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ABSTRAKT
Tato diplomová práce se zabývá rigorózními simulacemi plazmonických biosenzor· za-
loºených na jevu zvý²ené optické transmise. První £ást je v¥nována popisu fyzikálních
jev· a poznatk·, které tvo°í základ pro studium vlastností plazmonických senzor·, a po-
pisu výpo£etní metody kone£ných prvk· v £asové oblasti, která je vyuºita v této práci.
Vlastní výsledky jsou uvedeny v dal²í £ásti, která se zabývá výzkumem citlivosti, rozli²ení
a dal²ích charakteristik zvoleného typu plazmonického sensoru, tvo°eného sítí kruhových
nanod¥r v tenké zlaté vrstv¥ na substrát¥ nitridu k°emíku, v závislosti na °ad¥ jeho ge-
ometrických parametr·. Tyto závislosti jsou sledovány ve t°ech r·zných p°ípadech, a to
senzoru umíst¥ného ve vakuu, pono°eného ve vod¥ a v p°ípad¥ kdy je na zlatém povrchu
umíst¥na tenká dielektrická vrstva, která reprezentuje p°ítomnost biomolekul uchycených
na povrchu senzoru.

KLÍ�OVÁ SLOVA
metoda kone£ných diferencí v £asové oblasti, zvý²ená optická transmise, plazmonické
senzory, sí´ nanod¥r

ABSTRACT
This diploma thesis deals with rigorous simulations of plasmonic biosensors based on
the phenomenon of extraordinary optical transmission. The �rst part is devoted to the
description of the physical phenomena and knowledge, that forms the basis for studying
the properties of plasmonic sensors, and the description of the �nite-di�erence time-
domain numerical method, that is used for all simulations carried out in this work.
Simulation results are listed in the next part of this thesis. Here, the sensitivity, resolution
and other characteristics of the chosen type of plasmonic sensor, consisting of an array
of circular nanoholes in a thin gold �lm on the silicon nitride substrate, on a number of
its geometrical parameters is investigated. These dependencies are monitored in three
di�erent cases, namely a sensor placed in a vacuum, immersed in water and where a thin
dielectric layer is present on the gold surface, mimicking the presence of biomolecules
immobilized the surface of the sensor.

KEYWORDS
�nite-di�erence time-domain, extraordinary optical transmission, plasmonic sensor, na-
nohole array

DR�ATA, Martin Plazmonické biosenzory zaloºené na zvý²ené optické transmisi: diplo-
mová práce. Brno: Vysoké u£ení technické v Brn¥, Fakulta strojního inºenýrství, Ústav
fyzikálního inºenýrství, 2015. 58 s. Vedoucí práce prof. RNDr. Ji°í Petrá£ek, Dr.
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INTRODUCTION

The need for cheap and fast methods of diagnosis or recognition of biological structu-

res is currently a very discussed topic. Modern diagnostic methods are either costly,

slow or require a large database of parameters of the examined species [1]. One way

to circumvent these problems could be provided by plasmonic biosensors that are

based on the phenomenon of extraordinary optical transmission.

According to Bethe's theory from 1944 [2], the amount of light, that is transmit-

ted through a small circular aperture in a thin gold �lm, decreases with the fourth

power of wavelength of the incident light. However, in 1998, Ebbesen observed [3]

that for certain wavelength of the incident light, in the case of array of such na-

noholes, the amount of light transmitted is signi�cantly greater than that assumed

by Bethe's theory. This extraordinary optical transmission (EOT) is the result of

excitation of surface plasmon polaritons (SPP's) on the surface of gold, and the

wavelength at which we observe this phenomenon is very sensitive to the optical

properties of the medium surrounding the metal surface [4, 5]. The shift of this re-

sonance peak can then help us to determine the environment in which the sensor is

located and for example what biomolecules are immobilized at the metal surface or

in which solution is the sensor immersed in.

Through the years, many promising applications of nanohole arrays have been

devised for wide range of scienti�c �elds. These applications include, for example,

polarization control using rectangular or eliptical holes [6,7], �ltering techniques for

solar absorbers and thermal emitters [8, 9], Surface-Eenhanced Fluorescence (SEF)

[10] and Raman Scattering (SERS) [11] and even enhancement of quantum e�ects

[12].

However, the possible use of such systems for biosensing application caught a lot

of attention since it could provide very cheap and fast method of label-free on-chip

diagnosis for use for example in third world and developing countries [13]. Moreover,

such devices could also be very small and portable and allow paralel biosensing of

many biological species at the same time (up to 105 simultaneous measurements on

1 cm2 sensor [1]).

The submitted thesis is focused on numerical simulations of a sensor, that is

based on EOT and consists of an array of circular nanoholes perforated in a thin

gold �lm on an silicon nitride substrate.

This work is divided into two parts: theoretical study of the physical princi-

ples needed to understand the problematics of plasmonic sensing and part, that is

summarizing the results of the simulations

First chapter provides brief introduction to the electromagnetism of metals. Star-

ting with Maxwell's equations, the basic principles of electromagnetic wave pro-
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pagation and di�erences between ideal and real metals are described. The second

chapter is dedicated to derivation of conditions, under whitch the surface plasmon

polaritons (SPP's) can be excited, and derivation of some of their basic physical

properties. Localized surface plasmons (LSP's) are brie�y described here, and thus

the chapter gives a basic overview of plasmonics. Chapter three is devoted to de-

scription of the EOT phenomenon, geometry and material system of usually used

type of sensors, their sensitivity and resolution. Fourth chapter then summarizes the

basic information about the �nite-diference time-domain (FDTD) method, used for

simulations of interactions of light with matter, including the basic computational

algorithm, stability requirements and boundary conditions.

The second part shows the results of FDTD simulations performed on the chosen

type of plasmonic sensor. The main subjects of interest are the choice of suitable

type of nanohole array and the dependence of sensitivity, resolution and other para-

meters of the sensor on its geometrical parameters such as nanohole size, thickness

of individual layers or the shape of the nanohole array.
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1 ELECTROMAGNETISM OF METALS

This chapter is devoted to description of the most important facts and phenomena,

which underlie the theory of surface plasmon polaritons. Starting with description of

Maxwell's equation of macroscopic electromagnetism, the electromagnetic response

of idealized and real metals is described. Chapter closes with introduction of volume

plasmons.

1.1 Maxwell's equations and electromagnetic wave

propagation

The interaction of light with metal structures can be completely described using the

macroscopic Maxwell's equation, de�ned as follows [14�16]:

∇× ~E = −∂
~B

∂t
, (1.1)

∇× ~H =
∂ ~D

∂t
+~jF , (1.2)

∇ · ~E = ρ, (1.3)

∇ · ~H = 0. (1.4)

These equations link the areal current density ~jH and bulk density of electric charge

ρ with the four macroscopic �elds ~E (the electrical �eld), ~D(the dielectric displace-

ment), ~H(magnetic �eld) and ~B(magnetic induction).

By combining equations (1.1)-(1.2), we can obtain wave equation

∇×∇× ~E = −µ0
∂2 ~D

∂t2
, (1.5)

in time domain, that is describing wave propagation in vacuum. Here ε0 and µ0 a

vacuum permitivity and vacuum permeability, respectively.

The four macroscopic �elds are also tied to each other by means of material

equations

~D = ε ~E + ~P , (1.6)

~H =
1

µ0

~B − ~M, (1.7)
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where ~P represents polarization and ~M is magnetization. By considering nonmag-

netic material, we can neglect magnetization ~M , and therefore limit the description

only to polarization vector ~P , which describes the electric dipole moment inside

of material per unit volume, that is caused by response of microscopic dipoles to

changes of the electric �eld [15].

Macroscopic Maxwell's equations are also complemented by three microscopic

equations

~j = σ ~E, (1.8)

~B = µ0µr ~H, (1.9)

~D = ε0εr ~E, (1.10)

where σ(electric conductivity), µr(relative permeability) and εr(relative permitivity,

also known as dielectric function) are characteristic for given media. Equations (1.8)-

(1.10) are describing a situation, where coe�cients σ, µr and εr are independent on

electromagnetic �eld, position and direction in material, and therefore describing

linear, homogenous and isotropic material [14].

The dielectric constant ε(ω) = ε′+iε′′ is a frequency dependent complex fucntion,

that is also linked to complex index of refraction with [17,18]

n = n+ iκ =
√
ε, (1.11)

where imaginary part of refractive index κ is called an extinction coe�cient. From

equation (1.11), we can explicitly get

ε′ = n2 − κ2, (1.12)

ε′′ = 2nκ, (1.13)

n2 =
ε′

2
+

1

2

√
ε′2 + ε′′2. (1.14)

The extinction coe�cient κ, and therefore the dielectric function determines the ab-

sorption of electromagnetic waves propagating in given media and is also connected

to the absorption constant of the Beer's law, that is describing decay of the intensity

of the light in medium, via α(ω) = 2κ(ω)ω/c [14, 15].
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1.2 Dielectric function of free electron gas

The optical properties of metals can be, over a large range of frequencies, well

described by a plasma model [14]. In this model a gas of electrons with density of

n moves freely against a background of charged atom cores. These electrons are

oscillating if some external electromagnetic �eld is applied, and their movement is

decelerated with respect to a characteristic relaxation time τ and collision frequency

γ = 1/τ [18, 19].

To determine the dielectric function ε(ω) of such gas of free electrons, we need

to start with equation of motion of an electron in the plasma sea in presence of

external electric �eld ~E

m
d2~x

dt2
+ γm

d~x

dt
= −e ~E. (1.15)

Assuming harmonic and time-dependent external �eld ~E = ~E0e
−iωt and considering

that macroscopic polarization can be described as ~P = −ne~x, it can be shown

[19,20], that

~P = − ne2

m(ω2 + iγω)
~E. (1.16)

Combining equations (1.6), (1.10) and (1.16), we simply get the resulting equation

for dielectric function ε(ω) as a function of frequency ω

ε(ω) = 1−
ω2
p

ω2 + iγω
, (1.17)

where

ω2
p =

ne2

ε0m
, (1.18)

is the plasma frequency of the free electron gas. The real and imaginary parts of

ε(ω) are given by

ε′(ω) = 1−
ω2
pτ

2

1 + ω2τ 2
, (1.19)

ε′′(ω) =
ω2
pτ

2

ω(1 + ω2τ 2)
. (1.20)

If we now consider only large frequencies close to ωp where ωτ >> 1, then we can

neglect the e�ect of collisions and immediately get an equation for dielectric function

of the undamped free electron plasma as [19]

ε(ω) = 1−
ω2
p

ω2
. (1.21)
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In the region of large frequencies ωτ << 1, where ω < ωp, metals are mainly

absorbing with an absorption coe�cient of

α =

√
2ω2

pτω

c2
, (1.22)

and the electromagnetic �elds are damped inside of the metal exponentially as e−z/δ,

where δ = 2/α is a skin depth [16].

The dielectric function of the free electron plasma can be also linked with the

classical Drude model for the conductivity of metals, de�ned as σ = nep/m, via

ε(ω) = 1 +
iσ(ω)

ε0ω
, (1.23)

and therefore ε(ω) is the dielectric function of the free electron plasma also known

as Drude model of the optical response of metals [15].

1.3 The dispersion of the free electron gas and vo-

lume plasmons

We will now consider a region of frequencies ω > ωp. We can distinguish between

two cases, depenging on polarization direction of the electric �eld vector ~E. For

transverse waves, where ~k · ~E = 0, the dispersion relation in Fourier domain can be

written as [15,17]

k2 = ε(~k, ω)
ω2

c2
. (1.24)

Longitidunal oscillations can only occur for frequencies corresponding to zeros of

ε(ω) [15]. By inserting equation (1.24) in equation (1.21), we can simply write a

dispersion relation of travelling waves

ω2 = ω2
p + k2c2, (1.25)

which is generally illustrated in Fig. 1.1. From Fig. 1.1 we can see, that the propa-

gation of electromagnetic waves inside the metal plasma is only allowed for frequen-

cies ω > ωp. Such waves are then propagating with a group velocity given by

vg = dω/dk < c.

If we consider longitidunal oscillations of the electron sea against the background

of (positive) atom cores (schematically in Fig. 1.1), the displacement u of the electron

gas creates and electric �eld ~E = ne~u/ε0 [15, 20], that acts as a restoring force.

The equation of motion of a unit of the electron gas is then

nm
d2~u

dt2
= −n

2e2~u

ε0
, (1.26)

6



Fig. 1.1: Dispersion relation of free electron gas (solid black line) and light in vacuum

(dashed black line). Taken from [16].

Fig. 1.2: Schematic interpretation of longitidunal collective oscillations of the con-

dution electron gas in a metal slab. Taken from [15].

which is a equation of motion of a simple harmonic oscillator of the plasma frequency

ωp. Therefore, ωp can be considered as the natural frequency of free oscillation of

the electron gas. Here, we are assuming, that all electrons are moving in phase, and

thus ωp corresponds to oscillations where ~k = 0 [14]. These oscillations can be only

excited by particle impact and do not couple into transverse waves [15,20]. Quantum

of such oscillation is called a volume plasmon.

1.4 Real metals

Figure 1.3 shows the real and imaginary parts of dielectric function ε(ω) for silver

according to [21] and Drude model �t to the data. As can be seen, Drude model

7



Fig. 1.3: Real and imaginary parts of dielectric function ε(ω) for silver according

to [21] (red dots) and Drude model �t (solid black line). Taken from [15].

is not precise for description of either ε1 or ε2 for higher frequencies (above the

boundary between visible and near-infrared frequencies) in real metals like silver or

gold, which are the most important materials in plasmonic studies.

Photons are very e�cient in exciting electrons from band below the Fermi level to

higher energy bands, and therefore inducing interband transitions, that are respon-

sible for uncertainty of the Drude model in describing the dielectric function for real

metals. These processes are also causing an increased damping of surface plasmons

as well as a "competition" between the two excitations at visible frequencies.

While Drude model isn't really suitable for dexcription of ε(ω), it's main advan-

tage lies in the fact, that it can be very easily implemented into the time-domain

based numerical methods. The problem of Drude model inadequacy can be overco-

med if we dexcribe the interband transitions using the idea of a bound electron with

resonance frequency ω0. Equation (1.15) is then replaced by

m
d2~x

dt2
+ γm

d~x

dt
+mω2

0~x = −e ~E. (1.27)
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2 SURFACE PLASMON POLARITONS AND LO-

CALIZED SURFACE PLASMONS

In this chapter, the basic physical properties of propagating surface waves (surface

plasmon polaritons, SPP's) and localized surface plasmons (LPP's) are described.

The focus is primarily placed on the description and derivation of the basic properties

of SPP's and methods of their optical excitation on planar metal-dielectric interfaces,

since SPP's are playing the key role in this thesis.

2.1 SPP's on metal-dielectric interface

As indicated earlier, surface plasmon polaritons are electromagnetic wave excitati-

ons, that propagate along the surface of the metal-dielectric interface. To describe the

basic physical properties of SPP's, we need to start, again, with Maxwell's equations

(1.1)-(1.4).

We now assume harmonic time dependence of the electric �eld ~E(r, t) = ~E0(r)e−iωt,

and that we can neglect the variation of dielectric function ε = ε(r). By combining

equations (1.1)-(1.2), as seen in Chapter 1, we can obtain the wave equation (1.5).

Using the identities ∇×∇× ~E = ∇(∇ · ~E)−∇2 ~E, and ∇ · (ε ~E) = ~E · ∇ε+ ε∇ · ~E,
and considering that ∇· ~D = 0, we can rewrite wave equation (1.5) into a Helmholtz

equation de�ned as

∇2 ~E + k2
0ε ~E = 0, (2.1)

where k0 = ω/c is the wave vector of the propagating wave.

Next, we de�ne geometry as shown in Fig. 2.1, where both the dielectric and

metal layer are in�nite in x-y plane at z = 0. We assume a one-dimensional problem,

where surface waves propagate along the x-direction and show no variation along

the y-direction. Therefore, the dielectric function can be de�ned as ε = ε(z) and the

propagating waves as ~E(x, y, z) = ~E(z)eiβx, where β = kx is called a propagation

constant. Equation (1.1) can be then rewritten as:

∂2 ~Ez
∂z2

+ (k2
0ε− β2) ~E = 0. (2.2)

To derive the basic physical properties of SPP's and to de�ne the conditions of their

excitation, we need to solve (2.2) and Maxwell's curl equations (1.1)-(1.2) separately

for the dielectric and metal halfspace. Such solutions are then connected through

continuity conditions [14,18], that are given by:

( ~D2 − ~D1) · ~n = 0, (2.3)
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Fig. 2.1: Interface along the x-y plane between metal (index 2) and dielectric (index

1). Taken from [14].

( ~B2 − ~B1) · ~n = 0, (2.4)

~n× ( ~E2 − ~E1) = 0, (2.5)

~n× ( ~H2 − ~H1) = 0. (2.6)

By combining the Maxwell's curl equations (1.1)-(1.2) and considering time har-

monic ( ∂
∂t

= −iω) wave propagating in x-direction ( ∂
∂x

= iβ), we can simply get [22]

a set of coupled equations

∂Ey
∂z

= −iωµ0Hx, (2.7)

∂Ex
∂z
− iβEz = iωµ0Hy, (2.8)

iβEy = iωµ0Hz, (2.9)

∂Hy

∂z
= iωε0εEx, (2.10)

∂Hx

∂z
− iβHz = −iωε0εEy, (2.11)

iβHy = −iωε0εEz, (2.12)

that will help us to �nd explicit expressions for each component of electric and

magnetic �eld in both the metal and dielectric halfspace.

This system of equations allows two di�erent solutions for di�erent polarization

of the propagating waves [15].
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Transverse magnetic modes

First are the TM modes (transverse magnetic), where only the component of mag-

netic �eld, that is perpendicular to the direction of wave propagation is nonzero,

and therefore Hx = Hz = Ey = 0. The set of equations (2.7)-(2.12) is, in this case,

reduced to

Ex = −i 1

ωεε0

∂Hy

∂z
, (2.13)

Ez = − β

ωεε0
Hy, (2.14)

and the wave equation is

∂2Hy

∂z2
+ (k2

0ε− β2)Hy = 0. (2.15)

Using the last set of equations (2.13)-(2.15) separately for both halfspaces gives

Hy(z) = A2e
iβxe−k2z, (2.16)

Ex(z) = iA2
1

ωε2ε0
k2e

iβxe−k2z, (2.17)

Ez(z) = −A2
β

ωε2ε0
eiβxe−k2z, (2.18)

in dielectric halfspace (z > 0), and

Hy(z) = A1e
iβxek1z, (2.19)

Ex(z) = −iA1
1

ωε1ε0
k1e

iβxek1z, (2.20)

Ez(z) = −A1
β

ωε1ε0
eiβxek1z, (2.21)

in metal halfspace (z < 0). Continuity of the �elds, as de�ned by equations (2.3)-

(2.6), requieres that A1 = A2, and

k2

k1

= −ε2
ε1
. (2.22)

Therefore if ε2 > 0, then Re[ε1] < 0.This means, that the surface waves can only

exist on interfaces between materials that have opposite sign of the real parts of

their relative permitivities, and therefore only on interfaces between the metals and

insulators. If we consider, that Hy has to ful�ll the wave equation (2.15), we can

show [22,23], that the dispersion relation for SPP's can be written as

β =
ω

c

√
ε1ε2
ε1 + ε2

. (2.23)
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Transverse electric modes

It can be simply shown [14, 15], that similiar derivation, which we applied to the

TM modes, leads in the case of TE (transverse electric, where Hy = Ex = Ez = 0)

modes to condition

A1(k1 + k2) = 0. (2.24)

Because we require that Re[k1] > 0 and Re[k2] > 0, condition (2.24) is then only

ful�lled when A1 = A2 = 0, and therefore Ey = 0. This means that, under these

conditions, no TE surface modes can exist at metal-dielectric interface, thus surface

plasmon polaritons only exist for TM polarization.

Reciprocal value of the wavevectors in z-direction z = 1/|kz| is called a skin depth
[18] and represents,for given medium (de�ned by ki), the evanescent decay length of

the electromagnetic �elds that are perpendicular to the plane of the interface, and

therefore de�ne the con�nement of the surface wave.

2.2 Dispersion relation of SPP's and surface plasmons

If we consider that Hy, in case of TM modes, has to ful�ll the wave equation (2.15),

we can get [22,23] expressions for wavevectors in both half spaces as

k2
1 = β2 − k2

0ε1, (2.25)

k2
2 = β2 − k2

0ε2. (2.26)

Combining (2.22), (2.25) and (2.26) leads immediately to the dispersion relation of

the SPP's propagating along the metal-insulator interface

β =
ω

c

√
ε1ε2
ε1 + ε2

. (2.27)

Real and imaginary parts of this dispersion relation, for SPPs at the interface be-

tween a Drude metal with negligible collision frequency and air (ε1 = 1) and silica

(ε1 = 2, 25), is shown in Fig. 2.2 for frequencies ω normalized to the frequency ωp.

In Fig. 2.2, SPP's correspond to the part of the dispersion curves, that lie to the

right of the dispersion lines of air and silica, which means , that the SPP's cannot

be excited on perfectly planar surface, and therefore some special excitation me-

thods (discussed in Section 2.3) have to be applied [22]. As mentioned earlier, for

frequencies ω > ωp, metal becomes optically transparent allowing propagation of

the electromagnetic waves inside the metal structure. In Fig. 2.2, we can also see a
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Fig. 2.2: Real (solid lines) and imaginary (dashed lines) parts of dispersion relation

of SPPs at the interface between a Drude metal with negligible collision frequency

and air (gray curves) and silica (black curves). Taken from [15].

frequency gap between the region of optical transparency and the region of propaga-

ting SPP's, where β is purely imaginary, allowing no propagation of electromagnetic

waves at all.

The SPP frequency is, for large values of wavevectors, approaching a charac-

teristic surface plasmon frequency. Equation for such frequencies can be obtained

by inserting the expression for dielectric function of free electron (1.17) into the

dispersion relation of the SPP (2.27), which yields

ωsp =
ωp√

1 + ε2
. (2.28)

If we consider neglectable damping of the oscillation of the free electron gas, then

β goes to in�nity for frequencies very close to ωsp and group velicity goes to zero.

Such mode gains electrostatic character and is called a surface plasmon.

2.3 Excitation of SPP's

As mentioned earlier, SPP's cannot be directly excited on planar surfaces by light

beam propagating in a dielectric medium due to the fact, that the SPP wavenumber

is larger than the magnitude of the wavevector of the light in dielectric medium.
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This means that some special experimental arrangements has to be used in order to

excite a wave propagating on metal-dielectric surface.

This section is dedicated to brief description of the most commonly used optical

methods that provide the necessary wavevector conservation, thus allowing us to

excite the SPP's.

Prism coupling

The most common and simple methods of SPP excitation are the prism coupling

methods, that are matching the photon and SPP wavevectors using the tunneling

photon in the total internal re�ection of light (prism is illuminated at angle greater

than the critical angle for total re�ection) in prism.

Figure 2.3a shows the schematic illustration of the Kretchmann geometry, which

is a method presented by Kretchsmann in 1971 [24]. Here, a thin metal �lm is

illuminated through a prism at an angle greater than the angle of total internal

re�ection. In order to excite the SPP's, resonant condition

ksp =
ω

c

√
εp sin θ, (2.29)

must be full�lled. Here εp represents the permittivity of the prism and θ is the angle

of incidence.

If condition (2.29) is full�lled, a very sharp minimum of re�ection at the metal-

prism interface can be observed, and light can be coupled into SPP's with almost

perfect e�ciency. However, by using such method, SPP cannot be excited directly

on the metal-prism interface [22]. This can be overcomed by creating additional

dielectric layer (with refractive index smaller than the one of the prim) between

the metal �lm and prism (schematically shown in Fig. 2.3b), which could provide

resonant excitation of SPP on the inner interface, allowing us to excite both SPP

modes at di�erent angles of illumination.

For thick metal �lms, where Kretschmann con�guration cannot be used (because

the coupling of the tunneling photons is weaker with increasing thickness of the metal

�lm), SPP's can be excited using the Otto con�guration [25](schematically shown

in Fig. 2.3c).

In Otto con�guration, prism is placed very close to the surface. Photons are then

tunneling through a thin air gap, allowing the excitation of SPP's directly on the

metal-air interface. The resonant condition in Otto con�guration is analogous to the

one of Kretschmann con�guration (2.29), [22,26].
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Fig. 2.3: Schematic representation of a Kretschmann con�guration, b Two-layer

Kretschmann geometry, c Otto con�guration, d SNOM probe, e grating di�raction

and f surface di�raction techniques for SPP excitation. Taken from [22]

Di�raction methods

Use of the di�raction e�ects on the randomly rough surface, some surface features or

periodic di�raction grating can also provide the necessary wavevector conservation

for SPP excitation.

Figure 2.3e shows schematic illustration of a di�raction grating created on a

smooth metal surface. Light is di�racted upon incidence on such structure and the

components of the di�racted light, whose wavevectors coincide with the SPP wave-

vector, are then coupled into SPP's. Such con�guration can provide a very e�cient

method for excitation of SPP's on both, the air-metal and dielectric substrate-metal

interfaces if the thickness of the metal layer and parameters of the grating are chosen

appropriately [27, 28]. Condition for excitation of SPP's using di�raction grating is

given by [22]

~ksp =
ω

c
nssinθ~u12δp ± p

2π

D
~u1 ± q

2π

D
~u2, (2.30)

where ~u1 and ~u2 are the unit lattice vectors of the periodic structure, D is its period,

ns is the refractive index of surrounding medium, ~u12 is the unit vector in direction

of the in-plane component of the wavevector of incident light and δp equals one for

p-polarized incident light and zero for s-polarized light.

In the case of randomly rough surface, the conditions for SPP excitation can be

easily achieved without the need to use any experimental arrangement, because of
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Fig. 2.4: LSP's on a metal nanoparticle in the absence (left) and presence (right) of

the external electromagnetic �eld. Taken from [14]

the presence of the di�racted light components with all wavevectors [22]. However,

since the SPP conditions are not well-de�ned, coupling of light into SPP e�ciency is

very low in this case and leads into a complex �eld distribution over the surface [22].

This problem can be overcomed by creating some well-de�ned surface features

(such as shown in Fig. 2.3f) on smooth planar surface, that are giving the necessary

"control"over the di�raction interactions of the incident light with surface, leading

to better-de�ned excitation conditions, and therefore more e�cient light-to-SPP

coupling [22].

Near-�eld excitation

Another optical method of SPP excitation is the use of Scanning Near-�eld Optical

Microscopy (SNOM), which is shown in Fig. 2.3d. Illumination through SNOM �ber

tip can excite circular SPP waves locally at a chosen place on the surface [29]. This

con�guration can be considered both a tunneling and di�raction mechanism.

In the �rst case mentioned, the technique is analogous to the Otto con�guration.

The excitation process is here described with photon tunneling from the tip of the

SNOM probe to the surface of the metal, but on the contrary to Otto con�guration,

SPP's can be excited locally at a position of the SNOM probe [29].

In the second case, one can consider excitation of SPP's as a near-�eld coupling

of the light that is di�racted on the �ber SNOM tip into SPP's [22].

2.4 Localized surface plasmons

Another type of fundamental plasmonic exctitaion, that needs to be mentioned,

are the localized surface plasmons (LSP's). LSP's are non-propagating surface wave

excitations on metallic nanostructures, spectrally in the visible or near infrared

regime.
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Many physical e�ects that are associated with the LSP's can be described with

very simple model. Figure 2.4 shows the LSP's on a metallic nanoparticle with

nad without the presence of the external electromagnetic �eld. The �eld can pene-

trate into the volume and cause the shift of the electrons. The coherentely shifted

electrons, along with the external �eld, can be considered as an oscillator de�ned by

the e�ective electron mass, geometry of the particle and its charge density [14].

The electric �eld inside and outside such metallic nanoparticle as a function of

dipole moment ~p that is induced in the sphere by the external �eld, is de�ned as [14]

~Ein =
3ε1

ε1 + 2ε2
~E0, (2.31)

~Eout = ~E0 +
1

4πε0ε2

3~n(~n · ~p)− ~p
r3

, (2.32)

where ~n is the unit vector in direction of the point of interest and ε1, ε2 are the

permittivities of the nanoparticle and surrounding medium, respectively. With the

LSP present, the ability of the nanoparticle to either scatter or absorb electromagne-

tic waves is enhanced. This ability can be described with scattering and absorption

cross sections σscat, σabs as follows [14]

σscat =
8π

3
k4a6

(
ε1 − ε2
ε1 + 2ε2

)2

, (2.33)

σabs = 4πka3Im

(
ε1 − ε2
ε1 + 2ε2

)
. (2.34)

Here a is the radius of the nanoparticle. As can be seen, the scattering scales with a6,

while absorption process scale with a3. Consequently, for large particles scattering

dominates, whereas for smaller particles, extinction is dominated by absorption.
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3 OPTICAL BIOSENSORS BASED ON EXTRA-

ORDINARY OPTICAL TRANSMISSION

This chapter is dedicated to introduction of the plasmonic optical sensors that are

based on principle of extraordinary optical transmission (EOT). Such sensors usually

consists of an array of nanoholes in thin metal layer, that allows excitation of SPP's

on the surface, and can be used in many applications.

Althought many promising applications of nanohole arrays have been devised

for wide range of scienti�c �elds [6, 8, 11], in this chapter, we will focus on the

applications concerning hole-arrays in metal �lms as a tool for label-free sensing

applications and diagnostics.

Chapter starts with a brief description of the EOT phenomena, which plays a

key role in a plasmonic biosensing. Principle of the plasmonic sensing and conventi-

onal designs of such sensors is then introduced. Chapter closes with a de�nition of

sensitivity and resolution of a nanohole array plasmonic sensors.

3.1 Extraordinary optical transmission

According to classical aperture theory by Bethe from 1944 [2], the amount of light,

that is transmitted through circular hole in metal sheet, is proportional to

T ∝ d

λ4
, (3.1)

where λ is the wavelength of incident light and d is the hole diameter. However, in

1998 Ebbesen experimentaly observed [3] that, for certain wavelengths, the amount

of light transmitted through periodical array of circular holes in gold thin �lm is

signi�cantly greater than predicted. This phenomenon can even be observed in cases,

where the thickness of the metal �lm is greater than the skin depth. Example of such

extraordinary optical transmission (EOT) is shown in Fig. 3.1.

The EOT occurs through certain interactions of surface plasmon polaritons, that

are excited on the surface of the metal �lm, with the light incident on the surface

at some speci�c wavelength. If we consider a plane wave incident on the metal

surface, the resonant wavelength, corresponding to the EOT peak, can be directly

derived from Eequation (2.30), where sin θ=1 and δp=1, and is approximately given

by [13,31]

λres ≈
a0√
i2 + j2

√
εm + εd
εmεd

, (3.2)

where a0 is the distance between the holes, i, j are the grating orders and εm, εd are

the permitivities of the metal and surrounding dielectric, respectively.

19



Fig. 3.1: Example of the transmission spectra through circular hole array in gold thin

�lm on GaAs substrate. The EOT peak can be seen at wavelength of approximately

9.5 µm Taken from [30].

The equation (3.2) shows, that the position of the EOT peak is strongly depen-

dent on the periodicity of the array, refractive index of the metal sheet and refractive

index of the surrounding dielectric. The dependence of the EOT position on the εd

is the characteristic, that plays the key role in plasmonic sensing application, as

discussed in following Section.

3.2 Optical sensors based on EOT principle

Since the Ebbesen's work was �rst published [3], there has been wide research aimed

at understanding and development of many applications asociated with the EOT

phenomenon [32�34].

Motivation for plasmonic biosensing lies in the fact, that modern diagnostic

methods are either expensive, slow, not portable devices or require a large parameter

databases of the known biological species for diagnosis to be possible [13]. Plasmonic

biosensors, on the other hand, could provide a methods of very fast yes-or-no label-

free onchip diagnosis, that doesn't require any parameter database at all [33]. It

could also give us the possibility of paralel biosensing of many biological species at

the same time (up to 105 simultaneous measurements on 1 cm2 sensor, according
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Fig. 3.2: Top view and cross section of an example of plasmonic sensor consisting of

an lattice of circular holes with periodicities ax, ay in thin metal layer deposited on

a dielectric substrate. Taken from [31]

.

to [1]). It is also considered a very cheap and portable device [33].

General example of a plasmonic sensor, which usually consists of nahohole array

in a metal structure deposited on a dielectric substrate, is shown on Fig. 3.2. Through

last two decades, many designs of a plasmonic biosensors were devised, including

di�erent shapes of holes [4, 35], types of arrays [36, 37] or types of metal-substrate

structures [31, 38]. However, for biosensing applications, circular holes perforated

through a gold thin �lm and either a square or hexagonal con�guration of the hole

array showed as the best performance and is today used almost exclusively [1,39�41].

Principle of such sensors is related to the fact, that the spectral position of

the EOT peak λres is very sensitive to change of the refractive index of the me-

dium surrounding the metallic structure, as was mentioned in previous section. Such

change can be achieved by for example immobilizing some examined biological spe-

cies on the surface of the sensor (as shown in Fig. 3.2) or immersing the whole system

in some bulk medium. The resonance peak is then spectrally shifted and the size of

this shift is proportional to the change of the optical properties of the surrounding

medium, as shown in Fig. 3.3. By investigating this spectral shift, is then possible

to determine what biological species is adsorbed on the surface (or in what medium

is the sensor immersed in), because its size should be speci�c for every refractive

index change.

Together with a number of designs, many di�erent applications of plasmonic

sensors have been developed in sensing and diagnostics. For example as a tool for

protein-like structure recognition [42], detection of a viruses in red blood cells [43]

or early cancer detection [33].

However, the inaccuracies in todays nanohole-array fabrication methods are the
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Fig. 3.3: An example of the transmission spectra of the bare plasmonic sensor in air

(black line), bare sensor immersed in bulk medium (n=1.33, green line) and sensor

after addition of 10 nm dielectric �lm (n=1.6, red line). Structure consists of square

lattice (ax=ay=540 nm) of circular holes with a diameter of 200 nm in a 70 nm thick

gold layer deposited on a 120 nm SiN substrate. Taken from [31]

reason of the main drawback of such systems. This is because of the disparity of the

fabricated nanohole arrays, that reportedly causes a red shift of the resonance peak

(in comparison to theoretically calculated values) [40], that can cause di�culties

in quantitative evaluation of the results. However, the quality of the fabrication

techniques is improving very quickly, and therefore the impact of these inaccuracies

is steadily decreasing.

3.3 Sensitivity and resolution of nanohole arrays

The spectral sensitivity of a plasmonic sensors is given as [1]

S(∆λres) =
∆λres
∆n

, (3.3)

where ∆λres is the shift of the EOT peak after addition of dielectric layer and ∆n is

the change of the e�ective refractive index of the surrounding medium. The spectral

shift of the EOT peak ∆λres is dependent on the geometrical parameters of the

nanohole array (periodicity, size of the holes, etc.), while ∆n can be approximately

de�ned as

∆n = (n1 − n2)(1− e−2d/ld), (3.4)

where d is the thickness of the dielectric layer, ld is the characteristic decay length

of the evanescent �eld and n1, n2 are the refractive indices of the adsorbed die-

lectric layer and the surrounding medium, respectively [1]. However, equation (3.4)
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gives only the approximate expression for ∆n, and therefore is not used in rigorous

simulations using modern computational methods.

Another usefull parameter, that can de�ne the sensing capabilities of the apertu-

res is the �gure of merit (FOM). The FOM is de�ned as the ratio between sensitivity

and the linewidth of the EOT peak (FWHM), FOM=S/FWHM, which is an asset to

consider the spectral properties of such system in addition to its sensing capability.

Simply, one can say, that the sensitivity of such sensors is given by the size of

the spectral shift ∆λres, while the resolution is proportional to the shape of the

resonance peak, primarily the width of the resonance line and the sharpness of the

peak.

Despite a number of advantages, the nanohole arrays generally shows lower re-

solution in comparison to the conventional surface plasmon resonance (SPR) sen-

sors [3]. Devices, that are using the EOT, on the other hand, are usually a�ected

by a very low signal-to-noise ratio, due to the fact, that the transmitted intensity is

usually about 5% [37].
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4 FINITE-DIFFERENCE TIME-DOMAIN (FDTD)

METHOD

4.1 Introduction to FDTD method

The Finite-Di�erence Time-Domain (hereinafter FDTD) is one of the mostly used

and straightforward computational methods for solving Maxwell's equations in di�e-

rential form, and therefore many problems in electromagnetics for example electro-

magnetic absorption in human tissues [44], analysis of microstrip circuits [45] or

electromagnetic scattering by ice crystals in atmosphere [46].

FDTD was �rst presented by Yee in 1966 [47] and it was initially designed for

analyzing the two-dimensional scattering of TM pulses from cylindrical conductors.

Method didn't attract much of attention until its �rst introduction in computer

simulations in mid-seventies [48] when computer technologies, and therefore com-

putational power had become more accessible. Since then, the FDTD is becoming

increasingly popular for both, its conceptual simplicity and variability. With further

increasing computational power and decreasing computational cost, the FDTD me-

thod is applied at problems that are associated with much shorter wavelenghts, let-

ting us investigate the interaction of electromagnetic waves of still higher frequencies

with still smaller structures.

The FDTD is based on discretizing Maxwell's equations in space and time to

solve the electromagnetic scattering problem, therefore we create a grid scheme in

which every point represents a component of electric and magnetic �eld in cartesian

coordinates at a certain time.

By choosing correct initial conditions, we can calculate components of vectors of

electromagnetic �eld at initial time, letting us, with certain accuracy, describe the

evolution of the system in the future.

This discretization, however, shows us the main drawback of FDTD, which is that

we need to perform computations over spatial domain that is often much larger then

the investigated structure. This results in time consuming computations, especially

for larger structures or simulations in which we require high precision [49].

4.2 Mathematical apparate

To derive equations, that are important for solving components of electric and mag-

netic �eld in certain time, we need to start with di�erential form of Maxwell's curl

equations (1.1) and (1.2) that relates the electric and magnetic �elds. By using the
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rotation operator, we come to six equations for electric and magnetic �eld compo-

nents of vectors in cartesian coordinates.

∂Ex
∂t

=
1

ε

(
∂Hz

∂y
− ∂Hy

∂z
− σEx

)
, (4.1)

∂Ey
∂t

=
1

ε

(
∂Hx

∂z
− ∂Hz

∂x
− σEy

)
, (4.2)

∂Ez
∂t

=
1

ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz

)
, (4.3)

∂Hx

∂t
=

1

µ

(
∂Ez
∂y
− ∂Ey

∂z

)
, (4.4)

∂Hy

∂t
=

1

µ

(
∂Ex
∂z
− ∂Ez

∂x

)
, (4.5)

∂Hz

∂t
=

1

µ

(
∂Ey
∂x
− ∂Ex

∂y

)
, (4.6)

where ε is permitivity of the media, µ is permeability of the media and σ is electric

conductivity.

In next step, we need to discretize equations(4.1) - (4.6). Mostly used way to do

this, is to replace every derivatives in those equations by either central

∂f

∂x
≈ f(x+ ∆/2)− f(x−∆/2)

∆
, (4.7)

forward

∂f

∂x
≈ f(x+ ∆)− f(x)

∆
, (4.8)

or backward

∂f

∂x
≈ f(x)− f(x−∆)

∆
, (4.9)

di�erences, where f is the derived function and ∆ is the size of di�erence step,

de�ned by size of space point of uniform, rectangular lattice, denoted as

(i, j, k) = (i∆x, j∆y, k∆z), (4.10)

or any chosen time step ∆t.
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Because they are simply programmed and second-order accurate in both space

and time, the central di�erence is usually chosen for discretization [47,50].

Applying the (4.7) onto the set of equations (4.1)-(4.6), we get six scalar equati-

ons

En+1
x,i,j,k =

(
1− σ∆t/2ε

1 + σ∆t/2ε

)
En
x,i,j,k +

(
∆t/2ε

1 + σ∆t/2ε

)
×

×

(
H
n+1/2
z,i,j+1/2,k −H

n+1/2
z,i,j−1/2,k

∆y
−
H
n+1/2
y,i,j,k+1/2 −H

n+1/2
y,i,j,k−1/2

∆z

)
, (4.11)

En+1
y,i,j,k =

(
1− σ∆t/2ε

1 + σ∆t/2ε

)
En
y,i,j,k +

(
∆t/2ε

1 + σ∆t/2ε

)
×

×

(
H
n+1/2
x,i,j,k+1/2 −H

n+1/2
x,i,j,k−1/2

∆z
−
H
n+1/2
z,i+1/2,j,k −H

n+1/2
z,i−1/2,j,k

∆x

)
, (4.12)

En+1
z,i,j,k =

(
1− σ∆t/2ε

1 + σ∆t/2ε

)
En
z,i,j,k +

(
∆t/2ε

1 + σ∆t/2ε

)
×

×

(
H
n+1/2
y,i+1/2,j,k −H

n+1/2
yx,i−1/2,j,k

∆x
−
H
n+1/2
x,i,j−1/2,k −H

n+1/2
x,i,j−1/2,k

∆y

)
, (4.13)
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1 + ∆t/2µσ

)
H
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×
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En
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, (4.14)
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1−∆t/2µσ

1 + ∆t/2µσ

)
H
n−1/2
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(
∆t/µ

1 + ∆t/2µσ

)
×

×
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En
z,i+1/2,j,k − En

z,i−1/2,j,k

∆x
−
En
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)
, (4.15)

H
n+1/2
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1−∆t/2µσ

1 + ∆t/2µσ

)
H
n−1/2
z,i,j,k +

(
∆t/µ

1 + ∆t/2µσ

)
×

×
(
En
x,i,j+1/2,k − En

x,i,j+1/2,k

∆y
−
En
y,i+1/2,j,k − En

y,i−1/2,j,k

∆x

)
, (4.16)

that will allow us to determine the components of electric and magnetic �eld. With

this system of equations the new value of �eld vector components at any space

(lattice) point depends on its value and values of the components of di�erent �eld

vectors in previous time step. Therefore, at any given time step, as many parallel

computations can proceed, as many processors are employed.
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From the derivation of equations (4.11)-(4.16), we also see, that these equations

can be easily expressed in di�erent curvilinear coordinate systems, such as spherical

or cylindrical coordinates. This can be usefull in problems where there is longitudinal

or azimuthal symmmetry. Discretization process that leads to FDTD equations in

polar, cylindrical and spherical coordinates is shown in [51].

4.3 Grid size and stability requirement

The FDTD algorithm solves the set of equations (4.11)-(4.16) in every point of

chosen grid scheme repeatedly over time. Elementary cell (shown in Fig. 4.1) of

such grid is called Yee cell [47].

For it's easy implementation, rectangular grids are usually chosen for most of

the simulations. Also, they are not limited to certain geometries, but a curved sur-

faces are represented by "staircase"of rectangular cells, which can lead to various

computational artifacts. To avoid such problems, many non-rectangular grids were

devised [52�54].

Critical, for numerical accuracy and stability of the FDTD algorithm, are the

sizes of spatial and time discretization steps, respectively. The size of spatial dis-

cretization steps must be such, that electromagnetic �eld doesn't signi�cally change

over one Yee cell. That means that the spatial discretization has to be as small as

possible in comparison to the wavelength of the source to obtain higher accuracy. To

achieve good numerical stability, we also need to consider suitable relation between

the spatial and time increments. Such relation can be derived as follows.

Let us consider a discretized harmonic plane wave of real-valued frequency ω

fni,j,k = f0e
i(ωn∆t−βxi∆x−βyi∆y−βzi∆z), (4.17)

where n is a discretization order and βx,y,z are the propagation constants. Such plane

wave satis�es the wave equation

δ2f

δx2
+
δ2f

δy2
+
δ2f

δz2
− 1

c2

δ2f

δt2
= 0. (4.18)

By discretization of equation (4.18) using the central di�erence (4.7) and substitution

of the plane wave (4.7) into the discretized wave equation, we get (after several

modi�cations, tah can be found in [55])[
1

c∆t
sin

(
ω∆t

2

)]2

=

[
1

∆x
sin

(
βx∆x

2

)]2

+

[
1

c∆y
sin

(
βy∆y

2

)]2

+

[
1

c∆z
sin

(
βz∆z

2

)]2

.

(4.19)
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Fig. 4.1: Yee cell. At left are the slices of the cube at i and i−1/2, showing the �eld

placement. Taken from [51].

We need the ω to be real, so the magnitude of the wave doesn't change its value

exponentialy. This condition leads to

c∆t

√
1

∆x2
sin2

(
βx∆x

2

)
+

1

∆y2
sin2

(
βy∆y

2

)
+

1

∆z2
sin2

(
βz∆z

2

)
≤ 1. (4.20)

Considering the worst-case scenario (all sine functions equals one), we get the

Courant-Friedrich-Levy (CFL) condition

∆t ≤ 1

c
√

1
∆x2

+ 1
∆y2

+ 1
∆z2

(4.21)

where vmax is the maximum wave velocity in given media. The CFL condition de-

scribes the relationship between space and time increments of the simulation grid,

that should be adjusted, for the stability of the simulations. For 3-D problems, the

accuracy criteria approximately yields [55]

∆h ≤ λmin

9
√

3
≈ λmin

16
, (4.22)

where λmin is the minimum wavelength in given media.

4.4 Boundary conditions

Because of the discretization character of FDTD, we need to work in a limited

volume surrounding the investigated structures, thus we need to choose appropriate

boundary conditions, that will de�ne the edge of the volume.
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The mostly used types of boundary conditions for various electromagnetic scatte-

ring problems are described in this section. The main focus is on description of sym-

metric and antisymmetric boundary conditions and the Uni-axial Perfectly Matched

Layers, since those methods were used for simulations carried out in this thesis.

4.4.1 Uni-axial Perfectly Matched Layers (UPML) absorbing

boundary conditions

For many wave-structure interaction problems it is important to de�ne boundary

conditions that absorb any outgoing waves, allowing as small re�ection of waves

back into the simulation area as possible. Since the initial work of K.S.Yee [47],

many various techniques have been developed for absorption of outgoing waves.

The �rst method was the Radiating Boundary [56] but it was soon left unused

due to its need for large simulation domains. Another two methods, both developed

in late 1970's, were the one-way approximation of the wave equation, known as the

Mur Boundary [44, 45, 48, 51, 57] and Matched Layer [51, 58], which consisted of a

special absorbing medium surrounding the computational domain. Although both

of these methods were still facing the problem that the wave is absorbed without

re�ection only in speci�c cases (for example when the outgoing wave is a plane wave

and propagates perpendicularly to the boundary), they were the most commonly

used until Berenger presented Perfectly Matched Layers (PML) absorbing boundary

conditions in 1994 [59].

The PML gained a lot of attention very soon and is still the most used type

of absorbing boundary conditions until today. Since Berenger's work, many inter-

pretations of PML for various applications were introduced, for example Streched-

Coordinate PML (SC-PML) [60], Convolutional PML [51] and Un-Split PML [61].

Nowadays, the most frequently used type of PML are the Uni-axial Perfectly

Matched Layers (UPML) [51,62,63]. This method is based on introduction of aniso-

tropic absorbing medium consisting of perfectly matched layers at a chosen plane on

the edge of the computational domain. To match a UPML layer to some isotropic

half-space, that is de�ned by its conductivity σ and permitivity ε, the time-harmonic

Maxwell's equations can be interpreted as [63]

∇× ~E(x, y, z) = −iωµ0ŝ ~H(x, y, z), (4.23)

∇× ~H(x, y, z) = (iωε0ε+ σ)ŝ ~E(x, y, z). (4.24)
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The tensor ŝ is de�ned as

ŝ =

syszs−1
x 0 0

0 sxszs
−1
y 0

0 0 sxsys
−1
z

 , (4.25)

where si = κi +
σi
iωε0

and κi, σi are permitivity and conductivity independent UPML

parameters, that are de�ned in the UPML region as follows:

1. In layers at both edges of computational domain along one axis, components

of σ that are perpendicular to this axis equals zero and the same components

of κ equals one (for example in layers along the x-axis, we have σy = σz = 0

and κy = κz = 1).

2. At overlapping dihedral corners of the UPML, component of σ that is per-

pendicular to both axes equals zero and the same components of κ equals

one.

3. At overlapping trihedral corners of the UPML, the complete tensor (4.25) is

used.

Several pro�les of non-zero values of σ and to them corresponding values of κ

were devised for minimalization of the re�ection from UPML, but a polynomial

grading of those parameters is usually chosen [51,61,63]. For example

σx(x) =
(x
d

)m
σx,max, (4.26)

κx(x) = 1 +
(x
d

)m
(κx,max − 1), (4.27)

where x is the position in the UPML and d is the UPML layer thickness in x

direction. Parameter m is a real number with optimal values, found through expe-

riments, between 3 and 4 [51].

The UPML equations are modi�yng the set of equations (4.11) - (4.16) that are

used to determine the components of electric and magnetic �eld in the nodal points

of the FDTD grid. Derivation of such modi�ed equations using equations (4.23) -

(4.25) is not trivial at all and is described in [63]. Examples of the equations for the

x components of electric and magnetic �eld in the UPML region are then

En+1
x (i+ 1/2, j, k) =

(
2ε0κz − σz∆t
2ε0κz + σz∆t

)
En
x (i+ 1/2, j, k) +

+

(
1

2ε0κz + σz∆t

)
× [(2ε0κx + σx∆t)Q

n+1
x (i+ 1/2, j, k)−

−(2ε0κx − σx∆t)Qn
x(i+ 1/2, j, k)], (4.28)
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Hn+1/2
x (i, j + 1/2, k + 1/2) =

(
2ε0κz − σz∆t
2ε0κz + σz∆t

)
Hn−1/2
x (i, j + 1/2, k + 1/2) +

+

(
1/µ

2ε0κz + σz∆t

)
[(2ε0κx + σx∆t)B

n+1/2
x (i, j + 1/2, k + 1/2)−

−(2ε0κx − σx∆t)Bn−1/2
x (i, j + 1/2, k + 1/2)], (4.29)

where

Qx(x, y, z) =

(
1

sy

)(
sysz
sx

)
Ex(x, y, z). (4.30)

Set of equations analogical to (4.28) and (4.29) is then applied only to the boundary

layers and equations (4.11) - (4.16) are used in non-UPML region, in order to reduce

the computational requirements.

4.4.2 Symmetric/antisymmetric boundary conditions

Symmetric and antisymmetric boundary conditions are a special techniques used in

simulations of problems, where the electromagnetic �elds have a plane of symmetry

through the middle of the simulation region. By taking advantage of this symmetry,

the computational time and the size of the simulation region required can be reduced

by factor of two, four or even eight if the appropriate combination of symmetric and

antisymmetric boundaries is chosen [64]. Therefore, such boundaries are useful for

example for simulations that are based on interaction of a plane wave with periodic

structures.

If the electromagnetic �elds have a plane of symmetry, certain components of

the electric and magnetic �elds have to be zero at this symmetry plane. Symmetric

and antisymmetric boundary conditions are implemented by forcing the appropriate

�eld components to zero as shown in Fig. 4.2a.

As can be seen in Fig. 4.2a, normal electric �eld component and tangential mag-

netic �eld components have non-zero values, while tangential components of electric

�eld and normal component of magnetic �eld are zero at a symmetric boundary. For

antisymmetric boundaries, it is quite the opposite. The components of magnetic and

electric �elds are governed by certain rules of symmetry [64], shown in Fig. 4.2b,

because of the re�ections through the planes of symmetry.

From Fig. 4.2b, it can be seen, that if we choose appropriate boundary conditions

in the middle of the simulation region, the symmetry will allow us to compute

the �elds only in one half-plane of the simulation region, and therefore reduce the

grid size and computational time by one half. Furthermore if we have a problem
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Fig. 4.2: a Non-zero electric (blue arrows) and magnetic (green arrows) �eld compo-

nents at a symmetric and antisymmetric plane boundaries and b re�ection symetry

rules of electric (blue arrows) and magnetic (green arrows) �eld components at a

symmetric and antisymmetric plane boundaries. Taken from [64].

with symmetry along two or three axes, we can reduce the computational time

even more (by a factor of 4 in case of two-axes symmetry or by factor of 8 in

case of three-axes symmetry) with appropriately chosen combinations of Symmetric

and Antisymmetric Boundary Conditions, with respect to polarization of the input

wave [64].

4.4.3 Other often used boundary conditions

Periodic boundary conditions

Periodic Boundary Conditions (PBC's) are the most often used boundary conditions

for simulations of symmetric problems. PBC's are simply copying the electromagne-

tic �elds that occur on one side of the simulation region and inject them back from

the other side [64]. Therefore, we can calculate the response of the entire periodic

system by simulating only one unit cell.

The popularity of this method lies in fact, that it is very straightforward and easy

to implement [64�66], but its main drawback is, that a simulation with symmetry of

both the EM �elds and simulated structure itself is required. Therefore, the PBC's

can be used for example when a symmetric periodic structure is illuminated by a

plane wave propagating perpendiculary to the surface of the structure, but not if

the source wave is propagating at an angle which would cause a phase shift on the

sides of the computational domain [64].
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Bloch boundary conditions

Bloch Boundary Conditions can be considered a more general form of PBC's. They

aren't as easy to implement as PBC's but they apply a correction of the phase to

the �elds [64]

~Ex,min = e−iax
~kbloch ~Ex,max, (4.31)

~Ex,max = eiax
~kbloch ~Ex,min, (4.32)

where ax is a distance between the boundaries of the computational domain along

given axis and kbloch is a Bloch wave vector, that is correcting the phase for di�ferent

angles of incidence overcoming the problem with sources propagating at an angle,

that was mentioned in previous subsection.

Therefore, replacing PBC's with Bloch Boundary Conditions will not change the

results of the simulations but give us a possibility to use more variable sources.

Disadvantage of Bloch Boundary Conditions in comparison to PBC's is, that it

requires approximately up to twice the computer memory and computational time

[64].
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5 SIMULATIONS AND RESULTS

This chapter is devoted to description of our sensor structure, simulation methods

and to discussion of our simulation results. The goals of the simulations, presented

in this thesis are

• Selection of a suitable type of EOT sensor: de�nition of the material system

and choice of suitable nanohole array. A qualitative description of the proper-

ties of the selected layout,

• Rigorous simulations of the selected type of biosensor, investigation of the

in�uence of the geometric parameters on its sensitivity and other possible de-

tection characteristics, especially for the rectangular lattice of the nanohole

array instead of the standard square con�guration.

All FDTD calculations are performed in three dimensions using Lumerical FDTD

solutions software [64]. The period of time, for wich is the FDTD algorithm caltula-

ting the �eld development, is for all calculations chosen as t = 2000 fs and the step

size is ∆t = 5 fs.

5.1 Sensor structure and simulation parameters

Sensor structure

Figure 5.1 shows the schematic illustration of the sensor structure that was chosen

for purposes of our simulations. All the selected parameters correspond to the real

experiments [13,42,67] and can not be signi�cantly changed for technological reasons.

Although silver has better optical properties for the use in plasmonic such sen-

sors, 120 nm thick gold layer was chosen as a preferable material for our sensor, due

to the reactive properties of silver. The nanohole array with periods ax=ay=540 nm

along the x- and y-directions is made of circular holes with radius r=100 nm. The

substrate is created by a 70 nm thick layer of silicon nitride. For constructional re-

asons, the Au and SiN layers are separated by a very thin 5 nm layer of Titanium.

The dielectric functions of Au and Ti were taken from [68], the refractive index of

SiN is set to nSiN = 2.16.

Simulation parameters

The simulation setup, as exported from Luerical FDTD solutions, is shown on

Fig. 5.2. The nanohole array is illuminated by a plane wave, propagating in z-
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Fig. 5.1: a Top view and b cross section of the nanohole array. The array has periods

ax and ay along the x- and y-directions. The device parameters, that were chosen as

input values, are as follows: hole radius = 100 nm, array periodicity, ax = ay = 540

nm, and thicknesses of Au, Ti, and SiN layers of 120, 5, and 70 nm, respectively.

direction (as shown with wavevector ~k) in the range of wavelengths from λmin=500

nm to λmax=1500 nm, with polarization in the x-direction (shown with the electric

�eld ~E). The material of the hole is chosen as ideal dielectric with refractive index

corresponding to refractive index of the surrounding media (vacuum in basic setup).

Because the �elds are symmetric along both, the x- and y-axes, the advantage

of appropriately chosen combination of symmetric and anti-symmetric boundary

conditions can be used. This allows us to simulate only one unit cell of the nano-

hole array, which will then describe the behaviour of theoretically in�nite structure.

The anti-symmetric boundary conditions were chosen for boundaries in y-z planes,

symmetric boundary conditions in x-z planes and U-PML boundaries, to prevent

re�ection of the electromagnetic �elds back into the simulation region, in x-y pla-

nes. This setup is reducing the computational time needed by a factor of four in

comparison to periodic boundary conditions.

The simulation region is cubic with a sidelength of 540 nm, size of a FDTD Yee

cell was chosen as 5 nm.

5.2 Bare nanohole array

In this section, we investigate the in�uence of some of the geometrical parameters of

the nanohole array on the shape, heigth and full width at half maximum (FWHM)

of the resonant peak, which are the characteristics that de�ne the sensitivity and

�eld of merit (FOM) of such structures.

We are discussing the characteristic changes in the resonance peak in comparison

with geometrical setup as described in previous section, where the spectral position
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Fig. 5.2: a Cross section and b top view of the nanohole array exported from Lumeri-

cal FDTD solutions. Nanohole array is illuminated by a plane wave with polarization

in the x-direction. anti-symmetric boundary conditions were chosen in the y-z planes,

symmetric boundary conditions in the x-z planes and U-PML in x-y planes.

Fig. 5.3: Distribution of the electric �eld near the nanohole for λres=611.9 nm. Peri-

odicities between the nanoholes are ax=ay=540 nm, diameter of the nanohole is 200

nm and the thicknesses of Au, Ti and SiN layers are 120, 5 and 70 nm respectively.
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Fig. 5.4: Transmission spectra for nanohole arrays with hole diameters of 180 nm

(blue), 200 nm (green) and 220 nm (red). Holes are penetrated through 120 nm of

Au on a 70 nm SiN substrate, separated by 5 nm of Ti. Periodicities in both axes

are ax = ay =540 nm.

of EOT resonance is λres=611.9 nm, transmittance maximum of Tmax=0.0354 and

FWHM of 46.6 nm. The nanohole array is put in vacuum (n1=1) and no dielectric

layer on the Au surface is present.

Figure 5.3 shows the distibution of the electric �eld near the nanohole for

λres=611.9 nm. The results show the surface plasmon resonance of the �eld, caused

by interaction of the SPP's propagating on the gold surface, localized on the edge

of the nanohole on the Au surface.

Hole diameter

Figure 5.4 shows the comparison of transmission spectra for diameters of holes of 180,

200, 220 nm. It can be seen, that for larger holes, the transmission peak is getting

signi�cantly stronger. Althought, the lowest value of FWHM (46.6 nm) corresponds

to the hole diameter of d=200 nm (values of FWHM corresponding to hole diameters

of d=180 nm and for d=220 nm are 60.8 nm and 54.3 nm, respectively), larger hole

diameter can be still considered preferable choice since the change in the height of

the transmission peak is much greater than the change of the FWHM value.
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Fig. 5.5: Transmission spectra for nanohole arrays with thickness of Au layer of 120

nm on a SiN substrate with thickness of 70 nm separated by 5 nm (green), 10 nm

(blue) and 15 nm (red) of Ti. Holes are of diameter 200 nm and periodicities in both

axes are ax = ay =540 nm.

However, the transmission peak size in comparison to non-resonant values is

lower. Therefore, with further increasing the values of the hole diameters, the FWHM

would be increasing much faster. This would, at some point, probably lead to total

dissapearance of the EOT peak, so the size of the holes have to be chosen carefully.

Thickness of Au, SiN and Ti layers

The transmission spectra for several di�erent values of Ti layer thickness are shown

on Figure 5.5. Results show, that thiner layer of Ti should be preferable due to

slightly higher transmission peak. However, the transmission spectra doesn't show

any signi�cant di�erence or FWHM values, which are 48.2, 46.6 and 41.1 nm for the

thicknesses of 5, 10 and 15 nm, respectively.

In case of changing the Au layer thickness (Figure 5.6), the results show, that for

thicker Au �lm, the resonance peak gets lower magnitude as well as much smaller

FWHM (94, 46.6 and 41.5 nm for the thicknesses of 100, 120 and 140 nm, respecti-

vely). Because of this notable change of FWHM, thicker gold layer can be considered

a better choice, since the decrease in transmission is not that signi�cant and consi-
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Fig. 5.6: Transmission spectra for nanohole arrays with thickness of the Au layer

of 100 nm (blue), 120 nm (green) and 140 nm (red) on a 70 nm SiN substrate,

separated by 5 nm of Ti. Holes are of diameter 200 nm and periodicities in both

axes are ax = ay =540 nm.

Fig. 5.7: Transmission spectra for nanohole arrays with thickness of Au layer of 120

nm on a SiN substrate with thicknesses of 50 nm (blue), 70 nm (green) and 90 nm

(red) separated by 5 nm of Ti. Holes are of diameter 200 nm and periodicities in

both axes are ax = ay =540 nm.
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dering, that transmission peak size in comparison to non-resonant values is greater.

Although larger thickness of Au �lm seems to be a better choice, it has to be,

again, chosen carefully due to the fact, that for too thick metal �lm, no resonance

in transmission could be observed at all.

Figure 5.7 shows the comparison of three transmission spectra for diferent thickness

of the SiN. Here, thinner layer shows the best results due to the signi�cant increase

of the EOT peak heigth. The �gure also shows enhancement of the FWHM(32.6,

46.6 and 33.7 nm for the thicknesses of 50, 70 and 90 nm, respectively) for both,

increased and decreased thickness of the SiN layer in comparison to the original

value of 70 nm. However, too thin SiN layer could cause a problems with fabrication

of such sensor device.

Periodicity in x- and y-direction

Here, we investigate the e�ect of change of the periodicities ax and ay of the na-

nohole array along x- and y-axes. We are investigating the characteristics of the

nanohole array with rectangular lattice, that de�ne the sesitivity and FOM of such

systems, in comparison to the standartly used square con�guration. To simplify data

interpretation, we denote parameter

δ = ay − ax, (5.1)

that de�nes the change of the nanohole array lattice against the square lattice con-

�guration.

Examples of the transmission spectra for ax=540 nm and di�erent values of δ

are shown on Fig. 5.8. We can see, that "well-de�ned" peaks are obtained for either

large negative or large positive values of δ. This could mean that, by simple deviation

from the square con�guration of the nanohole array, we could allready signi�cantly

improve the sensing capabilities of the system.

However, a noticable phenomenon occurs in results, as one can see that, for a cer-

tain value of the δ parameter (around δ=20 nm), the resonance peak disappears and

is replaced with another resonance, which is spectrally shifted to lower wavelengths.

As we will show, this "splitting peak" phenomenon can be used at our advantage in

order to further improve the sensitivity of the sensor and is widely discussed later

in this chapter.

Figure 5.9a shows the transmission spectra of the nanohole array with square

lattice con�guration as a function of ax and λ. The white dashed line represents the

approximate values of the resonance wavelengths calculated by equation (3.2). It

can be seen, that higher transmission peaks corresponds to lower values of ax while
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Fig. 5.8: a, b Transmission spectra of the bare nanohole array with periodicity along

x-direction ax=540 nm for di�erent values of δ. Black arrows are showing the trend

in the EOT resonance peak with increasing δ.

for higher values of ax, the resonant peaks gets narrower. This forces us to choose

the values that will be a compromise between the resonance power and its shape.

In comparison of those results with resulsts for di�erent values of δ (shown on

Fig. 5.9b and Fig. 5.10a), one can see, that the deviation from the square lattice

leads, again, to the enhancement of the transmission e�ciency and the resonance

linewidth, especially for larger values of δ, where the resonance peaks are very sig-

ni�cant and narrow (Fig. 5.10a).

42



Fig. 5.9: Colormaps of the amount of light transmitted through bare nanohole arrays

as a function of periodicity ax and λ for a δ=0 nm b δ=40 nm. The white dashed

line represents the theoreticaly calculated values of the resonance wavelength λres.
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Fig. 5.10: a Colormap of the amount of light transmitted through bare nanohole

arrays as a function of periodicity ax and λ for δ=70 nm. The white dashed line

represents the theoreticaly calculated values of the resonance wavelength λres. b

Resonance wavelength λres as a function of periodicity ax and parameter δ.
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Fig. 5.11: Sensitivity S of the nanohole array with rectangular lattice con�guration

as a function of δ, for ax=500 nm and nd=1.33.

Figure 5.9b also clearly shows that, with increasing ax, the resonance wavelen-

gth is suddenly shifted to lower wavelengths. This is the direct consequence of the

resonance splitting that was mentioned earlier in this section.

In Figure 5.10b, the resonant wavelengths are displayed as a function of ax and

δ. In the regions where peak splitting occurs, the peak with larger transmission is

chosen. We can see that, with increasing ax, the shift of the λres, located at the

discontinuities in the colormap, is decreasing and eventually disappears. Therefore

we can assume, that for su�ciently large values of ax, no splitting phenomenon could

be observed at all.

5.3 Bulk sensor

In this section, the in�uence of δ on the sensing capability of the apertures de�ned

by its sensitivity S, FWHM and FOM of the nenohole array immersed in some bulk

medium (de�ned with its refractive index nd) is investigated.

Figures 5.11, 5.12 and 5.13 shows the dependence of S, FOM and FWHM as a

function of δ, respectively. Here, ax=500 nm and the system is immersed in water

with refractive index nd=1.33.
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Fig. 5.12: FOM of the nanohole array with rectangular lattice con�guration as a

function of δ, for ax=500 nm and nd=1.33.

Fig. 5.13: FWHM of the nanohole array with rectangular lattice con�guration as a

function of δ, for ax=500 nm and nd=1.33.
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By deviation from the square lattice, the system shows decrease in sensitivity,

but with decreasing δ to the negative values, we can observe fast decrease in the

FWHM and for example by choosing large negative value of δ could signi�cantly im-

prove FOM incomparison to standard square lattice con�guration, and therefore the

sensing capabilities. Moreover, such lattice geometry shows also larger transmission,

which is advantegous for systems that are using imaging-based devices.

5.4 Surface sensor

Figures 5.14, 5.15 and 5.16 shows the examples of the transmission spectra of the

nanohole array in air (vacuum, n=1) and array covered with a thin dielectric layer,

mimicking protein-like structure immobilized on the surface, for δ=-100 nm, δ=0

nm and δ=35 nm, respectively. The dielectric layer has a thickness of 10 nm and

refractive index nd=1.6.

We can see, that for square lattice (δ=0 nm, Fig. 5.15), the spectral shift of

the resonance caused by the dielectric layer is ∆λres=18 nm. The FWHM of the

transmission resonance is then 58 nm, giving us ∆λres/FWHM ratio of 0.31. Using

a nanohole array with large negative value of δ, as shown in Fig. 5.14, we can observe

slightly bigger resonance shift of ∆λres=21 nm, but signi�cantly greater transmission

and smaller value of FWHM. These "well-de�ned" peaks then gives us much greater

∆λres/FWHM ratio of 0.45.

However, by utilizing a rectangular lattice with certain δ values, the sensitivity

can be enhanced even further. In case of δ=35 nm, as shows Fig. 5.16, the re-

sults show much greater resonance shift of λres=45 nm. The mode with the highest

transmission is allways considered. In the case of the bare nanohole system, the reso-

nance with the highest transmission is observed at shorter wavelengths (λ2,res),while

after the addition of the dielectric �lm, the resonance with the highest transmission

is observed now at longer wavelengths (λ1,res). This means that, for certain range

of δ, the spectral distance of the compared transmission peaks is greatly enhanced.

Although the FWHM of the transmission resonance is bigger (58 nm) in this case,

we still observe much larger ∆λres/FWHM ratio of 0.77, and therefore signi�cantly

better sensing capabilities.

The range of δ, where we can achieve this enchanced characteristics, can be seen

on Figures 5.17a and 5.17b, where the ∆λres/FWHM is shown as a function of δ

and ax. This region is located between the two discontinuities on each �gure. The

discontinuity located at lower values of δ corresponds to the resonance splitting of

the bare nanohole array while the discontinuity at higher values of δ corresponds to

the splitting of the system after addition of the 10 nm thin dielectric layer.
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Fig. 5.14: Transmission spectra of the nanohole array before (blue line) and after

(red line) the addition of a 10 nm thick dielectric layer for period ax=540 nm and

δ=-100 nm.

Figure 5.17a also shows that, for (ax, δ) pairs which are not located between the

two discontinuities, ∆λres behaves as in the case of the square lattice. However, as

we observed in previous sections, decreasing δ to large negative values can improve

the quality of the resonance. Figure 5.17b shows that this e�ect is the strongest for

ax ≈ 550 nm, where we observe an improvement in ∆λres/FWHM ratio caused by

narrowing the resonance linewidth.
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Fig. 5.15: Transmission spectra of the nanohole array before (blue line) and after

(red line) the addition of a 10 nm thick dielectric layer for period ax=540 nm and

δ=0 nm.

Fig. 5.16: Transmission spectra of the nanohole array before (blue line) and after

(red line) the addition of a 10 nm thick dielectric layer for period ax=540 nm and

δ=35 nm.
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Fig. 5.17: a Shift in the resonance wavelength ∆λres caused by the addition of thin

dielectric layer on the golden surface and b ∆λres/FWHM ratio of the nanohole

array as a functions of ax and δ.
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6 CONCLUSION

The goals of this diploma thesis were to select a suitable type of the EOT sensor,

by de�nition of the material system and choice of the nanohole array, and to inves-

tigate the in�uence of the geometric parameters on its sensitivity and other possible

detection characteristics.

In the �rst four chapters, the theoretical knowledge that forms the basis for

plasmonic sensing applications was introduced as well as the basic introduction to

the FDTD numerical method, that was used to carry out the simulations in this

thesis.

In the second part of this work, we study the EOT properties of nanohole arrays

with a rectangular lattice for label-free refractive index sensing applications. The

description is based on our results that were published in [31]. All the selected

parameters, that de�ne the material system and nanohole array, are chosen with

respect to real experiments [13, 42, 67] and can not be signi�cantly changed for

technological reasons.

First, the in�uence of the nanohole diameter and the thickness of the Au, SiN

and Ti layers on the resonance transmission and the shape of the EOT peak was

investigated. Here, the results showed that all of the parameters should be chosen

very carefully. However, thinner SiN layer as well as larger values of the Au layer

thickness and hole diameter showed the most promising results.

The in�uence of the periodicities of the nanohole array in two axes was then inves-

tigated. We showed that, by deviating from the standardly used square con�guration

of the nanohole array, we can increase the resonance transmission and decrease the

resonance linewidth (FWHM), which can signi�cantly improve the sensing cpabili-

ties of such system, especially for large negative values of δ parameter de�ned as the

di�erence between periodicities in both axes. The splitting of the resonance peak

was also observed for certain values of δ, caused by transmission dominance of the

second transmission resonance located at lower wavelengths.

Next, the sensitivity, FWHM and the �eld of merit (FOM) of the nanohole array

immersed in some bulk medium as a function of δ is investigated. Although the

sensitivity is greatest for values of δ very close to zero, the choice of large negative

value of δ is preferable, because of the narrowing of the EOT linewidth, and therefore

signi�cant increase in the FOM.

In the last part of the simulations, we investigated the in�uence of δ on the

sensing capabilities of nanohole arrays with the presence of the thin dielectric layer

that mimicks biomolecules immobilized on the golden surface. The large negative

values of δ, again, showed very promising results. However, results showed, that

the resonance splitting of the bare nanohole array occurs at lower values of δ then
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in the case where the dielectric layer is present. This leads to the presence of a

region between certain δ values, where the spectral shift of the resonance is greatly

enhanced. Although the FWHM values are greater in this case, the system still shows

increase in ∆λres/FWHM ratio, leading to signi�cantly better sensing capabilities

of such systems.

We believe, that the results presented in this work could provide an e�ective

way to select the most advantageous lattice con�guration to realize biodetection

platforms providing the highest sensitivities.
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Symbols

~E...Electric �eld
~B...Magnetic induction
~D...Dielectric displacement
~H...Magnetic �eld

T ...Light transmission

λ...Wavelength
~j...Current density
~k...Wavevector

ρ...Electric charge density

µ...Relative permeability

ε...Relative permittivity
~P ...Polarization
~M ...Magnetization

n...Refractive index

κ...Extinction coe�cient

τ ... Relaxation time

γ...Collision frequency

ω...Frequency

u...Displacement of the electron gas

β....Propagation constant

Shorts

FDTD - Finite Di�erence Time Domain

EOT - Extraordinary Optical Transmission

SPP - Surface Plasmon Polariton

LPP - Localized Surface Plasmon

TM - Transverse Magnetic

TE - Transverse Electric

SNOM - Scanning Near-�eld Optical Microscopy

SEF - Surface Enhanced Fluorescence

SERS - Surface Enhanced Raman Spectroscopy

UPML - Uni-axial Perfectly Matched Layers

PBC - Periodic Boundary Conditions

FWHM - Full Width at Half Maximum

FOM - Field Of Merit
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