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A TABU SEARCH APPROACH FOR THE RECONSTRUCTION

OF BINARY IMAGES WITHOUT EMPTY INTERIOR REGION
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Abstract. In this paper, we are concerned with a discrete tomography problem. We
seek to reconstruct a binary image from its orthogonal projections, i.e, its horizon-

tal and vertical line sums without interior black holes. We provide a tabu search

approach to minimize the number of holes while satisfying the projections. We test
our approach on some random binary images. Computational results show that the

algorithm proposed produces near-optimal solutions for all test problems.

1. Introduction

Discrete tomography is a modern inverse problem in which we consider the hori-
zontal and the vertical line sums of an image as a basis to obtain the pixels of the
image. Binary images are most commonly represented by binary matrices with
values 1 (white pixel) and 0 (black pixel). We will refer to any pixel of the image
by its matrix position (see Fig. 1).

Discrete tomography is applicable in many interesting contexts to reconstruct
discrete structures such as Workforce Scheduling [9, 16], Data Compression and
Data Security [15], Industrial Non-Destructive Testing [4], Medical Imaging [13,17]
and Timetabling [5].

In a binary image, we call the horizontal projection of row i, the number of
white pixels in this row. Similarly, we call the vertical projection of column j, the
number of white pixels in column j. The basic problem of reconstructing a binary
matrix from its orthogonal projections is defined as follows: given the horizontal
projection of each row and the vertical projection of each column, find a binary
image that fits with the prescribed projections. Ryser described [18] a polynomial
time algorithm to solve such a problem and gave necessary and sufficient conditions
on the projections for the existence of a reconstruction.

Generally, the basic problem is underdetermined and many solutions may ex-
ist. To reduce the space of feasible solutions, various forms of prior knowledge on
size, shape, smoothness, etc. are integrated to uniquely reconstruct the original
structure from the projections. Incorporating such information into a method is
a difficult task and the reconstruction problem is usually reduced to an optimiza-
tion problem to select the best solution in a certain sense. In the literature, several
additional constraints and prior knowledge have been considered to reduce the set
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of the feasible solutions of the basic problem. These constraints include periodic-
ity [10, 11], convexity [1–3, 6, 8, 14], adjacency [5], connectedness [3, 7, 12, 20] and
timetabling [5].

In this paper, we deal with the reconstruction of binary images without interior
black holes. A hole can be considered as an individual 0 (black pixels) surrounded
by 1s (white pixels). In particular, our research objective is to develop a tabu
search approach to reconstruct a binary image with a minimal number of black
holes. As far as the authors know, no one has so far published research on the
reconstruction of such images.

The remainder of this paper is organized as follows. In Section 2, we introduce
some definitions and notation. In Section 3, we propose a tabu search approach.
In Section 4, we present and discuss the numerical results.

2. Preliminaries

Throughout this paper, we assume that the binary images are of size m×n. Given
an m × n binary image A = [ai,j ], the horizontal projection of A is the vector
H = (h1, . . . , hm) such that hi =

∑n
j=1 ai,j is the number of white cells on row i.

The vertical projection of A is defined analogously as the vector V = (v1, . . . , vn)
where vj =

∑m
i=1 ai,j is the number of white cells on column j. Both projections

H and V constitute the orthogonal projections of A (see Fig. 1). We denote
by BM(H,V ) the class of all binary images satisfying the orthogonal projections
H and V . The condition

∑m
i=1 hi =

∑n
j=1 vj (C0) is obviously necessary for the

existence of a binary image satisfying both projections.

Figure 1. A binary image with horizontal projection H = (5, 3, 5, 6, 4) and vertical projection

V = (2, 1, 3, 3, 3, 2, 2, 3, 4).

The reconstruction of a black and white image from horizontal and vertical line
sums is stated as follows:

Reconstruction Binary Image: RBI(H,V )
Given: H = (h1, . . . , hm) ∈ Nm and V = (v1, . . . , vn) ∈ Nn.
Goal: Construct an m × n binary image that satisfies H and V , i.e., row i
has exactly hi black cells and column j has exactly vi black cells.



A TABU SEARCH APPROACH FOR THE RECONSTRUCTION... 149

The number of binary images in the class BM(H,V ) is very large [19]. The
definition of switching components is an essential concept to describe the charac-
teristic of the class BM(H,V ).

Definition 2.1. A switching component of a binary image is a 2×2 sub image of

the form

(
1 0
0 1

)
or

(
0 1
1 0

)
. A switching operation consists in interchanging

the 0’s and 1’s of a switching component.

We note that a switching operation preserves the orthogonal projections of
images. The following theorem is the starting point for the meta-heuristics of the
reconstruction of binary images under various constraints [18] since it shows that
the graph of the neighborhood is connected.

Theorem 2.2. [18] Let A and B in BM(H,V ), B 6= A. Then, A is trans-
formable into B (or vice versa) by finite sequences of switching operations.

Definition 2.3. For a binary image a cell (i, j) is a hole if (i, j) is a black pixel
surrounded by 4 white pixels.

Figure 2. Illustration of a black hole pixel.

We say that a binary image fulfills the non-hole constraint if none of its black
pixels is a hole. We denote RNH(H,V ) the problem of reconstructing an m× n
binary image without hole pixels from its horizontal H = (h1, . . . , hm) and vertical
V = (v1, . . . , vn) projections. The problem RNH(H,V ) can be defined as follows:

Reconstruction of Non-Hole Binary Image: RNH(H,V )
Given: H = (h1, . . . , hm) ∈ Nm and V = (v1, . . . , vn) ∈ Nn.
Goal: Construct an m × n binary image without hole that satisfies the row
and column sums H and V .

In this paper, we are mainly interested in the problem RNH(H,V ), i.e., we
consider the four neighbors of each pixel.

3. Tabu search approach of non interior hole binary images

We develop a tabu search algorithm for approximating binary images without
interior holes.

3.1. Initial solution

We use Ryser’s classical algorithm O(mn + max(mlogn, nlogm)) to reconstruct
an initial solution satisfying the orthogonal projections. This polynomial time
algorithm can be described as follows:
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Figure 3. An example of binary image with 5 black holes.

Ryser’s algorithm

Input: { H = (h1, ..., hm), V = (v1, ..., vn) two nonnegative integer vectors}.
Output: { A ∈ BM(H,V ) }.
For i =1 to n do

If (the number of available rows ≥ vj) then
Set vj ones in priorities row;
For each one placed in row i do: hi ←− hi − 1;

Else no solution;
End For

In each step, row ’i’ is called available if hi > 0

3.2. Evaluation criterion

The objective function consists in minimizing the number of holes. The following
function FNH counts the number of holes in image A:

FNH(A) =
∑
i

∑
j

(1− ai,j) ∗ ai−1,j ∗ ai,j−1 ∗ ai+1,j ∗ ai,j+1

3.3. Neighborhood structure

An admissible solution is a binary image satisfying the orthogonal projections
(H,V ) i.e, we relax the hole constraint in the definition of feasible solutions. We
define the neighborhood of a solution as the set of images obtained by a single
switching operation. Recall that a switching operation preserves the orthogonal
projections. Fig. 4 illustrates an example of the switching operation.

This definition of neighborhood induces a graph G(N,E) where the nodes of G
correspond to the binary images of BM(H,V ) and the edge set E represents the
neighborhood relation: (A,B) ∈ E if and only if the binary images A and B are
neighbors. We develop the following algorithm to select the best neighbor of the
current solution according to the objective function:

Procedure for best neighbor solution
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Input: { S a current solution (S ∈ BM(H,V )) }.
Output: { S′ a best neighbor binary image of S (S′ ∈ BM(H,V )) }.
Repeat

Select a switching structure: {(i, j), (i, k), (h, j), (h, k)}
Apply switching operation;
Evaluate S′;
If (FNH(S′) ≤ FNH(S))

Update the best neighbor obtained till now;
End If

Until no switches can be found;

Figure 4. An example of the switching: {(i, j), (i, k), (h, j), (h, k)}.

3.4. TS algorithm

The parameters of the tabu search algorithm are defined as follows:

• Neighborhood move: The best neighbor binary image with the minimum
holes which is tabu is selected as the new current solution. If all neighbors
binary images are tabu, then the oldest binary image solution is selected
as current solution.
• Tabu list and updating: The length of the tabu list is 5 binary images and

tabu list is updated after each neighborhood switching operation.
• Termination criterion: When the best solution has not improved for the

last 100 iterations or when the total number of iterations reaches 10000.

The tabu search algorithm of reconstructing non hole binary images RNH(H,V)
is the following:

Tabu search algorithm

Input: {binary image (Ryser solution)}.
Output: {nearly non hole binary image respecting H and V }.

While ((total ≤ 10000) and (Nbr ≤ 100) do

Apply the procedure of the best neighbor solution;
Update the tabu list;
Update total and Nbr;

End While
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The variable Nbr contains the number of iterations since the last improvement
of the objective function. The variable total counts the number of iterations since
the beginning of the algorithm.

4. Numerical experiments

We have implemented our algorithm in language C, using the gcc compiler. All
our experiments were run on an AMD Athlon XP-M 1.7 GHz PC with 512 Mb of
memory.

In order to compare the relative efficiency of Ryser’s algorithm and the tabu
serach approach. for reconstructing matrices, we have used a large set of random
binary images of various sizes. We generate a large set of square binary images
with size varying from 40 × 40 to 200 × 200. For each size, we generate three
classes of binary images (A, B, and C). For each class A, B, and C, we generate
binary images with 10%, 20%, and 40% of black pixels, respectively. For each class,
we take the average of 10 instances for each size. The results of computational
experiments are summarized in Table 1 for class A, Table 2 for class B, and Table
3 for class C. In these tables, the sub-column (hole cell) contains the number
of holes provided by each method. The sub-column labeled (Time) indicates the
running time (in seconds) required by each method.

We note that the tabu search algorithm outperforms the classical approach of
Ryser’s even if the running time is slightly longer. In fact Ryser’s algorithm can
be regarded as a single iteration tabu search.

Table 1. Reconstruction results for TS algorithm (Class A).

Image
Ryser Solution T.S. Solution

% hole Time % hole Time
40× 40 2.01% 0.00 0.00% 05.91
60× 60 2.47% 0.01 0.00% 05.86
80× 80 2.23% 0.01 0.00% 06.67

100× 100 1.95% 0.01 0.00% 06.95
120× 120 1.95% 0.15 0.00% 07.21
140× 140 2.12% 0.15 0.01% 08.00
160× 160 2.22% 0.15 0.01% 08.52
180× 180 2.07% 0.24 0.01% 09.34
200× 200 2.13% 0.31 0.01% 09.01
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Table 2. Reconstruction results for TS algorithm (Class B).

Image
Ryser Solution T.S. Solution

% hole Time % hole Time
40× 40 8.00% 0.00 1.02% 06.11
60× 60 9.88% 0.01 0.97% 06.26
80× 80 8.93% 0.01 0.87% 08.35

100× 100 7.80% 0.02 0.78% 09.18
120× 120 7.80% 0.16 0.77% 11.99
140× 140 8.51% 0.15 0.85% 12.57
160× 160 6.22% 0.15 0.98% 14.04
180× 180 6.07% 0.22 0.81% 14.44
200× 200 6.13% 0.33 0.77% 18.32

Table 3. Reconstruction results for TS algorithm (Class C).

Image
Ryser Solution T.S. Solution

% hole Time % hole Time
40× 40 16.00% 0.00 1.81% 07.01
60× 60 19.77% 0.00 1.97% 08.41
80× 80 17.87% 0.02 1.37% 08.82

100× 100 15.60% 0.01 1.50% 10.44
120× 120 15.61% 0.16 1.55% 12.27
140× 140 17.02% 0.15 1.69% 13.86
160× 160 17.62% 0.15 2.00% 16.93
180× 180 16.61% 0.21 1.83% 20.81
200× 200 17.04% 0.32 2.04% 21.32

5. Conclusion

We have proposed a tabu-search-based approach to reconstructing binary images
without interior hole pixels from its horizontal and vertical projections. The min-
imization of hole black pixels has been used as the objective function. The results
obtained by this metaheuristic are encouraging. Our methodology can easily be
applied to other types of hole pixels.
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Tunis El Manar, Tunisia

e-mail : ezzeddine.zagrouba@fsm.rnu.tn


