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Abstrakt
V této práci je popisováno rozšíření infrastruktury Code Listener, kterou lze použít pro
tvorbu nástrojů pro statickou analýzu programů, o podporu zpracování programovacího
jazyka C++. Řešení představuje rozšíření pluginu Code Listener bez nutnosti jakéko-
liv modifikace v již existujících statických analyzátorech, které jsou na této infrastruk-
tuře postaveny. Výsledkem této práce je přidání podpory pro zpracování základních kon-
strukcí jazyka C++, jako například jmenných prostorů, L-hodnotových referencí nebo tříd.
Přínosem této práce je možnost ji dále použít jako odrazový bod pro implementaci zbývající
podpory jazyka C++ pro infrastrukturu Code Listener.

Abstract
The thesis describes an extension of the Code Listener infrastructure adding support for
C++ programming language, where the Code Listener infrastructure itself can be used
for building of static analysis tools. The solution represents the extension of the Code
Listener plugin without any need to modify the already existing static analysis tools that
are based on it. Outcome of this work is added support for processing of basic C++ language
construct, like e.g. namespaces, L-value references or classes. Contribution of the work is
then represented by the possibility to use this thesis as a stepping-stone for implementing
the remaining support of C++ language into the Code Listener infrastructure.
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Chapter 1

Introduction

With the increasing speed of software and hardware development, there is also a bigger
need for much more quicker and reliable testing of the resulted applications or hardware
designs. However, success of the conventional testing largely depends on the skills of a tester,
therefore it might not be always suitable for verification of the life-critical systems, for
example medical, nuclear or aviation software or hardware.

The process of formal verification and its approaches might be a solution to this is-
sue, since it uses formal methods of mathematics to prove or disprove the correctness of
a tested behaviour. Still, the act of such proving is not an easy task and for example
the Theorem proving, one of the approaches, usually requires an expert to lead the process
of the verification [46].

On the other hand, it is possible to create a computer program which will automatically
check and verify the certain aspects of other computer programs/hardware designs. One
of the such approaches is called static program analysis. It uses the source code of the pro-
gram, or some form of the object code representing it, to perform a certain type of formal
verification. This is being done without executing the tested program itself.

To ease up the process of creating a static analysis tool, the members of the VeriFIT
group [3] have been working on the so-called Code Listener in recent years. This in-
frastructure is able to wrap an existing code parser and transform its intermediate code
representation into the intermediate code representation used by Code Listener. It provides
researchers with the concise, free, unified, object-oriented, and mainly – well-documented
API (Application Programming Interface) – for creating static analysis tools [39, 7].

Even though the current version of the Code Listener infrastructure supports only pro-
cessing of the C programming language, it is being used in two static analysis tools of
the VeriFIT group – predator [37] and forester [36] – and one demo tool – fwnull [7, 12].

The goal of this thesis is to extend the Code Listener infrastructure by adding support
for processing of the C++ programming language. This extension will allow the use of
predator, forester, and any other static analysis tools based on Code Listener, to analyze
the C++ language source codes – without need to make any changes to the tools themselves.

The following Chapter 2 will provide more information about the Code Listener itself,
industrial compiler named GCC [18] and its connection to Code Listener, GCC’s interme-
diate code representation, and key aspects of the C and C++ programming languages.

Chapter 3 describes the initial state of the thesis, while in the Chapter 4 the proposed
solution is discussed more thoroughly.

Finally, the Chapter 5 summarizes the work’s results and usability.

2



Chapter 2

Basic preliminaries

The upcoming sections contain all of the fundamental knowledge, which some of the readers
might find useful in order to fully understand the terms, figures or schemes used later. These
previously studied information were cherry-picked to provide only the relevant ones.

To comply with the common typesetting rules, every new occurrence of an important
term will be emphasized, while every source code example will be written in monospaced
font.

2.1 Static program analysis

Static program analysis (static analysis in short) is one of the approaches of the formal
verification. It is used for proving or disproving correctness of certain aspects of the source
code which is being checked. Just like a conventional testing, it can not certify that the in-
spected program is completely flawless. It can only confirm if a certain type of error is
present in the source code or not. However, this can be done very effectively with the com-
bination with automated testing and thus, by using many types of static analysis tools, it
is possible to cover large error domains of a program where the bugs might occur.

In order to create a new static analysis tool, there is usually a requirement to obtain
some form of the intermediate representation of the code, upon which the analysis can be
performed. There are several ways to achieve this [41]:

• Use one of the existing infrastructures, like e.g. ckit [5], Microsoft’s AST Toolkit
(which is now part of the Microsoft PREfast[10, 26]) or CIL [45].

• Utilize a generic parser generator that can be used for building the static analysis
tool by specifying the grammar of a programming language. Some common examples
include Yacc [35], Bison[4] or ANTLR [2]. Synoptic comparison of notable code parser
generators can be found at Wikipedia [8].

• Create a static analysis tool as a plugin for any industrial compiler, which is mature
enough to support such a feature, using its generated intermediate representation.

The last mentioned approach has some quite significant benefits over the previous two ap-
proaches. Firstly, the static analysis tool, as a such plugin, ”cannot fail due to problems
with parsing the source programs” [41]. Either the compiler’s input is syntactically wrong,
or it can be compiled and therefore the produced intermediate representation can be used
for the analysis. Secondly, the static analysis tool as a plugin can be developed completely
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independent of the compiler itself, assuming the API (Application Programming Interface)
of the compiler stays unchanged. Lastly, source code that is used for compilation of a pro-
gram is also used for the analysis. In other words, the final output of a compiler should
have the same behaviour as the analysed program. This can, however, be altered in case
the compiler’s optimizations are faulty, which is not uncommon [15].

2.2 Intermediate language and its representation

Compilation of source code represents transformation of a high-level language into a form
of a low-level language. Even though the terms high-level language and low-level language
are quite relative, for the sake of simplicity, these terms will be thence used in the following
sense:

• High-level language – any programming language with a strong abstraction from
the computer details, like e.g. Java, C++, Perl, Python or Ruby – including the C pro-
gramming language.

• Low-level language – any programming language that provides little or no abstraction
from the computer details at all. This would generally include a machine code or
an assembly language, which can be transformed into a machine code very easily.

One of the means how to ease up the process of transformation is by using a medium-level
language as a stepping-stone between the high-level and low-level languages [43]. This
medium-level language is commonly called an intermediate language1 (IL), while the data
structures representing an intermediate language are usually being called the intermedi-
ate representation (IR). Typical formats of intermediate language representations include
abstract syntax tree (AST), directed acyclic graph (DAG), postfix notation (RPN) or three-
address code (abbreviated as TAC or 3AC).

2.2.1 Three-address code

This intermediate language was named after its most significant feature – each instruction
consists of three operands at most, generally in a form of an assignment:

target = operand1 ◦ operand2

where ◦ represents an arbitrary binary operator and target is a place for storing the result.
In case a statement of the original source code is more complicated than a binary

operation, it has to be broken down into several smaller instructions of the three-address
code. Keeping the instruction form very simple allows the use of some of the optimization
techniques and the resulted three-address code is more easily translated into an assembly
language.

If we take as source code example the statement below:

r = (-42 * x * x) + ((89 * z / (3.14 * y));

then the Listing 2.1 on page 5 shows the corresponding three-address code for this statement,
after it was broken down into a set of the smaller instructions.

1 With reference to [43], the medium-level language can be also called an intermediate code.
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Listing 2.1: Breaking down a complex statement into a three-address code

1TAC instruction: | Produces:
2t1 = 0 - 42 ->> -42
3t2 = x * x ->> x * x
4t3 = t1 * t2 ->> (-42 * x * x)
5t4 = 89 * z ->> (89 * z)
6t5 = 3.14 * y ->> (3.14 * y)
7t6 = t4 / t5 ->> (89 * z) / (3.14 * y)
8t7 = t3 + t6 ->> (-42 * x * x) + ((89 * z) / (3.14 * y))
9r = t7 ->> assigment into the initial variable

The t1 to t7 and r are only a symbolic addresses. The actual addresses or registers of
a computer will be assigned to them in one of the later phases of a compilation, if needed.

2.2.2 Static single assignment form

Very similar intermediate representation to a three-address code is a static single assignment
form (often abbreviated as SSA or SSA form). One of its two main distinctions is that
each variable has to be assigned exactly once. If this condition cannot be fulfilled, then
the variables with multiple assignments have to be versioned, thus de facto creating new
variables by labeling them distinctively. This process is called live range splitting and is
done by utilizing the so-called use-define chain [34].

The second main distinction is the property of the use-define chain – each variable has
to be defined before it may be used. The number of definitions is not limited and can have
many forms.

Listing 2.2 displays a small source code snippet in the C language and an appropriate
representation in a static single assignment form.

Listing 2.2: Example of variables versioning while generating SSA

1Source code: | Static single assignment:
2... ...
3f = 0; ->> f0 = 0;
4f++; ->> f1 = f0 + 1;
5r = foo(f); ->> r0 = foo(f1);
6f++; ->> f2 = f1 + 1;
7r += f; ->> r1 = r0 + f2;
8... ...

Using a static single assignment form allows use of some SSA-based compiler optimiza-
tions, like Global value numbering or Sparse conditional constant propagation [9].

2.3 GCC – the GNU Compiler Collection

The abbreviation GCC stands for the GNU Compiler collection and as the name suggests,
it is the compiler system of the GNU project. It is distributed under the GNU General
Public License (GPL) by the Free Software Foundation (FSF), and as a free software, it
has been adopted as the standard compiler by most of the modern Unix-like operating
systems, including Linux and BSD family [23].
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Initially the GCC supported only the C programming language, but this support has
been extended. Official supported programming languages now include C, C++, Objective-C,
Objective-C++, Java, Fortran, Ada and Go [27]. GCC also supports wide variety of com-
puter architectures [33].

The GCC compiler is rapidly developed and maintained by the open-source community,
and because of this it strives to keep the internal documentation up-to-date. Many places
of the documentation tends to be ”incomplet and incorrekt” [19]. This can make joining
the process of GCC development frustrating and not easy, just as development of any
software that is directly connected to GCC’s internal structures, like e.g. GCC plugins.

2.3.1 Internal structure of GCC

The GNU Compiler Collection is primarily consisting of several smaller units that operates
sequentially, where each unit transforms the output of the previous unit. Generally, this
output is in some form of an intermediate representation, except the final output of the GCC
as a whole, which is a program in an assembly language.

It should be noted that GCC does not produce the machine code directly, even that it
may seem so. If required, GCC calls the GNU assembler and the GNU linker to finalize
a compilation, but both of these utilities are not part of a GCC itself. They are included
in the GNU Binutils software collection [22].

Currently, ”GCC uses three main intermediate languages to represent the program
during compilation” [1]:

• GENERIC – a standardized form of an abstract syntax tree [44], which is able to rep-
resent programs written in all the programming languages supported by the GCC [1].
In other words, GENERIC is a language-independent representation of a program’s
source code which serves as an interface between parser and optimizer. Its purpose is
to provide a way of representing each program function entirely in trees [20].

• GIMPLE – simplified subset of GENERIC intermediate language, used mainly for op-
timizations. It was heavily influenced by the SIMPLE intermediate language, utilized
by the McCAT compiler project2 of McGill University [21].

• Register transfer language (RTL) – an architecture-neutral assembly language [28],
which is primarily set for use with an abstract machine with infinite number of
registers [42]. The register transfer language used in GCC has both internal and
textual forms [30] that were inspired by the S-expression notation of the Lisp pro-
gramming language [28]. However, this intermediate language has been slow to adapt
new technologies in the last few years. It is therefore expected it will be replaced by
much more modern CGEN framework in the future [13].

As we can see in the simplified scheme in Fig. 2.1, on the page 7, the GCC is composed of
three main blocks – front-end, middle-end and back-end – and optional compiler plugins3.

Programming languages specific parts are displayed in orange, target architecture depen-
dent parts are in red and parts completely independent of an input programming language
or computer architecture are displayed with a blue colour.

2 It seems the McCAT project has died. There are no recent references about the project and the website
mentioned in the GCC mailing list, where the SIMPLE IL was initially introduced [32], does not exist
anymore. The link redirects to homepage of Sable Research Group at McGill University instead [31].

3 The support for compiler plugins was introduced into the GCC with the release of GCC-4.5.0 [14].
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Every front-end of GCC is responsible for parsing the source files of a programming
language it was created for, including any additional processing that is necessary. It is
also responsible for providing results of its work in GENERIC form, so it can be used in
the next compilation phase that is language independent. In case the front-end does not
uses GENERIC as its internal representation for the parsed source code, then it has to
be transformed correspondingly. However, since the GIMPLE is a subset of GENERIC,
the front-ends are also allowed to produce the GIMPLE representation directly, in case it
is desirable or more convenient4.

Figure 2.1: Simplified scheme of the GNU Compiler Collection

Middle-end block provides most of the target and programming language independent
optimizations5, but it also serves as a mediator component of the compiler and thus reduces
the coupling between the sets of GCC front-ends and back-ends. In other words, there
is no need for creating a new specialized version of the compiler when the support for
new programming language or computer architecture is added. Either a new front-end or
back-end is plugged into compiler, without any further changes to the rest of it.

Back-end block is primarily responsible for generating correct assembly program for
the selected target architecture6 and it also provides target architecture dependent opti-
mizations, like e.g. register allocation or instruction scheduling [29].

Plugins provide optional extension of GCC’s functionality, which may vary depending on
the each plugin itself. The plugins API is based on the event callback system [17] and plugin
callback handlers can be registered for many pre-determined events of compilation [16].

4 Currently, this possibility is utilized by the C and the C++ front-ends [21].
5 Other independent optimization passes are done by the RTL optimizer of the back-end [29].
6 For example, proper calling conventions, endianness and word-size have to be used.
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2.4 Code Listener

Code Listener is an infrastructure that was introduced to allow more easier development of
static analysis tools [39] and is used as a GCC’s plugin [7].

The block denoted as the code parser interface represents the Application Program-
ming Interface used for communication with code parsers, while the block denoted as code
storage represents interface for communication with the static analysis tools based on Code
Listener [41].

The small boxes of each code parser represent a so-called adapters, which are responsible
for emitting proper Code Listener’s intermediate code representation by using its callbacks.
In between the code parser interface and code storage are located the so-called filters
and listeners. The filters can perform various intermediate code transformations, while
the listeners can only use their input [41].

Figure 2.2: A block diagram of the Code Listener infrastructure7

The orange box in the figure above represents the adapter of GCC, whose extending is
the aim of this thesis.

2.4.1 Control flow graph

The Code Listener infrastructure uses its own intermediate code representation, which is
based on the GIMPLE intermediate language, but is more concise and thus more easier
to understand. This intermediate representation uses the so-called control flow graph for
representing of each program function [41]. Its diagram is shown in the Figure ??, on
page ??.

Nodes of this graph represent the basic blocks, while the edges describes possible tran-
sitions among them during the execution of the program. Basic blocks are consisting of
sequence of instructions that need to be executed before the jump to another basic block
can be performed. Because of it, two groups of instructions are considered – terminal and
non-terminal [41].

7 Diagram taken from Code Listener’s official website [7] and modified after.
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The terminal instruction can only appear as a last instruction of the basic block.
The non-terminal instruction, on the other hand, can not be used as a last instruction
of the basic block. The edges of the CFG are corresponding to the targets specified by
the terminal instructions [41].

Figure 2.3: Two functions described by their control flow graphs8

Currently, the Code Listener infrastructure uses 5 non-terminal instructions – NOP,
UNOP, BINOP, CALL, LABEL – and 5 terminal instructions – JMP, COND, SWITCH, RET, ABORT.

2.4.2 Predator and Forester

Both of these are the static analysis tools based on the Code Listener infrastructure and
are developed by members of the VeriFIT group [3].

• Predator is a static analysis tool for automated formal verification of programs operat-
ing with pointers and linked lists [37]. Previously, the tool was based on a separation
logic, but currently it is based on the Symbolic Memory Graphs (SMG). This graph
representation, however, was inspired by the previously used separation logic [40].

• Forester is a static analysis tool for programs which manipulate complex dynamic
data structures and is based on the CEGAR framework [36].

2.4.3 Acquiring Code Listener’s code

Source code of Code Listener – which is part of the Predator project – was acquired by
cloning its online official Git repository9 from Github hosting service. Github mainly uses
the Fork & Pull Model, instead of previously common Shared Project Repository Model.

If any user wants to contribute to the chosen repository, it has to be forked first. It
means the copy of the original repository is created in user’s repository collection, which
can then be cloned as a local repository to user selected machine.

Because the fork acts like a bitwise copy, any commits produced by user does not affect
the original repository, they stay in user’s repository only. There are two ways how user
can try to make these commits be included into the original repository:

8 Diagram taken from an article in Computer Aided Systems Theory [41].
9 https://github.com/kdudka/predator
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1) Create a so-called pull request to inform owner of the original repository that changes
have been made and can be merged to the original repository. Usually, an owner of
the original repository then inspects the changes and either approves them, rejects
them or sends them back to the user for rework, if they miss any requirements by
the owner.

2) Inform the owner of the original repository in some other way, e.g. by e-mail, and let
him/her to cherry-pick the changes that are suitable or appropriate.

Forking of repository can be done multiple times and even forking of forked repository is
possible, creating a chain of forked repositories. Getting the changes back to the original
repository means going up the chain with the pull request. Because of it, the term upstream
is commonly used to refer to the repository, which is one level up to the current repository.
In other words, it is the parent repository to the actual one.

On the other hand, the term origin is generally used for referencing of the non-local
fork of the upstream repository, which is usually stored on a server.

For the sake of this thesis, the word upstream will be used while for referencing the of-
ficial Code Listener’s repository, where the term origin will be used for the forked copy of
the upstream10.

10 https://github.com/deekej/predator
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Chapter 3

State of the Art

The Code Listener infrastructure should have been able to process most of the C program-
ming language constructs when the source code of it was taken over. Even though, it was
necessary to find out which programming constructs were actually supported and which
were not. The initial desire was to avoid needless bug hunting – or searching for possible
bugs – in the later phases of the work.

Not all necessary information could be found online, however. The introduction to Code
Listener’s infrastructure was done via article in Computer Aided Systems Theory [41]; more
detailed information were then found in the <cl/code listener.h> header file, which con-
tains specifications of data structures used by Code Listener’s API, and other information
were obtained via discussion with the supervisor, who is both the maintainer and lead
developer of Predator and Code Listener projects.

Nevertheless, these information were still not enough to fully grasp the program flow
inside the GCC adapter. That eventually led to need to go through the execution of
the GCC adapter plugin manually1, statement by statement, to see what is actually being
done inside of it and how.

The following sections contain more information on the necessary preliminary work, and
overall state of the art of Code Listener when the work on the extension began.

3.1 Information from online sources

This section lists some of the information found in the upstream project description2 or
official websites of either Code Listener3, Predator4 or Forester5:

• There is no need to manually pre-process the source code to run the analysis. An ex-
isting build-system should ease up the whole task of running the analysis tools [24].
Predator itself, however, is not yet ready to be used for complex projects. [37].

• Forester is an early prototype and because of that, it ”handles only a very restricted
subset of program constructions” [36].

• Code Listener, Forester and Predator are all licensed under GPLv3+ license.

1 This was done by using the already prepared debugging environment for Code Listener. Use of this
environment will be described more in the appendix.

2 Please note that Github displays the README.md file from the repository as a project description.
3 http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener/
4 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
5 http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/
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• Although these tools are intended to be portable as GCC is, the only currently sup-
ported platform is Linux [24]. As it seems, this is mainly caused by the portability
issues with the Code Listener itself, which is plugged directly into GCC.

• To build these tools from source code requires a GCC of 4.5.0 version or newer.
Despite the fact the test-suite is guaranteed to fully succeed only against the 4.9.0
version of GCC6, ”the Predator plug-in itself is known to work with GCC 4.[5-8].x
equally well” [24].

• There are some other dependences that are needed for Predator and Forester to be
able to run. One of these dependences, though, is quite interesting – 32-bit system
header files. According to the supervisor, this is on account of the analysis to produce
same results when the regression tests are being run.

Judging from the scope of the internal documentation of Code Listener’s API for GCC
adapter, there apparently were not much of contributors involvement in this part of Code
Listener. Compared to API documentation of Code Listener for static analysis tools,
the GCC adapter is much less documented/commented. On the other hand, it seems
that the documented parts are at least correct and up-to-date.

3.2 Information from other sources

The information above proved to be insufficient to start the work on the extension, which
led to number of small discussions with the supervisor to provide another stepping stone.
Information from the supervisor about Code Listener and Predator included:

• Currently there is no support for assembly code written as a part of C programming
language source code, upon which the analysis should be performed.

• Even though there should be support for bitwise operations, pointer arithmetics and
safe usage of invalid pointers, Predator will probably not be able to handle bitwise
operations upon pointers, which some programmers might use.

• Predator uses a so-called points-to analysis as a part of its own static analysis, to
make it more easier or accurate. However, the points-to analysis is know to fail in
some cases. That actually does not mean any problem in analysis done by Predator
as a whole. What it does mean is when the points-to analysis fail, Predator itself will
have to perform more discerning analysis on its own. And if the debugging output is
turned on, some errors connected to the points-to analysis will be printed.

• For debugging purposes of Code Listener, there are two useful functions which can be
used. First one is debug tree(tree t), which takes a pointer to tree’s NODE structure
of GIMPLE intermediate language, and displays its content in a textual form. This
includes content of the structure, but also addresses inside the pointers to other nodes.
The second function is overloaded cl dump(*ptr), which can take a pointer to cl type,
cl accessor, cl operand or CodeStorage::Insn structures7 to display its content. As
with the previous function, the output is also textual, and both of these functions can
be called inside any debugging program during execution of Code Listener.

6 Update to this supported version of GCC was done on May 15, 2014.
7 All of these structures will be described in detail in the following section, except the CodeStorage::Insn,

which is mainly based on the cl insn structure.
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• To take a first glimpse or inspiration how the GIMPLE trees are usually processed,
one can take a look into the gcc/tree-pretty-print.c file inside the GCC source code.

Utilizing the knowledge collected so far was essential to find out more about the state of
the art of Code Listener and Predator. By analyzing the Code Listener infrastructure,
the author of this thesis was able to find out another substantial facts:

• Right now, there is no support of modular programs by Code Listener, because
the GCC is usually run for each module separately, and so are the Code Listener
and static analysis tool based on it. Currently, it is only able to detect if the variable
or function were declared as extern.

• The Code Listener’s plugin will not start processing the input source code if there was
any error in previous phases of the compilation. Performing analysis on syntactically
wrong code would be pointless.

• Processing of the input source code is done via mutually recursive calling of specialized
handler functions. The stop for recursion is a hashing table of types – if the type was
already processed before, it is skipped and the recursion can start to emerge back.

Systematic testing of Code Listener for support of C programming language constructs
unveiled that there should be complete support for ISO standard C90 8 and C99 – except
for handling of ISO C99 complex numbers9. It also revealed some misleading debugging
messages of points-to analysis in Predator [6].

The ISO standard C11 and GNU dialects/extensions for ISO C standard were not
tested, as they were not essential for initial work on Code Listener’s support for C++
programming language.

3.3 Internal structures of Code Listener

Main design feature of Code Listener’s API for static analysis tools is the use of simplified
instruction set, as previously shown on page 8 in Section 2.4.1.

Each instruction itself is represented by the cl insn structure and consists of these items:

• Specification of kind of an instruction – UNOP, BINOP, CALL, JMP, COND, etc.

• Information about the location of instruction’s occurrence in the source code.

• Additional extra information if the instruction requires them. This includes pointers
to operands for instructions operating with them, name of label for JMP and LABEL
instructions or specification of binary operation for BINOP instructions.

The operand is another key element of Code Listener’s API. It is represented by a cl operand
structure and the API defines that each non-void operand has to refer to either a constant10

(cl cst) or a variable (cl var) [41]. Its relations to other internal data structures of Code
Listener are shown in the Figure 3.1 on the subsequent page.

8 Similarly known as ANSI C or ISO standard C89.
9 Defined in <complex.h> header file.
10 The term constant has nothing to do with const keyword of C/C++ programming languages. Here

it is used for representing program data which stay unchanged during the whole execution of the program.
Equivalent term in the C/C++ programming language would be word literal.
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Constants can represent string literals, function definitions or numeric literals of integral
and floating point type. The variables, on the other hand, are used for functions arguments,
local or global variables, registers, etc.

Figure 3.1: A collaboration diagram of the cl operand data structure11

Each variable and function is assigned a scope of operand’s validity, which can be either
global (scope is unlimited), static (scope is limited to currently processed source file) or
local (scope is limited to currently processed function).

Optionally, the variable may be connected with an initializer whose value is represented
by an operand of the instruction containing it. Thus the operand can refer to another
variable, or even refer to the initial variable itself [41]. And because these initializations
can be chained for nested types, the cl initializer is actually a singly linked list.

The accessor is used to change operand’s semantics, if necessary, and it is represented
by the cl accessor structure. Accessors can be used to reference or dereference an object,
to dereference an item of array12, to access an item of structural/composite type or to
obtain an offset from specified address. For more complex expressions, these accessors can
be chained also, thus creating another singly linked list.

Code Listener’s API guarantees that accessor dereferences will appear only at the be-
ginning of the chain, while the references are guaranteed to be placed at the tail of it.
Connecting of dereferences is not allowed [41]. ”So whenever a multiple dereference ap-
pears in a source program, it is automatically broken into a sequence of instructions, each
of them containing at most one dereference in each operand.” [41]

Every operand and accessor has its own statically assigned type, which is represented
by instance of cl type structure. In case these types are non-atomic, another structure is
used – cl type item. It allows nesting of types one into another to create a composite type.

3.4 Merit of the Code Listener’s extension

The fwnull demo utility has already helped to find out a hidden flaw in the source code
of curl13 tool [7]. Nevertheless, there is still a great need to work on extending the Code
Listener infrastructure, so the static analysis tools based upon it are brought much more
closer to the point where they could be used for checking for bugs and flaws on day-to-day

11 Diagram taken from an article in Computer Aided Systems Theory [41] and updated afterwards.
12 The index for accessing an item of array is provided by another operand.
13 https://github.com/bagder/curl
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basis – making them useful for complex projects just as, e.g. Valgrind14, Cppcheck15 or
Clang Static Analyzer16.

This need eventually led to the idea of expanding the area of supported languages
by Code Listener’s GCC adapter, adding support for C++ programming language. Both
GCC and C++ language are still widely used, and it does not seem that developers or
companies will stop using them any soon in the upcoming future. Thus, creating and
extension for C++ programming language should lead to spread of the tools based on
Code Listener infrastructure. And since all of these tools are open-source based projects,
it might eventually advance to more developers joining in and collaborating. It would
certainly help tools based on Code Listener in the long term basis.

14 http://valgrind.org/
15 http://cppcheck.sourceforge.net/
16 http://clang-analyzer.llvm.org/
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Chapter 4

Proposal of the Solution

The coming sections of this chapter will try to provide background context for decisions
that were made in order to provide solution for Code Listener extension. This includes
details on anticipated problematic parts of the extension, other possible solutions as well
as proposed plan of work.

4.1 Extension layout

Two main approaches were explored in order to develop Code Listener’s extension for C++
programming language. The first method comprised of creating a new GCC adapter for
Code Listener from scratch, while the second one was focused on extending the current
GCC adapter that is already working for almost all C programming language constructs.

Creating a new GCC adapter – this approach might seem much more straightforward,
but it would create a lot of similar or duplicate code to the current GCC adapter. Main-
taining of such source codes, which are very much alike, would not only be much more
error-prone, but it would also be much more time-consuming, which is undesirable. On
the other hand, creating an extension separately would not interfere with the already work-
ing source code, thus the possibility of breaking existing code or introducing new bug(s)
into the current GCC adapter would be almost completely eliminated.

Extending the current GCC adapter – this approach seems a lot easier than previous
one, but as it was already stated in the paragraph above, it has its flaws. Still, the benefits
of this method might be quite essential when deciding which approach should be chosen.
Firstly, many of GIMPLE statements and trees are already processed and because of it,
smaller area of GIMPLE intermediate language would have to be covered. Secondly, suit-
able software development process with very short development cycles could be used for
developing the extension, e.g. test-driven development, that would utilize the already used
test-suite of Code Listener and Predator. Lastly, by extending the current GCC adapter in
this way, adding support for other programming languages (e.g. Java or Objective C) will
be even easier in the future.

After a discussion with the supervisor and his consent, it was decided to use the latter
approach. The advantages of such method outweigh its disadvantages and possible risks.
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4.2 Anticipated problematic sections

The following subsections will focus on a description of each section of the work that were
anticipated to be somehow tricky or problematic in one way or the another. In case more
than one suitable solution existed, a discussion of possible courses is brought out, followed
by a solution that was expected to be used.

It should be noted that a GCC 4.5.0 was chosen as a starting point of the work on
the extension, because it is the first GCC which introduced the support for plugins [14].
And since this version of GCC has already a full support for ISO C++03 [25], it was a next
logical step to choose this standard as the one initially supported by the extension itself.

4.2.1 Templates

First bigger issues were anticipated with the generic programming style, which in the C++
programming language is represented by the use of C++ templates. This style of program-
ming allows programmer to postpone the (usually required) type specification in the phase
of compilation, where the compiler itself is able to deduce the necessary type to be used.
This process is called a template instantiation. And because the type deduction can be
sometimes ambiguous, partial and full template specializations are provided as a solution.

Generally, the templates instantiation is entirely in the hands of GCC front-ends, and
therefore the types should be known at the time of GIMPLE processing by Code Listener.
However, this was not yet fully verified and because of it, most of the C++ Standard Library
could not be used for creating tests.

If it would have proven that templates are not fully instantiated when the GIMPLE
is being processed, a workaround solution would have to be found, so the Code Listener
infrastructure would be able to deduce the types by itself. This need is caused by the re-
quirement of Code Listener’s API that every type (represented by cl type) is to be statically
typed [41].

Nevertheless, in order to verify or disprove such a behaviour, the basic C++ types ought
to be tested first, and if necessary, their support would have to be implemented. This led to
a creation of a work plan, which is described more in detail in the Section 4.3, on page 19.

4.2.2 Class inheritance

To support the object-oriented programming, the C++ language provides not only a concept
of class inheritance, but it provides a concept of multiple class inheritance too. The stan-
dard of C++ programming language does not provide any rules for compilers on how to
store objects of derived classes in memory or how to deal with them at all. Solution for
class inheritance support is purely in hands of C++ compilers.

Every data member of any structural type (class, struct or union) has its own offset
computed by Code Listener, from the beginning of that type. And it can already processed
structural types composed of other structural types, in case there is no inheritance used.

However, computing the offset of data members from a class using multiple inheritance
could be tricky, because there is no guarantee in which order the base classes will be stored
inside the new derived class. Inheriting the same class multiple times could also pose
a problem in a form of an ambiguity that would need to be handled. To avoid unnecessary
and premature problems, it was decided to create a support for basic class inheritance first.
And only after then to examine the representation of classes with multiple inheritance
inside the GIMPLE. In case these classes would not be stored continuously in memory,
a new workaround for computing offsets of data members would have to be created.
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4.2.3 Virtual member functions

Virtual member functions in C++ programming language are a concept of a polymorphism.
They allow a late binding1 when the member function of an object is called. In other words,
the exact member function to be called is looked up during the program execution, because
it might not be accurately known at the time of compilation.

Some form of a virtual method table2 is usually being used in order to provide such
a functionality. There are many possible solutions for compilers how to implement working
virtual method table for any OOP programming language. For the sake of example, two
simplified possibilities are mentioned3:

1) Each object can have its own copy of virtual method table and as a part of it, a pointer
to virtual method table of its base class. The base class’ virtual method table can also
contain a pointer to virtual method table of another class in the inheritance hierarchy.

2) The virtual method tables are stored in a code segment of a program, because the rel-
ative addresses of virtual member functions can be precomputed during the compila-
tion. Each object then only contains a pointer to its own virtual method table. From
there, it can also virtual method tables of its base classes in case it is a derived class.

Both of these examples have their drawbacks. The first one could be much more memory
demanding. The second one, on the other hand, uses more pointer dereferences which could
lead into more CPU cache misses.

In order to allow processing of virtual member functions by Code Listener, the exact
solution for virtual method tables used by GCC would have to be sought out4. The GCC
parameter -fdump-class-hierarchy could be used to display the virtual method tables align-
ment. In case this solution would not be sufficient, then the exact Application Binary
Interface (ABI) would have to be looked up in the GCC internal documentation.

Further more, solution for pure virtual member functions would have to be also created.
One possible option, which makes use of that Code Listener can process functions declared
as extern, would be processing pure virtual member functions as a function declarations.

4.2.4 Run-Time Type Information

The C++ programming language permit to obtain information about type of the object
during run-time of the program, which is also known as type introspection. It allows ma-
nipulating of type information at run-time, as well as safe typecasts of polymorphic classes
with use of the dynamic cast operator. As a result, the compiler has to generate additional
type information for objects of the program.

Operator typeid is used for obtaining type information, the result of such operation is
of type info type.

Because the compiler has to generate additional code to support RTTI feature, the de-
bugging inside Code Listener would produce a lot of error messages of unhandled GIMPLE
statements or NODEs, which are irrelevant for initial development of the extension and would
slow it down.

Turning off the Run-Time Type Information – with the -fno-rtti parameter of GCC –
was proposed as a solution until the support for RTTI feature is eventually implemented.

1 Also known as dynamic binding.
2 Abbreviated as VMT or v-table also.
3 Both of these examples, among others, do not take in account the multiple inheritance.
4 It is known the exact implementation of VMTs in GCC has changed more than one time.
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4.2.5 Exceptions

Another feature of the C++ programming language is possibility of use of the exception
handling design, which allows the change of standard program flow.

In almost every point of the C++ program it is possible to throw an exception to indicate
an error has occurred and it needs to be handled. The so-called stack-unwinding is used
for cleanup of local variables, by calling their destructors, when an exception is thrown.
Basically, it then needs to be handled in special part of the program called catch block.
If this does not happen, the exception starts to emerge from function calls, unwinding
the stack on the way. In case the exception reaches a main function and is not caught
in there, the program is aborted. On the other hand, the execution of the program can
continue if the exception has been processed.

Because of it, the GCC generates again a lot of auxiliary information and code, as with
the Run-Time Type Information, to support such a feature. However, the stack-unwinding
would probably introduce another possible issue – generating of many transition edges in
the Code Listener’s Control flow graph.

It was expected this issue would be the hardest for dealing with, therefore it was sug-
gested to use -fno-exceptions parameter of the GCC in order to avoid all the auxiliary
information and code generated by the GCC. Because of it, the suggestion was made to
postpone the implementation of support of this feature as a last step of the work.

4.3 Plan of work

In order to ease up the development process of the extension, a plan of work listed below was
approved. The goal of this plan was to start with basic constructs of C++ programming
language and advance to more complex ones, step by step. Each phase included creating
of new test-cases, adding them into the test-suite and running them.

If the tests did not exploit any unhandled GIMPLE statements or trees, the phase could
be finished and the next one could have been started. Otherwise, all missing implemen-
tations would have to be added and the test-suite run again. In case the regression tests
discovered any new flaws, the next phase could not have been started until they were fixed.

Below you can see the proposed plan of work5:

0) Testing, and implementing if necessary, the support for all constructs of C program-
ming language compiled by the C++ compiler6.

1) Adding support for basic and commonly used constructs, like e.g. L-value reference,
functions overloading, functions default arguments, or other commonly used features,
including bool type (and its literals) or POD7 structural types.

2) Implementing and testing the usage of operators new and delete for fundamental
types, structural types and arrays; including the usage of placement new.

3) Creating basic support for concept of classes of C++ programming language. This
includes among others handling of constructors and destructors; accessing static and
non-static data members; or using of this pointer, access specifiers or class member
functions.

5 For the sake of clarity the testing done in each phase is not mentioned in every phase.
6 In case of GCC, the C++ compiler can be invoked in a shell environment by calling the g++ utility.
7 Plain-old-data, according to ISO standard C++98 [38].
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4) Deploying remaining support for C++ classes, which involves handling of user-defined
conversions; pointers to data members and pointers to data member functions; class
operators overloading; friend classes and friend functions; basic and multiple class
inheritance – both without using of virtual member functions.

5) Testing and implementing the usage of C++ conversions – const cast, static cast
and reinterpret cast.

6) Developing support for C++ templates. This includes handling of templates of
classes, functions and class member functions. It also includes making sure the partial
and full templates specializations are working too.

7) Creating support for concept of polymorphism – virtual member functions, virtual
destructors and theirs invoking. Another part of this phase deploying support for
abstract classes8 and C++ inheritance with use virtual member functions.

8) Adding support for Run-Time Type Information (RTTI) and handling of operator
typeid, type info result and conversions by dynamic cast operator.

9) Developing support for C++ exceptions concept, which includes processing of ba-
sic exceptions, exceptions with parameters, exceptions hierarchy and standard C++
exceptions.

10) Making sure that C++ Standard Library can be fully utilized and if needed, imple-
menting parts that have been missed in previous phases.

11) Testing of the finished extension with the newer versions of GCC to find any possible
changes of the GIMPLE API, so the extension is compatible with latest versions.

Despite the effort to follow the plan of work, some situations required ad hoc changes
of the plan to reflect them, but none of them were anyhow significant.

8 Every class, that has at least one pure virtual member function.
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Chapter 5

Achieved Results

This chapter will provide summary of achieved results, as well as overview of Code Listener’s
state at the end of the work. Unfortunately, due to time constraints, not all expected phases
of the work plan has been finished.

At the time when the tests for C programming language constructs were finished,
the work on the extension began. The first step included making sure the extension will be
able to process content of these tests when the g++ compiler will be used. Manual testing
discovered that 10 of 41 initially created tests were displaying messages about unhandled
tree NODEs, when the displaying of debugging information was turned on, and because of it
was concluded these tests were de facto failing. The reason for this were nodes of TYPE DECL
type that were not processed inside a structural types.

This behaviour was discussed with the supervisor. He stated that this issues should
be skipped for that time, as he wanted to look into this matter by himself. Eventually,
the supervisor deployed a patch for this issue as well as an explanation. The reason why
g++ creates these TYPE DECL NODEs inside the structural type is that C++ allows the use of
name of class as if it was previously declared with typedef. Such a behaviour is also noted
in GIMPLE internal documentation [11]. After the fix these test were no longer failing.

The test-suite for C programming language constructs were subsequently extended by
five more tests, where one of them helped to discover unhandled COMPLEX TYPE tree NODE
inside Code Listener. By supervisor’s decision it was accepted to ignore this behaviour in
sake of the thesis. The supervisor himself then created a patch to display warning messages
when the debugging mode of Code Listener is turned on, and updated it so the test-suite
would not fail1.

The next step was creating of test-cases for C++ programming language constructs,
theirs testing and implementing the missing support. However, right after start it was
discovered that NAMESPACE DECL tree NODE would have to be processed first. C++ language
uses many of namespaces, in contrast of C language, that uses only the global namespace
(in terms of GIMPLE intermediate language). If we test the version of Code Listener, where
the NAMESPACE DECL is unhandled, then 9 of 54 tests created so far will fail. This number
might not seem like a much, but not all the test-cases uses namespaces. In real production,
code the number of occurrences of NAMESPACE DECL tree NODEs would be much higher.

After handling issues with namespaces of C++ language, it was possible to return to
initial plan of work that was stated in Section 4.3, on page 19.

1 Nevertheless, at the time of writing the test-suite is still failing when run with GCC 4.5.0. Please, visit
the https://github.com/deekej/predator/issues/7 webpage to see the latest status of this issue.
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The next bigger issue encountered, when the plan was followed, was the matter how to
deal with L-value references of C++ language. Initial exploration inside the GIMPLE code
generated by g++ discovered that L-value references behaves exactly the same as pointers.
However, the C++ language syntax does not allow obtaining an address of a reference,
because it is not an object in the memory. Therefore this situation needed to be adequately
reflected for the static analysis tools using the Code Listener.

Initially, two solutions were proposed to Kamil Dudka, who is the lead developer of
Predator and the supervisor of this thesis, and to Ing. Ondřej Lengál, who is the current
lead developer of Forester. However, both of the proposed solutions would need to alter
the Code Listener’s API, which is not something desirable.

After a significant e-mail discussion and additional examination of GIMPLE intermedi-
ate code, an acceptable solution has been found. This solution sets both the L-value and
R-value references as CL TYPE PTR inside the Code Listener’s representation, but it extends
the Code Listener’s API to provide additional information if the CL TYPE PTR is really pointer
or reference. As a result, Predator and Forester did not have to be updated in any way, but
the Code Listener infrastructure is able provide these necessary informations, if required.

Another significant issue detected was how to process the OFFSET TYPE tree NODEs, which
represent a pointer to data member used in C++ language source code. There was a need to
make sure handling of these NODEs as a CL TYPE PTR type would not result in addition of two
pointers together in some cases, which is by definition of C/C++ language a syntax error.
Even though the Predator or Forester should be able to detect such a flaw, the Code Listener
infrastructure should not generate its internal representation that does not correspond
the source code in the first place.

A further examination and testing discovered that this situation should never occur and
therefore it was safe to use CL TYPE PTR type for representation of OFFSET TYPE NODE.

Eventually, there were created 54 tests for C++ programming language constructs,
which makes the total number 100 of created tests so far2, where the tests for C program-
ming language constructs are run for both gcc and g++.

Running all the tests for C++ language constructs with a version of Code Listener
before the implementation of the extension revealed that 13 of 54 tests failed, which makes
its success rate more than 75%. This is caused by the unified representation of similar
constructs of C and C++ programming language inside the GIMPLE intermediate code
that the initial version of Code Listener is already able to process. If we run these tests for
extended version of Code Listener, the success rate is increased to 100%.

With the initial version of Code Listener, there was 24% success rate for tests from
Predator test-suite (638 of 837 tests failed), if they were run by g++-4.5.0. Running these
tests with newer version of Code Listener produces completely same results.

If we try this again, but only with newer g++-4.9.0, the results are again completely
the same for both old and new version of Code Listener. However, the success rate for
g++-4.9.0 has dropped by 5% (674 of 837 tests failed). This drop is probably caused by
the changes in the GIMPLE API that has been continuously introduced between releases
of 4.5.0 and 4.9.0.

Nevertheless, the overall low-rate of success is caused by using C language syntax in these
tests, which is not compatible with syntax of C++ language and because of it, compiler
cannot compile them at all.

2 Please, be advised that at the time of writing this note, there are 6 so-called dummy tests, which are
waiting to be finished or enabled when the support for specific constructs is added.
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So far, by testing and implementing the missing support, the Code Listener is to be
able to handle these C++ programming language constructs and features:

• namespaces – this includes global, nested and unnamed namespaces, as well as ex-
tension namespace definition, using directive and using declaration

• bool type – which is native for C++ language – and its literals

• functions overloading and default argument values

• use of const-volatile qualifiers with fundamental and structural types

• L-value references – used as an alias for variable, a function return value, a formal
parameter of the function and as a data member of a class

• operators new and delete for fundamental types, arrays and structural types, including
the use of placement new.

• direct, zero and value initializations of objects

• plain-old-data (POD) types, nested classes and typedef nesting

• implicit and basic class constructors and destructors, default and copy constructors,
user-defined conversion constructors

• access to classes data members and use of access specifiers

• declarations, definitions and using of class member functions, static data members,
static const data members and static member functions

• usage of this pointer and pointers to data members.

Unfortunately, the rest of C++ programming language constructs and features remain
untested and unimplemented.

As a result of this work, the GCC adapter of Code Listener infrastructure was extended
to support a subset of C++ programming language constructs that are common and can
be used for creation of simple test-cases for Predator, Forester or fwnull utility. Also,
the prepared regression tests will be useful when the support for C++ language will be
further extended.

It should be also stated that all these changes were successfully pulled by the upstream
repository and merged into official Code Listener source code3, with only small changes4

or zero changes at all.
The statistics for origin repository5 provided by the Github source-code hosting service

shows there were 79 commits in total, which added 7429 and removed 941 lines of code.
If you wish to see the source code of these updates and changes, please refer to the origin

repository6 or to the attached DVD. Among others, this DVD contains the instructions on
how to reproduce the work results.

3 The only pull-request that was rejected did not include changes in the behaviour of Code Listener itself,
it was only a proposal of installation suite enhancement. Consequently, it was agreed upon the installation
suite should use some improvements and because of it, they will be eventually added in the future.

4 Changes that did not differed the functionality of updates, like e.g. fixing the commit message or
changing the indentation of the source code, so it stays unified.

5 Please note that the statistics from the upstream repository will differ.
6 https://github.com/deekej/predator
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Chapter 6

Conclusion

Even though not all parts of the plan of the work have been finished, the work on this thesis
succeeded in some of the significant areas of extending the Code Listener infrastructure.

Firstly, as far as it is known, all the changes and updates to the Code Listener infras-
tructure did not introduced any kind of flaws nor broke it. As for the author of the thesis,
this is the condition that he thinks should be followed in the first place when working with
any kind of production code and is a small personal achievement for him.

Secondly, the current state of Code Listener is able to handle not only C programming
language source code, either compiled with gcc or g++, but it can also process a subset of
C++ programming language constructs.

Creating of the regression tests did not only help to discover missing processing of
GIMPLE statements and trees, it will be also useful for the future work on Code Listener,
allowing e.g. to detect new bugs or regressions in case the API will change someday.

Accepting the created source code updates by the upstream repository shows these chan-
ges were approved and are actually useful, which can be taken as a small kind of success.

Furthermore, this bachelor thesis can serve as a stepping-stone for everyone who would
like to join in and help with the work on the Code Listener infrastructure. The work done
on the extension can also serve as a starting point for adding support for other programming
languages supported by GCC, like e.g. Objective C or Java.

From the assignment point of view, all the items of it have been successfully accom-
plished, except the item number 4. It has been completed only partially, because not all
support for every C++ programming language constructs has been added.

Lastly, by finishing this bachelor thesis the work for its author on the Code Listener
infrastructure does not end here. He acknowledges the usefulness of such an infrastructure
and sees its potential not only for research area, but also for practical day-to-day use by
programmers all around the World.
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