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Under the new Hölder conditions, we consider the convergence analysis of the inverse-free Jarratt method in Banach space which
is used to solve the nonlinear operator equation. We establish a new semilocal convergence theorem for the inverse-free Jarratt
method and present an error estimate. Finally, three examples are provided to show the application of the theorem.

1. Introduction

We consider the following boundary value problem:

𝑥
󸀠󸀠
= −𝜆𝐺 (𝑥) ,

𝑥 (𝑎) = 𝑥
𝑎
, 𝑥 (𝑏) = 𝑥

𝑏
.

(1)

Those are equivalent to the following nonlinear integral equa-
tion (see [1, 2]):

𝑥 (𝑠) = 𝛼 (𝑠) + 𝜆∫

𝑏

𝑎

𝑘 (𝑠, 𝑡) 𝐺 (𝑥 (𝑡)) 𝑑𝑡, (2)

where 𝛼(𝑠) = (1/(𝑏 − 𝑎))(𝑥
𝑎
(𝑏 − 𝑠) + 𝑥

𝑏
(𝑠 − 𝑎)) and 𝐺 : Ω ⊂

𝐶[𝑎, 𝑏] → 𝐶[𝑎, 𝑏] is a twice Fréchet-differentiable operator.
𝐶[𝑎, 𝑏] is the set of all continuous functions in [𝑎, 𝑏]; 𝑘(𝑠, 𝑡) is
the Green function:

𝑘 (𝑠, 𝑡) =

{
{

{
{

{

(𝑏 − 𝑠) (𝑡 − 𝑎)

𝑏 − 𝑎

, 𝑡 ≤ 𝑠,

(𝑠 − 𝑎) (𝑏 − 𝑡)

𝑏 − 𝑎

, 𝑠 ≤ 𝑡.

(3)

Instead of (2), we can try to solve a nonlinear operator
equation 𝐹(𝑠) = 0, where

𝐹 : Ω ⊂ 𝐶 [𝑎, 𝑏] 󳨀→ 𝐶 [𝑎, 𝑏] ,

𝐹 (𝑥) (𝑠) = 𝑥 (𝑠) − 𝛼 (𝑠) − 𝜆∫

𝑏

𝑎

𝑘 (𝑠, 𝑡) 𝐺 (𝑥 (𝑡)) 𝑑𝑡.

(4)

Solving the nonlinear operator equation is an important issue
in the engineering and technology field as these kinds of
problems appear inmany real-world applications. Economics
[3], chemistry [4], and physics [5–8] are some of the examples
of the scientific and engineering technology areas applied to
solve these type of equations. In this study, we consider to
establish a new semilocal convergence theorem of the Jarratt
method in Banach space which is used to solve the nonlinear
operator equation

𝐹 (𝑥) = 0, (5)

where 𝐹 is defined on an open convexΩ of a Banach space𝑋
with values in a Banach space 𝑌.

There are a lot of methods of finding a solution of
equation 𝐹(𝑥) = 0. Particularly iterative methods are often
used to solve this problem (see [1, 2, 9, 10]). If we use the
famous Newton method, we can proceed as

𝑥
𝑛+1
= 𝑥
𝑛
− 𝐹
󸀠
(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) , (𝑛 ≥ 0) (𝑥

0
∈ Ω) . (6)

Under a reasonable hypothesis, Newton’s method is the
second-order convergence.

To improve the convergence order, many modified meth-
ods have been presented. The famous Halley’s method and
the supper-Halley method are the third-order convergence.
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References [11–22] give the convergence analysis for these
methods. Now, we consider the following Jarratt method (see
[23–25]):

𝑦
𝑛
= 𝑥
𝑛
− 𝐹
󸀠
(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) ,

𝐻 (𝑥
𝑛
, 𝑦
𝑛
) =

3

2

𝐹
󸀠
(𝑥
𝑛
)
−1

[𝐹
󸀠
(𝑥
𝑛
+

2

3

(𝑦
𝑛
− 𝑥
𝑛
)) − 𝐹

󸀠
(𝑥
𝑛
)] ,

𝑥
𝑛+1
= 𝑦
𝑛
−

1

2

𝐻 (𝑥
𝑛
, 𝑦
𝑛
) [𝐼 − 𝐻 (𝑥

𝑛
, 𝑦
𝑛
)] (𝑦
𝑛
− 𝑥
𝑛
) .

(7)
In this paper, we discuss the convergence of (7) for solving

nonlinear operator equations in Banach spaces and establish
a new semilocal convergence theorem under the following
condition (see [20, 21]):

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠󸀠󸀠

(𝑥) − 𝐹
󸀠󸀠󸀠
(𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝜔 (

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
) , (8)

where 𝜔 : [0, +∞) → 𝑅 is a nondecreasing continuous
function. Finally, the corresponding error estimate is also
given.

2. Main Results

In the section, we establish a new semilocal convergence
theorem and present the error estimate. Denote 𝐵(𝑥, 𝑟) =
{𝑦 ∈ 𝑋 | ‖𝑦 − 𝑥‖ < 𝑟} and 𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝑋 | ‖𝑦 − 𝑥‖ ≤ 𝑟}.
Suppose that 𝑋 and 𝑌 are the Banach spaces, Ω is an open
convex of the Banach space 𝑋, and 𝐹 : Ω ⊂ 𝑋 → 𝑌

has continuous Fréchet derivative of the third-order.𝐹󸀠(𝑥
0
)
−1

exists, for some 𝑥
0
∈ Ω, and 𝐹 satisfies

(A1) 󵄩󵄩󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
0
)
−1

𝐹 (𝑥
0
)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝜂;

(A2) 󵄩󵄩󵄩󵄩
󵄩
𝐹
󸀠
(𝑥
0
)
−1

𝐹
󸀠󸀠

(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝑀, 𝑥 ∈ Ω, 𝑀 ≥ 0;

(A3) 󵄩󵄩󵄩󵄩
󵄩
𝐹
󸀠
(𝑥
0
)
−1

𝐹
󸀠󸀠󸀠

(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝑁, 𝑥 ∈ Ω, 𝑁 ≥ 0;

(A4) 󵄩󵄩󵄩󵄩
󵄩
𝐹
󸀠
(𝑥
0
)
−1

[𝐹
󸀠󸀠󸀠

(𝑥) − 𝐹
󸀠󸀠󸀠
(𝑦)]

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝜔 (

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
) ,

𝑥, 𝑦 ∈ Ω.

(9)

(A5) 𝜔(𝑧) is a nondecreasing continuous real function for
𝑧 > 0 such that 𝜔(0) ≥ 0, and there exists a positive
real number 𝑝 ∈ (0, 1] such that 𝜔(𝑡𝑧) ≤ 𝑡𝑝𝜔(𝑧) for
𝑡 ∈ [0, 1] and 𝑧 ∈ [0, +∞).

(A6) Denote 𝐴 = ∫

1

0
∫

1

0
𝑡(1 − 𝑡)(𝑠𝑡)

𝑝
𝑑𝑠 𝑑𝑡 = (1/(𝑝 +

1)(𝑝 + 2)(𝑝 + 3)), 𝐵 = (1/3) ∫1
0
∫

1

0
(2𝑠𝑡/3)

𝑝
𝑡 𝑑𝑠 𝑑𝑡 =

(2
𝑝
/3
𝑝+1
(𝑝 + 1)(𝑝 + 2)). Let 𝑎

0
= 𝑀𝜂, 𝑏

0
= 𝑁𝜂

2,
𝑐
0
= 𝜂
2
𝜔(𝜂), 𝑎

𝑛+1
= 𝑎
𝑛
𝑓
2
(𝑎
𝑛
)𝑔(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
), 𝑏
𝑛+1

=

𝑏
𝑛
𝑓
3
(𝑎
𝑛
) 𝑔
2
(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
), 𝑐
𝑛+1
= 𝑓
3+𝑝
(𝑎
𝑛
)𝑔
2+𝑝
(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
),

where

𝑓 (𝑥) =

2

2 − 2𝑥 − 𝑥
2
− 𝑥
3
,

𝑔 (𝑥, 𝑦, 𝑧) =

5𝑥
3
+ 2𝑥
4
+ 𝑥
5

8

+

𝑥𝑦

12

+ (𝐴 + 𝐵) 𝑧.

(10)

First, we get some lemmas.

Lemma 1. Suppose that𝑓(𝑥),𝑔(𝑥, 𝑦, 𝑧) are given by (10).Then

∀𝑥 ∈ (0, 1/2), 𝑓(𝑥) is increasing and 𝑓(𝑥) > 1;
∀𝑥 ∈ (0, 1/2), 𝑦 > 0, 𝑔(𝑥, 𝑦, 𝑧) is increasing;
∀𝛾 ∈ (0, 1), 𝑥 ∈ (0, 1/2), 𝑝 > 0, 𝑓(𝛾𝑥) < 𝑓(𝑥) and
𝑔(𝛾𝑥, 𝛾

2
𝑦, 𝛾
2+𝑝
𝑧) < 𝛾

2+𝑝
𝑔(𝑥, 𝑦, 𝑧).

Lemma 2. Suppose that 𝑓(𝑥), 𝑔(𝑥, 𝑦, 𝑧) are given by (10). If

𝑎
0
∈ (0,

1

2

) , 𝑓
2
(𝑎
0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
) < 1, (11)

then

(i) the sequences {𝑎
𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛
} are nonnegative and

decreasing;
(ii) (1 + (𝑎

𝑛
/2)(1 + 𝑎

𝑛
))𝑎
𝑛
< 1, ∀𝑛 ≥ 0.

Proof. (i) When 𝑛 = 1,

0 ≤ 𝑎
1
= 𝑎
0
𝑓
2
(𝑎
0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
) ≤ 𝑎
0
,

0 ≤ 𝑏
1
= 𝑏
0
𝑓
3
(𝑎
0
) 𝑔
2
(𝑎
0
, 𝑏
0
, 𝑐
0
) ≤ 𝑏
0
,

0 ≤ 𝑐
1
= 𝑐
0
𝑓
3+𝑝
(𝑎
0
) 𝑔
2+𝑝
(𝑎
0
, 𝑏
0
, 𝑐
0
) ≤ 𝑐
0
.

(12)

Suppose 𝑎
𝑗
≤ 𝑎
𝑗−1
, 𝑏
𝑗
≤ 𝑏
𝑗−1

for 𝑗 = 1, 2, . . . , 𝑛. By Lemma 1,
𝑓 and 𝑔 are increasing; then

𝑎
𝑛+1
= 𝑎
𝑛
𝑓
2
(𝑎
𝑛
) 𝑔 (𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
) ≤ 𝑎
𝑛
𝑓
2
(𝑎
0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
) ≤ 𝑎
𝑛
,

𝑏
𝑛+1
= 𝑏
𝑛
𝑓
3
(𝑎
𝑛
) 𝑔
2
(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
) ≤ 𝑏
𝑛
𝑓
3
(𝑎
0
) 𝑔
2
(𝑎
0
, 𝑏
0
, 𝑐
0
) ≤ 𝑏
𝑛
,

𝑐
𝑛+1
= 𝑐
𝑛
𝑓
3+𝑝
(𝑎
𝑛
) 𝑔
2+𝑝
(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
)

≤ 𝑐
𝑛
[𝑓
2
(𝑎
0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
)]

2+𝑝

≤ 𝑐
𝑛
.

(13)

(ii) By (i), {𝑎
𝑛
} is decreasing and 𝑎

0
∈ (0, 1/2). So, for all

𝑛 ≥ 0,

(1 +

𝑎
𝑛

2

(1 + 𝑎
𝑛
)) 𝑎
𝑛
≤ (1 +

𝑎
0

2

(1 + 𝑎
0
)) 𝑎
0
< 1. (14)

This completes the proof of Lemma 2.

Lemma 3. Suppose that the conditions of Lemma 2 hold.
Denote 𝛾 = 𝑎

1
/𝑎
0
= 𝑓
2
(𝑎
0
)𝑔(𝑎
0
, 𝑏
0
, 𝑐
0
) < 1. Then

(i) 𝑎
𝑛
≤ 𝛾
(3+𝑝)

𝑛−1

𝑎
𝑛−1

≤ 𝛾
(((3+𝑝)

𝑛

−1)/(2+𝑝))
𝑎
0
, 𝑏
𝑛
≤

(𝛾
(3+𝑝)

𝑛−1

)
2
𝑏
𝑛−1

≤ (𝛾
(((3+𝑝)

𝑛

−1)/(2+𝑝))
)
2
𝑏
0
, 𝑐
𝑛

≤

(𝛾
(3+𝑝)

𝑛−1

)
2+𝑝
𝑐
𝑛−1
≤ 𝛾
(3+𝑝)

𝑛

−1
𝑐
0
∀𝑛 ≥ 1;

(ii) 𝑓(𝑎
𝑛
)𝑔(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
) ≤ 𝛾

(3+𝑝)
𝑛

−1
𝑓(𝑎
0
)𝑔(𝑎
0
, 𝑏
0
, 𝑐
0
) =

(𝛾
(3+𝑝)

𝑛

/𝑓(𝑎
0
)), ∀𝑛 ≥ 1.

Proof. First, by induction, we prove that (i) holds. Because
𝑎
1
= 𝛾𝑎
0
and 𝑓(𝑎

0
) > 1, we have

𝑏
1
= 𝑏
0
𝑓
3
(𝑎
0
) 𝑔
2
(𝑎
0
, 𝑏
0
, 𝑐
0
) ≤ 𝛾
2
𝑏
0
,

𝑐
1
= 𝑐
0
𝑓
3+𝑝
(𝑎
0
) 𝑔
2+𝑝
(𝑎
0
, 𝑏
0
, 𝑐
0
) ≤ 𝛾
2+𝑝
𝑐
0
.

(15)
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Suppose that (i) holds for 𝑛 ≥ 1. Then we get

𝑎
𝑛+1
= 𝑎
𝑛
𝑓
2
(𝑎
𝑛
) 𝑔 (𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
)

≤ 𝛾
(3+𝑝)

𝑛−1

𝑎
𝑛−1
𝑓
2
(𝛾
(3+𝑝)

𝑛−1

𝑎
𝑛−1
)

× 𝑔(𝛾
(3+𝑝)

𝑛−1

𝑎
𝑛−1
, (𝛾
(3+𝑝)

𝑛−1

)

2

𝑏
𝑛−1
, (𝛾
(3+𝑝)

𝑛−1

)

2+𝑝

𝑐
𝑛−1
)

≤ 𝛾
(3+𝑝)

𝑛−1

𝑎
𝑛−1
𝑓
2
(𝑎
𝑛−1
)(𝛾
(3+𝑝)

𝑛−1

)

2+𝑝

𝑔 (𝑎
𝑛−1
, 𝑏
𝑛−1
, 𝑐
𝑛−1
)

= 𝛾
(3+𝑝)

𝑛

𝑎
𝑛−1
𝑓
2
(𝑎
𝑛−1
) 𝑔 (𝑎
𝑛−1
, 𝑏
𝑛−1
, 𝑐
𝑛−1
) = 𝛾
(3+𝑝)

𝑛

𝑎
𝑛
,

𝑎
𝑛+1
≤ 𝛾
(3+𝑝)

𝑛

𝑎
𝑛
≤ 𝛾
(3+𝑝)

𝑛

𝛾
(3+𝑝)

𝑛−1

𝑎
𝑛−1

≤ ⋅ ⋅ ⋅ ≤ 𝛾
(3+𝑝)

𝑛

𝛾
(3+𝑝)

𝑛−1

⋅ ⋅ ⋅ 𝛾
(3+𝑝)

0

𝑎
0

= 𝛾
(((3+𝑝)

𝑛+1

−1)/(2+𝑝))
𝑎
0
,

𝑏
𝑛+1
= 𝑏
𝑛
𝑓
3
(𝑎
𝑛
) 𝑔
2
(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
) ≤ 𝑏
𝑛
(

𝑎
𝑛+1

𝑎
𝑛

)

2

≤ (𝛾
(3+𝑝)

𝑛

)

2

𝑏
𝑛

≤ ⋅ ⋅ ⋅ ≤ (𝛾
(3+𝑝)

𝑛

)

2

(𝛾
(3+𝑝)

𝑛−1

)

2

⋅ ⋅ ⋅ (𝛾
(3+𝑝)

0

)

2

𝑏
0

= (𝛾
(((3+𝑝)

𝑛+1

−1)/(2+𝑝))
)

2

𝑏
0
,

𝑐
𝑛+1
= 𝑐
𝑛
𝑓
3+𝑝
(𝑎
𝑛
) 𝑔
2+𝑝
(𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
)

≤ 𝑐
𝑛
[𝑓
2
(𝑎
𝑛
) 𝑔 (𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
)]

2+𝑝

= 𝑐
𝑛
(

𝑎
𝑛+1

𝑎
𝑛

)

2+𝑝

≤ (𝛾
(3+𝑝)

𝑛

)

2+𝑝

𝑐
𝑛
≤ ⋅ ⋅ ⋅ ≤ 𝛾

(3+𝑝)
𝑛+1

−1
𝑐
0

(16)

and from (ii) we get

𝑓 (𝑎
𝑛
) 𝑔 (𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
)

≤ 𝑓 (𝛾
(((3+𝑝)

𝑛

−1)/(2+𝑝))
𝑎
0
)

× 𝑔 (𝛾
(((3+𝑝)

𝑛

−1)/(2+𝑝))
𝑎
0
, (𝛾
(((3+𝑝)

𝑛

−1)/(2+𝑝))
)

2

𝑏
0
, 𝛾
3
𝑛

−1
𝑐
0
)

≤ 𝛾
(3+𝑝)

𝑛

−1
𝑓 (𝑎
0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
) =

𝛾
(3+𝑝)

𝑛

𝑓 (𝑎
0
)

, 𝑛 ≥ 1.

(17)

This completes the proof of Lemma 3.

Lemma 4. Suppose that 𝑋 and 𝑌 are Banach spaces, Ω is
an open convex of the Banach space 𝑋, 𝐹 : Ω ⊂ 𝑋 → 𝑌

has continuous Fréchet derivative of the second-order, and the

sequences {𝑥
𝑛
}, {𝑦
𝑛
} are generated by (7). Then, for all natural

numbers 𝑛 ≥ 0, the following formula holds:

𝐹 (𝑥
𝑛+1
)

= ∫

1

0

𝐹
󸀠󸀠
(𝑦
𝑛
+ 𝑡 (𝑥

𝑛+1
− 𝑦
𝑛
)) (1 − 𝑡) 𝑑𝑡 (𝑥

𝑛+1
− 𝑦
𝑛
)
2

+ [∫

1

0

𝐹
󸀠󸀠
(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) (1 − 𝑡) 𝑑𝑡

−

1

2

∫

1

0

𝐹
󸀠󸀠
(𝑥
𝑛
+

2

3

𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡] (𝑦

𝑛
− 𝑥
𝑛
)
2

−

1

2

∫

1

0

[𝐹
󸀠󸀠
(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
))

−𝐹
󸀠󸀠
(𝑥
𝑛
+

2

3

𝑡 (𝑦
𝑛
− 𝑥
𝑛
))] 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

+

1

2

∫

1

0

𝐹
󸀠󸀠
(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
) .

(18)

Proof. Consider

𝐹 (𝑦
𝑛
)

= 𝐹 (𝑦
𝑛
) − 𝐹 (𝑥

𝑛
) − 𝐹
󸀠
(𝑥
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

= ∫

1

0

𝐹
󸀠󸀠
(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) (1 − 𝑡) 𝑑𝑡 (𝑦

𝑛
− 𝑥
𝑛
)
2

,

𝐹
󸀠
(𝑦
𝑛
) (𝑥
𝑛+1
− 𝑦
𝑛
)

= −

1

2

[𝐹
󸀠
(𝑦
𝑛
) − 𝐹
󸀠
(𝑥
𝑛
)]𝐻 (𝑥

𝑛
, 𝑦
𝑛
)

× [𝐼 − 𝐻 (𝑥
𝑛
, 𝑦
𝑛
)] (𝑦
𝑛
− 𝑥
𝑛
)

−

1

2

𝐹
󸀠
(𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) [𝐼 − 𝐻 (𝑥

𝑛
, 𝑦
𝑛
)] (𝑦
𝑛
− 𝑥
𝑛
)

= −

1

2

∫

1

0

𝐹
󸀠󸀠
(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

+

1

2

∫

1

0

𝐹
󸀠󸀠
(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

−

1

2

∫

1

0

𝐹
󸀠󸀠
(𝑥
𝑛
+

2

3

𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡 (𝑦

𝑛
− 𝑥
𝑛
)
2

+

1

2

∫

1

0

𝐹
󸀠󸀠
(𝑥
𝑛
+

2

3

𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
) ,
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𝐹 (𝑥
𝑛+1
)

= 𝐹 (𝑥
𝑛+1
) − 𝐹 (𝑦

𝑛
) − 𝐹
󸀠
(𝑦
𝑛
) (𝑥
𝑛+1
− 𝑦
𝑛
)

+ 𝐹 (𝑦
𝑛
) + 𝐹
󸀠
(𝑦
𝑛
) (𝑥
𝑛+1
− 𝑦
𝑛
)

= ∫

1

0

𝐹
󸀠󸀠
(𝑦
𝑛
+ 𝑡 (𝑥

𝑛+1
− 𝑦
𝑛
)) (1 − 𝑡) 𝑑𝑡 (𝑥

𝑛+1
− 𝑦
𝑛
)
2

+ [∫

1

0

𝐹
󸀠󸀠
(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) (1 − 𝑡) 𝑑𝑡

−

1

2

∫

1

0

𝐹
󸀠󸀠
(𝑥
𝑛
+

2

3

𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡] (𝑦

𝑛
− 𝑥
𝑛
)
2

−

1

2

∫

1

0

[𝐹
󸀠󸀠
(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
))

− 𝐹
󸀠󸀠
(𝑥
𝑛
+

2

3

𝑡 (𝑦
𝑛
− 𝑥
𝑛
))] 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

+

1

2

∫

1

0

𝐹
󸀠󸀠
(𝑥
𝑛
+ 𝑡 (𝑦
𝑛
− 𝑥
𝑛
)) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
)𝐻 (𝑥

𝑛
, 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
) .

(19)

This completes the proof of Lemma 4.
By (A1)–(A6), (10), and (11), if 𝑎

0
< 1/2, then

󵄩
󵄩
󵄩
󵄩
𝐻 (𝑥
0
, 𝑦
0
)
󵄩
󵄩
󵄩
󵄩
≤ 𝑀

󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩

= 𝑀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
0
)
−1

𝐹
󸀠
(𝑥
0
)

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
≤ 𝑎
0
,

󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑦
0

󵄩
󵄩
󵄩
󵄩
≤

1

2

󵄩
󵄩
󵄩
󵄩
𝐻 (𝑥
0
, 𝑦
0
)
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝐼 − 𝐻 (𝑥

0
, 𝑦
0
)
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩

≤

𝑎
0

2

(1 + 𝑎
0
)
󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑦
0

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩

≤ [1 +

𝑎
0

2

(1 + 𝑎
0
)]
󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
< 𝑅𝜂,

(20)

where𝑅 = [1+(𝑎
0
/2)(1+𝑎

0
)](1/(1−𝑓(𝑎

0
)𝑔(𝑎
0
, 𝑏
0
, 𝑐
0
))); hence,

𝑥
1
, 𝑦
0
∈ 𝑆(𝑥
0
, 𝑅𝜂). Consider

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
0
)
−1

𝐹
󸀠
(𝑥
1
) − 𝐼

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝑀
󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
≤ [1 +

𝑎
0

2

(1 + 𝑎
0
)] 𝑎
0
< 1.

(21)

By Banach lemma, 𝐹󸀠(𝑥
1
)
−1 exists, and

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
1
)
−1

𝐹
󸀠
(𝑥
0
)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝑓 (𝑎

0
) = 𝑓 (𝑎

0
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
0
)
−1

𝐹
󸀠
(𝑥
0
)

󵄩
󵄩
󵄩
󵄩
󵄩
.

(22)

By Lemma 4, we have
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐹
󸀠
(𝑥
0
)
−1

× ∫

1

0

𝐹
󸀠󸀠
(𝑥
0
+ 𝑡 (𝑦
0
− 𝑥
0
)) (1 − 𝑡) 𝑑𝑡

−

1

2

𝐹
󸀠
(𝑥
0
)
−1

× ∫

1

0

𝐹
󸀠󸀠
(𝑥
0
+

2

3

𝑡 (𝑦
0
− 𝑥
0
)) 𝑑𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐹
󸀠
(𝑥
0
)
−1

∫

1

0

𝐹
󸀠󸀠
[ (𝑥
0
+ 𝑡 (𝑦
0
− 𝑥
0
))

−𝐹
󸀠󸀠
(𝑥
0
)] (1 − 𝑡) 𝑑𝑡

−

1

2

𝐹
󸀠
(𝑥
0
)
−1

× ∫

1

0

[𝐹
󸀠󸀠
(𝑥
0
+

2

3

𝑡 (𝑦
0
− 𝑥
0
)) − 𝐹

󸀠󸀠
(𝑥
0
)] 𝑑𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐹
󸀠
(𝑥
0
)
−1

∬

1

0

𝐹
󸀠󸀠󸀠
[ (𝑥
0
+ 𝑠𝑡 (𝑦

0
− 𝑥
0
))

− 𝐹
󸀠󸀠󸀠
(𝑥
0
)] 𝑑𝑠

× 𝑡 (1 − 𝑡) 𝑑𝑡 (𝑦
0
− 𝑥
0
)

−

1

3

𝐹
󸀠
(𝑥
0
)
−1

×∬

1

0

[𝐹
󸀠󸀠󸀠
(𝑥
0
+

2

3

𝑠𝑡 (𝑦
0
− 𝑥
0
))

−𝐹
󸀠󸀠󸀠
(𝑥
0
) ] 𝑑𝑠 𝑡 𝑑𝑡 (𝑦

0
− 𝑥
0
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ (𝐴 + 𝐵) 𝜔 (𝜂)
󵄩
󵄩
󵄩
󵄩
(𝑦
0
− 𝑥
0
)
󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
0
)
−1

𝐹 (𝑥
1
)

󵄩
󵄩
󵄩
󵄩
󵄩

≤

𝑀

2

󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑦
0

󵄩
󵄩
󵄩
󵄩

2

+

𝑁

12

𝑎
0

󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩

3

+

𝑀

2

𝑎
2

0

󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩

2

+ (𝐴 + 𝐵) 𝜔 (𝜂)
󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩

3

,

󵄩
󵄩
󵄩
󵄩
𝑦
1
− 𝑥
1

󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
1
)
−1

𝐹
󸀠
(𝑥
0
)

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
0
)
−1

𝐹 (𝑥
1
)

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝑓 (𝑎
0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
)
󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
.

(23)

Hence,
󵄩
󵄩
󵄩
󵄩
𝐻 (𝑥
1
, 𝑦
1
)
󵄩
󵄩
󵄩
󵄩
≤ 𝑀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
1
)
−1

𝐹
󸀠
(𝑥
0
)

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑦
1
− 𝑥
1

󵄩
󵄩
󵄩
󵄩

≤ 𝑀𝑓
2
(𝑎
0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
)
󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
= 𝑎
1
,
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𝑁

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
1
)
−1

𝐹
󸀠
(𝑥
0
)

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑦
1
− 𝑥
1

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑁𝑓
3
(𝑎
0
) 𝑔
2
(𝑎
0
, 𝑏
0
, 𝑐
0
)
󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩

2

= 𝑏
1
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
1
)
−1

𝐹
󸀠
(𝑥
0
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜔 (
󵄩
󵄩
󵄩
󵄩
𝑦
1
− 𝑥
1

󵄩
󵄩
󵄩
󵄩
)
󵄩
󵄩
󵄩
󵄩
𝑦
1
− 𝑥
1

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑓
3+𝑝
(𝑎
0
) 𝑔
2+𝑝
(𝑎
0
, 𝑏
0
, 𝑐
0
) 𝜔 (𝜂)

󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩

2

= 𝑐
1
.

(24)

Hence,

󵄩
󵄩
󵄩
󵄩
𝑥
2
− 𝑦
1

󵄩
󵄩
󵄩
󵄩
≤

1

2

𝑎
1
(1 + 𝑎

1
)
󵄩
󵄩
󵄩
󵄩
𝑦
1
− 𝑥
1

󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
𝑥
2
− 𝑥
1

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
2
− 𝑦
1

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑦
1
− 𝑥
1

󵄩
󵄩
󵄩
󵄩

≤ (1 +

1

2

𝑎
1
(1 + 𝑎

1
))
󵄩
󵄩
󵄩
󵄩
𝑦
1
− 𝑥
1

󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
𝑥
2
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
2
− 𝑥
1

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑥
0

󵄩
󵄩
󵄩
󵄩

≤ [1 +

𝑎
0

2

(1 + 𝑎
0
)] [𝑓 (𝑎

0
) 𝑔 (𝑎
0
, 𝑏
0
, 𝑐
0
) + 1]

×
󵄩
󵄩
󵄩
󵄩
𝑦
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
< 𝑅𝜂.

(25)

By

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
1
)
−1

𝐹
󸀠
(𝑥
2
) − 𝐼

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝑀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
1
)
−1

𝐹
󸀠
(𝑥
0
)

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
2
− 𝑥
1

󵄩
󵄩
󵄩
󵄩

≤ 𝑎
1
[1 +

𝑎
1

2

(1 + 𝑎
1
)] < 1,

(26)

hence 𝐹
󸀠
(𝑥
2
)
−1
𝐹
󸀠
(𝑥
0
) exists, and ‖𝐹

󸀠
(𝑥
2
)
−1
𝐹
󸀠
(𝑥
0
)‖ ≤

𝑓(𝑎
1
)‖𝐹
󸀠
(𝑥
1
)
−1
𝐹
󸀠
(𝑥
0
)‖. By induction, we can prove that the

following Lemma 5 holds.

Lemma 5. Under the hypotheses of Lemma 2, the following
items are true for all 𝑛 ≥ 1:

(I) 𝐹󸀠(𝑥
𝑛
)
−1
𝐹
󸀠
(𝑥
0
) exists and ‖𝐹

󸀠
(𝑥
𝑛
)
−1
𝐹
󸀠
(𝑥
0
)‖ ≤

𝑓(𝑎
𝑛−1
)‖𝐹
󸀠
(𝑥
𝑛−1
)
−1
𝐹
󸀠
(𝑥
0
)‖;

(II) ‖𝑦
𝑛
− 𝑥
𝑛
‖ ≤ 𝑓(𝑎

𝑛−1
)𝑔(𝑎
𝑛−1
, 𝑏
𝑛−1
, 𝑐
𝑛−1
)‖𝑦
𝑛−1
− 𝑥
𝑛−1
‖;

(III) 𝐻(𝑥
𝑛
, 𝑦
𝑛
) ≤ 𝑀‖𝐹

󸀠
(𝑥
𝑛
)
−1
𝐹
󸀠
(𝑥
0
)‖‖𝑦
𝑛
− 𝑥
𝑛
‖ ≤ 𝑎
𝑛
;

(IV) 𝑁‖𝐹󸀠(𝑥
𝑛
)
−1
𝐹
󸀠
(𝑥
0
)‖‖𝑦
𝑛
− 𝑥
𝑛
‖
2
≤ 𝑏
𝑛
;

(V) ‖𝐹󸀠(𝑥
𝑛
)
−1
𝐹
󸀠
(𝑥
0
)‖𝜔(‖𝑦

𝑛
− 𝑥
𝑛
‖)‖𝑦
𝑛
− 𝑥
𝑛
‖
2
≤ 𝑐
𝑛
;

(VI) ‖𝑥
𝑛+1
− 𝑦
𝑛
‖ ≤ (𝑎

𝑛
/2)(1 + 𝑎

𝑛
)‖𝑦
𝑛
− 𝑥
𝑛
‖;

(VII) ‖𝑥
𝑛+1
− 𝑥
𝑛
‖ ≤ [1 + (𝑎

𝑛
/2)(1 + 𝑎

𝑛
)]‖𝑦
𝑛
− 𝑥
𝑛
‖;

(VIII) ‖𝑥
𝑛+1
−𝑥
0
‖ ≤ 𝑅𝜂, where𝑅 = [1+(𝑎

0
/2)(1+𝑎

0
)] (1/(1−

𝑓(𝑎
0
)𝑔(𝑎
0
, 𝑏
0
, 𝑐
0
))).

Theorem 6. Let 𝑋 and 𝑌 be two Banach spaces and 𝐹 : Ω ⊂
𝑋 → 𝑌 has continuous Fréchet derivative of the third-order on
a nonempty open convexΩ. One supposes that Γ

0
= 𝐹
󸀠
(𝑥
0
)
−1
∈

𝐿(𝑌,𝑋) exists for some 𝑥
0
∈ Ω and conditions (A1)–(A6) and

(11) hold. If 𝑆(𝑥
0
, 𝑅𝜂) ⊂ Ω, then the sequence {𝑥

𝑛
} generated

by (7) is well defined and converges to a unique solution 𝑥∗ of
(2) in 𝑆(𝑥

0
, (2/𝑀)−𝑅𝜂) ∩Ω. Furthermore, the following error

estimate is obtained:
󵄩
󵄩
󵄩
󵄩
𝑥
∗
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

≤ [1 +

𝛾
(((3+𝑝)

𝑛

−1)/(2+𝑝))
𝑎
0

2

(1 + 𝛾
(((3+𝑝)

𝑛

−1)/(2+𝑝))
𝑎
0
)]

×

1

1 − 𝛾
(3+𝑝)

𝑛

Δ

𝛾
(((3+𝑝)

𝑛

−1)/(2+𝑝))
Δ
𝑛
𝜂,

(27)

where 𝛾 = 𝑓2(𝑎
0
)𝑔(𝑎
0
, 𝑏
0
, 𝑐
0
) = 𝑎
1
/𝑎
0
and Δ = 1/𝑓(𝑎

0
), 𝑅 =

(1 + (𝑎
0
/2)(1 + 𝑎

0
)) (1/(1 − 𝛾Δ)).

Proof. Firstly, we prove that the sequence {𝑥
𝑛
} is a Cauchy

one. From (II) and by Lemma 3, we have

󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
≤ 𝑓 (𝑎

𝑛−1
) 𝑔 (𝑎
𝑛−1
, 𝑏
𝑛−1
, 𝑐
𝑛−1
)
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛−1
− 𝑥
𝑛−1

󵄩
󵄩
󵄩
󵄩

≤ ⋅ ⋅ ⋅ ≤ (

𝑛−1

∏

𝑖=0

𝑓 (𝑎
𝑖
) 𝑔 (𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
)) 𝜂

≤ (

𝑛−1

∏

𝑖=0

𝛾
(3+𝑝)

𝑖

Δ)𝜂 = 𝛾
(((3+𝑝)

𝑛

−1)/(2+𝑝))
Δ
𝑛
𝜂.

(28)

For 𝑛 ≥ 0,𝑚 ≥ 1,
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+𝑚
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+𝑚
− 𝑥
𝑛+𝑚−1

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+𝑚−1

− 𝑥
𝑛+𝑚−2

󵄩
󵄩
󵄩
󵄩

+ ⋅ ⋅ ⋅ +
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

≤ [1 +

𝑎
𝑛

2

(1 + 𝑎
𝑛
)]

× (
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛+𝑚−1

− 𝑥
𝑛+𝑚−1

󵄩
󵄩
󵄩
󵄩
+ ⋅ ⋅ ⋅ +

󵄩
󵄩
󵄩
󵄩
𝑦
𝑛+1
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
)

≤ [1 +

𝑎
𝑛

2

(1 + 𝑎
𝑛
)]

× (𝛾
(((3+𝑝)

𝑛+𝑚−1

−1)/(2+𝑝))
Δ
𝑛+𝑚−1

+ ⋅ ⋅ ⋅ + 𝛾
(((3+𝑝)

𝑛

−1)/(2+𝑝))
Δ
𝑛
) 𝜂

= [1 +

𝑎
𝑛

2

(1 + 𝑎
𝑛
)] 𝛾
(((3+𝑝)

𝑛

−1)/(2+𝑝))
Δ
𝑛
𝜂

× (𝛾
((3+𝑝)

𝑛

[(3+𝑝)
𝑚−1

−1]/(2+𝑝))
Δ
𝑚−1
+ ⋅ ⋅ ⋅ + 1) .

(29)

By the Bernoulli inequality (1+𝑥)𝑘 −1 > 𝑘𝑥, so (3+𝑝)𝑘 −1 >
𝑘(2 + 𝑝). Hence, we have

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+𝑚
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

< [1 +

𝑎
𝑛

2

(1 + 𝑎
𝑛
)]

1

1 − 𝛾
(3+𝑝)

𝑛

Δ

𝛾
(((3+𝑝)

𝑛

−1)/(2+𝑝))
Δ
𝑛
𝜂.

(30)
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Hence, {𝑥
𝑛
} is a Cauchy sequence and 𝑥∗ = lim

𝑛→∞
𝑥
𝑛
.

Obviously, 𝑥
𝑚
∈ 𝐵(𝑥

0
, 𝑅𝜂), for all 𝑚 ≥ 1, as if 𝑛 = 0 in (30);

we obtain

󵄩
󵄩
󵄩
󵄩
𝑥
𝑚
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
< (1 +

𝑎
0

2

(1 + 𝑎
0
))

1

1 − 𝛾Δ

𝜂 = 𝑅𝜂. (31)

Following a similar procedure, we have 𝑦
𝑛
∈ 𝐵(𝑥

0
, 𝑅𝜂), for all

𝑛 ≥ 0.
Now, let 𝑛 → ∞ in (28). It follows that ‖𝐹󸀠(𝑥

𝑛
)
−1

𝐹(𝑥
𝑛
)‖ → 0. Besides ‖𝐹(𝑥

𝑛
)‖ → 0, since ‖𝐹(𝑥

𝑛
)‖ ≤ ‖𝐹

󸀠
(𝑥
𝑛
)‖

‖𝐹
󸀠
(𝑥
𝑛
)
−1
𝐹(𝑥
𝑛
)‖ and {‖𝐹󸀠(𝑥

𝑛
)‖} is a bounded sequence, there-

fore 𝐹(𝑥∗) = 0 by the continuity of 𝐹 in 𝑆(𝑥
0
, 𝑅𝜂).

By letting𝑚 → ∞ in (30), we obtain error estimate (28).
To show uniqueness, let us assume that there exists a

second solution 𝑦∗ of (2) in 𝑆(𝑥
0
, (2/𝑀) − 𝑅𝜂) ∩ Ω. Then

∫

1

0

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
0
)
−1

[𝐹
󸀠
(𝑥
∗
+ 𝑡 (𝑦

∗
− 𝑥
∗
)) − 𝐹

󸀠
(𝑥
0
)]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑𝑡

≤ 𝑀∫

1

0

󵄩
󵄩
󵄩
󵄩
𝑥
∗
+ 𝑡 (𝑦

∗
− 𝑥
∗
) − 𝑥
0

󵄩
󵄩
󵄩
󵄩
𝑑𝑡

≤ 𝑀∫

1

0

[(1 − 𝑡)
󵄩
󵄩
󵄩
󵄩
𝑥
∗
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
+ 𝑡
󵄩
󵄩
󵄩
󵄩
𝑦
∗
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
] 𝑑𝑡

<

𝑀

2

(𝑅𝜂 +

2

𝑀

− 𝑅𝜂) = 1.

(32)

By Banach lemma, we can obtain that the inverse of the linear
operator ∫1

0
𝐹
󸀠
(𝑥
∗
+ 𝑡(𝑦
∗
− 𝑥
∗
))𝑑𝑡 exists and

∫

1

0

𝐹
󸀠
(𝑥
∗
+ 𝑡 (𝑦

∗
− 𝑥
∗
)) 𝑑𝑡 (𝑦

∗
− 𝑥
∗
) = 𝐹 (𝑦

∗
) − 𝐹 (𝑥

∗
) = 0.

(33)

We get that 𝑥∗ = 𝑦∗.
This completes the proof of Theorem 6.

3. Application

In this section, we apply the convergence theorem and show
three numerical examples.

Example 1. Consider the root of the equation 𝐹(𝑥) = 𝑥10/3 +
𝑥
7/2
− 𝑥 − 1 = 0 on 𝑥 ∈ (0, +∞). Then, we easily get that

𝐹
󸀠󸀠󸀠

(𝑥) =

280

27

𝑥
1/3
+

105

8

𝑥
1/2 (34)

does not satisfy (𝐾, 𝑝) Hölder condition
󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠󸀠󸀠

(𝑥) − 𝐹
󸀠󸀠󸀠
(𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝐾

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

𝑝 (35)

because, for all 𝑝 ∈ (0, 1],

sup
𝑥,𝑦∈(0,+∞)

(280/27)
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

1/3

+ (105/8)
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

1/2

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑝
= +∞.

(36)

Let

𝜔 (𝑧) =

280

27

𝑧
1/3
+

105

8

𝑧
1/2
, 𝑧 > 0; (37)

then 𝜔(𝑡𝑧) ≤ 𝑡1/3𝜔(𝑧) for 𝑡 ∈ [0, 1] and 𝑧 ∈ [0, +∞);
󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠󸀠󸀠

(𝑥) − 𝐹
󸀠󸀠󸀠
(𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝜔
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
. (38)

Let us consider a particular case of (2) from the operator
given by the following nonlinear integral equation of mixed
Hammerstein type (see [26]):

𝑥 (𝑠) = 𝛼 (𝑠) −

𝑚

∑

𝑖=1

∫

𝑏

𝑎

𝑘 (𝑠, 𝑡) 𝜑
𝑖
(𝑥 (𝑡)) 𝑑𝑡, (39)

where −∞ < 𝑎 < 𝑏 < +∞, 𝑢, 𝜑
𝑖
, for 𝑖 = 1, 2, . . . , 𝑚, are

known functions and 𝑥 is a solution to be determined. If 𝜑󸀠󸀠󸀠
is (𝐿
𝑖
, 𝑝
𝑖
) Hölder continuous in Ω, for 𝑖 = 1, 2, . . . , 𝑚, the

corresponding operator 𝐹 : Ω ⊆ 𝐶[𝑎, 𝑏] → 𝐶[𝑎, 𝑏],

[𝐹 (𝑥)] (𝑠) = 𝑥 (𝑠) +

𝑚

∑

𝑖=1

∫

𝑏

𝑎

𝑘 (𝑠, 𝑡) 𝜑
𝑖
(𝑥 (𝑡)) 𝑑𝑡 − 𝛼 (𝑠) ,

𝑠 ∈ [𝑎, 𝑏] ,

(40)

does not satisfy (𝐾, 𝑝) Hölder condition; for instance, the
max-norm is considered. In this case,

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠󸀠󸀠

(𝑥) − 𝐹
󸀠󸀠󸀠
(𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩
≤

𝑚

∑

𝑖=1

𝐿
𝑖

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

𝑝
𝑖

,

𝐿
𝑖
> 0, 𝑝

𝑖
∈ (0, 1] , 𝑥, 𝑦 ∈ Ω.

(41)

To solve this type of equations, we can consider
󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠󸀠󸀠

(𝑥) − 𝐹
󸀠󸀠󸀠
(𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝜔 (

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
) , 𝑥, 𝑦 ∈ Ω, (42)

where 𝜔(𝑧) = Σ𝑚
𝑖=1
𝐿
𝑖
𝑧
𝑝
𝑖 satisfy 𝜔(𝑡𝑧) ≤ 𝑡𝑞𝜔(𝑧), where 𝑞 =

min{𝑝
𝑖
, 𝑝
2
, . . . , 𝑝

𝑚
}.

Remark 7. Observe that if 𝐹󸀠󸀠󸀠 is Lipschitz continuous in Ω,
we can choose𝜔(𝑧) = 𝐾𝑧,𝐾 > 0, so that Jarratt’s method is of
𝑅-order, at least four order. If 𝐹󸀠󸀠󸀠 is (𝐿, 𝑝)Hölder continuous
in Ω, then we can choose 𝜔(𝑧) = 𝐿𝑧𝑝, 𝐿 < 0, 𝑝 ∈ (0, 1], and
Jarratt’s method is of 𝑅-order, at least 3 + 𝑝.

Example 2. Consider the case as follows:

𝑥 (𝑠) = 1 +

1

32

∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
16/5
𝑑𝑡

+

1

30

∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
10/3
𝑑𝑡,

(43)

where the space is𝑋 = 𝐶[0, 1] with the norm

‖𝑥‖ = max
0≤𝑠≤1

|𝑥 (𝑠)| ,

𝑘 (𝑠, 𝑡) = {

𝑡 (1 − 𝑠) , 𝑡 ≤ 𝑠,

𝑠 (1 − 𝑡) , 𝑠 ≤ 𝑡.

(44)
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This equation arises in the theory of the radiative transfer
and neutron transport and in the kinetic theory of gasses. Let
us define the operator 𝐹 on𝑋 by

𝐹 (𝑥) = 𝑥 (𝑠) −

1

32

∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
16/5
𝑑𝑡

−

1

30

∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
10/3
𝑑𝑡 − 1.

(45)

The first, the second, and the third derivatives of𝐹 are defined
by

𝐹
󸀠

(𝑥) 𝑢 (𝑠) = 𝑢 (𝑠) −

1

10

∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
11/5
𝑢 (𝑡) 𝑑𝑡

−

1

9

∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
7/3
𝑢 (𝑡) 𝑑𝑡, 𝑢 ∈ 𝑋,

𝐹
󸀠󸀠

(𝑥) (𝑢V) (𝑠) = −
11

50

∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
6/5
𝑢 (𝑡) V (𝑡) 𝑑𝑡

−

7

27

∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)

4

3 𝑢 (𝑡) V (𝑡) 𝑑𝑡,

𝑢 ∈ 𝑋,

𝐹
󸀠󸀠󸀠

(𝑥) (𝑢V𝑤) (𝑠) = −
66

250

∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
1/5
𝑢 (𝑡) V (𝑡) 𝑤 (𝑡) 𝑑𝑡

−

28

81

∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡)
1/3
𝑢 (𝑡) V (𝑡) 𝑤 (𝑡) 𝑑𝑡,

(46)

and we have
󵄩
󵄩
󵄩
󵄩
󵄩
[𝐹
󸀠󸀠󸀠

(𝑥) − 𝐹
󸀠󸀠󸀠
(𝑦)] 𝑢V𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

≤

66

250

max
𝑠∈[0,1]

× ∫

1

0

𝑘 (𝑠, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑥 (𝑡)
1/5
− 𝑦 (𝑡)

1/5
) 𝑢 (𝑡) V (𝑡) 𝑤 (𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑡

+

28

81

max
𝑠∈[0,1]

× ∫

1

0

𝑘 (𝑠, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑥 (𝑡)
1/3
− 𝑦 (𝑡)

1/3
) 𝑢 (𝑡) V (𝑡) 𝑤 (𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑡

≤

66

250

×

1

8

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

1/5

‖𝑢V𝑤‖

+

28

81

×

1

8

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

1/3

‖𝑢V𝑤‖ .

(47)

To apply Theorem 6, we choose 𝑥
0
= 𝑥
0
(𝑠) = 1 and we look

for a domain in the form

Ω = 𝐵 (1, 2) ⊆ 𝐶 ([0, 1]) . (48)

In this case, we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝐼 − 𝐹
󸀠
(𝑥
0
)

󵄩
󵄩
󵄩
󵄩
󵄩
≤

19

720

< 1 (49)

and from the Banach lemma, we obtain

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
0
)
−1󵄩󵄩
󵄩
󵄩
󵄩
≤

720

701

,

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠
(𝑥
0
)
−1

𝐹 (𝑥
0
)

󵄩
󵄩
󵄩
󵄩
󵄩
≤

720

701

×

1

8

(

1

32

+

1

30

) = 𝜂 =

93

11216

,

𝑀 = 0.148766 ⋅ ⋅ ⋅ , 𝑁 = 0.0948511 ⋅ ⋅ ⋅ ,

𝜔 (𝑧) =

33

100𝑧
1/5
+

7

162𝑧
1/3
, 𝑝 =

1

5

.

(50)

Then 𝑎
0
= 𝑀𝜂 = 0.00123353 < 1/2, 𝑏

0
= 6.52127 × 10

−6, 𝑐
0
=

1.47132 × 10
−6, 𝛾 = 𝑓2(𝑎

0
)𝑔(𝑎
0
, 𝑏
0
, 𝑐
0
) = 3.48167 × 10

−7
< 1,

Δ = 0.998766 ⋅ ⋅ ⋅ , and 𝑅 = 1.00062 ⋅ ⋅ ⋅ . This means that the
hypothesis of Theorem 6 is satisfied. Then, the error bound
becomes

󵄩
󵄩
󵄩
󵄩
𝑥
∗
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

≤ [1 +

𝛾
(((3.2)

𝑛

−1)/2.2)
𝑎
0

2

(1 + 𝛾
(((3.2)

𝑛

−1)/2.2)
𝑎
0
)]

×

1

1 − 𝛾
(3.2)
𝑛

Δ

𝛾
(((3.2)

𝑛

−1)/2.2)
Δ
𝑛
𝜂.

(51)

For 𝑛 = 1, 2, 3, 4, we get

󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑥
∗󵄩
󵄩
󵄩
󵄩
≤ 4.28944 × 10

−10
,

󵄩
󵄩
󵄩
󵄩
𝑥
2
− 𝑥
∗󵄩
󵄩
󵄩
󵄩
≤ 5.76451 × 10

−16
,

󵄩
󵄩
󵄩
󵄩
𝑥
3
− 𝑥
∗󵄩
󵄩
󵄩
󵄩
≤ 6.63209 × 10

−23
,

󵄩
󵄩
󵄩
󵄩
𝑥
4
− 𝑥
∗󵄩
󵄩
󵄩
󵄩
≤ 2.86064 × 10

−32
.

(52)

Example 3. Let us consider the system of equations 𝐹(𝑢, V) =
0, where

𝐹 (𝑢, V) = (𝑢7/2 − 𝑢V − V10/3 + 1, 𝑢7/2 + 𝑢V − V10/3 − 1)
𝑇

.

(53)

Then, we have

𝐹
󸀠

(𝑢, V) = (

7

2

𝑢
5/2
− V −

10

3

V7/3 − 𝑢

7

2

𝑢
5/2
+ V −

10

3

V7/3 + 𝑢
) ,
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𝐹
󸀠

(𝑢, V)−1 =
1

(14/2) 𝑢
7/2
+ (20/3) V10/3

×(

−

10

3

V
7

3 + 𝑢

10

3

V
7

3 + 𝑢

−

7

2

𝑢

5

2 − V
7

2

𝑢

5

2 − V,

) ,

𝐹
󸀠󸀠

(𝑢, V) =
(

(

(

(

35

4

𝑢
3/2

−1

−1 −

70

9

V4/3

35

4

𝑢
3/2

1

1 −

70

9

V4/3.

)

)

)

)

,

𝐹
󸀠󸀠󸀠

(𝑢, V) (𝑠, 𝑡)3 = (

105

8

𝑢
1/2

280

27

V1/3

105

8

𝑢
1/2

280

27

V1/3
)(

𝑠
3

𝑡
3) .

(54)

Now, we choose 𝑥
0
= (𝑢
0
, V
0
) = (1.5, 1.5) and Ω = {𝑥 |

‖𝑥 − 𝑥
0
‖ ≤ 1.5}. We take the max-norm in 𝑅2 and the norm

‖𝐴‖ =max{|𝑎
11
|+|𝑎
12
|, |𝑎
21
|+|𝑎
22
|} for𝐴 = ( 𝑎11 𝑎12𝑎

21
𝑎
22

).We define
the norm of a bilinear operator 𝐵 on 𝑅2 by

‖𝐵‖ = sup
‖𝑢‖=1

max
𝑖

2

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

∑

𝑘=1

𝑏
𝑗𝑘

𝑖
𝑢
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (55)

where 𝑢 = (𝑢
1
, 𝑢
2
)
𝑇 and 𝐵 = (

𝑏
11

1
𝑏
12

1

𝑏
21

1
𝑏
22

1

𝑏
11

2
𝑏
12

2

𝑏
21

2
𝑏
22

2

).

Then, we get the following results: 𝜂 = ‖𝐹󸀠(𝑥
0
)
−1
𝐹(𝑥
0
)‖ =

0.09598 ⋅ ⋅ ⋅ ,𝑀 = 9.20456 ⋅ ⋅ ⋅ ,𝑁 = 10.7635 ⋅ ⋅ ⋅ , and 𝑝 = 1/3.
We get that the hypotheses of Theorem 6 are satisfied.
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[1] J. A. Ezquerro, D. González, and M. A. Hernández, “A mod-
ification of the classic conditions of Newton-Kantorovich for
Newton’s method,”Mathematical and Computer Modelling, vol.
57, no. 3-4, pp. 584–594, 2013.
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