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Abstract: Analysis of B-mode ultrasound images capturing the common carotid artery (CCA) pro-
vides significant indicators of the overall health of the cardiovascular system. In this paper we propose
a novel method for automatic localization of the artery wall contour (approximated by circle) in utra-
sound images of the transverse section of the CCA. After detection of a region of interest (ROI) using
a modified Viola-Jones detector we localize the best-fitting circle, which delimits the artery wall con-
tour, by exhaustive search. Experimental results on a dataset of 145 ultrasound images show that
the method outperforms a reference method based on the Hough transform and presents an excellent
robustness against additive noise on different SNR levels.
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INTRODUCTION

Carotid ultrasound examination have become a widely used method for prevention of cardiovascu-
lar diseases, quantification of artery stenosis and characterization of the artery wall plaque, mainly
due to its non-invasive nature and good availability [1]. The most notable examples of examination
techniques, relevant in ultrasound images, are currently based either on segmentation of the common
carotid artery (CCA) [2], [3], yielding an estimate of the intima-media thickness, or CCA motion
tracking techniques [4, 5, 6], which can be used to evaluate the dynamical properties of the artery.
Currently most of the techniques, however, require manual initialization, where the initial location of
the artery conotur is given by the user. This leads to variations in the initial contour and consequently
to inconsistent precision of the segmentation or tracking method. Some examples of automatic artery
wall localization methods can, however, be found in the literature.

When considering only methods designed for B-mode ultrasound images of the CCA transverse sec-
tion, which is the main objective of this paper, we find [7], where a method for detection of the
CCA wall based on Hough transform is proposed. The computational complexity of this methods is
high, because the parametric space of the Hough transform needs to cover the whole image domain.
Furthermore variations in the artery shape and presence of acoustic artifacts [8] inhibit the methods
performance. In [9] the authors propose a grammar-guided genetic programming based method. In
[10] a method based on modified Viola-Jones detector is proposed, outperforming [9] in terms of
detection success rate. This method, however, provides only a rectangular region of interest (ROI),
delimiting the area of the CCA transverse section. In [4] the authors develop an extension of [10] by
employing the Hough transform for localization of the CCA wall contour after ROI detection. Signif-
icantly decreased parametric space of the Hough transform then allows for real-time processing. As
a result of the mentioned methods we generally obtain a circle approximately labeling the CCA wall.

In this paper, we present a robust CCA wall localization method improving on [4]. After ROI detec-
tion we perform a circle localization by maximization of a particular criterion by exhaustive search
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over all possible circles in ROI. On a dataset of 145 ultrasound images, including challenging cases
with low contrast and deformations, we show that our method outperforms the reference method
of [4]. Finally we demonstrate the robustness of the proposed method on ultrasound images with
additive noise of different signal to noise ratios (SNR).

METHODS

The proposed method is based on the following processing chain. As a first step we detect a ROI,
which delimits a rectangular area of the CCA transverse section. The pixel intensities of the image
portion delimited by the ROI are then normalized in order to improve contrast and supress high
intensity peaks, which might confuse the following circle localization algorithm. On the detected
ROI, we then perform an exhaustive search over all possible CCA circle center points and radii. The
circle that maximizes a particular criterion represents the final estimate.

2.1 ROI DETECTION

In this step we detect the ROI which delimits a rectangular area of the ultrasound image where the
CCA transverse section lays. This is done by the modified Viola-Jones algorithm proposed in [10].
Further processing is done on the ROI, which significantly decreases the computational complexity.

2.2 INTENSITY NORMALIZATION

The success of the circle detection step is strongly dependent on the image intensities. We therefore
developed an intensity normalization technique taking inspiration from [11]. Using Otsu’s method
[12] we calculate a threshold T separating image intensities into two classes: one representing the
highly echogenic tissues of the artery wall and the other representing blood and low echogenic tissues.
Our objective is now to ensure that the threshold between the two classes is matched in all processed
images. This can be achieved by remapping the image intensities by a function g(-) which meets
the following criteria (assuming that image intensities lay in the range [0,255]): g(0) =0, g(t) =7/,
g(255) = 255, where T’ € (0,255) is a constant defining the target threshold value. In the proposed
method we use the monotone piecewise cubic function [13] which meets the specified criteria, while
having the smoothness property over the whole domain. This function, moreover, has the desirable
property of monoticity which ensures that the pixel order, as sorted by its intensities, remains the same
after normalization. In Figure 1 we present a remapping function whose parameters are determined
from a real ultrasound image, which is depicted before and after intensity normalization.

255

output intensity

0 7 128
input intensity

Figure 1: Example remapping function g(-) (left), image before intensity normalization (middle),
image after intensity normalization (right).
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2.3 CIRCLE LOCALIZATION

The general algorithm for circle localization can be described as follows. We iterate through all
combinations of circle center point coordinates x € [Xi,Xn], ¥ € [11,Y4] and radii r € [Ry,Ry]. The
limits Xj, Xy, ¥ and Y;, are given by the ROI, while the limits R) and Ry, are given a priori from our
anatomical knowledge and properties of the imaging system. Here R and Ry, are given as the smallest
and largest possible CCA radius respectively (in pixels). For each circle we calculate the average
intensity of pixels laying inside the circle uj, and on the circle boundary y,,. The thickness of the
circle boundary (in pixels) is given by a constant b. Circle which maximize the difference yo, — iy is
the final estimate of the proposed method. Obviously a fast implementation of the algorithm can be
developed by means of convolution (in spatial or frequency domain) with an appropriately designed
convolution kernel for each radius r.

In order to reduce the computational complexity we developed a multiscale implementation of the
algorithm. The circle localization is first performed on a version of the original image decimed by
a factor s < 1. The resulting circle center point (xp, ym)T and radius ry, is then used to derive new
search limits as

X =\|X|, Xx=[x+d]|, YY=|Y|, Y¥=[v+d|, R=|R|, R,=][R+d],

where X £ )%, Y £ )%, = %’” and d £ % The circle localization algorithm is then repeated on
the original image with the new set of limits, obtaining the final circle estimate.

RESULTS AND DISCUSSION

To demonstrate the performance of our method

we utilized a dataset (denoted as S..) of 145 ul- Cirel?_ e_St_ir{late
trasound images of a healthy patient. The im- R - \‘ .\\:,.,x;
ages were acquired by Ultrasonix OP with a lin- - \fm// @,%/// .
ear probe L14-5/38 (Ultrasonix Medical, Rich- K ,”}/ - k.
mond, BC, Canada) at a frequency of 7,5MHz. 1,o” s, v
The dataset contains also challenging images ,} , A S ‘|
with low contrast and deformations caused by 1 ‘e Ce,' y
tilting of the hand-held probe. Moreover, we ‘o true contour 7 y
created two more datasets S5 and S5 by super- & . ’ R
imposing 50 realizations of additive zero-mean AN L7
Gaussian noise to images of dataset S... In the Tl - .-

first case (Sy5) the SNR is 25dB and in the sec-

ond case (S15) the SNR is 15dB. For each image Figure 2: Geometry used in calculation of €.
of the dataset S.. (naturally also for Sy5 and S;5)

a manual segmentation is available which serves as the ground-truth for performance evaluation. In
the following text we will refer to the outline of the manual segmentation as the “true contour”.

The precision of an estimated circle is evaluated by an error metric € [px] which quantifies the mean
distance of each point on the true contour to the circle. The error metric is calculated as follows. First
we calculate the center of gravity ¢, of the area outlined by the true contour. Then we iterate through
each pixel x; of the true contour, calculating the vector §; £ x; — ¢;. A corresponding point x! on the
estimated circle with center ¢, is then found at intersection of the half-line gd; + ¢., where g > 0, with
the circle outline. The metric € is then calculated as the arithmetic mean of the distance between all
corresponding points x; and X}, i.e.,

Al g ,
€= N;"Xf—xi"a
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Figure 3: Ensemble mean error evaluated for the first 50 images of the dataset S;s.

Proposed method | Reference method
Dataset Seo Sos Sis See Sos Sis

Mean error [px] | 3,99 4,12 4,12 | 6,75 6,90 7,87
Misdetection rate [%] | 0,69 0,74 1,38 | 2,76 3,05 5,57

Table 1: Mean error and misdetection rates of the proposed and reference method.

where N denotes the number of pixels of the true contour. The discussed geometry is depicted in
Figure 2. In the following text we assume that a value of € larger that 30px indicates a misdetection.

For all three datasets we evaluated the mean error as the arithmetic mean of € over all 145 images, and
all 50 noise realizations (in case of Sy5 and S;5). Misdetections (i.e. values of € > 30px) are excluded
from the mean error calculation and the number of misdetections is accumulated in order to obtain
the misdetection rates, i.e. the percentual proportion of missed detections against the number of all
detections. The obtained values of mean error and misdetection rates are listed in Table 1. One can
see that the proposed method ourperforms the reference method on all three datasets. The advantage
in performance of the proposed method gets more pronounced with decreasing SNR. The excellent
performance in scenarios with low SNR can be attributed to the spatial smoothing—an implicit part
of the localization algorithm. For the first 50 images of dataset S;5 we evaluated the ensemble mean
error €, defined as the arithmetic mean of € over all noise realizations. The obtained values are
presented in Figure 3.

In all experiments we utilized the following parameter set: T = 195, R; = 20px, R;, = 50px, b = 2px
and s = 0,3. The multiscale, convolution based implementation has in average a running time of 24ms
per one image on Intel Core i5-7500 CPU with base frequency of 3,40GHz.

CONCLUSION

We proposed a robust method for localization of the artery wall (approximated by a circle) in B-mode
ultrasound images capturing the transverse section of the common carotid artery (CCA). After region
of interest (ROI) detection we localize the CCA wall by exhaustive search through all possible circle
center and radius combinations inside the ROI. Experimental evidence demonstates that the proposed
method outperforms a reference method, based on the Hough transform, in terms of precision and
misdetection rates. Note that the simplest possible criterion (i.e. the difference between two mean
intensities) was used to choose the best-fitting circle. The size of the ROI (about 132 x 132px),
however, allows for a more sophisticated criterion to be designed while still keeping the computational
complexity acceptable.
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