pointer
finRow) has float or double data type, it was necessary to perform several type converts
during the computation. The need for the type converts can cost significant amount of
time and can also lead to a worse use of the vectorization unit. To avoid this situation, the
arrays vx, vy and vz were declared to have the data type determined by the used template.
Therefore, the type converts at run time are no longer required.

After the macroscopic variables are computed, the collision and propagation can be
performed. Both computations are performed within one loop through the PDFs of the
current lattice site as it is done with basic shift algorithm that is described in section 6.5.
The velocity coefficients are needed also for computations of the local equilibrium as can
be seen in code example 6.13. To avoid the use of mapping methods, the use of the array
v can be again replaced with the use of three new arrays in the same way as during the
computation of macroscopic variables.

The velocity coefficients are also used in the computation of coordinates of the neighbor
lattice sites during propagation. In this case, the situation is more complicated and the
accesses to the array v through the mapping function can not be simply replaced with
the new arrays as in the previous cases. This situation happens because the result of the
computation are coordinates which are supposed to be int data type so it is possible to
use them in an already defined mapping method further in the propagation part.

The solution could be found in performing type converts but as this operation can
have negative influence on the performance of the vectorization, a different approach was
chosen. Three new arrays vxi, vyi and vzi were defined, containing the same values as the
arrays vx, vy and vz but with int data type. With this solution, both the use of mapping
function and type converts were avoided. It is however necessary to allocate and initialize
three new arrays. Considering the size of each array will contain only 15 or 19 elements,
this requirement was evaluated as not having a significant influence on the total application
space requirements. The coordinates of the neighbor lattice sites, to which the new values

35



of the PDFs will be propagated, are then computed as shown in code example 6.23.

Pseudocode 6.23: Computation of the neighbour lattice sites indexes
const int ii = i + vxi[l];
const int jj = j + vyi[l];
const int kk = k + vzi[l];

Figure 6.4 shows results of profiling the algorithm in Intel VTune Amplifier. In com-
parison with the results for the shift algorithm (figure 6.3), there was significantly less
time spent in the mapping function. The time spent by computation of macroscopic vari-
ables (fluid density and velocity) is in this case included in the method optShift which is
handling also collision and propagation.

Figure 6.4: Optimized shift algorithm in Intel VTune Amplifier

6.7 Structure of arrays
The previously described algorithms work with Array of Structures (AoS). Despite this
memory layout being more straightforward, it is not always necessarily the best choice in
connection to performance. Structure of Arrays (SoA) can in some cases lead to a better
cache utilization and can also be more suitable for vectorization. For more details on the
memory layouts, see chapter 4.4.

There was an attempt to implement the SoA memory layout in the application and use it
with adjusted versions of already implemented algorithms. As the memory layout is only an
abstraction over the application data, no big changes in the structure of the application were
needed. Crucial change was an implementation of a new mapping function which would
reflect the new data layout. The source code of the mapping function for transforming
coordinates in a 4D space to a 1D space can be seen in code example 6.24. This function
was then used for replacement of the mapping function shown in code example 6.2. As the
SoA was used only for arrays storing values of the PDFs, other mapping functions did not
have to be changed.

Pseudocode 6.24: Mapping function for the SoA memory layout
inline int LBM<T>::mappSoA(int i, int j, int k, int l) {

return ny*nz*i + nz*j + k + nx*ny*nz*l; }

36



With the SoA memory layout, it was necessary to change the places where the code is
supposed to be vectorized because the PDFs for one lattice site were not stored subsequently
as with the AoS. Therefore, vectorization of the loops through the PDFs of one lattice site
would lead to a high number of cache misses because these values were stored far from each
other. Based on this assumption, it was decided to try to vectorize the whole loop over the
lattice sites. With this approach, several lattice sites could have been processed at once.

The implementation of this approach did not involve big changes in the source code,
basically only moving the OpenMP pragmas to a different place. To make vectorization
easier and more straightforward ,the three loops (showed in 6.10) over the lattice sites were
replaced by a single loop. This action was possible because the SoA memory layout allows
quite easy computation of indexes to the array which stores PDFs. The loop is shown in
code example 6.25.

Pseudocode 6.25: Loop over the lattice sites with the SoA memory layout
const int loop = nx*ny*nz*neighbor;
const int n = neighbor;

#pragma omp parallel for simd
for (int i=0;i<size;i++)
{

for (int l=0;l<neighbor;l++) {
const T currentPdf = fin[i+l*size];
//collision or computation of macroscopic variables performed here

}
}

The mentioned techniques could be easily applied to any of the implemented algorithms.
As this approach was supposed to have a potential of improvement of cache utilization
and overall performance, the described changes were implemented to the optimized shift
algorithm. Despite the expectations, this variant showed to have even lower performance
than the two - step algorithm. According to this result it is obvious that there was some
problem with vectorization of the code. As was stated in the vectorization report, the code
was vectorized and there were also no errors or complaints from the compiler, however the
vectorization appeared to be very ineffective.

Because the vectorization report did not provide more information, it is difficult to
identify the exact cause of this situation. For example a problem with unrolling the inner
loops or assumed data dependance between some parts of the algorithm could belong to
possible reasons. Identifying the exact cause would involve watching a number of processor
counters together with a deep analysis of assembly code produced by the compiler. These
actions would probably exceed the scope of this thesis, therefore the SoA memory layout
was not included into the final application.

37



Chapter 7

Testing

The application was tested on two supercomputers: Anselm and Salomon. Both computers
have nodes with a x86-64 architecture and an operating system compatible with the RedHat
Linux family. Each node of the Anselm cluster has 16 cores, divided into two 8 core Intel
Sandy Bridge E5-2665, processors working on 2.4GHz frequency. Each node has 64 GB
RAM and a local hard drive. Salomon has nodes with 24 cores consisting of two 12 core
Intel Xeon E5-2680v3 processors running on 2.5GHz frequency. Each node has 128 GB
RAM. In all performed tests, a whole node was always allocated even if not all processors
were in use in the particular test to avoid interfering with other applications or users. The
highest currently available version of the Intel Compiler icpc was 16.0.1 on both clusters.

All the results were always computed as average values from multiple runs. To ensure
the placement of one OpenMP thread to one core and to avoid the possibility of moving the
threads between the cores at run time, the commands shown in 7.1 were always executed
before running a test. It was also necessary to load the modules needed for running the
application: modules intel, PAPI and HDF5. The application was always compiled with
the highest available version of the compiler.

Several tests were performed with the pursuit to compare the application performance
with different algorithms, various domains and different number of cores. The performance
was measured in MSUPS (millions of lattice site updates per second), which belongs to the
standard measurements of the LBM algorithms. Together with the performance, various
variants were also compared based on the statistics described in section 6.1 - L2 and L3
cache miss rate, usage of processor cycles and branches prediction. The application results
for each test were saved to a file which was further processed by a python script. The script
was also used to create the graphs using a library matplotlib.

Execept the performance, the different algorithms and other application settings were
also compared based on the L2 and L3 cache miss rate and percentage of cycles where
processor was stalled waiting. The amount of mispredicted branches was also computed,
however the values were very low (under 1% for all run) therefore this comparison is not
included.

Pseudocode 7.1: Setting of the OpenMP variables
export OMP_PLACES=cores
export OMP_PROC_BIND=true
The domain sizes that were used in tests were 128*128*128 and 64*64*64. This domain

sizes are further referred as the bigger and smaller domain size. This domain sizes are always
marked in the legeng of graphs with testing results. On Anselm, the tests were run on 1, 2,

38



Table 7.1: Amount of memory in MB used for different application settings
double float

algorithm/domain size small big small big
two step/one - step (D3Q15) 67 508 36 260
two step/one - step (D3Q19) 83 636 44 324
shift/optimized shift (D3Q15) 37 270 21 141
shift/optimized shift (D3Q19) 45 334 25 173

4, 8 and 16 cores. On Salomon, the number of cores was the same with the addition of 24
cores. For all tests within one domain size, the same domain map was used. This domain
map was created using a cube of non - fluid sites with the size (𝑛𝑥/4)*(𝑛𝑦/4)*(𝑛𝑧/4) where
𝑛𝑥, 𝑛𝑦 and 𝑛𝑧 are domain sizes in each dimension. This cube was always placed to the
centre of domain, the rest of domain was filled with fluid sites. One row of the lattice sites
was also initialized to have slightly higher initial velocity to initiate moving of the fluid in
the modelled domain.

The four implemented LBM algorithms were tested with the use of both double and
float variables. Each variant was run with 100 algorithm iterations. Table 7 shows the
amount of memory in MB used by each of the algorithms with different domain sizes, data
types and models. The amount of memory needed for two - step and one - step algorithms is
the same, the same situation applies to shift and optimized shift algorithms. The amount of
memory was equal for different numbers of cores and there were also no differences between
Anselm and Salomon.

7.1 Performance for different algorithms
Several tests were performed to compare the performance of different algorithms. As could
be expected, the performance was always better when the test was run on a higher number
of cores. When the number of cores was doubled, the performance was usually doubled
as well. This behavior is illustrated in figure 7.1. This figure shows the comparison of
performance measured in MSUPS for two different domain sizes and two LBM models with
the shift algorithm using float data type. The same behavior was observed for all other
algorithms and domain sizes on Salomon. In this particular case, the speedup ratio was
around 20 with efficiency 80% for 24 cores. There were no big differences in this statistics
between different application settings.

Generaly it can be stated, that the optimized shift algorithm had the biggest perfor-
mance with all configurations. The second best algorithm was the shift algorithm, followed
by the one - step two - grid algorithm. The two - step two - grid algorithm showed to have
the worst performance with all configurations. These results were expected considering the
design of the algorithms.

However it can not be stated that doubling the number of cores always doubles perfor-
mance. This outcome could be caused by multiple reasons, including OpenMP overhead,
worse cache utilization and also necessary communication between different processor sock-
ets. Therefore, if the application was run on even higher number of cores, the described
trend of increasing performance would start to disappear. The signs of this situation can
be observed on Anselm when using 16 cores as can be seen in figure 7.2. This figure shows
the performance of the one - step two - grid algorithm for two different domain sizes and two

39



1 2 4 8 16 24
Cores

0

20

40

60

80

100

M
SU

PS

Shift - MSUPS (float)
D3Q15 (128x128x128)
D3Q15 (64x64x64)
D3Q19 (128x128x128)
D3Q19 (64x64x64)

Figure 7.1: Performance of the shift algorithm on Salomon

LBM models with the double data type. As was previously stated, it is possible to see that
the performance increase is approximately doubled for all the numbers of cores except 16
cores. In this case the speedup ratio was around 12 and efficiency 75% for 16 cores.

1 2 4 8 16
Cores

0

5

10

15

20

25

30

35

M
SU

PS

One step - MSUPS (double)
D3Q15 (128x128x128)
D3Q15 (64x64x64)
D3Q19 (128x128x128)
D3Q19 (64x64x64)

Figure 7.2: Performance of the one - step algorithm on Anselm

The performance was always better when using the float data type (command line
parameter -f). This behavior was observed on both supercomputers with all algorithms.
These results are primarily caused by better utilization of the vectorization unit. When
the computations are performed using the float data type, 8 values can be processed at
the same time within one instruction while for the double data type it is only 4 of them.
Another point that can contribute to a better performance with float is the fact that the
size of the values of this data type is smaller. Therefore, more values fit into a cache which
can lead to a lower number of cache misses. As the result, the difference is bigger in the
algorithms or domain sizes that have lower numbers of cache misses or a better performance
in general.

40



The comparison of performance with float and double can be seen in figure 7.3. This
figure shows the performance of all algorithms with different domain sizes and the model
D3Q19 on 16 cores on Anselm. The difference in performance is the most obvious with the
optimized shift algorithm. This result is probably caused by the overall high performance
of this algorithm together with the lowest number of cache misses.

Two step One step Shift Optimized shift
Algorithms

0

20

40

60

80

M
SU

PS

Performance of the algorithms with 16 cores on Anselm
float (64x64x64)
double (64x64x64)
float (128x128x128)
double (128x128x128)

Figure 7.3: Performance of all algorithms with float/double and 16 cores on Anselm

Another interesting observation is the difference in performance between D3Q15 and
D3Q19 models. This behavior was observed for all numbers of cores but it was more
significant when the number of cores was 16 or 24. This trend was observed on both
clusters, it was however more significant on Salomon. When using float data type, the
performance was usually nearly the same for both models. In some cases the D3Q15
model had a slightly higher performance but the difference was within the range of a few
percent. The situation was however different when the double data type was used. Here
the difference in performance between the two models appeared to be more significant.
The D3Q15 model had in most cases about 10-20% higher performance than D3Q19. The
described behavior can be seen in figure 7.4, which shows the performance of the shift
algorithm on Salomon with double, when compared with figure 7.1 which shows the same
test run with float.

An exception was the optimized shift algorithm when running on 24 cores (16 on
Anselm) with which the D3Q19 model showed to have higher performance on the smaller
domain size than D3Q15 on the bigger domain size. This even occured on both Anselm
and Salomon. This effect can result from a combination of several causes, including very
high number of cache misses or relatively small domain size. This could lead to an increase
of the influence of OpenMP overhead on performance. It is also necessary to note, that
the performance results on high number of cores, especially 24 cores on Salomon, had most
differences between the runs with the same settings. Even though the performance results
were always computed as an average value from multiple runs, these differences could have
some negative influence on the measurement accuracy in these cases.

41



1 2 4 8 16 24
Cores

0

10

20

30

40

50

60

70

80

M
SU

PS

Shift - MSUPS (double)
D3Q15 (128x128x128)
D3Q15 (64x64x64)
D3Q19 (128x128x128)
D3Q19 (64x64x64)

Figure 7.4: Performance of the shift algorithm on Salomon

7.2 Performance on Anselm and Salomon
The best performance of 155 MSUPS (78 GFLOPS) was achieved on Salomon with the
configuration consisting of the optimized shift algorithm, D3Q19 model, 24 cores, smaller
domain size and float data type. These results were closely followed by the same configura-
tion with D3Q15 model with 149 MSUPS (61 GFLOPS) and D3Q15 on the bigger domain
size with 144 MSUPS (59 GFLOPS). On Anselm, the best performance of 82 MSUPS
(34 GFLOPS) was achieved also with the optimized shift algorithm and float data type,
D3Q15 model and the smaller domain size on 16 cores. This result was followed by 81
MSUPS (33 GFLOPS) with the same settings and the bigger domain size and 70 MSUPS
(36 GFLOPS) with D3Q19 model and the smaller domain size. The comparison of the best
achieved result for all algorithms on 16 cores for Anselm and Salomon is depicted in figure
7.5.

Two step One step Shift Optimized shift
Algorithms

0

20

40

60

80

100

120

M
SU

PS

The best performance on Anselm and Salomon with 16 cores
Anselm (double)
Salomon (double)
Anselm (float)
Salomon (float)

Figure 7.5: The best performance achieved with each algorithm on Anselm and Salomon

42



There can be several reasons why the performance with the same application settings is
worse on Anselm than on Salomon. The first reason is that the compute nodes on Anselm
have older processors that do not support AVX 2.0 as do the processors on Salomon.
Therefore, the code has a potential to be better vectorized on Salomon. The processors on
Ansels also work on a slightly lower frequency - 2.4 GHz (up to 3.1 GHz when using Turbo
Boost) while on Salomon it is 2.5 GHz (up to 3.3 GHz when using Turbo Boost) [1][8].
There is also a difference in the available processor cache, this fact is further discussed in
section 7.3.

7.3 Cache miss rate for different algorithms
Several tests were performed to determine the L2 and L3 cache miss rate. These values were
computed on the basis of the values of total cache accesses and numbers of cache misses
which can be obtained by running the application with parameter -m. There is a difference
between the cache memory on Anselm and Salomon. The compute nodes on Anselm have
256 KB L2 cache per core and 20 MB L3 cache per processor [1]. The processors on Salomon
use 30 MB Intel Smart Cache that is supposed to allow a better sharing of data between
the cores [8].

Generally it can be said that the L3 cache miss rate was getting worse with an increasing
number of cores. Especially with 16 and 24 cores the number of cache misses was very high,
usually over 50% with the bigger domain size. In most cases the number of cache misses was
also higer when using the bigger domain size. This effect was however especially significant
with two - step and one - step algorithms. With shift and optimized shift algorithm the
difference was not that significant.

The cache miss rate was very low (around 5%) for the one - step and two - step algorithms
on the smaller domain size with float. The most probable reason is that almost all the
PDFs could fit into L3 cache and therefore there was a very little number of L3 cache misses.
The results for the one - step algorithm with float on Salomon are shown in figure 7.6, the
percentage is expressed as decimal numbers. The results for the two - step algorithm were
very similar, with the bigger domain the cache miss rate was in most cases about 10%
higher. The difference in cache miss rate between the bigger and smaller domain size was
significantly smaller for the tests which were run with double.

Interesting was the comparison with the shift and optimized shift algorithms that showed
significantly higher cache miss rate with the same appliction parameters. Here the cache
miss rate was in most cases approximately 30% for both domain sizes. The results for
the shift algorithm with float can be seen in figure 7.7. The results for the optimized
shift algorithm showed to be very similar with slightly lower cache miss rate for some of
the configurations. It is however important to mention that the number of the L3 cache
accesses for these two algorithms was almost half of the number for the one - step and two -
step algorithms. The same situation applies to the overall amount of memory used by each
of the algorithms. A higher percentage of cache misses could be also caused by a different
behavior of prefetcher when more advanced optimizations are present in the code.

All described patterns applied also to the results on Anselm. One small difference was
a slightly bigger cache miss rate for the smaller domain size (around 10% for the one - step
algorithm). Generaly there were also smaller differences between cache miss rate for the
smaller and bigger domain size when the one - step and two - step algorithms were used with
double.

43



1 2 4 8 16 24
Cores

0.0

0.2

0.4

0.6

0.8

1.0

L3
 C

ac
he

 m
is

s

One step - L3 Cache miss (float)
D3Q15 (128x128x128)
D3Q15 (64x64x64)
D3Q19 (128x128x128)
D3Q19 (64x64x64)

Figure 7.6: L3 cache miss rate for one - step two - grid algorithm on Salomon

1 2 4 8 16 24
Cores

0.0

0.2

0.4

0.6

0.8

1.0

L3
 C

ac
he

 m
is

s

Shift - L3 Cache miss (float)
D3Q15 (128x128x128)
D3Q15 (64x64x64)
D3Q19 (128x128x128)
D3Q19 (64x64x64)

Figure 7.7: L3 cache miss rate for shift algorithm on Salomon

The L2 cache miss rate was relatively low for all algorithms. The miss rate showed to
be almost independent of the number of cores. There were also not observed any significant
differences between the results on Anselm and Salomon. The used LBM model and domain
size also appeared to have a very little impact on the result. When run with float variables,
the miss rate was slightly lower in most cases. The highest cache miss rates were achieved
with two - step and one - step algorithms. This result is not surprising because these two
algorithms use two arrays for storing the PDFs and therefore they use almost twice as much
memory as the other ones. The L2 cache miss rate for these two algorithms was of 5-10%.
The value for the shift and optimized shift algorithms was of 2-5%.

44



7.4 Processor cycles usage
The tests aimed to determine the effectivity of the processor cycles usage were performed
only on Salomon as the required counters were not available in the PAPI version which was
available on Anselm. The information on the numberof cycles during which the processor
was stalled can be obtained by running the application with parameter -c. The values can
be then used to compute the percentage of cycles in which the processor was stalled waiting
for any resource and of those ones in which the processor was stalled waiting for memory
writes.

1 2 4 8 16 24
Cores

0.0

0.2

0.4

0.6

0.8

1.0

Cy
cl

es
 s

ta
lle

d

One step - Cycles stalled (float)
D3Q15 (128x128x128)
D3Q15 (64x64x64)
D3Q19 (128x128x128)
D3Q19 (64x64x64)

Figure 7.8: Cycles stalled for one - step two - grid algorithm

Based on the results it can be said that the amount of cycles stalled for any reason
was always significantly lower when using float variables. This effect can be caused by
a smaller amount of memory needed and therefore a better cache utilization and better
vectorization. There were no significant differences in the results with different domain
sizes and LBM models. For the one - step algorithm, the values were around 50% when run
with double and 35% with float. These results can be seen in figure 7.8, the percentage
is expressed as decimal numbers. For the shift algorithm, average values were around 40%
for double and 25% for float.

The results of the two - step and optimized shift algorithms showed to be quite in-
teresting. The two - step algorithm achieved around 40% stalled cycles for double and
approximately 15% when using float. Especially the results for float can be considered
as quite surprising as this algorithm showed to have the lowest performance. It could prob-
ably be caused by the fact, that this algorithm as the only one saves the new values of the
PDFs during propagation sequentially. It is however difficult to determine the definitive
reason as there were almost no more counters for processor cycles usage available. On the
contrary the results for the optimized shift algorithm which had the best performance of
all were significantly worse than had been expected. The average amount of cycles stalled
was 50% with double and 35% with float. This effect was most likely caused by some of
the implemented optimization, it is however quite difficult to identify the exact cause.

No great differences were found between different algorithms and domain sizes consid-
ering the amount of cycles stalled waiting for memory writes. The results were in most
cases lower than 3% for all the tests. The only difference was observed when an algorithm

45



with the bigger domain size was run on 16 and 24 cores. In this case the average results
were about 5-10%, closer to the lower boundary when using float.

46



Chapter 8

Conclusion

The thesis was focused on the lattice - Boltzmann method (LBM) used for fluid flow mod-
elling. The goal was to explore possible implementations, suggest and implement optimiza-
tions and compare these implementations on the basis of several measurements including
performance and cache utilization. The work was aimed to have a potential to contribute
to an improvement of the tool HemeLB which is used for blood flow modelling.

The thesis offers a general overview of the LBM describing historical origins and crucial
equations including the information about how these can be derived. The further focus
is on the fundamental parts of the method - evaluation of macroscopic variables, collision
and propagation. An overview of one of the most common collision operators called BGK
is included. An important part is also a description of the most used LBM models and
boundary conditions, with the focus on a bounce - back boundary condition.

After describing the fundamentals of the LBM, the text further focuses on possibilities
of the LBM implementations. In this part of the thesis, several data and addressing layouts
are introduced and compared. The most important part is a description and comparison of
several algorithms which are further used in the thesis. This part includes a description of
the basic implementation of a demo LBM application. As one of the goals of the thesis was
to suggest possible optimizations, one chapter is focused on parallel computing including
tools and methods that can be used for this purpose. The chapter describes available
techniques for performing parallelization and vectorization of the code as OpenMP. One
chapter is also devoted to an overview of the HemeLB.

On the basis of the HemeLB analysis and the explored LBM possibilities it was decided
to create an application which includes an implementation of several algorithms together
with several possible optimizations. The application was implemented in C++ and contains
implementations of three chosen LBM algorithms: two - step two - grid, one - step two - grid
and shift algorithm. Based on the performance results, the shift algorithm was chosen for
further optimization. This optimized version of the algorithm is a part of the application
as the fourth variant of the LBM algorithm. The application includes the possibilities of
comparison of the implemented algorithms according to the performance, the L2 and L3
cache miss rate and the percentage of cycles in which processor was stalled.

The application was tested with several application settings on the Anselm and Salomon
supercomputers. All algorithms and application settings were compared according to the
performance, cache usage, overall memory requirements and processor cycles effectiveness.
The results were presented together with possible explanations of the observed behavior.
The best performance was achieved with the optimized shift algorithm when run on 24
cores on Salomon. The performance in this particular case was 155 MSUPS (78 GFLOPS)

47



which makes this algorithm approximately 3x faster than the most simple two - step two -
grid algorithm. The best performance achieved on Anselm was 82 MSUPS (34 GFLOPS)
with the optimized shift algorithms on 16 cores. Therefore, the shift algorithm can be rec-
ommended as convenient and effective LBM implementation, considering also its relatively
low memory requirements and quite straightforward implementation.

The parallel efficiency was 70 - 80% for all algorithms on both clusters. The peak per-
formance of one node on Salomon is 460 GFLOPS so the best algorithm achieves around
5% of this amount. The quite low number is caused mostly by quite high L3 cache miss
rate and also quite high number of stalled processor cycles.

There are several possible suggestions on the further development of the application.
One of the possibilities is an implementation of more LBM algorithms to get more options
for comparing and choosing the most suitable one. Another way could be focusing on one
or several of the already implemented algorithms and performing deeper analysis of the
algorithms efficiency including identifying its weak points. With the focus on these places,
the algorithms could be further optimized for example with the use of intrinsic functions.
A potential of improvement could also lay in an implementation of Structure of Arrays
memory layout or indirect addressing. The quite high number of cache misses could be
improved by implementing some variant of loop blocking.

48



Bibliography

[1] Anselm cluster documentation. [online][cit. 2016-05-05]. URL:
https://docs.it4i.cz/anselm-cluster-documentation/compute-nodes.

[2] HemeLB. [image][online][cit. 2015-12-23]. URL:
http://www.2020science.net/software/hemelb.

[3] Intel c++ compilers. [online][cit. 2016-11-05]. URL:
https://software.intel.com/en-us/c-compilers.

[4] Intel vtune amplifier. [online][cit. 2016-11-05]. URL:
https://software.intel.com/en-us/intel-vtune-amplifier-xe.

[5] Intel R○ 64 and IA-32 architectures optimization reference manual. [online][cit.
2015-12-8]. URL: http://www.intel.com/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-optimization-manual.pdf.

[6] Memory layout transformations. [online][cit. 2015-12-8]. URL: https:
//software.intel.com/en-us/articles/memory-layout-transformations.

[7] Papi. [online][cit. 2016-11-05]. URL: http://icl.cs.utk.edu/papi/.

[8] Salomon cluster documentation. [online][cit. 2016-05-05]. URL:
https://docs.it4i.cz/salomon/compute-nodes.

[9] Dragos B Chirila. Introduction to lattice Boltzmann methods, 2010. [online][cit.
2015-11-08]. URL: http://www.dis.uniroma1.it/~pellegrini/
project-assignment/cpp/pdf/boltzmann-lattice-2.pdf.

[10] Nicolas Delbosc. Real-time fluid simulation. [image][online][cit. 2016-01-09]. URL:
http://www.efm.leeds.ac.uk/~mnnd/web_presentation/villanova_2015/.

[11] Alexandre Dupuis. From a lattice Boltzmann model to a parallel and reusable
implementation of a virtual river. PhD thesis, University of Geneva, 2002. [online][cit.
2015-11-15]. URL: http://cui.unige.ch/~chopard/CA/aDupuisPhD.pdf.

[12] Richard Gerber. Getting started with OpenMP*. 2012-06-07. [online][cit. 2015-12-8].
URL:
https://software.intel.com/en-us/articles/getting-started-with-openmp.

[13] Derek Groen, James Hetherington, Hywel B. Carver, Rupert W. Nash, Miguel O.
Bernabeu, and Peter V. Coveney. Analysing and modelling the performance of the
HemeLB lattice Boltzmann simulation environment. Journal of Computational

49

https://docs.it4i.cz/anselm-cluster-documentation/compute-nodes
http://www.2020science.net/software/hemelb
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/en-us/articles/memory-layout-transformations
https://software.intel.com/en-us/articles/memory-layout-transformations
http://icl.cs.utk.edu/papi/
https://docs.it4i.cz/salomon/compute-nodes
http://www.dis.uniroma1.it/~pellegrini/project-assignment/cpp/pdf/boltzmann-lattice-2.pdf
http://www.dis.uniroma1.it/~pellegrini/project-assignment/cpp/pdf/boltzmann-lattice-2.pdf
http://www.efm.leeds.ac.uk/~mnnd/web_presentation/villanova_2015/
http://cui.unige.ch/~chopard/CA/aDupuisPhD.pdf
https://software.intel.com/en-us/articles/getting-started-with-openmp


Science, 4(5):412 – 422, 2013. [online][cit. 2015-12-23]. URL:
http://www.sciencedirect.com/science/article/pii/S1877750313000240.

[14] Xiaoyi He and Li-Shi Luo. Theory of the lattice Boltzmann method: From the
Boltzmann equation to the lattice Boltzmann equation. Physical Review E,
56(6):6811, 1997. [online][cit. 2015-11-15]. URL:
http://link.aps.org/pdf/10.1103/PhysRevE.56.6811.

[15] Sasidhar Kondaraju, Hassan Farhat, and Joon Sang Lee. Study of aggregational
characteristics of emulsions on their rheological properties using the lattice
Boltzmann approach. Soft Matter, 8:1374–1384, 2012. [image][online][cit. 2016-01-09].
URL: http://dx.doi.org/10.1039/C1SM06193C.

[16] Rakesh Krishnaiyer. Data alignment to assist vectorization. 2013-09-07. [online][cit.
2015-12-8]. URL: https://software.intel.com/en-us/articles/
data-alignment-to-assist-vectorization.

[17] Chris Lomont. Introduction to Intel R○ advanced vector extensions, 2011-06-21.
[image][online][cit. 2015-12-8]. URL: https://software.intel.com/sites/
default/files/m/d/4/1/d/8/Intro_to_Intel_AVX.pdf.

[18] Chris Lomont. Introduction to Intel R○ advanced vector extensions. 2011-06-21.
[online][cit. 2015-12-8]. URL: https://software.intel.com/sites/default/
files/m/d/4/1/d/8/Intro_to_Intel_AVX.pdf.

[19] Keijo Mattila, Jari Hyväluoma, Tuomo Rossi, Mats Aspnäs, and Jan Westerholm.
An efficient swap algorithm for the lattice Boltzmann method. Computer Physics
Communications, 176(3):200 – 210, 2007. [online][cit. 2015-11-08]. URL:
http://www.sciencedirect.com/science/article/pii/S0010465506003663.

[20] Keijo Mattila, Jari Hyväluoma, Jussi Timonen, and Tuomo Rossi. Comparison of
implementations of the lattice Boltzmann method. Computers & Mathematics with
Applications, 55(7):1514 – 1524, 2008. [online][cit. 2015-11-08]. URL:
http://www.sciencedirect.com/science/article/pii/S0898122107006232.

[21] M.D. Mazzeo and P.V. Coveney. HemeLB: A high performance parallel lattice
Boltzmann code for large scale fluid flow in complex geometries, 2008. [online][cit.
2015-12-23]. URL:
http://www.sciencedirect.com/science/article/pii/S0010465508000805.

[22] M.D. Mazzeo and P.V. Coveney. HemeLB: A high performance parallel lattice
Boltzmann code for large scale fluid flow in complex geometries. Computer Physics
Communications, 178(12):894 – 914, 2008. [image][online][cit. 2015-12-23]. URL:
http://www.sciencedirect.com/science/article/pii/S0010465508000805.

[23] Anoop Madhusoodhanan Prabha. Enabling SIMD in program using OpenMP 4.0.
2013-12-02. [online][cit. 2015-12-8]. URL: https://software.intel.com/en-us/
articles/enabling-simd-in-program-using-openmp40.

[24] Anoop Madhusoodhanan Prabha and Bob Chesebrough. Performance essentials
using OpenMP 4.0 vectorization with C/C ++. [online][cit. 2015-12-8]. URL:
https://software.intel.com/sites/default/files/managed/37/df/
OpenMP4-performance-essentials-using-vectorization.pdf.

50

http://www.sciencedirect.com/science/article/pii/S1877750313000240
http://link.aps.org/pdf/10.1103/PhysRevE.56.6811
http://dx.doi.org/10.1039/C1SM06193C
https://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization
https://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization
https://software.intel.com/sites/default/files/m/d/4/1/d/8/Intro_to_Intel_AVX.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/Intro_to_Intel_AVX.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/Intro_to_Intel_AVX.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/Intro_to_Intel_AVX.pdf
http://www.sciencedirect.com/science/article/pii/S0010465506003663
http://www.sciencedirect.com/science/article/pii/S0898122107006232
http://www.sciencedirect.com/science/article/pii/S0010465508000805
http://www.sciencedirect.com/science/article/pii/S0010465508000805
https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40
https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40
https://software.intel.com/sites/default/files/managed/37/df/OpenMP4-performance-essentials-using-vectorization.pdf
https://software.intel.com/sites/default/files/managed/37/df/OpenMP4-performance-essentials-using-vectorization.pdf


[25] Mark Sabahi. A guide to vectorization with Intel R○ C++ compilers. 2012-04-27.
[online][cit. 2015-12-8]. URL: https://software.intel.com/sites/default/
files/8c/a9/CompilerAutovectorizationGuide.pdf.

[26] Markus Wittmann, Thomas Zeiser, Georg Hager, and Gerhard Wellein. Comparison
of different propagation steps for lattice Boltzmann methods. Computers &
Mathematics with Applications, 65(6):924 – 935, 2013. Mesoscopic Methods in
Engineering and Science. URL:
http://www.sciencedirect.com/science/article/pii/S0898122112003835.

51

https://software.intel.com/sites/default/files/8c/a9/CompilerAutovectorizationGuide.pdf
https://software.intel.com/sites/default/files/8c/a9/CompilerAutovectorizationGuide.pdf
http://www.sciencedirect.com/science/article/pii/S0898122112003835


Appendices

52



List of Appendices

A Content of the CD 54

53



Appendix A

Content of the CD

The CD which is attached to the thesis includes the following data:

∙ sources/: Source codes of the implemented application including Makefile

∙ README: File containing necessary information for running the aplication

∙ text/: LaTeX source files of the text of the thesis

∙ thesis.pdf: The text of the thesis in PDF format

∙ scripts/: Scripts for Anselm and Salomon which were used for testing and comparing
algorithms

54


	Introduction
	Lattice-Boltzmann method
	BGK
	Boundary conditions
	Fullway bounce-back
	Halfway bounce-back


	Implementation of the lattice-Boltzmann method
	Addressing layouts
	Algorithms
	Basic implementation
	Measurements


	Parallel computing
	SIMD
	AVX
	Vectorization
	Data alignment
	OpenMP

	HemeLB
	Implementation of the application
	Application parameters
	Initialization
	Two-step two-grid
	One-step two-grid
	Shift
	Optimized shift
	Structure of arrays

	Testing
	Performance for different algorithms
	Performance on Anselm and Salomon
	Cache miss rate for different algorithms
	Processor cycles usage

	Conclusion
	Bibliography
	Appendices
	List of Appendices

	Content of the CD

