VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV MIKROELEKTRONIKY

DEPARTMENT OF MICROELECTRONICS

VÝPOČET VLASTNÍCH ČÍSEL A VLASTNÍCH VEKTORŮ HERMITOVSKÉ MATICE

COMPUTATION OF THE EIGENVALUES AND EIGENVECTORS OF HERMITIAN MATRIX

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. Martin Štrympl

VEDOUCÍ PRÁCE SUPERVISOR

doc. Ing. Lukáš Fujcik, Ph.D.

BRNO 2016

VYSOKÉ UČENÍ FAKULTA ELEKTROTECHNIKY TECHNICKÉ A KOMUNIKAČNÍCH V BRNĚ TECHNOLOGIÍ

Diplomová práce

magisterský navazující studijní obor **Mikroelektronika** Ústav mikroelektroniky

Ustav mikroelektror

Student: Bc. Martin Štrympl *Ročník:* 2

ID: 120617 *Akademický rok:* 2015/16

NÁZEV TÉMATU:

Výpočet vlastních čísel a vlastních vektorů hermitovské matice

POKYNY PRO VYPRACOVÁNÍ:

Seznamte se s algoritmy pro výpočet vlastních čísel a vektorů matice. Zvolte nejvhodnější algoritmus a realizujte jej nad komplexní korelační matici 4x4 v hradlovém poli. Cílovou platformou je řada Xilinx Zynq 7000. Vstupem sestaveného bloku bude korelační matice a jeho výstupem budou vlastní čísla a vlastní vektory.

DOPORUČENÁ LITERATURA:

Podle pokynů vedoucího práce

Termín zadání: 8.2.2016

Termín odevzdání: 26.5.2016

Vedoucí práce: doc. Ing. Lukáš Fujcik, Ph.D. Konzultant diplomové práce: Ing. Antonín Heřmánek, Ph.D., ERA, a.s.

doc. Ing. Lukáš Fujcik, Ph.D., předseda oborové rady

UPOZORNĚNÍ:

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

ABSTRAKT

Tato práce se zabývá výpočtem vlastních čísel a vlastních vektorů hermitovské pozitivně–semidefinitní komplexní čtvercové matice řádu 4. Cílem je implementace výpočtu v jazyce VHDL pro hradlové pole řady Xilinx Zynq-7000.

Práce se věnuje algoritmům pro výpočet vlastních čísel a vektorů pozitivně–semidefinitních reálných symetrických čtvercových a pozitivně–semidefinitních komplexních hermitovských matic a jejich analýze s využitím programu AnalyzeAlgorithm sestaveného pro tento účel. Závěrečná část práce popisuje implementaci výpočtu do hradlového pole s využitím IP bloku Xilinx® Floating-Point Operator a programů SVAOptimalizer, SVAInterpreter a SVAToDSPCompiler.

KLÍČOVÁ SLOVA

matice, vlastní čísla, vlastní vektory, symetrická matice, hermitovská matice, QR rozklad, třídiagonální matice, analýza algoritmů, VHDL, Xilinx Zynq-7000, Xilinx® Floating-Point Operator

ABSTRACT

This project deals with computation of eigenvalues and eigenvectors of Hermitian positive-semidefinite complex square matrix of order 4. The target is an implementation of computation in language VHDL to field-programmable gate array of type Xilinx Zynq-7000.

This master project deals with algorithms used for computation of eigenvalues and eigenvectors of positive-semidefinite symmetric real square and positive-semidefinite complex Hermitian matrix and the analysis of algorithms by AnalyzeAlgorithm program assembled for this purpose. The closing part of this project describes implementation of the computation into field-programmable gate array with use of IP core Xilinx® Floating-Point Operator and SVAOptimalizer, SVAInterpreter and SVAToDSPCompiler programs.

KEYWORDS

matrix, eigenvalues, eigenvectors, symmetrix matrix, Hermitian matrix, QR decomposition, tridiagonal matrix, algorithm analyze, VHDL, Xilinx Zynq-7000, Xilinx® Floating-Point Operator

ŠTRYMPL, Martin *Výpočet vlastních čísel a vlastních vektorů hermitovské matice*: diplomová práce. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav mikroelektroniky, 2016. 109 s. Vedoucí práce byl doc. Ing. Lukáš Fujcik, Ph.D.

Vysázeno pomocí balíčku thesis verze 2.61; http://latex.feec.vutbr.cz

PROHLÁŠENÍ

Prohlašuji, že svou diplomovou práci na téma "Výpočet vlastních čísel a vlastních vektorů hermitovské matice" jsem vypracoval(a) samostatně pod vedením vedoucího diplomové práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor(ka) uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této diplomové práce jsem neporušil(a) autorská práva třetích osob, zejména jsem nezasáhl(a) nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a jsem si plně vědom(a) následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

Brno

podpis autora(-ky)

Faculty of Electrical Engineering and Communication Brno University of Technology Purkynova 118, CZ-61200 Brno Czech Republic http://www.six.feec.vutbr.cz

PODĚKOVÁNÍ

Výzkum popsaný v této diplomové práci byl realizován v laboratořích podpořených z projektu SIX; registrační číslo CZ.1.05/2.1.00/03.0072, operační program Výzkum a vývoj pro inovace.

Brno

podpis autora(-ky)

EVROPSKÁ UNIE EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

PODĚKOVÁNÍ

Rád bych poděkoval konzultantovi semestrální práce panu Ing. Antonínu Heřmánkovi, Ph.D. a zaměstnancům Vysoké učení technického v Brně doc. RNDr. Jaromíru Baštincovi, CSc. a doc. Ing. Romanovi Maršálkovi, Ph.D. za odborné vedení, konzultace, trpělivost a podnětné návrhy k práci. Za zapůjčení vývojové desky ZedBoard náleží poděkování Ing. Michalovi Kubíčkovi, Ph.D.

Brno

podpis autora(-ky)

OBSAH

Ú	vod			14
1	Kor	nplexr	ıí čísla a matice	15
	1.1	Komp	lexní čísla	16
	1.2	Matic	e	18
		1.2.1	Operace sčítání, odčítání a násobení	18
		1.2.2	Speciální případy matic	19
		1.2.3	Determinant	20
		1.2.4	Norma vektoru	21
	1.3	Vlastr	ní čísla a vlastní vektory	23
	1.4	House	holderova redukce na třídiagonální tvar	24
	1.5	Jacob	iho metoda	25
	1.6	QR ro	vzklad	27
		1.6.1	Gram-Schmidtův QR rozklad	27
		1.6.2	Householderův QR rozklad	28
		1.6.3	QR rozklad pomocí Givensovy matice	29
		1.6.4	Srovnání QR rozkladů	30
	1.7	QR al	goritmus pro vlastní čísla a vlastní vektory	31
	1.8	Hledá	ní vlastních čísel a vlastních vektorů hermitovské matice $\ .\ .$.	32
2	Ana	alýza a	lgoritmů	33
	2.1	Analý	za redukce matice na matici třídiagonální	34
	2.2	Analý	za QR rozkladu	35
	2.3	Srovn	ání výpočetní náročnosti algoritmů	38
3	Imp	olemen	tace do hradlového pole	39
	3.1	IP blo	ok pro výpočty s čísly s plovoucí desetinnou čárkou $\ .\ .\ .\ .$	41
		3.1.1	Čísla s plovoucí desetinnou čárkou	41
		3.1.2	Porty	43
		3.1.3	Neblokovací režim	44
		3.1.4	Blokovací režim	44
		3.1.5	Vygenerované bloky	45
	3.2	Pomo	cné bloky	47
	3.3	Reáln	á a komplexní aritmetická jednotka 	51
		3.3.1	Aritmetická jednotka APU_NB	51
		3.3.2	Aritmetická jednotka APU_NB_small	52
		3.3.3	Aritmetická jednotka APU_small	55

	3.4 QR algoritmus v hradlovém poli $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 56$		56	
		3.4.1	Blok DSP_pipelineRAM	57
		3.4.2	Paměť s instrukcemi pro blok DSP_pipelineRAM	60
		3.4.3	Optimalizace SVA kódu	61
		3.4.4	Kompilace SVA kódu	64
	3.5	Simula	uce	66
		3.5.1	Struktura simulace	66
		3.5.2	Simulace bloků APU_NB a APU_NB_small	69
		3.5.3	Simulace bloku APU_small	69
		3.5.4	Simulace bloku DSP_pipelineRAM	70
		3.5.5	Simulace bloku QR_Algorithm	70
4	Záv	ěr		71
Li	terat	ura		72
Se	znan	n symb	oolů, veličin a zkratek	74
Se	znan	n přílo	h	75
A	A Generování autokorelační matice zatížené šumem 70			76
в	B Jacobiho metoda 7			78
С	C Householderova transformace na matici třídiagonální 80			80
D	D Gram-Schmidtův QR rozklad 8			81
E	E Householderův QR rozklad 8		82	
\mathbf{F}	F QR rozklad pomocí Givensovy matice		83	
G	G QR algoritmus pro výpočet vlastních čísel a vektorů matice 84			84
н	H Výpis SVA kódu Householderovova QR rozkladu matice řádu 2 85			85
Ι	Výpis SVA kódu QR rozkladu po základní optimalizaci 88			88
J	J – Výpis SVA kódu QR rozkladu po základní a redukující optimalizaci			
	νı		· · · ·	91
K	Výz	nam p	ortů IP bloku	93
\mathbf{L}	Roz	hraní l	bloků pro výpočty s čísly s plovoucí desetinnou čárkou	95

Μ	Definice rozhraní bloku DSP_pipelineRAM	103
Ν	Definice rozhraní bloku DSP_corePipelineRAM	105
0	Simulace APU_NB a APU_NB_small	107
Ρ	Simulace APU_small	108
Q	Obsah přiloženého CD	109

SEZNAM OBRÁZKŮ

3.1	Číslo s plovoucí desetinnou čárkou
3.2	Vstupní a výstupní porty IP bloku 43
3.3	Neblokační mód
3.4	Blokační mód
3.5	Vnitřní architektura FP_CHECK
3.6	Vnitřní propojení bloků APU_NB během komplexního násobení 52
3.7	Vnitřní propojení bloků APU_NB během komplexního dělení 53
3.8	Vnitřní architektura APU_NB_small 54
3.9	Struktura bloku DSP_pipelineRAM 58
3.10	Znázornění funkce bloku DSP_corePipelineRAM 59
0.1	Simulace APU_NB a APU_NB_small
P.1	Simulace APU_small

SEZNAM TABULEK

2.1	Výsledky analýzy Householderovy redukce matice řádu 4 na matici	
	třídiagonální	34
2.2	Výsledky analýzy Householderovy redukce matice řádu 8 na matici	
	třídiagonální	34
2.3	Výsledky analýzy QR algoritmu pro matici řádu 2 \ldots	35
2.4	Výsledky analýzy QR algoritmu pro matici řádu 4 \hdots	36
2.5	Výsledky analýzy QR algoritmu pro matici řádu 8 \hdots	36
2.6	Výsledky analýzy QR algoritmu pro komplexní matici řádu 2	36
2.7	Výsledky analýzy QR algoritmu pro komplexní matici řádu 4	37
2.8	Srovnání QR rozkladu pro reálné a komplexní matice $\ . \ . \ . \ .$	38
3.1	Speciální hodnoty čísla s plovoucí desetinnou čárkou	43
3.2	Možné hodnoty signálu cmp_op typu FP_CMP_OP	48
3.3	Funkce	50
3.4	Signál operation bloku APU_NB	52
3.5	Srovnání očekávaných a simulovaných výsledků vypočítaných	
	aritmetickou jednotkou APU_NB	69
K.1	Význam portů IP bloku	93

SEZNAM VÝPISŮ

3.1	Definice typů	40
3.2	Definice bloku FP_ADDSUB	47
3.3	Definice bloku FP_CHECK	49
3.4	Definice bloku APU_NB	51
3.5	Definice bloku APU_NB_small	53
3.6	Definice bloku APU_small	55
3.7	Definice bloku QR_Algorithm	56
3.8	Výchozí kód pro ilustraci optimalizací dle pravidel QR expand $\ \ldots$.	62
3.9	Mezivýsledek optimalizace dle pravidel QR expand	62
3.10	Výsledek optimalizace dle pravidel QRexpand	62
3.11	Výchozí kód pro ilustraci optimalizací dle pravidel QR reduce	63
3.12	Mezivýsledek optimalizace dle pravidel QRreduce po eliminaci	
	nadbytečných přiřazení	63
3.13	Mezivýsledek optimalizace dle pravidel QRreduce po redukci přičítání	
	nul, násobení nulou a násobení jedničkou	63
3.14	Mezivýsledek optimalizace dle pravidel QR reduce po opakované	
	redukci nadbytečných přiřazení	63
3.15	Mezivýsledek optimalizace dle pravidel QR reduce po odstranění	
	operací, jejichž výsledky nejsou použity	64
3.16	Výsledek optimalizace dle pravidel QR reduce	64
3.17	Simulační proces clk_process	66
3.18	Signály pro proces clk_process	66
3.19	Simulační proces watchdog_process	67
3.20	Signály pro proces watchdog_process	67
3.21	Signály pro proces sim_check_process	67
3.22	Signály pro proces sim_check_process	68
3.23	Obvyklé zapojení bloku FP_CHECK v simulaci	68
A.1	Autokorelační matice s šumem	76
B.1	Jacobiho metoda	78
C.1	Householderova transformace	80
D.1	QR rozklad pomocí Gram-Schmidtova algoritmu	81
E.1	QR rozklad pomocí Householderových transformací 	82
F.1	QR rozklad pomocí Givensovy matice	83
G.1	QR algoritmus pro výpočet vlastních čísel a vektorů matice	84
H.1	Výpis SVA kódu QR rozkladu (přímo vygenerovaného) $\ . \ . \ . \ .$	85
I.1	Výpis SVA kódu QR rozkladu (po základní optimalizaci) $\ . \ . \ .$	88
J.1	Výpis SVA kódu QR rozkladu (po základní a redukující optimalizaci)	91

L.1	Soubor FP.vhd	95
M.1	Definice rozhraní bloku DSP_pipeline RAM $\hfill \ldots \ldots \ldots \ldots \ldots$.	103
N.1	Definice rozhraní bloku DSP_corePipelineRAM $\ . \ . \ . \ . \ . \ .$	105

ÚVOD

Tato práce se zabývá implementací výpočtu vlastních čísel a vlastních vektorů komplexní hermitovské pozitivně-semidefinitní čtvercové matice řádu 4 do hradlového pole řady Xilinx Zynq-7000 v jazyce VHDL v základní přesnosti čísel s plovoucí desetinnou čárkou. Pro výpočty s čísly s plovoucí desetinnou čárkou jsou využity IP bloky dodávané spolu s vývojovým prostředím Xilinx Vivado.

Potřeba výpočtu vlastních čísel a vektorů souvisí se zpracováním signálů přijímaných sekundárními radary, které pracující v oblastech s hustým leteckým provozem. Zde často dochází k časovému překryvu signálů vysílaných odpovídači jednotlivých letadel. Jeden ze způsobů řešení tohoto problému spočívá v nasazení metod pro separaci signálů. Firmou ERA a.s. vyvinutá metoda separace, pro niž je v této práci vyvinut algoritmus výpočtu vlastních čísel a vektorů, vyžaduje soustavu v prostoru vhodně umístěných antén, které jsou ideálně na sobě nezávislé. Každá z antén soustavy poté přijímá odlišný signál zatížený šumem.

Signály přijímané jednotlivými anténami jsou popsány autokorelační maticí zatíženou šumem. Tato autokorelační matice je čtvercová hermitovská a pozitivně-semidefinitní. Řád matice a počet jí příslušejících reálných kladných vlastních čísel a vektorů je dán množstvím antén.

Jestliže je přijímán jediný signál zatížený šumem, má autokorelační matice jedno nenásobné nenulové vlastní číslo a jemu odpovídající vlastní vektor, který odpovídá vektoru příjmu daného signálu. Ostatní vlastní čísla a vektory náleží šumu.

Nezávislá složka Gaussova šumu ovlivňuje velikost vlastních čísel, ale nikoli vlastní vektory příslušející vlastním číslům. Z vlastních čísel matice je možné odhadnout, kolik signálů se na přijímači právě překrývá. V případě, že je dostatečný odstup signál-šum a že jsou splněny další nutné podmínky (např. dostatečná vzájemná vzdálenost odpovídačů), lze odlišit nejen jednotlivé signály, ale i pozice jim příslušejících vysílačů v prostoru. Maximální počet separovaných signálů je dán počtem antén v soustavě. Vlastní čísla a vlastní vektory autokorelační matice určují prostor, ve kterém se nachází hledané vektory příjmu. Vektory příjmu však nelze bez další informace odhadnout (např. znalost prostorového rozložení antén).

Vektor příjmu (v případě jediného signálu vlastní vektor dominantního vlastního čísla) umožňuje, při znalosti soustavy antén, odhadnout i směr, odkud zachycený signál přišel.

V příloze A.1 lze nalézt skript pro GNU Octave generující autokorelační matici jednoho přijímaného signálu, zatíženou šumem, spolu s výpočtem vlastních čísel a vlastních vektorů s využitím prostředků GNU Octave.

1 KOMPLEXNÍ ČÍSLA A MATICE

Vstupem této práce je komplexní matice, a proto bude čtenář v této kapitole nejprve seznámen s komplexními čísly. Nikoli však vyčerpávajícím způsobem. Pro potřeby realizace výpočtů v hradlovém poli je zajímavý především výpočet součtu, rozdílu, součinu a podílu komplexních čísel.

Po popisu komplexních čísel následuje seznámení s maticemi, jejich podobami, vlastnostmi a základními výpočty (sčítání, násobení, apod.). S maticemi úzce souvisí také definice vlastních čísel a vlastních vektorů matice.

V závěru kapitoly jsou popsány různé algoritmy využitelné pro výpočet vlastních čísel a vlastních vektorů matic symetrických a hermitovských.

1.1 Komplexní čísla

Komplexní čísla jsou nástavbou reálných čísel. V oboru reálných čísel lze vypočítat většinu klasických operací jako je sčítání, odečítání, násobení a dělení (kromě dělení nulou). Nezáporná čísla lze v oboru reálných čísel také odmocňovat. Výpočet odmocniny záporných čísel lze řešit v oboru komplexních čísel.[1]

Komplexní číslo se skládá z reálné a imaginární části. Rozepsáním komplexního čísla Z na reálnou a imaginární část s použitím imaginární jednotky i dostaneme výraz

$$\mathbf{Z} = Z_{re} + Z_{im} \mathbf{i} , \qquad (1.1)$$

kde je imaginární jednotka i definována vztahem

$$\mathbf{i} = \sqrt{-1} \,, \tag{1.2}$$

který je možné upravit do podoby

$$i^2 = -1 [1].$$
 (1.3)

Jestliže je imaginární část komplexního čísla rovna 0, lze komplexní číslo brát jako číslo reálné a tak s ním počítat. Reálné číslo lze chápat jako číslo komplexní s nulovou imaginární částí.

Dvě komplexní čísla \boldsymbol{A} a \boldsymbol{B} jsou si rovna, pokud jsou shodné jejich reálné (A_{re} a B_{re}) i imaginární složky (A_{im} a B_{im}). Platí-li $A_{re} = B_{re}$ a současně $A_{im} = B_{im}$, platí také $\boldsymbol{A} = \boldsymbol{B}$.

Jestliže je komplexní číslo \boldsymbol{B} komplexně sdruženým číslem k číslu $\boldsymbol{A},$ pak platí

$$B_{re} = A_{re}$$

$$B_{im} = -A_{im} [1].$$
(1.4)

Jiným způsobem zapsáno $B = \overline{A}$.

Pro komplexní číslo ${\it C}$ platí

$$C_{re} = A_{re} + B_{re}$$

$$C_{im} = A_{im} + B_{im} , \qquad (1.5)$$

jestliže je součtem komplexních čísel ${\pmb A}$ a ${\pmb B}$. Pro komplexní číslo ${\pmb C}$ vzniklé rozdílem čísel ${\pmb A}$ a ${\pmb B}$ platí

$$C_{re} = A_{re} - B_{re}$$

$$C_{im} = A_{im} - B_{im} .$$
(1.6)

Pokud je komplexní číslo C dáno součinem komplexních čísel A a B, bude pro výsledek násobení platit:

$$C_{re} = A_{re} * B_{re} - A_{im} * B_{im}$$

$$C_{im} = A_{re} * B_{im} + A_{im} * B_{re} .$$
(1.7)

Dělení komplexních čísel je řešitelné pomocí násobení jednotkovým zlomkem tvořeným jmenovatelem a čitatelem komplexně sdruženým k děliteli. Pakliže C značí podíl komplexních čísel A a B, lze dělení komplexních čísel popsat výrazem

$$\boldsymbol{C} = \frac{\boldsymbol{A}}{\boldsymbol{B}} = \frac{A_{re} + A_{im}\mathbf{i}}{B_{re} + B_{im}\mathbf{i}} \,. \tag{1.8}$$

Roznásobením podílu komplexně sdruženou jedničkou $\frac{B_{re}-B_{im}{\rm i}}{B_{re}-B_{im}{\rm i}}$ k jmenovateli \pmb{B} lze vztah 1.8 upravit do tvaru

$$\boldsymbol{C} = \frac{A_{re} + A_{im}i}{B_{re} + B_{im}i} = \frac{A_{re} + A_{im}i}{B_{re} + B_{im}i} \frac{B_{re} - B_{im}i}{B_{re} - B_{im}i} = \frac{(A_{re} + A_{im}i)(B_{re} - B_{im}i)}{B_{re}^2 + B_{im}^2}, \quad (1.9)$$

který je možné rozepsat do podoby

$$C_{re} = \frac{A_{re} * B_{re} + A_{im} * B_{im}}{B_{re}^2 + B_{im}^2}$$

$$C_{im} = \frac{A_{im} * B_{re} - A_{re} * B_{im}}{B_{re}^2 + B_{im}^2}.$$
(1.10)

1.2 Matice

Matice **A** typu (m, n) je obecně definována

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix} = (a_{ij})_m^n [2].$$
(1.11)

Pokud je matice reálná, lze psát $\mathbf{A} \in \mathbb{R}^{n \times m}$, případně $\mathbf{A} \in \mathbb{C}^{n \times m}$ pro komplexní matici.

Čísla a_{ij} se nazývají prvky matice. Vektor tvořený prvky $(a_{i1}, a_{i2}, \ldots, a_{in})$ je i-tým řádkem matice, zatímco vektor $(a_{1j}, a_{2j}, \ldots, a_{nj})$ je j-tým sloupcem matice.[2]

1.2.1 Operace sčítání, odčítání a násobení

Dále jsou pro potřeby této práce definovány základní aritmetické operace nad maticemi.

Matice $\mathbf{C} = (c_{ij})_m^n$ řádu (m, n) je součtem matic $\mathbf{A} = (a_{ij})_m^n$ řádu (m, n)a $\mathbf{B} = (b_{ij})_m^n$ řádu (m, n), jestliže pro prvky matice \mathbf{C} platí

$$c_{ij} = a_{ij} + b_{ij} \ [2]. \tag{1.12}$$

V maticovém zápisu psáno $\mathbf{C} = \mathbf{A} + \mathbf{B}$.

Obdobně je matice C rozdílem matic A a B, psáno C = A - B, pokud pro prvky matice C platí

$$c_{ij} = a_{ij} - b_{ij}.$$
 (1.13)

Platí-li pro prvky matice ${\bf C}$

$$c_{ij} = -a_{ij}, \tag{1.14}$$

lze tuto skutečnost zapsat výrazem $\mathbf{C} = -\mathbf{A}$.

Je-li matice C získána vynásobením matice A číslem α , zapsáno C = α A, platí pro prvky matice C vztah

$$c_{ij} = \alpha a_{ij} \ [2]. \tag{1.15}$$

Součin matice $\mathbf{A} = (a_{ij})_m^p$ typu (m, p) s maticí $\mathbf{B} = (b_{ij})_p^n$ typu (p, n) tvoří matici $\mathbf{C} = (c_{ij})_m^n$ typu (m, n), pro jejíž prvky platí

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{pj} = \sum_{r=1}^{p} a_{ir}b_{rj}$$
 [2] (1.16)

Bude-li součinem matic matice typu (1,1), s výsledkem je možné pracovat jako s reálným nebo komplexním číslem podle typu násobených matic.

1.2.2 Speciální případy matic

Speciálními případy matic jsou rozuměny matice mající určité specifické vlastnosti, které je odlišují od matic ostatních.

Matice **A** typu (m, n) je nazývána čtvercovou maticí **A** řádu n v případě, kdy je m rovno n. Pro čtvercovou matici **A** je možné zápis 1.11 zjednodušit do tvaru

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{nn} \end{bmatrix} = (a_{ij})_n^n .$$
(1.17)

Prvky a_{ii} , i = 1, ..., n tvoří hlavní diagonálu čtvercové matice **A** řádu n. Jsou-li všechny prvky matice neležící na hlavní diagonále rovny nule, nazýváme matici diagonální.

Jednotkovou maticí je myšlena diagonální matice, která má všechny prvky na hlavní diagonále rovné jedné.

Horní trojúhelníková matice má všechny prvky pod hlavní diagonálou rovné nule. Dolní trojúhelníková matice má rovné nule naopak všechny prvky nad hlavní diagonálou.

Čtvercová matice $\mathbf{A} = (a_{ij})_n^n$, pro jejíž prvky platí $a_{ij} = a_{ji}$, se nazývá symetrická[2].

Třídiagonální čtvercová matice řádu \boldsymbol{n} má podobu

$$\begin{bmatrix} b_1 & c_1 & & \\ d_1 & \ddots & \ddots & \\ & \ddots & \ddots & c_n - 1 \\ & & d_{n-1} & b_n \end{bmatrix}$$
(1.18)

a symetrická třídiagonální čtvercová matice řádu \boldsymbol{n}

$$\begin{bmatrix} b_{1} & c_{1} & & \\ c_{1} & \ddots & \ddots & \\ & \ddots & \ddots & c_{n} - 1 \\ & & c_{n-1} & b_{n} \end{bmatrix} [3].$$
(1.19)

Čtvercová matice **B** řádu n je transponovaná k čtvercové matici **A** řádu n, jestliže platí $a_{ij} = b_{ji}, i = 1, ..., n, j = 1, ..., n$. Matici **B** lze zapsat jako \mathbf{A}^T . Je-li **A** symetrická matice, platí $\mathbf{A}^T = \mathbf{A}[2]$.

Čtvercová matice **B** řádu n je inverzní maticí čtvercové matice **A** řádu n, jestliže platí vztah

$$\mathbf{BA} = \mathbf{AB} = \mathbf{I} \ [2], \tag{1.20}$$

kde I je jednotková matice řádu n. Inverzní matice **B** k matici **A** je značena symbolem \mathbf{A}^{-1} .

Pro komplexně sdruženou matici **B** řádu n k matici **A** řádu n platí $b_{ij} = \overline{a_{ij}}, i = 1, ..., n, j = 1, ..., n$ za předpokladu, že $\overline{a_{ij}}$ značí komplexně sdružené číslo ke komplexnímu číslu a_{ij} . Komplexně sdružená matice k matici **A** je značena zápisem $\overline{\mathbf{A}}$.

Hermitovskou maticí je matice, pro niž platí $\mathbf{A} = \overline{\mathbf{A}^T}[4]$. Což lze značit jednodušeji jako $\mathbf{A} = \mathbf{A}^H$.

Ortogonální maticí je rozuměna matice, pro kterou platí $\mathbf{A}^{-1} = \mathbf{A}^{T}[4]$. Pokud platí $\mathbf{A}^{-1} = \overline{\mathbf{A}^{T}}$, je matice nazývána unitární.[4]

Aritmetický vektor dimense n je v této práci chápán jako sloupcová matice typu (n, 1), tedy

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} [2].$$
(1.21)

Reálná symetrická či hermitovská matice **A** řádu n je považována za matici pozitivně definitní, jestliže pro každý nenulový reálný či komplexní vektor **x** dimense n platí

$$\mathbf{x}^H \mathbf{A} \mathbf{x} > 0 \ [5]. \tag{1.22}$$

Platí-li pro každý nenulový reálný či komplexní vektor ${\bf x}$ dimense n

$$\mathbf{x}^H \mathbf{A} \mathbf{x} \ge 0 \ [5], \tag{1.23}$$

je matice pozitivně semidefinitní.

1.2.3 Determinant

Pro definici determinantu je nutné nejprve definovat permutaci.

Pro množinu M o velikosti n je permutací libovolná n-tice složená z prvků množiny M, přičemž se žádný prvek neopakuje. Příkladem permutací pro množinu M = (a, b, c, d) jsou n-tice prvků (a, b, d, c) nebo (d, b, a, c). Počet všech různých permutací je roven

$$P(n) = n! [6], (1.24)$$

kde n! značí faktoriál n.[6]

Inverzí v permutaci p = (p(1)p(2)...p(n)) je zvána dvojice (i, j) taková, že i < j, p(i) > p(j). Permutace p je sudá (resp. lichá), má-li sudý (resp. lichý) počet inverzí. Číslo $(-1)^k$, kde k je počet inverzí v permutaci p, se nazývá znaménko permutace p a značí se sgn(p).[2]

Nechť je dána čtvercová matice $\mathbf{A} = (a_{ij})_n^n$ řádu n. Nechť $(p(1)p(2) \dots p(n))$ je libovolná permutace čísel $1, 2, \dots, n$ (permutací je n!). Součet součinů $a_{1p(1)} \cdot a_{2p(2)} \cdot a_{3p(3)} \cdots a_{np(n)}$ provedených pro všechny permutace a vynásobených číslem (-1) v případě, že je permutace lichá a číslem 1 v případě sudé permutace, se nazývá determinant n-tého řádu matice \mathbf{A} a označuje se $|\mathbf{A}|$. Takových součinů je n!.[2]

Platí tedy

$$|\mathbf{A}| = \sum_{p} sgn(p)a_{1p(1)} \cdot a_{2p(2)} \cdot \dots \cdot a_{np(n)} \ [2], \tag{1.25}$$

kde se sčítá přes všechny permutace p množiny $1, 2, \ldots, n.[2]$

Pro čtvercovou matici \mathbf{A} platí $|\mathbf{A}^T| = |\mathbf{A}|[2]$.

1.2.4 Norma vektoru

Normou vektoru \mathbf{x} dimense n

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{C}^{n \times 1}$$
(1.26)

rozumíme reálnou funkci $\|\mathbf{x}\|$ na vektorovém prostoru V, platí-li pro libovolné dva vektory \mathbf{x} , $\mathbf{y} \ge V$ a libovolné $k \in \mathbb{C}[7]$:

- 1. $\|\mathbf{x}\| \ge 0$ (pozitivnost)[7],
- 2. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (trojúhelníková nerovnost)[7],
- 3. $||k\mathbf{x}|| = |k| \cdot ||\mathbf{x}||$ (homogenita) [7] a
- 4. $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0} \text{ (pozitivní definitnost)[7]}.$

P-norma vektoru $\mathbf{x} \in \mathbb{C}^{n \times 1}$ dimense n je pro reálné číslo $p \geq 1$ definována vztahem

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}} [8], \qquad (1.27)$$

kde $|x_i|$ značí absolutní hodnotu.

Speciálním a často používaným případem je norma Euklidovská. Jedná se o p-normu, kde p = 2[8]. Euklidovskou normu lze zapsat ve tvaru

$$\|\mathbf{x}\|_2 = \sqrt{\left(\sum_{i=1}^n x_i^2\right)} = \sqrt{x_1^2 + \ldots + x_n^2} .$$
 (1.28)

Nebo jednodušeji pomocí násobení vektorů pro $\mathbf{x} \in \mathbb{R}^{n \times 1}$

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T \mathbf{x}} \ [8], \tag{1.29}$$

respektive $\mathbf{x} \in \mathbb{C}^{n \times 1}$

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^H \mathbf{x}} \ [8]. \tag{1.30}$$

_

1.3 Vlastní čísla a vlastní vektory

Pro čtvercovou matici **A** řádu n jsou vlastní čísla $\lambda_1, ..., \lambda_n$ definována jako kořeny charakteristické rovnice matice

$$det(\mathbf{A} - \lambda I) = 0 \ [9],\tag{1.31}$$

kde matice ${\bf I}$ představuje jednotkovou matici. Rozná
sobením lze dostat charakteristickou rovnici ve tvaru

$$f(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda^1 + a_0 = 0 \ [9]. \tag{1.32}$$

Ke každému vlastnímu číslu λ_i existuje alespoň jedno nenulové řešení soustavy rovnic

$$\mathbf{A}\mathbf{x} = \lambda_i \mathbf{x} \ [9]. \tag{1.33}$$

Toto řešení \mathbf{x}_i , kde $\mathbf{x}_i^T = (x_i^{(1)}, ..., x_i^{(n)})$, je pravým vlastním vektorem matice $\mathbf{A}[9]$. V dalším textu je pod pojmem vlastní vektor chápán pravý vlastní vektor matice.

Vlastní čísla matice lze hledat přímo jako kořeny charakteristické rovnice matice. Tento postup je však u velkých matic značně nepraktický. V případě počítačového zpracování je problematická i nevylučitelná nejednoznačnost řešení soustavy rovnic [9].

V případě čtvercové komplexní hermitovské pozitivně-semidefinitní matice jsou vlastní čísla kladná a reálná[5].

V rámci této práce je popsána Jacobiho metoda a QR algoritmus. V obou případech jde o numerické metody pro hledání vlastních čísel a vlastních vektorů matice. Jedná se o iterační metody aplikovatelné na matici reálnou i komplexní. Aby QR algoritmus rychleji konvergoval, lze matici, pokud je reálná, nejdříve upravit pomocí Householderovi redukce na třídiagonální tvar. (dle [9] a [10])

1.4 Householderova redukce na třídiagonální tvar

Householderovi transformace je možné použít pro převedení symetrické reálné matice na matici třídiagonální. Výsledná třídiagonální matice má stejná vlastní čísla jako matice původní. Avšak hledání vlastních čísel třídiagonální matice je snazší než hledání vlastních čísel matice původní. (dle [9] a [10])

Je-li **A** čtvercovou symetrickou reálnou maticí řádu n, je postupně určeno n - 2 ortogonálních matic $\mathbf{H_1}, \ldots, \mathbf{H_{n-2}}$. Matice $\mathbf{A_0}$ je rovna matici \mathbf{A} , jež je transformována do třídiagonální podoby. Následně je možno psát

$$\mathbf{A_{k}} = \mathbf{H_{k-1}}^{T} \cdot \mathbf{A_{k-1}} \cdot \mathbf{H_{k-1}} = = (\mathbf{H_{1}} \dots \mathbf{H_{k-1}})^{T} \cdot \mathbf{A} \cdot (\mathbf{H_{1}} \dots \mathbf{H_{k-1}}), \ k = 1, \dots, n-2 \ [9].$$
(1.34)

Platnosti 1.34 lze dosáhnout volbou vektor
u $\mathbf{v_k}$ v podobě

$$\mathbf{v}_{\mathbf{k}} = \left[0, \dots, 0, a_{k+1,k}^{k-1} \pm \left(\sum_{i=k+1}^{n} |a_{i,k}^{k-1}|^2\right), a_{k+1,k}^{k-1}, \dots, a_{n,k}^{k-1}\right]^T . [9]$$
(1.35)

Vektor $\mathbf{w}_{\mathbf{k}}$ je pak dán vztahem

$$\mathbf{w}_{\mathbf{k}} = \left(\mathbf{v}_{\mathbf{k}}^{T} \mathbf{v}_{\mathbf{k}}\right)^{-0.5} \mathbf{v}_{\mathbf{k}} [9]$$
(1.36)

a vektor $\mathbf{q}_{\mathbf{k}}$ výrazem

$$\mathbf{q}_{\mathbf{k}} = 2(I - \mathbf{w}_{\mathbf{k}} \mathbf{w}_{\mathbf{k}}^{T}) \mathbf{A}_{\mathbf{k}-1} \mathbf{w}_{\mathbf{k}} \ [9], \tag{1.37}$$

kde \mathbf{I} představuje jednotkovou matici řádu n.

To umožňuje vyjádřit matici A_k pomocí matice A_{k-1} a vektorů w_k a q_k :

$$\mathbf{A}_{\mathbf{k}} = \mathbf{A}_{\mathbf{k}-1} - \mathbf{w}_{\mathbf{k}} \mathbf{q}_{\mathbf{k}}^{T} - \mathbf{q}_{\mathbf{k}} \mathbf{w}_{\mathbf{k}}^{T} [9].$$
(1.38)

Algoritmus je zpracován v GNU Octave viz. příloha C.1.

1.5 Jacobiho metoda

Jacobiho iterační metodou lze nalézt vlastní čísla a vlastní vektory symetrické reálné matice i hermitovské komplexní matice[11]. Vhodná je hlavně pro plné matice[9].

K symetrické, popřípadě hermitovské, matici existuje ortogonální matice \mathbf{T} složená z vlastních vektorů[9], pro niž platí vztah

$$\mathbf{A} = \mathbf{T}^{\mathbf{T}} diag(\lambda_1, \dots, \lambda_n) \mathbf{T} \ [9], \tag{1.39}$$

kde $diag(\lambda_1, \ldots, \lambda_n)$ představuje diagonální matici s prvky $\lambda_1, \ldots, \lambda_n$ na diagonále.

Tato metoda využívá Givensovy matice rotace ve tvaru

$$\mathbf{G}(p,q) = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots & \vdots \\ 0 & \cdots & \cos \phi & \cdots & \sin \phi & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & -\sin \phi & \cdots & \cos \phi & \cdots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$
[11]. (1.40)

Goniometrické funkce se nacházejí na řádcích a sloupcích s indexy p a q, kde p < q. Givensovu matici použijeme k vynulování prvku v p-tém řádku a q-tém sloupci matice $\mathbf{S}_{\mathbf{k}}$ (kde k značí iteraci a $k \geq 1$).

Během výpočtu je sestavena posloupnost elementárních ortogonálních matic ${\bf S_k}$ taková, aby platil vztah

$$\mathbf{A}_{\mathbf{k}+\mathbf{1}} = \mathbf{S}_{\mathbf{k}}^{T} \mathbf{A}_{\mathbf{k}} \mathbf{S}_{\mathbf{k}} = (\mathbf{S}_{\mathbf{1}} \dots \mathbf{S}_{\mathbf{k}})^{T} \mathbf{A}_{\mathbf{1}} (\mathbf{S}_{\mathbf{1}} \dots \mathbf{S}_{\mathbf{k}}) \quad [9], \quad (1.41)$$

kde $A_1 = A$.

Protože matice $\mathbf{A}_{\mathbf{k}}$ jsou podobné matici \mathbf{A} , mají stejná vlastní čísla[9].

Při transformaci $\mathbf{B} = \mathbf{S}^T \mathbf{A} \mathbf{S}$ se mění pouze p-té řádky a q-té sloupce matice \mathbf{A} , přesněji pro zvolené ϕ :

- $b_{ij} = a_{ij} \text{ pro } i \neq p, q \text{ a } j \neq p, q [9]$
- $b_{pj} = b_{ip} = a_{pi} \cos \phi a_{qi} \sin \phi$ pro $i \neq p, q$ [9]
- $b_{qi} = b_{iq} = a_{pi} \sin \phi a_{qi} \cos \phi$ pro $i \neq p, q$ [9]
- $b_{pp} = a_{pp} \cos^2 \phi a_{qq} \sin^2 \phi a_{pq} \sin 2\phi$ [9]
- $b_{qq} = a_{pp} \sin^2 \phi a_{qq} \cos^2 \phi a_{pq} \sin 2\phi$ [9]
- $b_{pq} = b_{qp} = a_{pq} \cos 2\phi \frac{1}{2} (a_{pp} a_{qq}) \sin 2\phi$ [9]

V každém kroku Jacobiho metody je sestrojena z matice $\mathbf{A}_{\mathbf{k}} = \begin{bmatrix} a_{ij}^k \end{bmatrix}$ matice $\mathbf{A}_{\mathbf{k}+1}$. Čísla p a q jsou volena tak, aby platilo

$$a_{pq}^k \neq 0 \ [9]. \tag{1.42}$$

Matice $\mathbf{S}_{\mathbf{k}}$ je sestrojena jako Givensova matice pro $\phi \in (-\frac{\pi}{4}, 0) \cup (0, \frac{\pi}{4})$ dle vztahu

$$\cot 2\phi_k = \frac{a_{qq}^k - a_{pp}^k}{2a_{pq}^k} \ [9]. \tag{1.43}$$

Čísla (p,q) lze volit dle různých strategií. Při klasické metodě jsou hodnoty (p,q) určeny tak, aby prvek a_{pq}^k byl největším nediagonálním prvkem matice $\mathbf{A}_{\mathbf{k}}$. Další možností výběru je cyklická metoda volby (p,q). Při této metodě jsou postupně ve smyčce nulovány prvky matice. Nulové prvky a_{pq}^k se přeskakují. Příkladem volby (p,q) je $(1,2)(1,3) \dots (1,n); (2,3) \dots (2,n); \dots; (n-1,n)$. Prahová metoda volby (p,q) se liší od cyklické metody nulováním prvků a_{pq}^k , jejichž hodnota je větší než určitá prahová hodnota, která se zmenšuje s každou smyčkou.[9]

Zapsáno v GNU Octave viz příloha B.1 (dle Martina Mrovce[11]).

1.6 QR rozklad

Jednou z metod výpočtu vlastních čísel a vlastních vektorů matice je QR algoritmus, jehož podstatou je opakovaný výpočet QR rozkladu matice. Z hlediska hledání vlastních čísel a vektorů se jedná o iterační algoritmus. Před nasazením QR rozkladu matice je možné matici upravit kupříkladu na třídiagonální a tím urychlit konvergenci. QR rozklad lze aplikovat na reálné i komplexní matice.

Princip QR rozkladu matice \mathbf{A} spočívá v nalezení matic \mathbf{Q} a \mathbf{R} tak, aby platilo

$$\mathbf{A} = \mathbf{Q}\mathbf{R} \ [9]. \tag{1.44}$$

Přičemž \mathbf{Q} je ortogonální matice a \mathbf{R} je horní trojúhelníková matice.

Existují různé postupy výpočtu QR rozkladu. Zde jsou blíže popsány realizace QR rozkladu pomocí Gram-Schmidtova algoritmu, Givensova algoritmu a Householderových matic.

1.6.1 Gram-Schmidtův QR rozklad

Pro potřeby Gram-Schmidtova QR rozkladu zapíšeme čtvercovou matici \mathbf{A} řádu n pomocí sloupcových vektorů:

$$\mathbf{A} = (\mathbf{a_1}|\dots|\mathbf{a_n}) \quad [9]. \tag{1.45}$$

Vektory $\mathbf{u}_{\mathbf{k}}$ a $\mathbf{e}_{\mathbf{k}}$ lze pak zapsat

$$\mathbf{u}_{\mathbf{k}} = \mathbf{a}_{\mathbf{k}} - \sum_{j=1}^{k-1} (\mathbf{a}_{\mathbf{k}}^{T} \mathbf{e}_{\mathbf{j}}) \mathbf{e}_{\mathbf{j}}$$
$$\mathbf{e}_{\mathbf{k}} = \frac{\mathbf{u}_{\mathbf{k}}}{\|\mathbf{u}_{\mathbf{k}}\|_{2}} [12], \qquad (1.46)$$

přičemž $k \in 1, \ldots, n$.

Matice **Q** je nyní tvořena sloupcovými vektory $\mathbf{e}_1, \ldots, \mathbf{e}_k$ a lze ji zapsat:

$$\mathbf{Q} = (\mathbf{e_1}|\dots|\mathbf{e_n}) \quad [9]. \tag{1.47}$$

Matici \mathbf{R} je možné dopočítat dle vztahu

$$\mathbf{R} = \mathbf{Q}^T \mathbf{A} \ [9]. \tag{1.48}$$

Přepsáno do GNU Octave viz. příloha D.1.

1.6.2 Householderův QR rozklad

Každou čtvercovou matici A řádu n lze pomocí n-1 Householderových matic rozložit na součin **QR** tak, že platí

$$\mathbf{H}_{\mathbf{n}-1}\mathbf{H}_{\mathbf{n}-2}\cdots\mathbf{H}_{2}\mathbf{H}_{1}\mathbf{A} = \mathbf{Q}^{T}\mathbf{A} = \mathbf{R} \ [9]. \tag{1.49}$$

Principem výpočtu QR rozkladu pomocí Householderových matic je postupné nulování všech prvků pod hlavní diagonálou matice. Postupuje se od prvního sloupce až pon - 1 sloupec.

Matice A_0 se rovná matici A, jejíž QR rozklad je hledán. Matice H_k pro k-tý sloupec je pak určena tak, aby matice H_kA_{k-1} měla v k-tém sloupci pod diagonálou samé nuly. Toho lze dosáhnout pomocí vektoru u_k , voleného tak, že pro

$$\mathbf{H}_{\mathbf{k}} = \mathbf{E} - 2 \frac{\mathbf{u}_{\mathbf{k}} \mathbf{u}_{\mathbf{k}}^{T}}{\mathbf{u}_{\mathbf{k}}^{T} \mathbf{u}_{\mathbf{k}}} [9]$$
(1.50)

jsou prvky matice $\mathbf{H}_{\mathbf{k}}$ pod hlavní diagonálou v prvním až k-tém sloupci nulové. To vše za předpokladu, že \mathbf{E} je jednotková matice řádu *n* a vektor $\mathbf{u}_{\mathbf{k}}$ je sloupcový. Pro matici $\mathbf{A}_{\mathbf{k}}$ pak platí

$$\mathbf{A_k} = \mathbf{H_k} \mathbf{A_{k-1}} \ [9], \tag{1.51}$$

což odpovídá volbě

$$\mathbf{u}_{\mathbf{k}} = \mathbf{x}_{\mathbf{k}} - \|\mathbf{x}_{\mathbf{k}}\|_{2} \mathbf{e}_{\mathbf{k}} \ [9], \tag{1.52}$$

kde vektor $\mathbf{x}_{\mathbf{k}}$ je k-tým sloupcem matice $\mathbf{A}_{\mathbf{k}-1}$ a $\mathbf{e}_{\mathbf{k}}$ je sloupcový vektor jehož prvky vyjma k-tého prvku jsou rovny nule a k-tý prvek je roven jedné.

Pro $k = 1, \ldots, n-1$ platí

$$\mathbf{R} = \mathbf{A_{n-1}} = \mathbf{H_{n-1}} * \mathbf{A_{n-2}} = \dots = \mathbf{H_{n-1}} \mathbf{H_{n-2}} \cdots \mathbf{H_2} \mathbf{H_1} \mathbf{A} [9]$$
(1.53)

a

$$\mathbf{Q} = \mathbf{H_1}^T \mathbf{H_2}^T \cdots \mathbf{H_{n-1}}^T = \ldots = \mathbf{H_1} \mathbf{H_2} \cdots \mathbf{H_{n-1}} [9].$$
(1.54)

Výpočetní náročnost rozkladu čtvercové matice řádu n odpovídá přibližně

$$n^2 \left(3 - \frac{n}{3}\right) \ [9] \tag{1.55}$$

operacím. Pokud je vyjádřena i matice ${\bf Q},$ celkový počet operací je dán vztahem

$$2m^2n - mn^2 + \frac{1}{3}n^3 \ [9]. \tag{1.56}$$

Jelikož je vstupní matice čtvercová, platí m = n, a proto lze rovnici 1.56 zjednodušit do tvaru

$$2n^3 - n^3 + \frac{1}{3}n^3 = \frac{4}{3}n^3 . (1.57)$$

Přepsáno do GNU Octave viz. příloha E.1.

1.6.3 QR rozklad pomocí Givensovy matice

Givensovou maticí nazýváme matice ve tvaru

$$\mathbf{G}(i, j, c, s) = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & c & \cdots & s & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & -s & \cdots & c & \cdots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix} [9],$$
(1.58)

kde $c^2 + s^2 = 1$. Indexy *i* a *j* označují řádky a sloupce s prvky *c* a *s*[13].

Je možné volit $c = \cos \alpha$ a $s = \sin \alpha$ pro určité α . Odpovídající Givensova matice je značena $\mathbf{G}(i, j, \alpha)$.[9]

Je-li vektor $\mathbf{x} \in \mathbb{R}^n$ a $\mathbf{y} = \mathbf{G}(i, j)^T \mathbf{x}[13]$, potom

$$y_k = \begin{cases} cx_i - sx_l & prok = i \\ sx_i + cx_k & prok = j \\ x_j & prok \neq i, j \end{cases}$$
(1.59)

Je potřebné, aby k-tá složka vektoru y byla nulová. Musí tedy platit

$$c = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}, \quad s = \frac{-x_j}{\sqrt{x_i^2 + x_j^2}}$$
 [13]. (1.60)

Středem zájmu jsou pouze řádky a sloupce *i* a *j*, proto je uvažován prostor R^2 . Cílem je vynulovat druhou složku vektoru $y \in R^2$. To je potřebné pro transformaci matice **A** na matici **R**, která bude mít pod diagonálou nuly. Rozepsáním uvažovaného vztahu $\mathbf{y} = \mathbf{G}(i, j)^T \mathbf{x}$ dostaneme vztah[13]

$$\begin{bmatrix} c & s \\ -s & c \end{bmatrix}^T \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \lambda \begin{bmatrix} r \\ 0 \end{bmatrix} [13].$$
(1.61)

K poddiagonálním prvkům zadané čtvercové matice **A** řádu *n* jsou počítána čísla *c*, *s* určující Givensovu rotaci. Příslušný blok matice **A** je poté zleva přenásoben maticí rotace, a tím jsou v matici **A** získávány nuly pod diagonálou. Platí $\mathbf{Q}^T \mathbf{A} = \mathbf{R}$. Ortogonální matici **Q** dopočítáme z matice Givensovy rotace $\mathbf{G}_{\mathbf{g}}$ dle vztahu $\mathbf{Q} = \mathbf{G}_1 \dots \mathbf{G}_{\mathbf{t}}$, kde *t* značí počet rotací.[13]

Výpočet rozkladu čtvercové matice řádu n vyžaduje

$$2n^2\left(3-\frac{n}{3}\right) \ [9] \tag{1.62}$$

operací pro vyjádření matice **R**.

Přepsáno do GNU Octave viz. příloha F.1.

1.6.4 Srovnání QR rozkladů

Gram-Schmidtův algoritmus QR rozkladu vykazuje velice špatnou ortogonalitu matice $\mathbf{Q}[13]$. Podle Tomáše Oberhubera[14] je také numericky nestabilní. Gram-Schmidtův QR rozklad proto není hodnocen jako vhodný k výpočtu vlastních čísel a vlastních vektorů vstupní matice. Z hlediska výpočetní náročnosti vychází QR rozklad realizovaný pomocí Householderových matic lépe.

1.7 QR algoritmus pro vlastní čísla a vlastní vektory

Opakovaným QR rozkladem lze získat všechna vlastní čísla a všechny vlastní vektory matice. Pokud je matice **A** čtvercovou maticí řádu n, pak platí, že matice $\mathbf{T_0} = \mathbf{A}$. Následně jsou hledány QR rozklady matic $\mathbf{T_k} \ (k \in 0, 1, 2, ...)$. Zapsáno pro $k \ge 1$

$$\mathbf{Q_k}, \mathbf{R_k} = \mathbf{T_{k-1}} \ . \tag{1.63}$$

Matice $\mathbf{T}_{\mathbf{k}}$ je dopočítána vztahem

$$\mathbf{T}_{\mathbf{k}} = \mathbf{R}_{\mathbf{k}} \mathbf{Q}_{\mathbf{k}} \ .[10] \tag{1.64}$$

Každá z matic $\mathbf{T}_{\mathbf{k}}$ je ortogonálně podobná matici \mathbf{A} (dle [10]) a má tedy shodná vlastní čísla. Pokud jsou vlastní čísla matice \mathbf{A} reálná a kladná (což je u čtvercové komplexní hermitovské positivně semidefinitní matice zaručeno) opakováním QR rozkladu dostáváme matice $\mathbf{R}_{\mathbf{k}}$ ve tvaru horní trojúhelníkové matice. Vlastní čísla se nachází na diagonále matice $\mathbf{T}_{\mathbf{k}}$. Takto nalezená vlastní čísla jsou seřazená a platí $|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|$. S počtem opakování iterací je dosahováno vyšší přesnosti výpočtu. (dle [9] a [10])

Vlastní sloupcové vektory x matice A lze získat z matic
 $\mathbf{Q}_{\mathbf{k}}$ použitím vztahu

$$x = \mathbf{Q_0}\mathbf{Q_1}\dots\mathbf{Q_k} \ .[9] \tag{1.65}$$

Zapsáno s pomocí GNU Octave viz. příloha G.1.

1.8 Hledání vlastních čísel a vlastních vektorů hermitovské matice

Problém určení vlastních čísel a vlastních vektorů komplexní matice je možné v případě hermitovské matice, pro kterou platí $\mathbf{A} = \mathbf{A}^T[4]$, převést na problém hledání vlastních čísel a vlastních vektorů reálné matice.

Pokud pro hermitovskou matici \mathbf{C} a reálné matice \mathbf{A} a \mathbf{B} platí

$$\mathbf{C} = \mathbf{A} + i\mathbf{B} \ [15], \tag{1.66}$$

platí dle[15] také

$$(\mathbf{A} + i\mathbf{B}) \cdot (\mathbf{u} + i\mathbf{v}) = \lambda(\mathbf{u} + i\mathbf{v}) [15]$$
(1.67)

a

$$\begin{bmatrix} \mathbf{A} & -\mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = \lambda \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$
[15]. (1.68)

Pro potřeby následujícího textu je dáno značení

$$\mathbf{R} = \begin{bmatrix} \mathbf{A} & -\mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{bmatrix}$$
(1.69)

a

$$\mathbf{r} = \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} \,. \tag{1.70}$$

O vlastních číslech $\lambda_1, ..., \lambda_n$ matice C lze tvrdit

$$\lambda = (\lambda_1, \lambda_1, \lambda_2, \lambda_2, \dots, \lambda_n, \lambda_n) \ [15]. \tag{1.71}$$

Pro k-tý vlastní vektor $\mathbf{x}_{\mathbf{k}}$ hermitovské matice **C** náležející vlastnímu číslu λ_k platí dle [9]

$$\mathbf{C}\mathbf{x}_{\mathbf{k}} = \lambda_k \mathbf{x}_{\mathbf{k}}.\tag{1.72}$$

Vlastní vektory matice \mathbf{C} lze vyjádřit z vlastních vektorů \mathbf{r} matice \mathbf{R} . Jestliže je \mathbf{r} vlastním vektorem matice \mathbf{R} , pro první vlastní číslo z páru platí

$$\mathbf{x} = \mathbf{u} + \mathbf{i}\mathbf{v} \ [15] \tag{1.73}$$

a pro druhé vlastní číslo z páru platí

$$\mathbf{x} = \mathbf{i}(\mathbf{u} + \mathbf{i}\mathbf{v}) = -\mathbf{v} + \mathbf{i}\mathbf{u} \ [15]. \tag{1.74}$$

2 ANALÝZA ALGORITMŮ

Výpočet vlastních čísel a vektorů lze provést různými způsoby. Některé z nich byly podrobeny analýze s cílem výběru nejoptimálnějšího algoritmu z algoritmů posuzovaných.

Pro možnost porovnání a následné optimalizace byly algoritmus pro transformaci symetrické reálné matice pomocí Householderových transformací na matici třídiagonální a algoritmus pro výpočet QR rozkladu matice reálné i komplexní realizovány v programovacím jazyce C za použití knihovny SFENCE a potřebných rozšiřujících modulů a knihoven (zvláště modul SSEM, knihovna Calculate a modul CalculateSEM). Takto přepsané algoritmy nám umožní díky modularitě SFENCE knihovny nejen numerickou verifikaci výpočtu. Vhodnou úpravou nastavení lze získat z výpočtu další zajímavé informace při použití identického zdrojového kódu algoritmu.

K této práci přiložený program AnalyzeAlgorithm analyzuje výše zmíněné algoritmy. Výsledkem počítačového zpracování jsou informace o počtu operací násobení, dělení, sčítání, odčítání a odmocňování, které je potřeba provést během příslušného výpočtu. Pro konečnou implementaci algoritmu do hradlového pole je podstatný také programem vygenerovaný SVA kód vztažený k jednotlivým algoritmům a typům matic.

Zdrojové kódy zmíněné aplikace a knihoven jsou součástí elektronické přílohy této práce.

2.1 Analýza redukce matice na matici třídiagonální

V rámci analýzy algoritmů přiloženým programem Analyze Algorithm jsou dostupné výsledky náročnosti Householderovi redukce matice na matici třídiagonální pro vstupní reálnou čtvercovou symetrickou matici řádu 4 a 8.

Výsledky pro čtvercovou matici řádu 4 jsou v tabulce 2.1. První položka (přiřazení) odpovídá jednoduchému přiřazení proměnné/čísla do proměnné bez sčítání, násobení apod.

Tab. 2.1: Výsledky analýzy Householderovy redukce matice řádu 4 na matici třídiagonální

Typ operace	Počet provedení
přiřazení	$82\times$
sčítání	$164 \times$
odčítání	$97 \times$
násobení	$277 \times$
dělení	$2 \times$
odmocnění	4×

Čtvercové matici řádu 8 odpovídají data z tabulky 2.2.

Tab. 2.2: Výsledky analýzy Householderovy redukce matice řádu8na matici třídiagonální

Typ operace	Počet provedení
přiřazení	$390 \times$
sčítání	$3482 \times$
odčítání	$1153 \times$
násobení	$4731 \times$
dělení	$6 \times$
odmocnění	$12\times$

2.2 Analýza QR rozkladu

Díky analýze QR rozkladu pomocí přiloženého programu AnalyzeAlgorithm je možné porovnat výsledky pro vstupní reálné čtvercové matice řádu 2, 4, 8 a komplexní matice řádu 2 a 4.

Zjištěná data, vztahující se k vstupní čtvercové reálné matici řádu 2, jsou uvedena v tabulce 2.3. První položka (přiřazení) odpovídá jednoduchému přiřazení proměnné/čísla do proměnné bez sčítání, násobení apod.

Typ operace	Počet provedení
přiřazení	$26 \times$
sčítání	$15 \times$
odčítání	$6 \times$
násobení	$28 \times$
dělení	$4 \times$
odmocnění	1×

Tab. 2.3: Výsledky analýzy QR algoritmu pro matici řádu 2

Pro čtvercovou reálnou matici řádu 2 lze také v příloze H.1 nalézt SVA neoptimalizovaný kód vygenerovaný programem AnalyzeAlgorithm. V přiloženém kódu platí pro vstupní čtvercovou reálnou matici **A** řádu 2 vztah

$$\mathbf{A} = \begin{bmatrix} -in00 & -in01 \\ -in10 & -in11 \end{bmatrix} .$$
(2.1)

Výstupní čtvercovou reálnou matici
 ${\bf Q}$ řádu 2 lze zapsat

$$\mathbf{Q} = \begin{bmatrix} -Q00 & -Q01\\ -Q10 & -Q11 \end{bmatrix} . \tag{2.2}$$

Obdobně je zapsána i výstupní čtvercová reálná matice ${f R}$ řádu 2 vztahem

$$\mathbf{R} = \begin{bmatrix} -R00 & -R01\\ -R10 & -R11 \end{bmatrix} .$$
 (2.3)

Ve výpisu SVA kódu (příloha H.1) reprezentuje proměnná $_ZERO$ číslo 0 a proměnná $_ONE$ číslo 1. Proměnné ve tvaru @N slouží k ukládání mezivýsledků. Proměnná N v názvu nahrazuje celé číslo, pro které platí $N \ge 0$.

V tabulkách 2.4 a 2.5 lze nalézt data odpovídající vstupním čtvercovým reálným maticím řádu 4 a řádu 8. Výsledky analýzy pro komplexní matice řádu 2 a 4 jsou v tabulkách 2.6 a 2.7.

Typ operace	Počet provedení
přiřazení	$168 \times$
sčítání	$366 \times$
odčítání	$48 \times$
násobení	$477 \times$
dělení	$48 \times$
odmocnění	$3 \times$

Tab. 2.4: Výsledky analýzy QR algoritmu pro matici řádu 4

Tab. 2.5: Výsledky analýzy QR algoritmu pro matici řádu8

Typ operace	Počet provedení
přiřazení	$1172 \times$
sčítání	$6860 \times$
odčítání	$448 \times$
násobení	$7819 \times$
dělení	$448 \times$
odmocnění	$7 \times$

Tab. 2.6: Výsledky analýzy QR algoritmu pro komplexní matici řádu2

Typ operace	Počet provedení
přiřazení	$57 \times$
sčítání	$73 \times$
odčítání	$42\times$
násobení	$142\times$
dělení	$4 \times$
odmocnění	1×
Typ operace	Počet provedení
-------------	-----------------
přiřazení	$360 \times$
sčítání	$1327 \times$
odčítání	$633 \times$
násobení	$2220\times$
dělení	$102 \times$
odmocnění	$15 \times$

Tab. 2.7: Výsledky analýzy QR algoritmu pro komplexní matici řádu4

2.3 Srovnání výpočetní náročnosti algoritmů

Ze srovnání dat získaných analýzou QR rozkladu čtvercových matic řádu 4 a 8 (tabulky 2.1, 2.2, 2.4, 2.5 a 2.7) je patrná nižší výpočetní náročnost Householderovi redukce matice na třídiagonální matici oproti QR rozkladu. Současně je patrné, že v QR rozkladu je prováděn značně vyšší počet dělení. Počet sčítání/odčítání a násobení je však srovnatelný.

Srovnání analýzy QR rozkladu pro reálné matice řádu 4 a 8 a komplexní matici řádu 4 je uvedeno v tabulce 2.8.

	Počet provedení	Počet provedení	Počet provedení
Typ operace	v QR rozkladu	v QR rozkladu	v QR rozkladu
	nad maticí $\mathbb{R}^{4 imes 4}$	nad maticí $\mathbb{R}^{8 imes 8}$	nad maticí $\mathbb{C}^{4 imes 4}$
sčítání/odčítání	$414 \times$	$7308 \times$	$1962 \times$
násobení	$495 \times$	$7763 \times$	$2268 \times$
dělení	$48 \times$	$448 \times$	$96 \times$

Tab. 2.8: Srovnání QR rozkladu pro reálné a komplexní matice

Z dat získaných programem AnalyzeAlgorithm je patrné, že v případě hledání vlastních čísel a vlastních vektorů čtvercové komplexní hermitovské matice řádu 4 pomocí QR algoritmu, by převedení problému na hledání vlastních čísel a vlastních vektorů reálné čtvercové symetrické matice řádu 8 (využitím rovnice 1.68) neušetřilo výpočetní operace. Výpočet QR rozkladu reálné matice o řádu 8 je totiž téměř 4× náročnější než výpočet QR rozkladu komplexní matice řádu 4. Pro výpočet vlastních čísel a vektorů je proto použit komplexní QR algoritmus nad čtvercovou maticí řádu 4. Householderova redukce matice do třídiagonálního tvaru, použitelná pouze pro matice reálné, ve výpočtu vlastních čísel a vlastních vektorů není uplatněna.

3 IMPLEMENTACE DO HRADLOVÉHO POLE

Základem složitějších výpočetních operací jsou výpočetní operace v oboru reálných a komplexních čísel, přičemž komplexní výpočty lze realizovat pomocí výpočetních operací v oboru reálných čísel. Zvládnutí výpočtů v oboru reálných čísel v hradlovém poli proto tvoří základ pro implementaci obsáhlých výpočtů.

Základní bloky pro počítání s čísly s plovoucí desetinnou čárkou jsou realizovány pomocí IP bloku Xilinx® Floating-Point Operator dostupného ve vývojovém prostředí Xilinx Vivado. Digitální obvod lze popsat například v jazycích VHDL a Verilog, které jsou v Xilinx Vivado podporovány. Pro popis bloků je použit jazyk VHDL, se kterým má autor této práce bohatší zkušenosti.

Vygenerované IP bloky, provádějící výpočty s čísly s plovoucí desetinnou čárkou, jsou překryty pomocnými bloky s upraveným rozhraním. Tím je usnadněna možná budoucí změna IP bloků a implementace do jiné řady hradlových polí, kupříkladu i jiného výrobce.

Bloky APU_NB (viz strana 51), APU_NB_small (viz strana 52) a APU_small (viz strana 55) jsou kromě ověření funkce IP bloku Xilinx® Floating-Point Operator určeny k demonstraci různých technik použití zmíněného IP bloku.

Základem pro vnitřní architekturu bloku DSP_corePipelineRAM (viz strana 57), určeného pro finální implementaci a realizaci výpočtu jednotlivých iterací QR algoritmu, je blok APU_small. Kompletní výpočet QR algoritmu je realizován blokem QR_Algorithm (viz strana 56) prostřednictvím bloku DSP_pipelineRAM (viz strana 57).

Pokud v následujícím textu nebude uvedeno jinak, vstupní a výstupní signály bloků jsou aktivní v logické 1 a neaktivní v logické 0 a impuls na signálu je chápán jako přepnutí signálu do logické 1 na dobu jednoho platného taktu hodin (náběžná hrana hodin clk v době aktivního signálu clk_en).

V zájmu vyšší čitelnosti VHDL kódu jsou používány subtypy FP_SINGLE_NUMBER, FP_NUMBER, COMPLEX_NUMBER a DSP_NUMBERS, které jsou definovány dle výpisu 3.1.

```
Výpis 3.1: Definice typů reprezentujících čísla ve VHDL
      subtype FP_SINGLE_NUMBER is std_logic_vector(31
1
         downto 0);
2
      subtype FP_NUMBER is FP_SINGLE_NUMBER;
3
4
      type COMPLEX_NUMBER is record
           re : FP_NUMBER;
5
6
           im : FP_NUMBER;
7
      end record;
8
      type DSP_NUMBERS is array(natural range <>) of
9
         FP_NUMBER;
```

3.1 IP blok pro výpočty s čísly s plovoucí desetinnou čárkou

IP blok představuje logický funkční a často konfigurovatelný celek plnící určitou funkci (pamět, UART komunikace, násobička, apod.). V této práci je použit IP blok Xilinx® Floating-Point Operator dodávaný spolu s vývojovým prostředím Xilinx Vivado. Jde o IP blok přizpůsobitelný z hlediska prováděné matematické operace i z hlediska velikosti/přesnosti vstupního čísla, zpoždění a rozhraní pro komunikaci s ostatními bloky[16]. Uvedené IP bloky jsou podporovány čipy z řad UltraScaleTM Architecture, Zynq®-7000 a 7 Series[16].

Xilinx® Floating-Point Operator IP blok podporuje operace násobení, sčítání, odčítání, sumy ($\sum \pm A[i]$), vynásobení a sečtení ($a \times b \pm c$), dělení, výpočtu odmocniny, porovnání, výpočtu převrácené hodnoty ($\frac{1}{x}$), výpočtu převrácené hodnoty odmocniny ($\frac{1}{\sqrt{(x)}}$), určení absolutní hodnoty, výpočtu logaritmu se základem e (ln A), výpočtu exponenciální funkce e^x a konverze mezi různými formáty reprezentujícími číslo s pevnou nebo plovoucí desetinnou čárkou[16].

Vzhledem k operacím využívaným v algoritmech pro výpočet vlastních čísel a vlastních vektorů jsou využity operace sčítání, odčítání, násobení, dělení a výpočtu odmocniny.

Formát čísel s plovoucí a pevnou desetinnou čárkou podporovaný IP bloky Xilinx® Floating-Point Operator je dán normou IEEE-754. S ohledem na vstupní požadavky této práce je zajímavý zvláště formát čísel s plovoucí desetinnou čárkou, který je použit. Formát čísel s pevnou desetinnou čárkou je použitým IP blokem podporován jen v omezené míře, v rámci konverzí čísel s plovoucí desetinnou čárkou na čísla s pevnou desetinnou čárkou a naopak. [16]

3.1.1 Čísla s plovoucí desetinnou čárkou

Velikost čísla v bitech je označena w a obdobně je velikost mantisy v bitech značena w_f . Pro základní přesnost je velikost čísla 32 bitů a mantisy 24 bitů[16].

Čísla s plovoucí desetinnou čárkou jsou reprezentována znaménkem, exponentem a mantisou. Pokud písmenko s označuje znaménko, znak E exponent a mantisa je zapsána pomocí bitů v podobě $b_0b_1b_2...b_{w_f-1}$, lze hodnotu čísla v s plovoucí desetinnou čárkou vyjádřit vztahem

$$v = (-1)^{s} 2^{E} b_{0} b_{1} b_{2} \dots b_{w_{f}-1} [16].$$
(3.1)

Binární bity b_i mají váhu 2^{-i} . Mantisu lze tedy přepsat do podoby

$$b_0 b_1 b_2 \dots b_{w_f-1} = b_0 2^0 + b_1 2^{-1} + b_2 2^{-2} + \dots + b_{w_f-1} 2^{w_f-1} = \sum_{i=0}^{w_f-1} b_i 2^{-i} , \qquad (3.2)$$

kde každý binární bit b_i nabývá hodnoty 0 nebo 1 a žádné jiné. Jelikož bit b_0 nabývá vždy hodnoty 1, pro hodnotu mantisy platí:

$$1 \le b_0 b_1 b_2 \dots b_{w_f - 1} < 2 \ [16]. \tag{3.3}$$

Jedná se o normalizované číslo.

Bit b_0 se neukládá (jeho hodnota je vždy známá). Je-li označena bitová šířka pole exponentu w_e , pole exponentu e a mantisa bez bitu b_0 znakem f, pak

$$f = b_1 b_2 \dots b_{w_f - 1} \ [16]. \tag{3.4}$$

Pro uložení mantisy f stačí $w_f - 1$ bitů. Pole exponentu se ukládá do $w - w_f$ bitů. Bitovou šířku pole exponentu vyjadřuje vztah

$$w_e = w - w_f \ [16]. \tag{3.5}$$

Poslední bit slouží k uložení znaménka s. Vše je znázorněno na obrázku 3.1.

Obr. 3.1: Bitová pole jednotlivých částí čísla s plovoucí desetinnou čárkou [16]

Ze vztahu

$$e = \sum_{i=0}^{w_e-1} e_i 2^i \ [16], \tag{3.6}$$

je patrné, že e nabývá pouze kladných hodnot. Pro vyjádření čísel menších než 1 je nutné, aby exponent E mohl nabývat záporných hodnot. Hodnota exponentu E je určena z hodnoty e odstraněním posunutí. Postup je popsán vztahem

$$E = e - \left(2^{w_e - 1} - 1\right) \ [16]. \tag{3.7}$$

Kromě racionálních čísel lze do čísla s plovoucí desetinnou čárkou ukládat i speciální hodnoty dle tabulky 3.1.

Denormalizovaná čísla jsou taková čísla, u kterých není první (explicitně nevyjádřený) bit mantisy b_0 roven 1, ale naopak 0. Výpočty s těmito velmi malými hodnotami nejsou přesné, zejména při násobení a dělení. Při ukládání denormalizovaných čísel je exponent vždy nastaven na nejnižší možnou hodnotu[17].

Symbol speciální hodnoty	Pole s	Pole e	Pole f
NaN	nemá efekt	2^{w_e-1}	libovolná nenulová
			hodnota
$\pm\infty$	znaménko ∞	2^{w_e-1}	0
± 0	znaménko 0	0	0
denormalizované číslo	znaménko čísla	0	libovolná nenulová
			hodnota

Tab. 3.1: Speciální hodnoty čísla s plovoucí desetinnou čárkou[16]

3.1.2 Porty

Množství podporovaných přizpůsobení se odráží také v množství vstupně výstupních portů, které může IP blok Xilinx® Floating-Point Operator mít. Dle zvoleného nastavení jsou ve vygenerovaném bloku použity pouze potřebné porty. Všechny porty jsou vidět na obrázku 3.2.

	s_axis_a_tvalid	m_axis_result_tvalid	
-	s_axis_a_tready	m_axis_result_tready	-
-	s_axis_a_tdata	m_axis_result_tdata	-
-	s_axis_a_tuser	m_axis_result_tuser	
	s_axis_a_tlast	m_axis_result_tlast	-
	s_axis_b_tvalid		
-	s_axis_b_tready		
	s axis b tdata		
	s_axis_b_tuser		
	s_axis_b_tlast		
	s_axis_c_tvalid		
-	s_axis_c_tready		
-	s_axis_c_tdata		
-	s_axis_c_tuser		
	s_axis_c_tlast		
	s_axis_operation_tvalid		
-	s_axis_operation_tread	y	
-	s_axis_operation_tdata		
-	s_axis_operation_tuser		
	s_axis_operation_tlast		
	aclk		
	aresetn		
	aclken		
			X13146

Obr. 3.2: Znázornění všech dostupných vstupních a výstupních portů IP bloku Xilinx® Floating-Point Operator [16]

Význam jednotlivých portů lze nalézt v příloze K.1.

3.1.3 Neblokovací režim

Neblokovací režim je blokem Xilinx® Floating-Point Operator podporován z důvodu kompatibility s předešlou verzí IP bloku. Lze tak s minimálními změnami syntetizovat starší projekty. Neblokační režim není doporučeno používat v nových návrzích.[16]

Princip funkce bloku v neblokačním režimu je znázorněn na obrázku 3.3.

Obr. 3.3: Neblokační mód [16]

Obrázek 3.3 znázorňuje odezvu IP bloku typu sčítačka se zpožděním jednoho cyklu. Výpočet je prováděn se vstupními daty platnými při každé náběžné hraně hodinového signálu, během které je signál aclken v logické 1. Signál aresetn je neaktivní (logická 1). Výpočet je prováděn neustále a signál m_axis_result_tvalid signalizuje, zda byl signál TVALID při zahájení výpočtu aktivní (logická 1) pro oba sčítance.[16]

Komunikační rozhraní IP bloku v neblokačním režimu je jednodušší a IP blok je proto méně náročný na využití zdrojů dostupných na cílovém hradlovém poli. [16]

Z důvodu výkonu je signál aresetn interně ukládán do registru a efekt resetu se projevuje až se zpožděním jednoho hodinového cyklu. V případě aktivního resetu je signál m_axis_result_tvalid neaktivní (logická 0) stejně jako signál m_axis_result_tdata.[16]

3.1.4 Blokovací režim

Na každém vstupním kanálu v IP bloku Xilinx® Floating-Point Operator je umístěn buffer. Oproti neblokovacímu režimu IP blok zahajuje výpočet až ve chvíli dostupnosti validních dat ze všech vstupů. Signál TREADY na vstupu signalizuje (logická 1) schopnost vstupního bufferu pojmout další data. Naopak signál TREADY na výstupu (m_axis_result_tready) umožňuje bloku za IP blokem kontrolovat předávání výsledků z výstupu IP bloku. Pokud následující blok není schopen přijímat další data, deaktivuje signál m_axis_result_tready (logická 0) a v okamžiku, kdy je opět schopen data přijímat a zpracovávat, signál m_axis_result_tready opět aktivuje (logická 1).

Celý proces je znázorněn pro sčítačku se zpožděním jednoho cyklu na obrázku 3.4.

Obr. 3.4: Blokační mód [16]

Významnou vlastností IP bloku v blokovacím režimu je párování validních dat. První výpočet je prováděn s prvními validními daty ze vstupů, druhý výpočet s druhými validními daty ze vstupů, třetí s třetími a tak dále.

Schopnost bufferování vstupů IP bloku umožňuje přečtení výsledků až v okamžiku, kdy je jich potřeba pro další výpočet.

3.1.5 Vygenerované bloky

Blok Xilinx® Floating-Point Operator lze nakonfigurovat pro provádění značného počtu matematických operací. V této práci jsou použity operace sčítání, odčítání, násobení, dělení a odmocňování. Pokud by později vznikla potřeba využití další matematické operace podporované IP blokem Xilinx® Floating-Point Operator, je možné dogenerovat potřebný blok.

Vygenerovanými bloky pracujícími v neblokačním režimu jsou FP_SINGLE_NB_ADDSUB (sčítání/odčítání), FP_SINGLE_NB_MUL (násobení), FP_SINGLE_NB_DIV (dělení) a FP_SINGLE_NB_SQRT (odmocňování).

V blokačním režimu pracují bloky FP_SINGLE_ADDSUB (sčítání a odčítání), FP_SINGLE_ADD (jen sčítání), FP_SINGLE_MUL (násobeni), FP_SINGLE_DIV (dělení) a FP_SINGLE_SQRT (odmocnění).

Pro potřeby verifikace v simulacích jsou vygenerovány i bloky FP_SINGLE_ABS (absolutní hodnota) a FP_SINGLE_CMP (porovnání), které pracují v blokačním režimu.

Rozhraní všech zmíněných bloků jsou definována v souboru FP_SINGLE.vhd (viz elektronická příloha).

3.2 Pomocné bloky

Pomocné bloky obalují základní rozhraní generovaných bloků (FP_SINGLE_ADDSUB apod.) více abstraktním rozhraním s kratšími jmény signálů při použití typů FP_SINGLE_NUMBER, FP_NUMBER (viz výpis 3.1). Práce s bloky je pak snazší a význam vstupů a výstupů čitelnější, čímž se zlepšuje srozumitelnost kódu.

Jedná se o pomocné bloky FP_ADDSUB, FP_ADD, FP_MUL, FP_DIV, FP_SQRT, FP_CMP, FP_ABS, FP_CHECK, FP_ADDSUB_NB, FP_MUL_NB, FP_DIV_NB a FP_SQRT_NB. Definici jejich rozhraní lze nalézt v příloze L.1.

Definice bloku FP_ADDSUB (výpis 3.2) obsahuje množství signálů. Velká část z nich je společná více blokům.

Výpis 3.2: Definic	e bloku FP_	_ADDSUB
--------------------	-------------	---------

1	component FP_ADDSUB is
2	<pre>Port (clk : in STD_LOGIC;</pre>
3	<pre>clk_en : in STD_LOGIC;</pre>
4	<pre>reset : in STD_LOGIC;</pre>
5	<pre>sub : in STD_LOGIC;</pre>
6	A : in FP_NUMBER;
7	<pre>B : in FP_NUMBER;</pre>
8	<pre>AB_ready: out STD_LOGIC;</pre>
9	AB_ok: in STD_LOGIC;
10	Y : out FP_NUMBER;
11	Y_ready: in STD_LOGIC;
12	Y_ok : out STD_LOGIC);
13	end component:

Signály společné jsou zvláště clk, clk_en a reset. Výjimkou je blok FP_ABS. Následují signály A, B, AB_ready a AB_ok. Signál B je vynechán u bloků s jedním vstupem (FP_ABS a FP_SQRT), a proto jsou v těchto případech signály AB_ready a AB_ok přejmenovány na A_ready a A_ok. Poslední jsou signály Y, Y_ready, Y_ok. Signály pojmenované AB_ok, Y_ok apod. signalizují validitu vstupu/výstupu. Připravenost přijímat data je signalizována signály AB_ready, Y_ready apod., které se nevyskytují u bloků pracujících v neblokačním režimu (FP_ADDSUB_NB apod.). U takových bloků nenajdeme ani signál reset.

Hodiny jsou dány signálem clk, který může být povolen/zakázán signálem clk_en. V případě resetování je nutné podržet signál reset v logické 1 alespoň po dobu dvou taktů hodinového signálu. Signály AB_ready, Y_ready apod. a AB_ok, Y_ok apod. signalizují (logická 1) připravenost k čtení či zápisu. Signály A, B a Y představují čísla s plovoucí desetinnou čárkou v základní přesnosti.

V případě bloku FP_ADDSUB je v definici uveden i specifický signál sub, který nabývá logické úrovně 1, pokud je žádáno odčítání. Lze také použít konstant FP_PLUS (pro sčítání) a FP_MINUS (pro odčítání) viz příloha L.1.

Blok FP_CMP má specifický vstup nazvaný cmp_op typu FP_CMP_OP, který určuje metodu porovnávání. Vstup může nabývat hodnot, které jsou uvedeny v tabulce 3.2. Výstup bloku se místo Y jmenuje CMP a nabývá logické 1, jestliže je zvolená podmínka pro vstupy A a B splněna.

Konstanta	Hodnota	Význam
FP_CMP_OP_Unordered	"0001"	(A = NaN)OR(B = NaN)
FP_CMP_OP_LessThan	"0011"	A < B
FP_CMP_OP_Equal	"0101"	A = B
FP_CMP_OP_LessThanEqual	"0111"	$A \leq B$
FP_CMP_OP_GreaterThan	"1001"	A > B
FP_CMP_OP_NotEqual	"1011"	$A \neq B$
FP_CMP_OP_GreaterThanEqual	"1101"	$A \ge B$

Tab. 3.2: Možné hodnoty signálu cmp_op typu FP_CMP_OP

Speciálním případem je blok FP_CHECK navržený pro verifikaci výsledků během simulací (viz výpis 3.3).

Význam vstupů clk, clk_en a reset je standardní. Následuje signál A (spolu s A_ready a A_ok), který udává hodnotu, jež má být zkontrolována. Hodnotu očekávanou udává signál V. Maximální chyba je dána vstupem ERR. Pro signály V a ERR jsou doplněny vstupy VERR_ready a VERR_ok. Výstupem je signál CHECK doplněný o CHECK_ready a CHECK_ok.

Funkci bloku FP_CHECK je možné přiblížit vztahem

$$CHECK = |A - V| < ERR . (3.8)$$

Výpis 3.3: Definice bloku FP_CHECK

1	component FP_CHECK is
2	<pre>Port (clk : in STD_LOGIC;</pre>
3	<pre>clk_en : in STD_LOGIC;</pre>
4	reset : in STD_LOGIC;
5	A : in FP_NUMBER; value to be
	checked
6	A_ready: out STD_LOGIC;
7	A_ok: in STD_LOGIC;
8	V : in FP_NUMBER; valid value
9	ERR : in FP_NUMBER; error, greater
	than zero
10	<pre>VERR_ready: out STD_LOGIC;</pre>
11	<pre>VERR_ok: in STD_LOGIC;</pre>
12	CHECK : out STD_LOGIC;
13	CHECK_ready: in STD_LOGIC;
14	CHECK_ok : out STD_LOGIC);
15	end component;

Z toho je patrné, že vstupy A a V je možné zaměňovat. V simulacích jsou obvykle signály A_ready a VERR_ready nezapojeny a signál CHECK_ready je připojen trvale k logické 1. Za předpokladu, že výsledky k verifikaci jsou generovány pomaleji, než odpovídá rychlosti bloku FP_CHECK, není takové zapojení problematické.

Vnitřní struktura bloku FP_CHECK je znázorněna na obrázku 3.5.

Obr. 3.5: Vnitřní architektura FP_CHECK

Kromě již zmíněných bloků lze v souboru FP.vhd (příloha L.1) najít i definice bloků FP_NOTZERO, FP_SIGNNOTZERO, FP_ASSIGN, FP_DEBABS a FP_BUF. Jedná se o bloky určené pro připojení k bloku DSP_corePipelineRAM, které plní funkce dle tabulky 3.3.

Tab. 3.3: Funkce

Blok	Funkce	
FP_NOTZERO	výběr nenulové hodnoty	
FP_SIGNNOTZERO	funkce sign, avšak pro 0 nabývající hodnoty 1.0	
FP_ASSIGN	přenesení vstupu na výstup	
FP_DEBABS	výpočet absolutní hodnoty	
FP_BUF	buferování výstupů jiných bloků	

Blok FP_DEBABS se liší od bloku FP_ABS přítomností hodinových vstupů a resetu. Zpoždění bloku odpovídá jedné platné náběžné hraně hodin. Obdobně se i blok FP_ASSIGN liší od strohého přiřazení signálů vstupem hodin a má zpoždění stejná jako blok FP_DEVABS. Zpoždění jedné platné náběžné hrany hodin se týká i bloků FP_NOTZERO a FP_SIGNNOTZERO. U bloku FP_BUF záleží na konfiguraci a množství dat v bloku aktuálně uložených. První do bloku FP_BUF uložené číslo je z bloku vyčteno jako první.

3.3 Reálná a komplexní aritmetická jednotka

Aritmetická jednotka je blokem, který je schopen provést operace sčítání, odčítání, násobení a dělení nad dvěma reálnými, popřípadě komplexními čísly. Aritmetickou jednotku lze obecně řešit jako logický blok synchronní či asynchronní. Vzhledem k využití synchronních IP bloků pro realizaci matematických operací s čísly s plovoucí desetinnou čárkou, je architektura všech aritmetických jednotek synchronní.

3.3.1 Aritmetická jednotka APU_NB

Blok APU_NB je základní verzí aritmetické jednotky navržené s ohledem na jednoduchost. APU_NB využívá IP bloky generované pro práci v neblokačním režimu. Definice bloku APU_NB viz výpis 3.4.

Výpis 3.4: Definice bloku APU_NB

1	entity APU_NB is
2	<pre>Port (clk : in STD_LOGIC;</pre>
3	clk_en : in STD_LOGIC;
4	operation : in STD_LOGIC_VECTOR (1 downto
	0);
5	<pre>complex : in STD_LOGIC;</pre>
6	A : in COMPLEX_NUMBER;
7	<pre>B : in COMPLEX_NUMBER;</pre>
8	AB_ok: in STD_LOGIC;
9	Y : out COMPLEX_NUMBER;
10	Y_ok : out STD_LOGIC);
11	end APU_NB;

Signály clk a clk_en udávají hodiny. APU_NB reaguje na náběžnou hranu hodinového signálu clk v případě, že je signál clk_en aktivní (logická 1). Signál operation vybírá matematickou operaci (sčítání, odčítání, násobení, dělení). Přehled viz tabulka 3.4.

Signál complex je aktivní (logická 1), pokud je žádáno provedení odpovídající matematické operace v oboru komplexních čísel. Signály A a B reprezentují vstupní komplexní čísla (viz výpis 3.1). V případě, že je signál complex neaktivní (logická 0), se pro výpočet použijí pouze reálné části komplexních čísel (signály A.re a B.re). Signál AB_ok, aktivní v logické 1, signalizuje validitu vstupních dat. Výsledek matematické operace lze vyčíst ze signálu Y. Signál Y_ok signalizuje validitu výsledku logickou 1.

${ m Sign}{ m \acute{a}l}$ operation	Význam
"00"	sčítání $A + B$
"01"	odčítání $A-B$
"10"	násobení $A\times B$
"11"	dělení A/B

Tab. 3.4: Signál operation bloku APU_NB

Vnitřní architektura bloku APU_NB je zaměřená na jednoduchost. Z hlediska využití zdrojů je značně neefektivní bez potenciálu pro zlepšení. APU_NB využívá tři sčítačky, šest násobiček a dvě děličky.

Vnitřní propojení sčítaček, násobiček a děliček bloku APU_NB se mění v závislosti na prováděné matematické operaci. Na obrázku 3.6 je znázorněno vnitřní propojení bloků v případě komplexního násobení.

Obr. 3.6: Vnitřní propojení bloků APU_NB během komplexního násobení

Obrázek 3.7 (viz strana 53) naproti tomu znázorňuje vnitřní propojení bloků při výpočtu podílu dvou komplexních čísel.

3.3.2 Aritmetická jednotka APU_NB_small

Oproti bloku APU_NB blok APU_NB_small využívá pouze tři IP bloky, ale opakovaně. APU_NB_small pracuje v neblokačním režimu, stejně jako APU_NB. Definici rozhraní bloku APU_NB_small nalezneme ve výpisu 3.5.

Obr. 3.7: Vnitřní propojení bloků APU_NB během komplexního dělení

Výpis 3.5: Definice bloku APU_NB_small

```
1
   entity APU_NB_small is
2
       Port ( clk : in STD_LOGIC;
3
               clk_en : in STD_LOGIC;
4
               operation : in STD_LOGIC_VECTOR (1 downto
                  0);
5
               complex : in STD_LOGIC;
6
               A : in COMPLEX NUMBER;
7
               B : in COMPLEX_NUMBER;
8
               AB ok: in STD LOGIC;
9
               Y : out COMPLEX_NUMBER;
10
               Y_ok : out STD_LOGIC);
   end APU_NB_small;
11
```

Význam signálů je identický se stejnými signály bloku APU_NB (viz strana 51). Rozdílná je vnitřní architektura. Blok APU_NB_small pracuje jako jednoduchý programovatelný stavový automat ovládaný kódem, který řídí použití sčítačky, násobičky a děličky. Použitím jen jedné sčítačky, jedné násobičky a jedné děličky se blok APU_NB_small stává šetrnějším vůči dostupným prostředkům hradlového pole.

Vnitřní architektura bloku je pro lepší představu znázorněna na obrázku 3.8.

Vstupy in
A a in Bvobrázku 3.8 reprezentují signály
 ${\tt A}$ a ${\tt B}.$ Výstupní signál
 ${\tt Y}$ je

Obr. 3.8: Vnitřní architektura APU_NB_small

zakreslen pod jménem outY. Signál operation je nazván op. Signály clk a clk_en nejsou znázorněny.

Řídící blok APU_NB_small dává povel k nahrání vstupů do paměti a spouští program uložený v paměti, který odpovídá matematické operaci, jejíž provedení je žádáno. Jednotlivé instrukce řídí načítání signálů A a B z paměti a aktivují odpovídající IP blok (sčítačku/odčítačku, násobičku nebo děličku). Program je ukončen vyčtením výsledků na výstup. Během běhu programu jsou vstupy ignorovány. Další výpočet lze zahájit až po dokončení probíhajícího výpočtu.

3.3.3 Aritmetická jednotka APU_small

Aritmetická jednotka APU_small využívá IP bloků pracujících v blokačním režimu. Vnitřní architektura je identická s architekturou bloku APU_NB_small. APU_small je též programovatelným stavovým automatem. Definice vstupních a výstupních signálů APU_small se nalézá ve výpisu 3.6.

Výpis 3.6: Definice bloku APU_small

```
entity APU small is
1
2
       Port ( clk : in STD LOGIC;
3
               clk_en : in STD_LOGIC;
               operation : in STD_LOGIC_VECTOR (1 downto
4
                  0);
5
               complex : in STD_LOGIC;
6
               A : in COMPLEX NUMBER;
7
               B : in COMPLEX NUMBER;
8
               AB ok: in STD LOGIC;
9
               Y : out COMPLEX_NUMBER;
               Y_ok : out STD_LOGIC);
10
11
   end APU_small;
```

Jak je patrné, vnější rozhraní je identické s bloky APU_NB a APU_NB_small. Význam signálů viz blok APU_NB strana 51.

Vnitřní architektura bloku APU_small odpovídá architektuře bloku APU_NB_small (viz obrázek 3.8).

3.4 QR algoritmus v hradlovém poli

Výpočet vlastních čísel a vlastních vektorů zajišťuje blok QR_Algorithm, jehož definici lze nalézt ve výpisu 3.7.

Výpis 3.7: Definice bloku QR_Algorithm

1	entity QR_Algorithm is
2	<pre>Port (clk : in STD_LOGIC;</pre>
3	clk_en : in STD_LOGIC;
4	reset : in STD_LOGIC;
5	<pre>matrix_real : in DSP_NUMBERS (0 to 15);</pre>
6	<pre>matrix_imag : in DSP_NUMBERS (0 to 15);</pre>
7	error : in FP_NUMBER;
8	<pre>matrix_valid: in STD_LOGIC;</pre>
9	<pre>matrix_saved: out STD_LOGIC;</pre>
10	<pre>eigValues : out DSP_NUMBERS (0 to 3);</pre>
11	eigVectors_real : out DSP_NUMBERS (0 to
	15);
12	eigVectors_imag : out DSP_NUMBERS (0 to
	15);
13	ok : out STD_LOGIC;
14	<pre>fail : out STD_LOGIC);</pre>
15	<pre>end QR_Algorithm;</pre>

Vstupem bloku QR_Algorithm jsou kromě signálů hodin (clk a clk_en) a resetu (reset) i signály určující čtvercovou komplexní hermitovskou matici řádu 4 (matrix_real a matrix_imag), cílovou chybu výpočtu (error) a signál informující blok o korektnosti vstupních dat (matrix_valid).

Výstupem je signál matrix_saved, na kterém se objeví impuls (log. 1) po úspěšném nahrání vstupních dat do výpočetního bloku DSP_pipelineRAM. Aktivace signálu (log. 1) fail indikuje selhání výpočtu, naopak impuls na signálu ok potvrzuje dokončení výpočtu. Vypočtená vlastní čísla lze nalézt v signálech eigValues a k nim přidružené vlastní vektory v signálech eigVectors_real a eigVectors_imag.

Jednotlivá čísla z matic jsou ukládána do polí typu DSP_NUMBERS po řádcích. Vlastní vektor příslušející k vlastnímu číslu λ_n ($n \in 0, 1, 2, 3$), jež je uloženo v signálu eigValues(n), je možné zapsat

$$\begin{aligned} x_{\lambda_n}^T &= \begin{bmatrix} eigVectors_real(n) + eigVectors_imag(n)\mathbf{i}, \\ &eigVectors_real(n+4) + eigVectors_imag(n+4)\mathbf{i}, \\ &eigVectors_real(n+8) + eigVectors_imag(n+8)\mathbf{i}, \\ &eigVectors_real(n+12) + eigVectors_imag(n+12)\mathbf{i} \end{bmatrix}. \end{aligned}$$

Pro výpočet jednotlivých iterací QR algoritmu je použit blok DSP_pipelineRAM. Blok QR_Algorithm obsahuje i nezbytné podpůrné bloky (paměti RAM a ROM) pro činnost tohoto bloku. Použitý blok DSP_pipelineRAM pracuje s 8 Kb paměti RAM a pamětí ROM obsahující 8635 instrukcí.

3.4.1 Blok DSP_pipelineRAM

Pro realizaci výpočtu jednotlivých iterací QR algoritmu byl sestaven externí pamětí řízený blok DSP_pipelineRAM umožnující současné provádění více výpočetních operací a sdílení zdrojů (bloků pro výpočty s čísly s plovoucí desetinou čárkou). Základem bloku DSP_pipelineRAM je blok DSP_corePipelineRAM, jehož struktura vychází z bloku APU_small.

Vnitřní struktura bloků DSP_pipelineRAM a DSP_corePipelineRAM je znázorněna na obrázcích 3.9 a 3.10.

Definici rozhraní bloků DSP_pipelineRAM a DSP_corePipelineRAM lze nalézt v příloze M.1 (str. 103) a příloze N.1 (str. 59). Význam signálů clk, clk_en a reset je obdobný jejich významu v blocích APU_small apod.

Blok DSP corePipelineRAM pracuje podobně jako procesor. Jeho schopnosti jsou však velmi limitovány. Každá instrukce přicházející do bloku DSP_corePipelineRAM obsahuje instrukční část a dvě registrové části. Instrukční část má trojí význam. Jednak může představovat číslo připojeného bloku (bloky 0 až 8 na obrázku 3.9), kterému je třeba zaslat data. V takovém případě jsou v registrových částech instrukce uloženy adresy registrů, z nichž je potřeba údaje vyčíst. Druhou možností je instrukce představující požadavek na vyčtení dat z bloku do registru. Potom je v jedné z registrových částí uloženo číslo bloku, ze kterého má být vyčítáno a v druhé registrové části adresa registru určeného pro uložení výsledku. Poslední možností je instrukce ukončující práci bloku DSP_corePipelineRAM, která publikuje výsledky (signál Y) a vygeneruje impuls (log. 1) na signálu Y_ok.

Jestliže blok DSP_corePipelineRAM nepracuje, po aktivaci (log. 1) signálu X_ok dojde ke zkopírování vstupních dat (signál X) do vnitřních registrů, což je potvrzeno impulsem (log. 1) na signálu X_saved. Následně blok DSP_corePipelineRAM zahajuje výpočet a další data na vstupu až do dokončení výpočtu ignoruje. Výpočet je zahájen instrukcí na adrese, jež je nastavena vnějším signálem addressStart, a pokračuje instrukci po instrukci až do instrukce ukončující výpočet nebo do selhání

Obr. 3.9: Struktura bloku DSP_pipelineRAM

některého z připojených bloků či vypršení limitu interního čítače hlídajícího zamrznutí. V případě, že výpočet končí jinak než odpovídající instrukcí, je aktivován (log. 1) signál **fail** a blok se přepíná do stavu očekávání nových vstupních dat.

Při komunikaci bloku DSP_corePipelineRAM s připojenými bloky jsou používány validační signály značící připravenost bloků na příjem dat (dev_in_ready), korektnost vstupních dat (dev_in), připravenost dat na vyčtení (dev_out), vyčtení dat blokem DSP_corePipelineRAM (dev_out_ready) a selhání činnosti (dev_fail). Vstupní data pro bloky jsou přenášena signály dev_A a dev_B a výsledky výpočtů signály

Obr. 3.10: Znázornění funkce bloku DSP_corePipelineRAM

dev_Y. V případě potřeby blok DSP_corePipelineRAM čeká, dokud připojený blok data nepřevezme nebo nevydá. Špatná sekvence instrukcí může způsobit čekání na předání výsledků z bloku, kterému nebyla předána data pro výpočet. V takovém případě po určité prodlevě zareaguje interní čítač a dojde k aktivaci signálu fail.

Díky výše popsané a znázorněné architektuře bloku DSP_corePipelineRAM není tento blok sám o sobě schopen spočítat vůbec nic. Dokonce nemusí být schopen ani přenést vstupní signály na výstup. Avšak, jak je znázorněno na obrázku 3.9, k bloku DSP_corePipelineRAM je možné připojit množství výpočetních bloků, které můžeme volit na míru aplikaci. Není vyloučené ani připojení více bloků stejné funkce.

Oproti blokům DSP_corePipelineBasic a DSP_pipelineBasic mají bloky DSP_pipelineRAM a DSP_corePipelineRAM vyvedené také signály regA_en, regB_en, regA_addr, regB_addr, regA_read, regB_read, regA_we a regA_write sloužící pro připojení externí paměti pro pracovní registry bloku. Pamět musí být dvouportová, přičemž od obou portů je vyžadována podpora čtení a od jednoho portu také podpora zápisu. Důvodem pro vyvedení paměti registrů ven z bloku DSP_corePipelineRAM byly potíže Xilinx Vivado s efektivní syntézou a implementací bloků DSP_corePipelineBasic a DSP_pipelineBasic, které popisují interní registry bloku odlišným způsobem.

Kromě signálových vstupů a výstupů mají bloky DSP_corePipelineRAM a DSP_pipelineRAM také vstupy v podobě generických parametrů. Generické parametry bloků jsou reprezentovány celými kladnými nenulovými čísly.

Parametry GNinputs, GNfirst_input, GNoutputs a GNfirst_output určují počet vstupů X a výstupů Y procesoru a oblast registrů, do které se mají vstupy nahrát, popřípadě registrů, ze kterých se mají výstupy vyčíst. Součet GNinputs a GNfirst_input musí být nižší nebo roven počtu registrů procesoru. Totéž platí pro součet GNoutputs a GNfirst_output. Počet registrů je nastavován parametrem GNregisters, k němuž je přidružený parametr GNregister_bits, který určuje bitovou šířku signálu používaného pro adresaci registrů.

Počet připojených bloků pro výpočty s čísly s plovoucí desetinnou čárkou lze nastavit parametrem GNdevices, který je dostupný jen pro blok DSP_corePipelineBasic. S počtem připojených bloků je svázán také signál GNoperation_bits určující počet bitů, které určují instrukční část instrukce.

Velikost instrukce je nastavena parametrem GNinstruction_bits, který by měl být roven součtu GNoperation_bits+2*GNregister_bits. Šířku signálu pro adresování instrukcí nastavuje parametr GNaddress_bits. Parametr GNlatency nastavuje zpoždění paměti instrukcí v hodinových taktech. S ním svázaný parametr GNlatency_bits určuje bitovou šířku čítače zpoždění.

Posledními parametry jsou GNwatchdog_limit a GNwatchdog_bits, které slouží pro nastavení limitní hodnoty interního čítače pro detekci uvíznutí a jeho bitové šířky.

Jak již bylo naznačeno, pro správnou funkci bloku DSP_corePipelineRAM je třeba tomuto bloku dodat korektní sekvenci instrukcí. Toho lze docílit připojením vhodně inicializované paměti na signály address a instruction. Paměť vygenerovanou pomocí IP bloku z prostředí Xilinx Vivado lze inicializovat datovým souborem typu COE.

3.4.2 Paměť s instrukcemi pro blok DSP_pipelineRAM

Základem k vytvoření sekvence instrukcí pro blok DSP_pipelineRAM je programem AnalyzeAlgorithm vygenerovaný kód SVA (soubor QR_4x4_complex_step.sva, viz elektronická příloha). Před provedením optimalizací nad tímto souborem, ale i po jednotlivých optimalizacích, je vhodné ověřit funkčnost zdrojového SVA kódu. Toho můžeme dosáhnout použitím programu SVAInterpreter.

O vlastní optimalizace se stará program SVAOptimalizer. Nad kódem získaným z programu AnalyzeAlgorithm je vždy nutné provést optimalizaci dle sady optimalizačních pravidel QRexpand, aby byl kód SVA uvedený do tvaru kompilovatelného programem SVAToDSPCompiler.

SVA kód připravený ke kompilaci však obsahuje značný počet nadbytečných operací (zvláště operace přiřazení). Ponechání těchto operací v kódu by nenarušilo jeho funkčnost. Mělo by však negativní vliv na efektivitu výsledné sekvence instrukcí. Je proto vhodné aplikovat také sadu optimalizačních pravidel QRreduce. Výsledek je opět vhodné prověřit programem SVAInterpreter.

V přílohách H.1, I.1 a J.1 lze nalézt SVA kód pro QR rozklad reálné matice řádu 2 v základní podobě (H.1), po optimalizaci dle pravidel QRexpand (I.1) a po optimalizaci dle pravidel QRexpand a QR reduce (J.1).

Z optimalizovaného SVA kódu vygenerujeme za použití programu SVAToDSPCompiler soubor typu COE pro inicializaci paměti v prostředí Xilinx Vivado. Kompilaci provádíme pro zařízení s názvem QRstep, jehož parametry jsou v programu nakonfigurovány a odpovídají konfiguraci bloku DSP_pipelineRAM, který je použit v bloku QR_Algorithm.

Zdrojové kódy aplikací a k nim příslušejících knihoven a modulů jsou součástí elektronické přílohy této práce.

3.4.3 Optimalizace SVA kódu

Optimalizace SVA kódu spočívají v náhradě instrukcí za instrukce ekvivalentní, vyřazení instrukcí, jejichž výsledky nejsou použity a vyřazení instrukcí, jejichž provedení není nezbytně nutné pro výpočet správného výsledku. Také je optimalizováno použití proměnných tak, aby do každé proměnné byla přiřazena hodnota právě jednou. Tento krok je nezbytný pro správnou práci některých optimalizačních pravidel. Stejný krok je vyžadován i programem SVAToDSPCompiler, který jej však dokáže provést samostatně.

Optimalizace dle pravidel QRexpand

V případě optimalizačních pravidel QRexpand dochází k rozpisu operátorů "+=", "-=", "*="a "/=". Pokud by byl zmíněným optimalizacím podroben zdrojový kód v jazyce C, odpovídající výpisu 3.8, optimalizovaný kód by odpovídal výpisu 3.9. Výpis 3.8: Výchozí kód pro ilustraci optimalizací dle pravidel QRexpand

1	VO	= X0;	
2	VO	+= X0;	
3	VO	-= X1;	
4	VO	*= V0;	
5	V 1	= VO /	ΧЗ;
6	ΥO	= V0 +	X2;

Výpis 3.9: Mezivýsledek optimalizace dle pravidel QRexpand

1	VO	=	X0	;	
2	٧O	=	VO	+	X0;
3	٧O	=	VO	-	X1;
4	۷O	=	VO	*	V0;
5	V 1	=	VO	/	ΧЗ;
6	ΥO	=	VO	+	Х2

Výsledku optimalizace pro rozšíření počtu proměnných tak, aby do každé proměnné byl výsledek přiřazen právě jednou, odpovídá kód dle výpisu 3.10.

Výpis 3.10: Výsledek optimalizace dle pravidel QRexpand

1 VO = XO; 2 V2 = VO + XO; 3 V3 = V2 - X1; 4 V4 = V3 * V3; 5 V1 = V4 / X3; 6 YO = V4 + X2

Optimalizace dle pravidel QR reduce

Dalším krokem je aplikace pravidel optimalizace QR reduce. Pro ilustraci problému je výchozím kód 3.11. Výpis 3.11: Výchozí kód pro ilustraci optimalizací dle pravidel QR reduce

1 VO = XO;2V2 = V0 + 0;3 V3 = V2 - X1;4 V4 = V2 * 0;V5 = V3 * V4;56 V6 = V3 * 1;7 V7 = V6 + V5;8 V1 = V7 / X3;9 YO = V7 + X2

Z optimalizací dle pravidel QR reduce je nejprve provedena eliminace nadbytečných přiřazení. Po této optimalizaci vzniká kód dle výpisu 3.12.

Výpis 3.12: Mezivýsledek optimalizace dle pravidel QRreduce po eliminaci nadbytečných přiřazení

1 V2 = X0 + 0;2V3 = V2 - X1;3 V4 = V2 * 0;4 V5 = V3 * V4;5V6 = V3 * 1;6 V7 = V6 + V5;7V1 = V7 / X3;YO = V7 + X28

Následují redukce sčítání čísel s nulou, násobení čísel nulou a jedničkou. Tím je získán kód odpovídající výpisu 3.13.

Výpis 3.13: Mezivýsledek optimalizace dle pravidel QRreduce po redukci přičítání nul, násobení nulou a násobení jedničkou

```
1
    V2 = X0;
2
    V3 = V2 - X1;
3
    V4 = 0;
4
    V5 = V3 * V4;
    V6 = V3;
5
6
    V7 = V6 + V5;
    V1 = V7 / X3;
7
8
    YO = V7 + X2
```

Opakováním eliminace nadbytečných přiřazení je kód upraven do podoby 3.14.

Výpis 3.14: Mezivýsledek optimalizace dle pravidel QRreduce po opakované redukci nadbytečných přiřazení

Poslední pravidla v sadě optimalizací QRreduce zajišťují zahození výpočetních operací, jejichž výsledky nejsou použity. V ilustračním kódu jsou proměnné X považované za vstup, proměnné Y za výstup a proměnné V za dočasné. Aplikací na ilustrační kód (výpis 3.14) vznikne kód dle výpisu 3.15.

Výpis 3.15: Mezivýsledek optimalizace dle pravidel QR reduce po odstranění operací, jejichž výsledky nejsou použity

1 V3 = X0 - X1; 2 V5 = V3 * 0; 3 V7 = V3 + V5; 4 Y0 = V7 + X2

Jelikož jsou optimalizační pravidla opakována, dokud je co optimalizovat, proběhne celý cyklus optimalizací znovu a konečným výsledkem je kód odpovídající výpisu 3.16.

Výpis 3.16: Výsledek optimalizace dle pravidel QR reduce

1 V3 = X0 - X1; 2 Y0 = V3 + X2

3.4.4 Kompilace SVA kódu

Úkolem kompilace SVA kódu je převedení jednotlivých instrukcí do instrukcí bloku DSP_pipelineRAM. Kompilace je specifická pro příslušnou konfiguraci bloku DSP_pipelineRAM a pro příslušné zapojení výpočetních bloků k vnořenému bloku DSP_corePipelineRAM. Pokud se jedno nebo druhé změní, je nutné provést kompilaci s novým, změnám odpovídacím nastavením.

Prvním krokem kompilace je provedení pomocných optimalizací. Jedná se o již zmíněné rozšíření počtu pomocných proměnných SVA kódu tak, aby k jedné proměnné náleželo právě jedno přiřazení.

Následuje kontrola vstupního SVA kódu po aplikaci pomocných optimalizací. Kompilační program SVAToDSPCompiler v tomto kroku kontroluje, zda je do všech použitých proměnných přiřazena právě jedna hodnota a zda proměnné nejsou použity dříve, než je jejich hodnota nastavena.

Pokud SVA kód projde kontrolou, je zahájena jeho kompilace. Každé SVA instrukci je přiřazena množina instrukcí bloku DSP_pipelineRAM. Instrukce bloku se dělí na vstupní a výstupní. Vstupní instrukce, které zpravidla vkládají data určená k výpočtu do příslušného výpočetního bloku, jsou provedeny okamžitě. Instrukce výstupní, které zpravidla vyčítají výsledky z příslušného výpočetního bloku, jsou uloženy do zásobníku spolu s informací, v jakém taktu bude výsledek dostupný. Do sekvence instrukcí jsou přednostně přidávány operace, jejichž vstupy jsou dostupné v registrech, popřípadě jsou již vypočítané a čekají na vyčtení. Pokud je provedení instrukce závislé na proměnné nevyčtené, je před provedení instrukce vložena odpovídající instrukce vyčtení. Po kompilaci celého SVA kódu je nakonec přidána instrukce ukončení výpočtu a prezentace výsledků.

Posledním krokem kompilace je mapování proměnných do registrů bloku DSP_corePipelineRAM. Přednostně jsou mapovány vstupní a výstupní proměnné. Po namapování vstupů a výstupů následuje mapování pomocných proměnných, které respektuje dobu jejich platnosti, jež je dána prvním přiřazením a posledním použitím. Posledním použitím končí i platnost vstupních proměnných.

Po namapování proměnných do registrů následuje doplnění odpovídajících adres do instrukcí a vygenerování výsledné sekvence instrukcí, která je následně uložena do souboru formátu COE s ohledem na bitovou šířku jedné instrukce. Vytvořením COE souboru je kompilace ukončena.

3.5 Simulace

V blokačním módu pracující aritmetická jednotka APU_small je verifikována proti výsledkům z aritmetické jednotky APU_NB, jejíž funkce byla ověřena autorem vůči výsledkům z programu GNU Octave. Simulace ověřující funkci bloků QR_Algorithm a DSP_pipelineRAM využívají automatické, popřípadě ruční porovnání s výsledky z GNU Octave.

3.5.1 Struktura simulace

Simulace využívají pro generování hodinového signálu procesu clk_process (viz. výpis 3.17).

Výpis 3.17: Simulační proces clk_process

```
1
       -- Clock process definitions ( clock with 50%
          duty cycle is generated here.
\mathbf{2}
      clk_process : process
3
      begin
           clk <= '0';
4
           wait for clk_period/2; --for 0.5 ns signal
5
              is '0'.
6
           clk <= '1';
           wait for clk period/2; --for next 0.5 ns
7
              signal is '1'.
8
      end process;
```

Použití procesu clk_process vyžaduje definici signálu clk a konstanty clk_period (viz výpis 3.18). S hodinovým signálem souvisí také signál clk_en povolující hodiny, který je v simulacích trvale připojen k logické 1.

Výpis 3.18: Signály pro proces clk_process 1 constant clk_period : time := 10 ns; 2 3 signal clk : STD_LOGIC := '0'; 4 signal clk_en: STD_LOGIC;

Ukončení simulace po vypršení určitého odsimulovaného časového úseku je zajištěno procesem watchdog_process (viz. výpis 3.19).

```
Výpis 3.19: Simulační proces watchdog_process
```

```
1
        -- watchdog process
2
       WATCHDOG_will <= WATCHDOG_is + 1;
3
4
       watchdog_process: process (clk, clk_en,
          WATCHDOG will)
5
       begin
6
           if rising edge(clk) then
7
               if (clk_en='1') then
8
                   WATCHDOG_is <= WATCHDOG_will;
9
10
                   assert WATCHDOG_is < WATCHDOG
11
                        report "Watchdog⊔timeout"
12
                        severity FAILURE;
13
14
               end if;
15
           end if;
16
       end process;
```

Pro použití procesu watchdog_process je nutné definovat signály WATCHDOG_is a WATCHDOG_will spolu s konstantou WATCHDOG (dle výpisu 3.20). Změnou konstanty lze ovlivnit odsimulovaný čas, který musí uplynout pro zastavení simulace.

Výpis 3.20: Signály pro process watchdog_process
1 constant WATCHDOG : unsigned(7 downto 0) :=
 to_unsigned(200,8);
2
3 signal WATCHDOG_is, WATCHDOG_will : unsigned(7
 downto 0) := (others => '0');

Porovnání výsledků s očekávanými hodnotami je možné prostřednictvím procesu sim_check_process (výpis 3.22) s nímž souvisí definice signálů dle výpisu 3.21.

Výpis 3.21: Signály pro proces sim_check_process

1	signal	CHECK_A, CHECK_V, CHECK_ERR : FP_NUMBER;
2	signal	CHECK_A_ready, CHECK_A_ok : STD_LOGIC;
3	signal	CHECK : STD_LOGIC;
4	signal	CHECK_ok : STD_LOGIC;

```
Výpis 3.22: Signály pro proces sim_check_process
1
        -- check real part of result process
2
        sim_check_process: process (clk, clk_en, CHECK,
          CHECK_ok)
3
       begin
4
            if rising edge(clk) then
5
                if (clk en='1') then
                     if (CHECK ok='1') then
6
7
                         assert (CHECK='1')
8
                              report "Baducheckuofuresult"
9
                              severity ERROR;
10
                     end if;
11
                end if;
12
            end if;
13
       end process;
```

Čísla určená k porovnání jsou představována signály CHECK_A a CHECK_V. Velikost povolené chyby vyjadřuje signál CHECK_ERR. Výsledek porovnání je přenášen signálem CHECK, jež je validní v době aktivního signálu CHECK_ok. Pokud je kontrolované číslo ve shodě s číslem žádaným, je výsledek porovnání signalizován aktivitou (log. 1) signálu CHECK.

Použití procesu sim_check_process vyžaduje připojení bloku FP_CHECK na příslušné signály dle výpisu 3.23.

```
Výpis 3.23: Obvyklé zapojení bloku FP_CHECK v simulaci
```

```
-- component for check results
1
2
      test CHECK: FP CHECK
3
        port map ( clk => clk, clk en => clk en, reset
            => reset,
4
                       A => CHECK_A, A_ready =>
                          CHECK_A_ready, A_ok =>
                          CHECK_A_ok,
                       V => CHECK_V, ERR => CHECK_ERR,
5
                          VERR_ready => CHECK_VERR_ready,
                           VERR ok => CHECK VERR ok,
                       CHECK => CHECK, CHECK ready =>
6
                          CHECK_ready, CHECK_ok =>
                          CHECK ok);
```

Konkrétní zapojení se v různých simulacích mírně odlišuje. Signál CHECK_ready může být trvale aktivní, signály CHECK_A_ready a CHECK_VERR_ready mohou být nepřipojeny. Přípustné je i sjednocení signálů CHECK_A_ok a CHECK_VERR_ok.

3.5.2 Simulace bloků APU_NB a APU_NB_small

Výsledek simulace bloků APU_NB a APU_NB_small je v příloze O.1. Simulace využívá struktury popsané v kapitole 3.5.1.

Během simulace se postupně provádějí operace reálného sčítání, reálného odčítání, reálného násobení, reálného dělení, komplexního sčítání, komplexního odčítání, komplexního násobení a komplexního dělení. Hodnoty vstupních čísel jsou dané (viz tabulka 3.5). Pomocí vhodného programu (např. GNU Octave/Matlab) lze vypočítat předpokládané výsledky operací a srovnat je s výsledky zjištěnými ze simulace (tabulka 3.5). Výpočty v tabulce 3.5 jsou zaokrouhleny na tři desetinná místa.

A	В	Operace	Výpočet GNU	Simulovaný
			Octave	výsledek
5.15	16.00589	sčítání	21.156	21.156
5.15	16.00589	odčítání	-10.856	-10.856
5.15	16.00589	násobení	82.430	82.430
5.15	16.00589	dělení	0.322	0.322
5.15 - 2.2511i	16.00589 + 3.13i	sčítání	21.156 + 0.879i	21.156 + 0.879i
5.15 - 2.2511i	16.00589 + 3.13i	odčítání	-10.856 - 5.381i	-10.856 - 5.381i
5.15 - 2.2511i	16.00589 + 3.13i	násobení	89.476 - 19.911i	89.476 - 19.911i
5.15 - 2.2511i	16.00589 + 3.13i	dělení	0.283 - 0.196i	0.283 - 0.196i

Tab. 3.5: Srovnání očekávaných a simulovaných výsledků vypočítaných aritmetickou jednotkou APU_NB

3.5.3 Simulace bloku APU_small

Cílem simulace bloku APU_small je ověření funkce aritmetické jednotky. Blok APU_NB je zde použit jako referenční aritmetická jednotka. Výsledek simulace bloku APU_small je v příloze P.1. Postup simulace je obdobný jako v případě simulace aritmetických jednotek APU_NB a APU_NB_small.

3.5.4 Simulace bloku DSP_pipelineRAM

Simulace bloku DSP_pipelineRAM je rozdělena do několika částí. Výchozí simulace (soubor "sim_DSP_NoSignFullDeviceTest.vhd", viz elektronická příloha) ověřuje základní funkce bloku. Jedná se například o schopnost bloku DSP_corePipelineRAM komunikovat s bloky pro výpočty nad čísly s plovoucí desetinnou čárkou, načítat vstupní data a prezentovat vypočítané výsledky. Výsledky jsou ověřeny automaticky vůči výsledkům získaným z GNU Octave.

Soubor "sim_DSP_ComplexQR_4x4.vhd" (viz elektronická příloha) ověřuje schopnost bloku DSP_pipelineRAM realizovat rozsáhlý výpočet (komplexní QR rozklad matice řádu 4). V tomto případě není automatická verifikace prováděna.

3.5.5 Simulace bloku QR_Algorithm

Výstupem této práce je blok QR_Algorithm. Jeho simulace (soubor "sim_QR_Algorithm.vhd", viz elektronická příloha) ověřuje schopnost bloku opakovaně provádět výpočet iterací QR algoritmu až do dosažení požadované přesnosti. Výsledky jsou kontrolovány automaticky oproti výsledkům aplikovaného algoritmu v programu GNU Octave.

Verifikace bloku QR_Algorithm je kromě simulace možná i skrze procesor architektury ARM integrovaný v čipu Zynq-7020, který je součástí vývojové desky ZedBoard. Takový postup ověření funkce je realizovatelný prostřednictvím syntézy a implementace bloku topARMverification (soubor "topARMverification.vhd", elektronická příloha) a následného nahrání výsledného bitstreamu do hradlového pole. Po spuštění programu QRverification (viz elektronická příloha) v procesoru integrovaném na čipu Zynq-7020 lze stisknutím libovolného z petice tlačítek (BTNU, BTNL, BTNC, BTNR nebo BTND) spustit vygenerování jedné náhodné hermitovské pozitivně-semidefinitní matice řádu 4. Program vygenerovaná data předá bloku QR_Algorithm a vyčte zpět výsledek výpočtu. Vygenerovaná matice i jí odpovídající výsledky jsou z procesoru odesílány prostřednictvím UARTu jako čistý text.

4 ZÁVĚR

V rámci této práce byly zkoumány možnosti výpočtu vlastních čísel a vektorů symetrických a hermitovských matic. Byl analyzován algoritmus Householderovy transformace reálné matice do třídiagonálního tvaru a algoritmus QR rozkladu za použití Householderových matic. Získané výsledky byly použity pro sestavení a implementaci bloku pro výpočet vlastních čísel a vlastních vektorů čtvercové komplexní hermitovské pozitivně-semidefinitní matice řádu 4 do hradlového pole řady Xilinx Zynq-7000 se zaměřením na efektivní využití zdrojů.

Za účelem analýzy algoritmů a zpracování SVA kódu byly sestaveny programy AnalyzeAlgorithm, SVAInterpreter, SVAoptimalizer a SVAToDSPCompiler. Bylo také nutné rozšířit knihovny Processingg, Calculate a Format a moduly ESEM a CalculateSEM. Pro potřeby SVAToDSPCompileru byla naprogramována knihovna HarDes a modul HarDesSEM.

Žádaný výpočet vlastních čísel a vlastních vektorů je realizován blokem QR_Algorithm, který realizuje výpočet využitím QR algoritmu. Implementace do hradlového pole byla verifikována pomocí simulací a procesoru ARM integrovaného na čipu Zynq 7020. Blok dokáže pracovat s frekvencí 100 MHz, přičemž jedna iterace vyžaduje 9778 taktů. Na testovací matici bylo dosaženo přesnosti v řádu 10^{-5} v pěti iteracích a čase kratším 500 μs . Během každé iterace je vykonáno 8635 instrukcí, což odpovídá 4317 výpočtům provedených nad čísly s plovoucí desetinnou čárkou. Při výpočtu je nutné celkem po dobu 1087 taktů čekat na mezivýsledky. Efektivita využití výpočetního bloku dosahuje 89 %. Bez aplikace optimalizací (program SVAoptimalizer) by bylo nutné provádět 5896 operací nad čísly s plovoucí desetinnou čárkou.

LITERATURA

- Komplexní čísla [online]. poslední aktualizace 2. 12. 2015 [cit. 2. 12. 2015].
 Dostupné z URL: http://www.matematika.cz/komplexni-cisla>.
- [2] KRUPKOVÁ, Vlasta FUCHS, Petr. MATEMATIKA 1 1. vyd., Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav matematiky, 2007. 288 s. ISBN 978-80-214-3438-7
- [3] VICHER,Miroslav.NUMERIKA[online].26.3.2001,[cit.24.11.2015].DostupnézURL:<http://physics.ujep.cz/~jskvor/NME/Vicher/NUMER.PDF>.
- [4] Lineární algebra Vlastní čísla a vektory matic [online]. poslední aktualizace 30. 1. 2003 [cit. 24. 11. 2015]. Dostupné z URL: http://artemis.osu.cz/mmmat/txt/la/mvl.htm.
- [5] Symetrické matice [online]. aktualizace 17. poslední 3. 200526.URL: cit. 11. 2015]. Dostupné \mathbf{Z} https://math.feld.cvut.cz/ftp/vyuka/MA5/SymetrMatice.pdf>.
- [6] Permutace [online]. poslední aktualizace 4. 12. 2015 [cit. 4. 12. 2015]. Dostupné z URL: http://www.matematika.cz/permutace>.
- SKALÁRNÍ [7] 1.2. NORMA A SOUČIN [online]. poslední aktualizace 9. 9. 2002 [cit. 4. 12.2015]. Dostupné URL: \mathbf{Z} <http://artemis.osu.cz/Matem/2/1_02.pdf>.
- [8] Sklární součin [online]. poslední aktualizace 19. 5. 2003 [cit. 4. 12. 2015].
 Dostupné z URL: http://www.karlin.mff.cuni.cz/~tuma/2002/NLinalg9.pdf>.
- NOVÁK. [9] BASTINEC, Jaromír Michal. Moderní _ numerické 11. metody [online]. cit. 19. 2015]. Dostupné \mathbf{Z} URL: <http://matika.umat.feec.vutbr.cz/inovace/materialy/skripta/mmnm.pdf>.
- [10] QUARTERONI, Alfio SACCO, Riccardo SALERI, Fausto. Numerical Mathematics (Second Edition) 1. vyd., Berlín: nakladatelství Springer Berlin Heidelberg, 2007. 655 s. ISBN 0939-2475
- [11] MROVEC, Martin. Řešení problémů vlastních čísel s aplikacemi v molekulové dynamice Ostrava: Technická univerzita Ostrava, Fakulta elektrotechniky a informatiky, 2013, 51 s. Vedoucí bakalářské práce prof. RNDr. Zdeněk Dostál, DSc.
- Gram-Schmidt[12] QRDecomposition with [online]. poslední aktualizace 24. 5. 2007cit. 27.11. 2015].Dostupné z URL: <http://www.math.ucla.edu/~yanovsky/Teaching/Math151B/handouts/ GramSchmidt.pdf>.
- [13] TEJKAL, Jan. QR-algoritmus Praha: Univerzita Karlova v Praze, Matematickofyzikální fakulta, 2010, 59 s. Vedoucí bakalářské práce Doc. RNDr. Jan Zítko, CSc.
- [14] OBERHUBER, Tomáš. Vlastní čísla matic aplikace [online]. poslední aktualizace 17. 1. 2015 [cit. 9. 12. 2015]. Dostupné z URL: <http://geraldine. fjfi.cvut.cz/~oberhuber/data/vyuka/num-1/06-vlastni-cisla.pdf>.
- 17. [15] Numerical recipes [online]. poslední aktualizace 1. 2013 [cit. 25.11. 2015]. Dostupné URL: \mathbf{Z} http://www.it.uom.gr/teaching/linearalgebra/NumericalRecipiesInC/c11- 4.pdf>.
- [16] LogiCOREIPFloating-Point **Operator** v7.0 [online]. poslední 27.aktualizace 5. 10. 2015 [cit. 11. 2015]. Dostupné URL: \mathbf{Z} <http://www.xilinx.com/support/documentation/ip_documentation/ floating point/v7 0/pg060-floating-point.pdf>.
- [17] TIŠNOVSKÝ, Petr. Norma IEEE 754 a příbuzní: formáty plovoucí řádové tečky [online]. poslední aktualizace 31. 5. 2006 [cit. 1. 12. 2015]. Dostupné z URL: http://www.root.cz/clanky/norma-ieee-754-a-pribuzni-formaty-plovouci-radove-tecky/>.

SEZNAM SYMBOLŮ, VELIČIN A ZKRATEK

A matice

- v vektor
- $||\mathbf{v}||_2$ Euklidovská norma vektoru \mathbf{v}
- i imaginární jednotka
- **Z** komplexní číslo
- \mathbb{R} množina reálných čísel
- $\mathbb C$ množina komplexních čísel
- SVA SFENCE Variable Assembler

SEZNAM PŘÍLOH

A	Generování autokorelační matice zatížené šumem	76
в	Jacobiho metoda	78
\mathbf{C}	Householderova transformace na matici třídiagonální	80
D	Gram-Schmidtův QR rozklad	81
\mathbf{E}	Householderův QR rozklad	82
\mathbf{F}	QR rozklad pomocí Givensovy matice	83
\mathbf{G}	QR algoritmus pro výpočet vlastních čísel a vektorů matice	84
н	Výpis SVA kódu Householderovova QR rozkladu matice řádu 2	85
Ι	Výpis SVA kódu QR rozkladu po základní optimalizaci	88
J	Výpis SVA kódu QR rozkladu po základní a redukující optimalizac	ri 01
		91
Κ	Význam portů IP bloku	93
\mathbf{L}	Rozhraní bloků pro výpočty s čísly s plovoucí desetinnou čárkou	95
\mathbf{M}	Definice rozhraní bloku DSP_pipelineRAM	103
Ν	Definice rozhraní bloku DSP_corePipelineRAM	105
0	Simulace APU_NB a APU_NB_small	107
Р	Simulace APU_small	108
\mathbf{Q}	Obsah přiloženého CD	109

A GENEROVÁNÍ AUTOKORELAČNÍ MATICE ZATÍŽENÉ ŠUMEM

Výpis A.1: Autokorelační matice zatížená šumem

```
1 %% Vypocet vlastnich cisel a vlastnich vektoru
2
3 %% Generovani hermitovske,
4 % pozitivne-semidefinitni komplexni ctvercove
5 % matice "W", jejiz vlastni vektor prislusici
6 % nejvetsimu vlastnimu cislu
7 % bude "v", ostatni vlastni cisla
8 % a vektory budou prisluset sumu.
9 % Matice "W" je velikosti "m".
10 m = 4:
11 % Vektor "v"
12 v = complex(randn(m,1),randn(m,1));
13 % Matice "W"
14 W = v * v';
15 % Pridani kladne realne konstanty k diagonale =
      pridani sumu
16 sigma = sqrt(norm(v))/5; % 5 x mensi
17 \text{ W} = \text{W} + \text{sigma}^2 * \text{eye}(\text{m},\text{m});
18 % Pozn. Matice "W" odpovida autokorelacni matici
19 % vzorku vicekanalovych dat obsahujicich signal
20 % prave z jednoho zdroje a nezavisly (v case
21 % i mezi kanaly) gaussovsky sum.
22 % Tato matice bude tedy mit jedno dominantni
23 % vlastni cislo a zbyle na urovni sumu (sigma^2).
24
25 %% Vlastni cisla, vlastni vektory
26 % Vlastni vektory jsou sloupce eigenVectors, vlastni
       cisla
27 % jous na diagonale eigenValues
28 [eigenVectors, eigenValues] = eig(W);
29 % Vlastni cisla nejsou setrizena, provedeme
      setrizeni
30 [max,iSort] = sort(diag(eigenValues),'descend');
31 % Vlastni cislo nalezi vzdy konkretnimu vlastnimu
```

```
vektoru,
```

```
32 % provedeme prislusne setrizeni vlastnich vektoru
33 eigenVectors = eigenVectors(:,iSort);
34
35 % Zobrazeni: Pro srovnani obou vektoru pouzijeme
     metodu
36 % unifikace faze na prvni hodnote =
37 % faze na prvim prvku vektoru bude nulova =
38 %prvni prvek vektoru bude realne cislo.
39 vUnif = v./v(1,1);
40 eigenVectors = eigenVectors ./ eigenVectors(1,1);
41 % Vektory zobrazime v komplexni rovine,
42 % kde osa x je realna cast prvku vektoru,
43 % osa y potom imaginarni cast vektoru
44 figure
45 plot(real(vUnif), imag(vUnif), 'ob');
46 hold on
47 plot(real(eigenVectors(:,1)), imag(eigenVectors(:,1))
     , 'xr');
48 grid on
49 title('Nejvetsiuvlastniuvektor')
50 legend('Skutecny','Nejvetsi_vlastniuvektor')
```

```
50 regend ( Skutechy , Nejvetsi Viastni Vektor
```

B JACOBIHO METODA

```
Výpis B.1: Jacobiho metoda[11]
```

```
1 % jacobi maethod
2
  function [eigval,eigvec, iter] = JacobiDiag(A, myeps)
3
4
     %eigval - diag. matrix of eigenvaluesm eufvec -
        matrix of eifenvectors
5
     %iter - nr of iterations
6
     format long;
7
     iter = 0;
8
     S = A;
9
     V = eye(size(S,1));
10
     [ i , j ] = FindPivotIndex(S);
     while(norm(S-diag(diag(S)))>=myeps)
11
12
       G = CreateGivensMatrix(S,i,j);
13
       S = G' * S * G;
14
       V = V*G;%rotate eigenvectors
15
       [ i , j ] = FindPivotIndex(S);
16
       iter = iter + 1;
17
     end
18
     eigvec = V;
19
     eigval = diag(diag(S));
20
  end
21
22 function [p, q] = FindPivotIndex(A)
23
     format long;
24
     n = size(A, 1);
25
     p = 1;
26
     q = 2;
     pivot = 0;
27
     for i = 1:n-1
28
29
       for j = i+1:n
30
         if (abs(A(i,j )) > abs(pivot))
31
           pivot = A(i, j);
32
           p = i;
33
           q = j;
34
         end
```

```
35
       end
36
     end
37
   end
38
   function [G] = CreateGivensMatrix(M, i, j)
39
40
     format long;
     if (M(i, i ) == M(j,j ))
41
       mytheta = pi/4;
42
43
     else
       mytheta = 1/2 * atan( 2 * M(i, j ) / (M(i, i ) -
44
          M(j,j)));
45
     end
     G = eye(size(M, 1));
46
     G(i, i) = cos(mytheta);
47
     G(j, j) = cos(mytheta);
48
     G(i, j) = -sin(mytheta);
49
50
     G(j, i) = sin(mytheta);
51 end
```

C HOUSEHOLDEROVA TRANSFORMACE NA MATICI TŘÍDIAGONÁLNÍ

Výpis C.1: Householderova transformace na matici třídiagonální

```
1 % Householder transform real
2
3 function out = HouseholderTransformReal(A)
4
     sizeA = size(A);
5
6
     out = A;
     ort = eye(sizeA);
7
8
9
     for (k=2:(sizeA-1))
       for (j=1:(k-1))
10
11
         v(j, 1) = 0;
12
       end;
13
14
       hlpA = 0;
15
       for (j=k:sizeA)
16
         v(j, 1) = out(j, k-1);
17
         hlpA += out(j,k-1)^2;
18
       end;
19
       v(k, 1) += sign(v(k))*sqrt(hlpA);
20
21
       w = (1/(sqrt(v'*v))*v')';
22
23
       q = 2*(eye(sizeA)-w*w')*out*w;
24
25
       out = out - w*q' - q*w';
26
     end:
27 end;
```

D GRAM-SCHMIDTŮV QR ROZKLAD

Výpis D.1: QR rozklad pomocí Gram-Schmidtova algoritmu

```
1 % GramSchmidt QR
2
3
   function [Q,R] = QR_GramSchmidt(A)
4
     sizeA = size(A)(1);
5
6
     Q = zeros(sizeA);
7
     U = Q;
8
     R = Q;
     for k = [1:sizeA]
9
       U(1:sizeA,k) = A(1:sizeA,k);
10
11
12
       for n = [1:k-1]
13
         U(1:sizeA,k) = U(1:sizeA,k) - (A(1:sizeA,k)'*Q
             (1:sizeA,n))*Q(1:sizeA,n);
14
       end
15
       Q(1:sizeA,k) = U(1:sizeA,k)/norm(U(1:sizeA,k),2);
16
     end
17
18
     R = Q' * A;
19 \text{ end}
```

E HOUSEHOLDERŮV QR ROZKLAD

Výpis E.1: QR rozklad pomocí Householderových transformací

```
1 % Householder QR
2
3 function [Q,R] = QR_Householder(A)
4
     sizeA = size(A)(1);
5
6
     R = A;
7
     Q = eye(sizeA);
8
9
     for (k=1:(sizeA-1))
10
       z = zeros(sizeA, 1);
11
       x = z;
12
       z(k, 1) = 1;
13
       for (j=k:sizeA)
14
         x(j, 1) = R(j,k);
15
       end;
16
       hlpA = norm(x);
17
18
       if (x(k) >= 0)
         u = x + hlpA*z;
19
20
       else
21
         u = x - hlpA*z;
22
       end
23
24
       H = eye(sizeA) - 2*(u*u')/(u'*u);
25
26
       R = H * R;
27
       Q = Q * H;
28
     end;
29 end
```

F QR ROZKLAD POMOCÍ GIVENSOVY MATICE

Výpis F.1: QR rozklad pomocí Givensovy matice

```
1 % QR rozklad matice Givensovou metodou
2 function [Q, R] = QR Givens(A)
3
     sizeA = size(A)(1);
     R = A;
4
     for ij=[1:sizeA]
5
       for ii=[sizeA:-1:ij+1]
6
7
         % urcime c a s
8
         a = R(ii-1,ij)
9
         b = R(ii, ij)
         if (b==0)
10
11
            c = 1;
12
            s = 0;
13
         else
14
          if (abs(b)>abs(a))
            tau = -a/b;
15
16
            s = 1/sqrt(1+tau*tau);
17
             c = s * tau;
18
          else
19
             tau = -b/a;
20
             c = 1/sqrt(1+tau*tau);
21
             s = c * tau;
22
          end
23
         end
24
         % vynulujeme prvek ii, ij
25
         Gh = [c, s; -s, c];
         R(ii-1:ii,ij:sizeA) = Gh'*R(ii-1:ii,ij:sizeA)
26
27
       end
28
     end
29
     % dopocitame matice Q
30
     Q = A/R;
31 end
```

G QR ALGORITMUS PRO VÝPOČET VLASTNÍCH ČÍSEL A VEKTORŮ MATICE

Výpis G.1: QR algoritmus pro výpočet vlastních čísel a vektorů matice

```
1 % QR Eigen problem
2
3 function [eigenVectors, eigenValues, delta, iter] =
      QR Eigen(A, my, err)
     eigenVectors = eye(size(A));
4
5
     eigenValues = A;
     Cdig = eigenVectors;
6
7
     Coth = abs(eigenVectors - 1);
8
     iter = 0;
9
10
     while true
11
       if (my)
12
         [Q,eigenValues] = QR_Householder(eigenValues);
13
       else
         [Q,eigenValues] = qr(eigenValues);
14
15
       end
16
17
       eigenValues = eigenValues*Q
18
       eigenVectors = eigenVectors*Q;
19
20
      delta = (sqrt(sum(sum(abs(eigenValues.*Coth).^2)))
         /max(max(abs(eigenValues(1,1))));
      if (delta<err)</pre>
21
22
        break;
23
      end
24
25
      iter = iter + 1;
26
     end
27 end
```

H VÝPIS SVA KÓDU HOUSEHOLDEROVOVA QR ROZKLADU MATICE ŘÁDU 2

Výpis H.1: Výpis SVA kódu QR rozkladu pomocí Householderových transformací

1	OPERATOR	" = "	@0	= _C)NE;	
2	OPERATOR	" = "	@1	= _ Z	ZERO;	
3	OPERATOR	" = "	@2	= _z	ZERO;	
4	OPERATOR	" = "	@3	= _z	ZERO;	
5	OPERATOR	" = "	@4	= _2	ZERO;	
6	OPERATOR	" = "	@5	= _C)NE;	
7	OPERATOR	" = "	@6	= _i	n00;	
8	OPERATOR	" = "	@7	= _i	n01;	
9	OPERATOR	" = "	@8	= _i	n01;	
10	OPERATOR	" = "	@9	= _i	n11;	
11	OPERATOR	" = "	@10	= (20;	
12	OPERATOR	" = "	@11	= (23;	
13	OPERATOR	" = "	@12	= (2;	
14	OPERATOR	" = "	@13	= (25;	
15	OPERATOR	" = "	@1	= _C)NE;	
16	OPERATOR	" = "	@14	= _	ZERO	;
17	OPERATOR	" = "	@15	= (26;	
18	METHOD "a	bs"	@16	= (26;	
19	OPERATOR	" *= "	=	@16,	@16	;
20	OPERATOR	" += "	=	@14,	@16	;
21	OPERATOR	" = "	@17	= (27;	
22	METHOD "a	bs"	@16	= (27;	
23	OPERATOR	" *= "	=	@16,	@16	;
24	OPERATOR	" += "	=	@14,	@16	;
25	METHOD "s	qrt"	@1	6 =	@14;	
26	OPERATOR	"*"	@18	= @	21, 0	16;
27	OPERATOR	"*"	@19	= @	04, 0	16;
28	METHOD "s	ign_	nz"	@16	5 = @	15;
29	OPERATOR	"*"	@20	= @	218,	@16;
30	OPERATOR	"*"	@21	= (219,	@16;
31	OPERATOR	"+"	@22	= (215,	@20;
32	OPERATOR	"+"	@23	= (217,	@21;
33	METHOD "c	onj"	@2	4 =	@22;	
34	METHOD "c	onj"	@2	5 =	@23;	

35	OPERATOR	" * "	@18	=	@22,	@24;
36	OPERATOR	" * "	@26	=	@22,	@25;
37	OPERATOR	"*"	@19	=	@23,	@24;
38	OPERATOR	"*"	@27	=	@23,	@25;
39	OPERATOR	"+"	@20	=	@18,	@18;
40	OPERATOR	"+"	@21	=	@19,	@19;
41	OPERATOR	"+"	@28	=	@26,	@26;
42	OPERATOR	"+"	@29	=	@27,	@27;
43	OPERATOR	" * "	@30	=	@24,	@22;
44	OPERATOR	"*"	@31	=	@25,	@23;
45	OPERATOR	"+"	@18	=	@31,	@30;
46	OPERATOR	"/"	@32	=	@20,	@18;
47	OPERATOR	"/"	@33	=	@21,	@18;
48	OPERATOR	"/"	@34	=	@28,	@18;
49	OPERATOR	"/"	@35	=	@29,	@18;
50	OPERATOR	" – "	@36	=	@0, 0	032;
51	OPERATOR	" – "	@37	=	@3, @	033;
52	OPERATOR	" – "	@38	=	@2, 0	034;
53	OPERATOR	" – "	@39	=	@5, 0	035;
54	OPERATOR	"*"	@40	=	@36,	@6;
55	OPERATOR	"*"	@41	=	@38,	@7;
56	OPERATOR	"+"	@18	=	@41,	@40;
57	OPERATOR	"*"	@40	=	@36,	@8;
58	OPERATOR	"*"	@41	=	@38,	@9;
59	OPERATOR	"+"	@42	=	@41,	@40;
60	OPERATOR	"*"	@40	=	@37,	@6;
61	OPERATOR	"*"	@41	=	@39,	@7;
62	OPERATOR	"+"	@43	=	@41,	@40;
63	OPERATOR	"*"	@40	=	@37,	@8;
64	OPERATOR	"*"	@41	=	@39,	@9;
65	OPERATOR	"+"	@44	=	@41,	@40;
66	OPERATOR	" = "	@6 =	= (018;	
67	OPERATOR	" = "	@7 =	= (043;	
68	OPERATOR	" = "	@8 =	= (042;	
69	OPERATOR	" = "	@9 =	= (044;	
70	OPERATOR	"*"	@45	=	@10,	@36;
71	OPERATOR	"*"	@46	=	@12,	@37;
72	OPERATOR	"+"	@18	=	@46,	@45;
73	OPERATOR	" * "	@45	=	@10,	@38;

74	OPERATOR	" * "	@46 = @12, @39;
75	OPERATOR	"+"	@42 = @46, @45;
76	OPERATOR	" * "	@45 = @11, @36;
77	OPERATOR	"*"	@46 = @13, @37;
78	OPERATOR	"+"	@43 = @46, @45;
79	OPERATOR	"*"	@45 = @11, @38;
80	OPERATOR	"*"	@46 = @13, @39;
81	OPERATOR	"+"	@44 = @46, @45;
82	OPERATOR	" = "	@10 = @18;
83	OPERATOR	" = "	@11 = @43;
84	OPERATOR	" = "	@12 = @42;
85	OPERATOR	" = "	@13 = @44;
86	OPERATOR	" = "	$_Q00 = @10;$
87	OPERATOR	" = "	_Q10 = @11;
88	OPERATOR	" = "	_Q01 = @12;
89	OPERATOR	" = "	_Q11 = @13;
90	OPERATOR	" = "	R00 = @6;
91	OPERATOR	" = "	$_R10 = @7;$
92	OPERATOR	" = "	_R01 = @8;
93	OPERATOR	" = "	$_R11 = @9;$

I VÝPIS SVA KÓDU QR ROZKLADU PO ZÁKLADNÍ OPTIMALIZACI

Výpis I.1: Výpis SVA kódu QR rozkladu po základní optimalizaci pro kompilovatelnost programem SVAToDSPCompiler

1	OPERATOR	" = "	@0 =	: _	ONE;			
2	OPERATOR	" = "	@1 =	-	ZERO);		
3	OPERATOR	" = "	@2 =	-	ZERO);		
4	OPERATOR	" = "	@3 =	-	ZERO);		
5	OPERATOR	" = "	@4 =	-	ZERO);		
6	OPERATOR	" = "	@5 =	-	ONE;			
7	OPERATOR	" = "	@6 =	-	in00);		
8	OPERATOR	" = "	@7 =	-	in01	;		
9	OPERATOR	" = "	@8 =		in01	;		
10	OPERATOR	" = "	@9 =		in11	;		
11	OPERATOR	" = "	@10	=	@0;			
12	OPERATOR	" = "	@11	=	@3;			
13	OPERATOR	" = "	@12	=	@2;			
14	OPERATOR	" = "	@13	=	@5;			
15	OPERATOR	" = "	@47	=	_ONE	:;		
16	OPERATOR	" = "	@14	=	_ZER	0	;	
17	OPERATOR	" = "	@15	=	@6;			
18	METHOD "a	bs"	@16	=	@6;			
19	OPERATOR	" * "	@58	=	@16,	(01	6 ;
20	OPERATOR	"+"	@56	=	@14,	(0 5	8 ;
21	OPERATOR	" = "	@17	=	@7;			
22	METHOD "a	bs"	@59	=	@7;			
23	OPERATOR	" * "	@60	=	@59,	(<u>0</u> 5	9 ;
24	OPERATOR	"+"	@57	=	@56,	(<u>0</u> 60	0 ;
25	METHOD "s	qrt"	@61	=	@57	;		
26	OPERATOR	" * "	@18	=	@47,	(0 6	1 ;
27	OPERATOR	" * "	@19	=	@4,	@(51	;
28	METHOD "s	ign_	nz"	@6	2 =	0	15	;
29	OPERATOR	" * "	@20	=	@18,	(Q6	2 ;
30	OPERATOR	" * "	@21	=	@19,	(0 6	2 ;
31	OPERATOR	"+"	@22	=	@15,	(02	0;
32	OPERATOR	"+"	@23	=	@17,	(02	1 ;
33	OPERATOR	" = "	@24	=	@22;			

34	OPERATOR	" = "	@25	=	@23;
35	OPERATOR	"*"	@63	=	@22, @24;
36	OPERATOR	"*"	@26	=	@22, @25;
37	OPERATOR	"*"	@67	=	@23, @24;
38	OPERATOR	"*"	@27	=	@23, @25;
39	OPERATOR	"+"	@68	=	@63, @63;
40	OPERATOR	"+"	@69	=	@67, @67;
41	OPERATOR	"+"	@28	=	@26, @26;
42	OPERATOR	"+"	@29	=	@27, @27;
43	OPERATOR	"*"	@30	=	@24, @22;
44	OPERATOR	"*"	@31	=	@25, @23;
45	OPERATOR	"+"	@64	=	@31, @30;
46	OPERATOR	"/"	@32	=	@68, @64;
47	OPERATOR	"/"	@33	=	@69, @64;
48	OPERATOR	"/"	@34	=	@28, @64;
49	OPERATOR	"/"	@35	=	@29, @64;
50	OPERATOR	" – "	@36	=	@0, @32;
51	OPERATOR	" – "	@37	=	@3, @33;
52	OPERATOR	" – "	@38	=	@2, @34;
53	OPERATOR	" – "	@39	=	@5, @35;
54	OPERATOR	"*"	@40	=	@36, @6;
55	OPERATOR	"*"	@41	=	@38, @7;
56	OPERATOR	"+"	@65	=	@41, @40;
57	OPERATOR	"*"	@70	=	@36, @8;
58	OPERATOR	"*"	@73	=	@38, @9;
59	OPERATOR	"+"	@42	=	@73, @70;
60	OPERATOR	"*"	@71	=	@37, @6;
61	OPERATOR	"*"	@74	=	@39, @7;
62	OPERATOR	"+"	@43	=	@74, @71;
63	OPERATOR	"*"	@72	=	@37, @8;
64	OPERATOR	"*"	@75	=	@39, @9;
65	OPERATOR	"+"	@44	=	@75, @72;
66	OPERATOR	" = "	@48	=	@65;
67	OPERATOR	" = "	@49	=	@43;
68	OPERATOR	" = "	@50	=	@42;
69	OPERATOR	" = "	@51	=	@44;
70	OPERATOR	"*"	@45	=	@10, @36;
71	OPERATOR	"*"	@46	=	@12, @37;
72	OPERATOR	"+"	@66	=	@46, @45;

73	OPERATOR	"*"	079 = 010, 038;
74	OPERATOR	"*"	@82 = @12, @39;
75	OPERATOR	"+"	@76 = @82, @79;
76	OPERATOR	"*"	@80 = @11, @36;
77	OPERATOR	"*"	@83 = @13, @37;
78	OPERATOR	"+"	@77 = @83, @80;
79	OPERATOR	"*"	@81 = @11, @38;
80	OPERATOR	"*"	@84 = @13, @39;
81	OPERATOR	"+"	@78 = @84, @81;
82	OPERATOR	" = "	052 = 066;
83	OPERATOR	" = "	053 = 077;
84	OPERATOR	" = "	054 = 076;
85	OPERATOR	" = "	055 = 078;
86	OPERATOR	" = "	$_Q00 = @52;$
87	OPERATOR	" = "	_Q10 = @53;
88	OPERATOR	" = "	_Q01 = @54;
89	OPERATOR	" = "	_Q11 = @55;
90	OPERATOR	" = "	$_{R00} = @48;$
91	OPERATOR	" = "	$_R10 = @49;$
92	OPERATOR	" = "	R01 = @50;
93	OPERATOR	" = "	R11 = 051;

J VÝPIS SVA KÓDU QR ROZKLADU PO ZÁKLADNÍ A REDUKUJÍCÍ OPTIMALIZACI

Výpis J.1: Výpis SVA kódu QR rozkladu po základní a redukující optimalizaci provedené programem SVAOptimalizer

1	METHOD "a	abs"	@16	=	_in00);	
2	OPERATOR	" * "	@58	=	@16,	@16;	
3	METHOD "a	abs"	@59	=	_in01	;	
4	OPERATOR	" * "	@60	=	@59,	@59;	
5	OPERATOR	"+"	@57	=	@58,	@60;	
6	METHOD "s	sqrt'	' @61	L =	= @57;		
$\overline{7}$	METHOD "s	sign_	_nz"	@6	52 = _	_in00;	
8	OPERATOR	"*"	@20	=	@61,	@62;	
9	OPERATOR	"+"	@22	=	_in00	, @20	;
10	OPERATOR	"*"	@63	=	@22,	@22;	
11	OPERATOR	"*"	@26	=	@22,	_in01	;
12	OPERATOR	"*"	@67	=	_in01	, @22	;
13	OPERATOR	" * "	@27	=	_in01	, _in	01;
14	OPERATOR	"+"	@68	=	@63,	@63;	
15	OPERATOR	"+"	@69	=	@67,	@67;	
16	OPERATOR	"+"	@28	=	@26,	@26;	
17	OPERATOR	"+"	@29	=	@27,	@27;	
18	OPERATOR	"*"	@30	=	@22,	@22;	
19	OPERATOR	"*"	@31	=	_in01	, _in	01;
20	OPERATOR	"+"	@64	=	@31,	@30;	
21	OPERATOR	"/"	@32	=	@68,	@64;	
22	OPERATOR	"/"	@33	=	@69,	@64;	
23	OPERATOR	"/"	@34	=	@28,	@64;	
24	OPERATOR	"/"	@35	=	@29,	@64;	
25	OPERATOR	" – "	_QOC) =	= _ONE	:, @32	;
26	OPERATOR	" – "	_Q10) =	= _ZER	.0, @3	3;
27	OPERATOR	" – "	_Q01	L =	= _ZER	.0, @3	4;
28	OPERATOR	" – "	_Q11	L =	= _ONE	., @35	;
29	OPERATOR	"*"	@40	=	_Q00,	_in0	0;
30	OPERATOR	"*"	@41	=	_Q01,	_in0	1;
31	OPERATOR	"+"	ROC) =	= @41,	@40;	

32	OPERATOR	"*"	$@70 = _Q00$,	_in01;
33	OPERATOR	"*"	$@73 = _Q01$,	_in11;
34	OPERATOR	"+"	$_{R01} = @73$,	@70;
35	OPERATOR	"*"	$@71 = _Q10$,	_in00;
36	OPERATOR	"*"	$@74 = _Q11$,	_in01;
37	OPERATOR	"+"	$_R10 = @74$,	@71;
38	OPERATOR	"*"	$@72 = _Q10$,	_in01;
39	OPERATOR	"*"	$@75 = _Q11$,	_in11;
40	OPERATOR	"+"	$_{R11} = 075$,	@72;

K VÝZNAM PORTŮ IP BLOKU

Tab. K.1: Význam portů IP bloku Xilinx® Floating-Point Operator

Jméno	Port	Volitelný	Popis		
aclk	vstupní	ne	hodinový signál, obvod		
			reaguje na náběžnou hranu		
aclken	vstupní	ano	aktivní v logické jedničce,		
			povoluje hodinový signál		
aresetn	vstupni	ano	aktivní v logické nule,		
			synchronní resetování, vždy		
			má prioritu před signálem		
			aclken, musí být aktivní		
			alespoň po dobu dvou		
			náběžných hran		
s_axis_a_tvalid	vstupní	ano	TVALID pro kanál A		
s_axis_a_tready	vstupní	ne	TREADY pro kanál A		
s_axis_a_tdata	vstupni	ano	TDATA pro kanál A		
$s_axis_a_tuser$	vstupni	ne	TUSER pro kanál A		
s_axis_a_tlast	vstupni	ne	TLAST pro kanál A		
s_axis_b_tvalid	vstupní	ne	TVALID pro kanál B		
s_axis_b_tready	vstupní	ne	TREADY pro kanál B		
s_axis_b_tdata	vstupní	ne	TDATA pro kanál B		
s_axis_b_tuser	vstupní	ne	TUSER pro kanál B		
$s_axis_b_tlast$	vstupni	ne	TLAST pro kanál B		
s_axis_c_tvalid	vstupní	ne	TVALID pro kanál C		
s_axis_c_tready	vstupní	ne	TREADY pro kanál C		
s_axis_c_tdata	vstupni	ne	TDATA pro kanál C		
s_axis_c_tuser	vstupní	ne	TUSER pro kanál C		
s_axis_c_tlast	vstupní	ne	TLAST pro kanál C		
s_axis_operation_tvalid	vstupní	ne	TVALID pro kanál		
			OPERATION		
s_axis_operation_tready	vstupní	ne	TREADY pro kanál		
			OPERATION		
s_axis_operation_tdata	vstupní	ne	TDATA pro kanál		
			OPERATION		

s_axis_operation_tuser	vstupní	ne	TUSER	pro	kanál
			OPERATI	ON	
s_axis_operation_tlast	vstupní	ne	TLAST	pro	kanál
			OPERATI	ON	
$m_{axis}_{result}_{tvalid}$	výstupní	ano	TVALID I	oro kanál	С
m_axis_result_tready	vstupní	ne	TREADY	pro kaná	il C
m_axis_result_tdata	výstupní	ano	TDATA p	ro kanál	С
m_axis_result_tuser	výstupní	ne	TUSER p	o kanál (С
m_axis_result_tlast	výstupní	ne	TLAST pr	o kanál (C

Vlastní překlad z dokumentace IP bloku Xilinx® Floating-Point Operator[16].

L ROZHRANÍ BLOKŮ PRO VÝPOČTY S ČÍSLY S PLOVOUCÍ DESETINNOU ČÁRKOU

Výpis L.1: Soubor FP.vhd

```
1 -----
2 -- Company:
3 -- Engineer:
4 --
5 -- Create Date: 10/08/2015 08:05:17 AM
6 -- Design Name:
7 -- Module Name: FP - Behavioral
8 -- Project Name:
9 -- Target Devices:
10 -- Tool Versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18
  _ _
19 -----
20
21
22 library IEEE;
23 use IEEE.STD_LOGIC_1164.ALL;
24 use IEEE.NUMERIC_STD.ALL;
25
26 library work;
27 use work.FP_SINGLE.ALL;
28
29 -- Uncomment the following library declaration if
     instantiating
30 -- any Xilinx leaf cells in this code.
31 --library UNISIM;
```

```
32 --use UNISIM. VComponents.all;
33
34
  package FP is
35
       subtype FP NUMBER is FP_SINGLE_NUMBER;
36
37
38
       function negativeNumber(pos: FP NUMBER) return
          FP NUMBER;
39
40
       constant FP PLUS : STD LOGIC := '0';
       constant FP MINUS : STD LOGIC := '1';
41
42
43
       subtype FP CMP OP is STD LOGIC VECTOR(3 downto 0)
          ;
44
45
       constant FP CMP OP Unordered : FP CMP OP := "0001
          ":
       constant FP_CMP_OP_LessThan : FP CMP OP := "0011"
46
          ;
47
       constant FP_CMP_OP_Equal : FP_CMP_OP := "0101";
       constant FP CMP OP LessThanEqual : FP CMP OP := "
48
          0111";
49
       constant FP CMP OP GreaterThan : FP CMP OP := "
          1001";
50
       constant FP_CMP_OP_NotEqual : FP_CMP_OP := "1011"
          ;
51
       constant FP CMP OP GreaterThanEqual : FP CMP OP
          := "1101";
52
       component FP_ADD is
53
54
           Port ( clk : in STD LOGIC;
55
                   clk en : in STD LOGIC;
56
                   reset : in STD LOGIC;
57
                   A : in FP NUMBER;
                   B : in FP NUMBER;
58
59
                   AB ready: out STD LOGIC;
60
                   AB_ok: in STD_LOGIC;
61
                   Y : out FP NUMBER;
62
                   Y ready: in STD LOGIC;
```

63 Y_ok : out STD_LOGIC; 64 fail : out STD_LOGIC); 65 end component; 66 67 component FP ADDSUB is 68 Port (clk : in STD LOGIC; 69 clk en : in STD LOGIC; 70 reset : in STD LOGIC; 71sub : in STD_LOGIC; 72A : in FP NUMBER; 73B : in FP_NUMBER; 74AB ready: **out** STD LOGIC; AB ok: in STD_LOGIC; 7576Y : **out** FP NUMBER; 77Y ready: in STD LOGIC; 78 Y ok : **out** STD LOGIC; 79fail : out STD_LOGIC); 80 end component; 81 82 component FP_MUL is 83 Port (clk : in STD LOGIC; 84 clk en : in STD LOGIC; 85 reset : in STD LOGIC; 86 A : in FP NUMBER; 87 B : in FP_NUMBER; 88 AB_ready: **out** STD_LOGIC; 89 AB ok: in STD LOGIC; 90 Y : **out** FP_NUMBER; 91 Y ready: in STD LOGIC; 92Y_ok : out STD_LOGIC; 93 fail : out STD LOGIC); 94 end component; 9596 component FP DIV is Port (clk : in STD_LOGIC; 97 98 clk_en : in STD_LOGIC; 99 reset : in STD_LOGIC; 100 A : in FP NUMBER; 101 B : in FP NUMBER;

```
102
                    AB_ready: out STD_LOGIC;
103
                    AB_ok: in STD_LOGIC;
                    Y : out FP_NUMBER;
104
105
                    Y_ready: in STD_LOGIC;
                    Y ok : out STD_LOGIC;
106
107
                    fail : out STD_LOGIC);
108
        end component;
109
110
        component FP_SQRT is
111
            Port ( clk : in STD LOGIC;
112
                    clk_en : in STD_LOGIC;
113
                    reset : in STD LOGIC;
                    A : in FP_NUMBER;
114
115
                    A ready: out STD LOGIC;
116
                    A ok: in STD LOGIC;
117
                    Y : out FP NUMBER;
118
                    Y ready: in STD LOGIC;
119
                    Y_ok : out STD_LOGIC;
120
                    fail : out STD_LOGIC);
121
        end component;
122
123
        component FP CMP is
124
            Port ( clk : in STD LOGIC;
125
                    clk en : in STD LOGIC;
126
                    reset : in STD_LOGIC;
127
                    cmp_op : in FP_CMP_OP;
128
                    A : in FP NUMBER;
                    B : in FP_NUMBER;
129
130
                    AB_ready: out STD_LOGIC;
131
                    AB ok: in STD LOGIC;
132
                    CMP : out STD LOGIC;
133
                    CMP ready: in STD LOGIC;
134
                    CMP ok : out STD LOGIC;
135
                    fail : out STD LOGIC);
136
        end component;
137
138
        component FP_ABS is
139
            Port ( A : in FP NUMBER;
140
                    A ready: out STD LOGIC;
```

```
141
                    A_ok: in STD_LOGIC;
142
                    Y : out FP_NUMBER;
143
                    Y ready: in STD LOGIC;
144
                    Y_ok : out STD_LOGIC);
145
        end component;
146
147
        component FP CHECK is
148
            Port ( clk : in STD LOGIC;
149
                    clk_en : in STD_LOGIC;
150
                    reset : in STD LOGIC;
151
                    A : in FP_NUMBER; -- value to be
                       checked
152
                    A ready: out STD LOGIC;
153
                    A ok: in STD LOGIC;
154
                    V : in FP NUMBER; -- valid value
155
                    ERR : in FP NUMBER; -- error, greater
                       than zero
156
                    VERR_ready: out STD_LOGIC;
                    VERR_ok: in STD_LOGIC;
157
158
                    CHECK : out STD LOGIC;
159
                    CHECK ready: in STD LOGIC;
160
                    CHECK_ok : out STD_LOGIC;
161
                    fail : out STD LOGIC);
162
        end component;
163
164
        -- no IP core
165
        component FP NOTZERO is
166
            Port ( clk : in STD_LOGIC;
167
                    clk en : in STD LOGIC;
168
                    reset : in STD LOGIC;
169
                    A : in FP_NUMBER;
170
                    B : in FP NUMBER;
171
                    AB_ready: out STD_LOGIC;
172
                    AB ok: in STD LOGIC;
173
                    Y : out FP_NUMBER;
174
                    Y ready: in STD LOGIC;
175
                    Y_ok : out STD_LOGIC;
176
                    fail : out STD LOGIC);
177
        end component;
```

```
178
179
        -- no IP core
180
        component FP SIGNNOTZERO is
            Port ( clk : in STD_LOGIC;
181
182
                    clk en : in STD LOGIC;
183
                    reset : in STD LOGIC;
184
                    A : in FP NUMBER;
                    A_ready: out STD_LOGIC;
185
186
                    A_ok: in STD_LOGIC;
187
                    Y : out FP NUMBER;
188
                    Y_ready: in STD_LOGIC;
189
                    Y_ok : out STD_LOGIC;
190
                    fail : out STD_LOGIC);
191
        end component;
192
193
        -- no IP core
194
        component FP ASSIGN is
195
            Port ( clk : in STD_LOGIC;
196
                    clk_en : in STD_LOGIC;
197
                    reset : in STD LOGIC;
198
                    A : in FP NUMBER;
199
                    A ready: out STD LOGIC;
200
                    A ok: in STD LOGIC;
201
                    Y : out FP NUMBER;
202
                    Y_ready: in STD_LOGIC;
203
                    Y_ok : out STD_LOGIC;
204
                    fail : out STD LOGIC);
205
        end component;
206
207
        -- no IP core
208
        component FP DEVABS is
209
            Port ( clk : in STD LOGIC;
                    clk_en : in STD_LOGIC;
210
211
                    reset : in STD LOGIC;
212
                    A : in FP_NUMBER;
213
                    A_ready: out STD_LOGIC;
214
                    A ok: in STD_LOGIC;
215
                    Y : out FP NUMBER;
216
                    Y ready: in STD LOGIC;
```

```
217
                    Y_ok : out STD_LOGIC;
218
                    fail : out STD_LOGIC);
219
        end component;
220
221
        -- no IP core
222
        component FP BUF is
223
            Generic (
                         GN bits : positive := 3;
224
                         GN numbers : positive := 8);
225
            Port ( clk : in STD_LOGIC;
226
                    clk en : in STD LOGIC;
227
                    reset : in STD_LOGIC;
228
                    A : in FP NUMBER;
229
                    A ready: out STD LOGIC;
230
                    A ok: in STD LOGIC;
231
                    A fail: in STD LOGIC;
232
                    Y : out FP_NUMBER;
233
                    Y ready: in STD LOGIC;
234
                    Y_ok : out STD_LOGIC;
235
                    Y_fail : out STD_LOGIC);
236
        end component;
237
238
        component FP ADDSUB NB is
239
            Port ( clk : in STD LOGIC;
240
                    clk en : in STD LOGIC;
241
                    sub : in STD_LOGIC;
242
                    A : in FP_NUMBER;
243
                    B : in FP NUMBER;
244
                    AB_ok: in STD_LOGIC;
245
                    Y : out FP_NUMBER;
246
                    Y_ok : out STD_LOGIC);
247
        end component;
248
249
        component FP MUL NB is
250
            Port ( clk : in STD LOGIC;
251
                    clk_en : in STD_LOGIC;
252
                    A : in FP_NUMBER;
                    B : in FP_NUMBER;
253
254
                    AB ok: in STD LOGIC;
255
                    Y : out FP NUMBER;
```

```
256
                    Y_ok : out STD_LOGIC);
257
        end component;
258
259
        component FP_DIV_NB is
260
            Port ( clk : in STD LOGIC;
261
                    clk en : in STD LOGIC;
262
                    A : in FP_NUMBER;
263
                    B : in FP NUMBER;
264
                    AB_ok: in STD_LOGIC;
265
                    Y : out FP_NUMBER;
266
                    Y_ok : out STD_LOGIC);
267
        end component;
268
269
        component FP_SQRT_NB is
270
            Port ( clk : in STD LOGIC;
271
                    clk en : in STD LOGIC;
272
                    A : in FP_NUMBER;
273
                    A_ok: in STD_LOGIC;
274
                    Y : out FP_NUMBER;
275
                    Y_ok : out STD_LOGIC);
276
        end component;
277
278~{\rm end} FP;
279
280
   package body FP is
281
        function negativeNumber(pos: FP_NUMBER) return
           FP NUMBER is
282
            variable neg : FP_NUMBER;
283
            begin
284
                 neg := pos;
285
                 neg(pos'high) := NOT pos(pos'high);
286
                 return neg;
287
            end negativeNumber; -- end function
288 end package body;
```

 \mathbf{M}

DEFINICE ROZHRANÍ BLOKU DSP_PIPELINERAM

Výpis M.1: Definice rozhraní bloku DSP_pipelineRAM

1	component D	SP_pipelineRAM is
2	generic	(
3		GNinputs : positive := 8;
4		<pre>GNfirst_input : integer := 0;</pre>
5		GNoutputs : positive := 8;
6		GNfirst_output : integer := 8;
7		GNoperation_bits : positive := 3;
8		GNaddress_bits : positive := 8;
9		GNinstruction_bits : positive := 16;
10		GNlatency : positive := 2;
11		GNlatency_bits : positive := 2;
12		GNregisters : positive := 128;
13		GNregister_bits : positive := 7;
14		GNwatchdog_limit : positive := 768;
15		GNwatchdog_bits : positive := 10);
16	Port (<pre>clk : in STD_LOGIC;</pre>
17		clk_en : in STD_LOGIC;
18		reset : in STD_LOGIC;
19		X : in DSP_NUMBERS (0 to GNinputs-1);
		input data vector
20		X_ok: in STD_LOGIC; valid intput data,
		calculate can start
21		X_saved: out STD_LOGIC; accept intput
		data signal
22		Y : out DSP_NUMBERS (0 to GNoutputs-1);
		output data vector
23		Y_ok : out STD_LOGIC; output data ok
		signal
24		<pre>fail: out STD_LOGIC; calculation fail</pre>
		signal
25		WARNING: follows out signals are not
		synchronized with rissing egle of
		clock signal!
26		addressStart: in STD_LOGIC_VECTOR (

		GNaddress_bits-1 downto 0); addres
		of first instruction of calculation
27		address: out STD_LOGIC_VECTOR (
		GNaddress_bits-1 downto 0); addres
		of next instruction
28		instruction: in STD_LOGIC_VECTOR (
		<pre>GNinstruction_bits -1 downto 0);</pre>
		instruction input (from memory)
29		ram/register signals
30		regA_addr: out STD_LOGIC_VECTOR (
		<pre>GNregister_bits-1 downto 0);</pre>
31		regB_addr: out STD_LOGIC_VECTOR (
		<pre>GNregister_bits-1 downto 0);</pre>
32		<pre>regA_read: in FP_NUMBER;</pre>
33		<pre>regB_read: in FP_NUMBER;</pre>
34		<pre>regA_we: out STD_LOGIC;</pre>
35		<pre>regA_write: out FP_NUMBER);</pre>
36	end	component;

N DEFINICE ROZHRANÍ BLOKU DSP_COREPIPELINERAM

Výpis N.1: Definice rozhraní bloku DSP_corePipelineRAM

1	component D	SP_corePipelineRAM is
2	generic	(
3		GNinputs : positive := 8;
4		<pre>GNfirst_input : integer := 0;</pre>
5		GNoutputs : positive := 8;
6		<pre>GNfirst_output : integer := 8;</pre>
7		GNoperation_bits : positive := 2;
8		GNaddress_bits : positive := 5;
9		GNinstruction_bits : positive := 5;
10		GNlatency : positive := 1;
11		GNlatency_bits : positive := 1;
12		GNregisters : positive := 128;
13		GNregister_bits : positive := 7;
14		GNdevices : positive := 4;
15		GNwatchdog_limit : positive := 768;
16		GNwatchdog_bits : positive := 10);
17	Port (<pre>clk : in STD_LOGIC;</pre>
18		<pre>clk_en : in STD_LOGIC;</pre>
19		reset : in STD_LOGIC;
20		X : in DSP_NUMBERS (0 to GNinputs-1);
		input data vector
21		X_ok: in STD_LOGIC; valid intput data,
		calculate can start
22		X_saved: out STD_LOGIC; accept intput
		data signal
23		Y : out DSP_NUMBERS (0 to GNoutputs-1);
		output data vector
24		Y_ok : out STD_LOGIC; output data ok
		signal
25		fail: out STD_LOGIC; calculation fail
		signal
26		WARNING: follows out signals are not
		synchronized with rissing egle of
		clock signal!

27		addressStart: in STD_LOGIC_VECTOR (
		GNaddress_bits-1 downto 0); addres
		of first instruction of calculation
28		address: out STD_LOGIC_VECTOR (
		GNaddress_bits-1 downto 0); addres
		of next instruction
29		instruction: in STD_LOGIC_VECTOR (
		<pre>GNinstruction_bits -1 downto 0);</pre>
		instruction input (from memory)
30		ram/register signals
31		regA_addr: out STD_LOGIC_VECTOR (
		<pre>GNregister_bits-1 downto 0);</pre>
32		regB_addr: out STD_LOGIC_VECTOR (
		<pre>GNregister_bits-1 downto 0);</pre>
33		<pre>regA_read: in FP_NUMBER;</pre>
34		<pre>regB_read: in FP_NUMBER;</pre>
35		<pre>regA_we: out STD_LOGIC;</pre>
36		<pre>regA_write: out FP_NUMBER;</pre>
37		devices signals
38		<pre>dev_in_ready: in STD_LOGIC_VECTOR(</pre>
		GNdevices-1 downto 0); signals for
		connect devices like multipler and etc
39		<pre>dev_in: out STD_LOGIC_VECTOR(GNdevices-1</pre>
		downto 0);
40		<pre>dev_A: out FP_NUMBER;</pre>
41		<pre>dev_B: out FP_NUMBER;</pre>
42		dev_out_ready: out STD_LOGIC_VECTOR(
		GNdevices-1 downto 0);
43		<pre>dev_out: in STD_LOGIC_VECTOR(GNdevices-1</pre>
		downto 0);
44		<pre>dev_Y: in DSP_NUMBERS (0 to GNdevices-1);</pre>
45		<pre>dev_fail: in STD_LOGIC_VECTOR(GNdevices-1</pre>
		downto 0));
46	end	component;

O SIMULACE APU_NB A APU_NB_SMALL

Obr. O.1: Simulace APU_NB a APU_NB_small

5,000 5,215.000 0.283415526151657,-0.196064740415388 -0.196064740419388 4,500 ns -19.9113597859873 4,000 ns 89.4762802124023, 39.4762 (1,1,1) 09536743,-2.2511000633239 16 0058998925781,3.13000011444092 3,500 ns 68954242068588 01 \$ 0 3,000 ns 09536743 0001144409 2,500 ns C) 21.155695 -10.8 C 82.4 1.400 0.321 C 21.155695 -10.8 0.400 0.5 0.400 0.5 0.400 0.5 0.400 0.5 0.400 0.5 0.400 0.5 0.400 0.5 0.5 0.400 0.5 0.5 0.400 0.5 sq 000 2,000 ns 1,500 ns 1,000 ns 5.1500009536743,0.0 16.0058898925781,0.0 |500 ns ns 0.196064740419388 0.283415526151657,0.196064740419388 0.283415526151657,0.196064740419388 0.283415526151657 0.283415526151657,-0.196064740419388 5.1500009536743,-2.25110006332397 16.0058898925781,3.13000011444092 10000004749745 -2.25110006332397 16.0058898925781 3.13000011444092 0.283415526151657 5.1500009536743 10000 ps Value ଞ 8 AB_04 AB_04 8 11 1 8 11 1 1 8 11 1 1 1 8 11 1 1 1 1 8 11 👗 WATCHDOG[7:0] 🎬 dk_en 🔏 operation[1:0] 🎬 complex 🏅 Are(8:-23) 🏅 Am(8:-23) 🏅 Bre(8:-23) 🖁 dk_period Ť 4

Obr. P.1: Simulace APU_small

P SIMULACE APU_SMALL
Q OBSAH PŘILOŽENÉHO CD

/ kořenový adresá	iř CD
COE_SVAsložka COE souborů pro inicializaci pamětí a jim odpovída	jících
SVA kódů	
COE_SVA složka SVA kódů vygenerovaných programem AnalyzeAlgor	rithm
Zynq7020	
C XilinxSDK.ziparchiv projektu a dat pro Xilinx	SDK
SVD.xpr.ziparchiv projektu pro Xilinx V	ivado
dependencieszdrojové kódy závislostí programů vyvinutých v rámci	práce
pdf	
xstrym00_diplomka.pdfpdf verze	práce
swzdrojové kódy programů vyvinutých v rámci	práce
CTIMEsoubor s popisem obsah	u CD