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1 Introduction

Machining centres (MCs) belong to the group of production machines, which require high
performance, manufacturing accuracy, reliability, safety, etc. With growing demands on
manufacturing quality of components for the aerospace, power and pharmaceutical (med-
ical) industry, an increasingly greater emphasis is placed on control and growth of man-
ufacturing eligibility. This is influenced by manufacturing accuracy of the machine tool,
i.e. mainly by its geometric accuracy. Geometric accuracy belongs to the group of quasi-
static errors that constitute 60-70% of the total error of the machine tool [1]. Apart from
geometric errors, these quasi-static errors also include kinematic and thermal errors, [2].

For long-term sustainability of manufacturing accuracy (manufacturing eligibility), it
is necessary to pay attention to the mount of MT on a suitably rigid base, to set up the
machine to the required geometric accuracy and next, considering the needs and require-
ments, to apply the appropriate software compensations. In the phase of machine tool
use, various technologies for verification of machine tool eligibility are then deployed. For
these measurements, the emphasis laid is on adequate measurement accuracy with the
highest possible interpretation of the results and especially on short measurement times
associated with the necessary MT shutdowns.

Different approaches to measurement, data processing and creation of models for gen-
erating compensation tables are described in a number of scientific papers. For verification
of the proposed models the most often used measuring instruments are the Ballbar-type
apparatus [3], the laser interferometer [4—6], the laser tracker [7-9], and the laser tracer
[10-14]. Modelling of errors of machine tools is closely associated with the used instru-
mentation. This implies a further procedure for the development of individual mathemat-
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ical models. A currently researched topic is modelling of volumetric accuracy of machine
tools with various kinematic structures. The aim of this research is to use mathematical
models to create the so-called map of machine tool accuracy and to utilize the acquired de-
viations suitable for the relevant software compensation of machine tools. Error modelling
of machine tools has been for long time subjected to intensive research. The most common
approach to the model creation, based on rigid body kinematics and transformations of
coordinates between the individual rigid bodies, is a homogeneous transformation matrix
(HTM). HTM modelling is described for various kinematic chains of machining centres
in publications [5, 15-20].

To achieve relevant results, it is necessary to obtain measurement data free of thermal
influence because this influence caused by the change in internal and external ambient
conditions may invalidate the measurement by thermal deformation of the machine, but
also by the very process of measurement. For this reason, it is necessary to complete the
measurements in the shortest possible time interval under stable conditions. In manufac-
turing facilities, especially in large machining centres, it is almost unrealistic to maintain
constant ambient conditions. Therefore the obtained results on the state of the machine
may be distorted both due to thermal deformations of the machine and also due to tem-
perature change of ambient air [21].

Information on “geometric behaviour” of small and large CNC MTs can be obtained by
various approaches. One of the variants is to machine a test component; this will enable an
assessment of machine tool eligibility. The second variant is based on direct measurement
of geometrical deviations. This variant is less desirable from the perspective of users; the
reason is a necessary machine tool shutdown.

If we intend to analyse the entire working space of MT and obtain an error map, the mea-
surements will be very time-consuming. To meet the requirement on minimum time de-
mands with the aim to create a map of machine tool errors, it is recommended to propose
a suitable methodology of measuring and processing of the obtained data. This method-
ology is not only dependent on the size of MT working space, but also on the kinematic

chain between the workpiece and the tool and also on the measuring device used.

2 Algebraic approach

In [22] we discussed the methodology of multi-axis machines geometric error modelling
in the context of modern theory of Weil algebras, [23]. When composing the kinematic
chain containing geometric errors, we embed the error matrix corresponding to any kine-
matic joint, i.e. the errors of the joint translation or rotation. In particular, for the transla-
tion in the direction of vector (x,y,z) or for the rotation around the z axis by the angle y,
the following error matrices apply, respectively, [24, 25].

1 - B x
o 1 vy y
-8 -y 1 z
0 0 0 1
—acos(@ +y)—Bsin(@ +y) asin(@ +y)—-Bcos@+y) 0
y o cos(f + y) —sin(6 + y) 0
-B sin(6 + y) cos(f +y) 0

0 0 0 1
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The parameters «, B and y represent the error rotations around the axes z, y and x, respec-
tively, and 6 gives the proper rotation around the axis z. The error matrices were derived
from the rotation matrices around particular axes by approximation. More precisely, for
the rotation around axis x the error matrix is approximated as follows:

1 0 0 0 1 0 0 O

0 cosa -—sina O 01 —-a O
EVNY

0 sina cosa O 0 ¢ 1 O

0 0 0 1 0 0 0 1

Thus cosa ~» 1 and sina ~~» «. In the case that two approximations are multiplied, the
whole term vanishes. This is caused by the assumption that the errors are by order smaller
than the proper rotation parameters. The above mentioned representation is a standard
description of the error matrices to be embedded into the kinematic chain and the corre-
sponding kinematic equations which are to be solved within the error analysis. Generally,
in the case of the system of linear equations, we proceed by Gauss elimination, for non-
linear systems we use Grobner bases. Thus in our matrix calculations we use the identities
a;f =0, a;y; = 0and B;y; = 0 for all ,j € {1,2}, which resemble the identities for the imag-
inary parts of the dual numbers. Thus it makes sense for the whole theory to work with
so-called homogeneous matrices over the dual numbers as transformation matrices. More
precisely, in error modelling the set SO(2,D) of the special orthogonal matrices over the
dual numbers are involved, see [22].

From the algebraic point of view, the dual numbers D extend the real numbers by ad-
joining one new element ¢ with the property (> = 0 (¢ is nilpotent). The set of dual numbers
forms a particular two-dimensional commutative unital associative algebra over the real
numbers. Every dual number can be represented as

z=a+bt

uniquely determined by real numbers a (real part) and b (imaginary part). Division of dual
numbers is defined whenever the real part of the denominator is non-zero. The division
process is analogous to complex division, i.e. the denominator is multiplied by its conju-
gate in order to cancel the non-real part. In paper [22] we proved the set of theorems about
special orthogonal matrices over dual numbers. For example, in the case 2 x 2 matrices,
we have the following theorem which describes the class of matrices involved in the error

modelling:

Theorem 2.1 Let A + Bt € SO(2,D). Then A + Bu is in the following form:

cos(p) — ksin(p)t  —sin(p) — kcos(p)t
sin(g) + kcos(g)t  cos(p) — ksin(p) |’

where ¢ € (0,21) and k € R.

As a result, if the inverse kinematic is realized over the dual numbers, second order
errors multiplied by a position coordinate are neglected, i.e. the terms of the form xs,,e,,
vanish. This may increase the inaccuracy of the model. To avoid it without any additional
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complexity in calculations, we recall the following concept: algebra of second order dual

numbers D? is defined as a set
]D)f = {a1 +ast + 613L2|(li € R}

together with the sum by parts and multiplication modulo (3 = 0. In particular, D? can be

defined as a factor space
D7 = R[J/(3).

To apply this concept to the kinematic chain, the matrix representation of D? is used, see
[26]. Note that in this setting the dual numbers can be understood as the dual numbers of
the first order D := Dj.

The theory of matrices over the algebra D? is much more sophisticated, some results
can be found in [26], e.g. the description of the relevant 2 x 2 matrix class equivalent to

the one mentioned in Theorem 2.1 is the following:

Theorem 2.2 IfA + Bt + Ci2 € SO(2,D?) then

A cos(g) —sin(p) B —ksin(p) —kcos(¢)
- sin(gp)  cos(p) ’ N kcos(p) —ksin(ep) ’

(—écos(w) £ sinp) )

2 . 2
~Esin(p) -£ cos(p)

Our results differ from the classical error modelling theory by admitting the second
order errors, i.e. the terms of the form &,,e,, are considered as non-zero. The reason of
neglecting the terms of the form e,,&,, but accepting the terms xe,,&,, in classical ap-
proach comes from the unit analysis. Yet the computation itself is then provided in a non-

associative algebra. Indeed,

0 #(xgxy)gxz #x(gxygxz) =x-0=0.

Thus compared to classical theory, our approach considers more terms to be non-zero
which makes the result even more accurate, furthermore, the calculations are modelled in

associative algebra which is much more suitable for computer modelling.

3 Virtual three-axis machine

A proposal for processing the data to create a map of geometric accuracy (phantom data)
is prepared to be applied and verified on the demonstrator MCV 754 QUICK (Figure 1).
The working space of demonstrator is defined by travels of the individual axes; in Figure 1
it is designated as WS (Working Space) with dimensions of 754 x 500 x 550 mm. In the
following part of the computation, simulation is performed on the reduced space - see
Figure 1 designated as MS (Measuring Space) with dimensions of 150 x 100 x 150 mm
and shifted in the coordinate system NCS (Coordinate System of New measuring space)
to the position of x = 300 mm, y = 200 mm and z = —200 mm.
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Figure 1 MCV 754 QUICK.

Table 1 Parametric errors for three-axis MT
Axis Axis error (ISO/paper symbol)
X-axis EXX/8yy EYX/8yx EZX/8,x EAX/g,\ EBX/eyy ECX/¢e,
Y-axis EXY/8,, EYY/S,, EZY/S,, EAY/g,, EBY/e,, ECY/e,,
Z-axis EXZ/68y, EYZ/$), EZZ/5,, EAZ/¢y, EBZ/gy, ECZ/e,,

Axis Squareness error

(1ISO/paper symbol)

X-axis  BOZ/Sy, COY/Sy,

Y-axis A0Z/Sy,

Z-axis COY/Sy,

Working space of three-axis milling machine is defined by Cartesian coordinate sys-
tem X, Y, Z in the kinematic chain WXYZT (workpiece-tool, W - Workpiece, T - Tool).
A computation of “virtual model” and error map is based on parametrization of the in-
dividual geometric errors of the machine tool. A three-axis milling machine enables to
identify a total of 21 parameters of geometric errors (see Table 1). These errors are defined
for each translational axis where each of translational axes has six geometrical deviations.
According to ISO, the deviations of the X-axis are designated as EXX, EYX, EZX, EAX,
EBX, and ECX. These errors also take into account squareness deviations between two
axes, e.g. between X and Y - COY. This is a total of 6 x 3 errors for translational axes and
three squareness errors of the individual axes.

When creating a virtual model, it was necessary to divide the working space WS into in-
dividual parts of MS due to the non-linear behaviour of some geometric errors. A sample
linear behaviour of EXX error and non-linearity of EZX on WS can be seen in Figure 3.
The measured data were obtained on the test demonstrator with “tracking laser interfer-
ometer’, Figure 2.

On the basis of determined non-linear behaviour of geometric errors of demonstrator,
it was necessary to parametrize the working space of 16 geometric errors. This model
showed large deviations of error map caused by non-linearity of measured geometric er-
rors. For this reason, the working space was divided into smaller segments (MS), see Ta-
ble 2, where only seven of the assessed geometric errors (EYY, EAY, EZX, EYX, EZY, EXY,
EXZ) exhibit non-linear behaviour. Such a number of geometric errors in the simulation
further appear to be plausible.

We compose the classical kinematic chain of the matrices over the second order dual
numbers, i.e. the algebra D?. All consequent calculations are then computed in this alge-
bra. This allows us to use the effective modules of mathematical interface, in particular of
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Figure 2 Configurations of tracking laser interferometer. Spindle Reflector

~J !
Temperature  Tracking laser
sensors interferometer

Worktable

Table 2 Adjusted space in the machine coordinate system with the start-CP

Axis Start-CP [mm] End [mm] Length [mm]
X-axis 300 450 150
Y-axis 200 300 100
Z-axis -200 -50 150
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Figure 3 Error model on configuration space.

Mathematica®. Our model was based on real data, relating the configuration space. One
can see, Figure 3, that the configuration space 750 x 550 x 500 breaks up into several

blocks on which we can assume a linear variation of error. In order to check the inner
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Figure 4 Phantom data.
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Figure 5 X-Y, X-Z and Y-Z projection planes of the phantom data.

accuracy of our method, we use the phantom data generated on the configuration space

150 x 100 x 100. The appropriate error vectors with coordinates formed by the differences

dx, dy and dz are shown on Figures 4 and 5.

4 Error modelling

In order to calculate the parameters conversely, we have to proceed in several steps. First,

for the machine in question we determine the kinematic chain and substitute § and ¢ in the

resulting matrix by the appropriate linear parametrizations. Then if we let the modified

matrix T act on the vector

<
1l
— = =

we obtain the real position of the vector (1 11)7 which is consequently subtracted from

the ideal image position, i.e. from the vector

<
Il
N R
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and thus the difference vector

Ax
X=|Ay
Az

is established.
In our particular case we use the following kinematic chain which contains error matri-
ces corresponding to deviations caused both by the machine mechanics and by the ma-

chine errors. Let us consider the following kinematic chain for three-axis machines:

1 0 0 « 1 —Ezxl Eyy Oxxl 1 0 0 O
T 01 0 O Eaxl 1 —Exxl  Oyxl 01 0 vy
0 0 1 O —Eyxl  Exxl 1 Szxl 0 0 1 O
0 0 0 1 0 0 0 1 0 0 0 1

1 —Egl  Eyyl  Oxyl — Syyy 1 0 0

o Egyt 1 —Exyl Syt 01 0 O

—Eyyl  Exyl 1 Oyt 0 01 z

0 0 0 1 0 0 0 1

1 —Egl  Eyl Oyl — SyZ 1 0 0 O

y €4l 1 —Exgl Oyl — Sy 01 0 O

—Eygl  Exgl 1 Szl 0 0 L O

0 0 0 1 0 0 0 1

The above mentioned parametrization is realized by the choice of constants of linear-
ity for the expression of the displacement errors in the given direction and of the rotation
errors. The displacement errors in the other directions than the one of the actual displace-

ment are calculated by means of Abe principle. Thus we recall the following parametriza-

tion:

Sxx = AX, 8,y = by, Sy = CZ,
fi 41 h

Sy = Exz, 82y Eyz, 8z EzZ,
S i) hy

6Zx = Exz: 5xy 9 2; sz 7 2;

Eyx :flx) Exy =81)5 Exe = M2,

Ezx :fo» Ezy = 42)) &2 = h37,

Exx = f3%, Eyy = 839 &y, = hoz.

In fact, our goal is to reconstruct the parameters from the phantom data measured on
the axis x, y, and z. The first goal is to express the differences by means of the following

parameters

a, br C;fi; 2¢fé:g1:g2)g37 hl: h27 h3
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which are to be calculated consequently by the least square method. By comparison of the
result with the ideal values, the following three equations are given.

Ax = =Sy —Sxz + |:ax +L(fix + g3y + haz) + z(fix + g3y) — Sy.2(—fax — g2)

2 h 2
—fzxy—fzx+g27y—g2y+2—Z—h3zi|l+["']lz,

2
fix®
Ay=-S8,.z+ |by+ - - Sxz2(fox + 29) — faSayxy + fox + L(—f3x — @1y — I2)

h122 2
+z(=fax —@y) + Ly + —~ +h3z |+ [--]05
fox?
Az = | cz — Syz(—fix — g3y) + fiSxyxy — fix + - Sy2(fax + g1y)
gy’
+f3xy + fax + =N +Qy -Gy +hz— h22:|l +[ 1

In what follows, for the sake of simplicity, the coefficients of (> are omitted. Clearly, it is
possible to handle the elements of different orders separately or jointly. Note that another
advantage of our approach is that the errors of particular orders can be recognized and
separated during the calculation.

If these equations are reformulated in the way that the parameters

a, br C;ﬁ; 2¢f:°,1g1:g2)g37 hl: h27 h3

are understood as the variables and the functions of x, y, z form their coefficients. The
value L is given by the machine construction and the squareness errors Sy, S,; and S,,
are constant within the whole workspace and assumed to be known. For Ax we have the
variables

hB;h2yg37g2) Z’ﬁ’“:g3h21g3h17g2h3’g2h11 2h3¢_f2h11
_fZgZ’fﬁglr th’ﬁhlyﬁg3yﬁg1;Cg3’Cﬁ)bﬁ

with the appropriate coefficients. For instance, the coefficient of fig is in the form 1xy?
and for figs the appropriate multiplier is S,,xyz. For the choice x € 1,...,15, ¥y = 5 and
z = 5 we obtain the matrix of the dimension 15 x 22, where the rows represent different
choices of x and the right hand side of the system is given by the actual difference Ax at
(%,9,2). To this matrix, we find the Moore-Penrose inversion and calculate the coefficients
in question consequently. The same procedure on Ay and Az is applied and the resulting
error parameters are used for graphical demonstration of the predicted deviations, see
Fig. 6.

5 Conclusion

We used the phantom data based on the technical parameters and measured errors of the
demonstrator to check the proposed method of the calculation of the geometric errors
linear parametrization. To avoid the discontinuity in the error evolution, we focused on
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Figure 6 X-Y, X-Z and Y-Z projection planes of the results.

such part of the MS space where the errors are approximately linear. Consequently, we
calculate the linear parameters in question classically by means of the Moore-Penrose in-
verse matrix with the modification based on the calculus of the dual numbers formulated
in [22]. Our aim is to both predict the machine tool behaviour and to use the measured
data for the correct description of its possible states. The main contribution of our calcula-
tion proposal is the reduction if the number of inputs that are necessary to measure within
the machine working space. This leads to significant reduction of the machines shutdown
time needed for the data collection. Furthermore, it is possible to use more elementary
measurement tools like laser interferometer, the price of which is remarkably lower than
that of the Laser TRACER, which was used within this publication. The disadvantage of
the proposed algorithm is the assumption on the errors linearity behaviour. This ques-
tions the suitability for small and middle-sized machines. On the other hand, the error
linearity of particular geometric errors can be expected for large machines. We conclude
that, based on the provided graphs, for such machines our results are highly applicable.
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