
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

REGULATED GRAMMAR SYSTEMS
SYSTÉMY REGULOVANÝCH GRAMATIK

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR MARTIN TOMKO
AUTOR PRÁCE
SUPERVISOR Prof. RNDr. ALEXANDER MEDUNA, CSc.
VEDOUCÍ PRÁCE

BRNO 2018



Master's Thesis Specification/21312/2017/xtomko02 

Brno Un ivers i ty of Techno logy - Facu l ty of I n f o r m a t i o n Techno logy 

D e p a r t m e n t of I n f o r m a t i o n Sys t ems Academic yea r 2 0 1 7 / 2 0 1 8 

Master 's T h e s i s Speci f icat ion 
For: T o m k o M a r t i n , Be . 
Branch of s t udy : Ma themat i ca l IMethods in I n f o r m a t i o n Techno logy 
T i t l e : R e g u l a t e d G r a m m a r S y s t e m s 
Ca tego ry : Theore t i ca l C ompu t e r Science 

I n s t r u c t i o n s f o r p ro j e c t w o r k : 
1 . S t udy g r a m m a r s y s t ems and regu l a ted g r a m m a r s based upon t he superv i sor ' s 

i n s t ruc t i ons . 
2. I n t r o d u c e r egu l a ted g r a m m a r s y s t ems by ana logy w i t h classical g r a m m a r sy s t ems . 
3. S t udy t he p rope r t i e s o f r egu l a ted g r a m m a r s y s t ems based upon t h e superv i sor ' s 

i n s t ruc t i ons . 
4 . Discuss t h e app l i ca t ions o f regu la ted g r a m m a r sy s t ems and f o rma l i z e t h e m by using 

r egu l a ted g r a m m a r s y s t ems . 
5. I m p l e m e n t r egu l a ted g r a m m a r sy s t ems f o rma l i z ed in i t em 4. Focus on v i sua l i za t ion 

aspects of t h e i m p l e m e n t a t i o n . 
6. Eva luate t h e ach ieved resu l t s . Discuss f u r t h e r d e v e l o p m e n t o f t h e p ro j e c t . 

Basic re fe rences: 
• Rozenberg , G., Sa l omaa , A. ( ed s . ) : Handbook of Formal Languages, Vo l ume 1-3, 

Spr inger , 1997 , ISBN 3 - 5 4 0 - 6 0 6 4 9 - 1 
• Aho, A .v . . Lam, M.S., Se th i , R., U l lman , J.D.: Comp i l e r s : Pr inciples, Techn iques , and 

Too ls ( 2nd Ed i t i on) , Pearson Educat ion , 2 006 , ISBN 0 - 3 2 1 - 4 8 6 8 1 - 1 

Requ i r emen t s f o r t h e semes t ra l de fense: 
I t e m s 1 and 2. 

Deta i led f o r m a l spec i f i ca t ions can be f ound a t h t t p : / /www. f i t . v u t b r . c z / i n f o / s z z / 

The Master's Thesis must define its purpose, describe a current state of the art, Introduce the theoretical and 
technical background relevant to the problems solved, and specify what parts have been used from earlier projects or 
have been taken over from other sources. 

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of the 
complete program documentation, program source files, and a functional hardware prototype sample if desired. The 
information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R, etc.) in formats 
common at the FIT. In order to allow regular handling, the medium will be securely attached to the printed report. 

Superv i so r : M e d u n a A l e x a n d e r , prof . R N D r . , C S c , DIFS FIT BUT 
Beg inn ing o f w o r k : Novembe r 1, 2 0 1 7 
Date of de l i ve ry : May 23 , 2018 - x , 

m O K E UCENf TECHNICKf V BRNE 
Fakulta informaCnfch technologii 

Ustav informaCnich syst6mu 
612L66Brno. feeSitgchova 2 

Dusan Kolar 
Associate Professor and Head of Department 



Abstract
This thesis recaps a basic theory of formal languages, regulated grammars, and the parsing
of LL(1) languages. An algorithm for parsing programmed grammars inspired by LL(1)
parsing is suggested and analyzed. The class of languages accepted by this algorithm
is shown to be a strict superclass of LL(1) languages, containing some non-context-free
languages. However, this class appears to be incomparable with the class of context-free
languages.

Abstrakt
Práce poskytuje přehled základů teorie formálních jazyků, regulovaných gramatik a analýzy
LL(1) jazyků. Je zde navržen a analyzován algoritmus pro analýzu programovaných gra-
matik, inspirován LL(1) analyzátorem. Třída jazyků přijímaná tímto algoritmem je striktní
nadtřídou LL(1) jazyků, obsahující některé jazyky, které nejsou bezkontextové. Tato třída
se však jeví být neporovnatelná s třídou bezkontextových jazyků.
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Rozšířený abstrakt
Táto práca sa zaoberá návrhom a analýzou algoritmu pre syntaktickú analýzu programovaných
gramatík inšpirovanú LL analýzou bezkontextových gramatík.

V prvých kapitolách práca poskytuje prehľad potrebnej teórie. Začína základmi teórie
formálnych jazykov a gramatík, a ďalej uvádza gramatiky regulované na základe obmedzova-
nia možných postupností pravidiel, špeciálne programované gramatiky. Pokračuje zhrnutím
základných prístupov k syntaktickej analýze bezkontextových gramatík – analýzy zhora
nadol a analýzy zdola nahor, pričom špeciálnu pozornosť venuje LL analýze, ktorá je ďalej
využitá ako základ pre navrhovaný algoritmus.

Myšlienkou za týmto algoritmom, nazývaným Table-resort algorithm, je prispôsobenie
LL(1) analýzy mechanizmom programovaných gramatík – riadime sa predovšetkým posled-
ným použitým pravidlom a jemu náležiacou množinou pravidiel, z ktorých môžeme vyberať
ďalšie použité pravidlo. Ak táto voľba nie je jednoznačná, algoritmus sa rozhoduje podľa
tzv. TR tabuľky (Table Resort), trojrozmernej analógie k LL tabuľke, ktorú indexujeme
okrem vrcholu zásobníka a symbolu na vstupe aj spomínanou množinou pravidiel. Toto
rozhodovanie podľa tabuľky inšpirovalo názov algoritmu – algoritmus sa v prípade nejas-
ností uchyľuje k tabuľke.

Popísaný algoritmus má nežiaducu vlastnosť, že jazyk ním prijímaný nemusí prijímať
ten istý jazyk, ako generuje gramatika, podľa ktorej je jeho TR tabuľka vypočítaná. Tejto
vlastnosti sa však pri algoritme založenom na LL analýze všeobecne nedá vyhnúť – ide mimo
iné o priamy dôsledok toho, že algoritmus prepisuje vždy najľavejší výskyt daného neter-
minálu. Ďalším zdrojom týchto odchýlok je nedokonalosť TR tabuľky, na ktorej výpočet sa
využívajú iba bezkontextové formy zadanej gramatiky, pričom mechanizmy programovanej
gramatiky, t. j. množiny pravidiel nasledujúcich dané pravidlo, sú pre jednoduchosť ig-
norované. Tu však práca taktiež poukazuje na hranice, ktoré sa pri predpovedaní derivácií
programovaných gramatík nedajú prekročiť.

Algoritmus ďalej môže pre určité vstupy nekonečne cykliť – tento problém je v práci
analyzovaný a pre programované gramatiky bez 𝜀-pravidiel a kontroly výskytu je navrhnuté
riešenie tohoto problému, ktoré je aplikované vo vylepšenej verzii algoritmu. Riešenie
spočíva v priebežnej kontrole počtu vygenerovaných terminálov, pričom bez prekročenia
veľkosti vstupu môžu nekonečné cykly pozostávať iba z jednoduchých pravidiel (pravidiel
tvaru 𝐴→ 𝐵). Pre tieto je vďaka vlastnostiam algoritmu možné predvídať, či ich aplikácia
za určitých okolností povedie k nekonečnému cyklu, čo je možné zhrnúť v tzv. CL tabuľke
(Candidate Loop), pomocou ktorej algoritmus priebežne kontroluje svoj aktuálny stav.

Trieda jazykov prijímaná týmto algoritmom je ostrou nadtriedou triedy LL(1), javí sa
však byť neporovnateľná s triedou bezkontextových jazykov – na jednej strane algoritmus
dokáže prijímať jazyky ako {𝑎𝑛𝑏𝑛𝑐𝑛 : 𝑛 ≥ 0}, ktoré nie sú bezkontextové, pravdepodobne
však nevie prijať napr. jazyk {𝑤𝑤𝑅 : 𝑤 ∈ {𝑎, 𝑏}*}, ktorý je bezkontextový, a potenciálne
dokonca ani deterministický bezkontextový jazyk {𝑎𝑖𝑏𝑗 : 𝑖 ≥ 𝑗 ≥ 0}.

Bližšie určenie triedy jazykov prijímaných algoritmom zostáva otvorenou otázkou, po-
dobne ako otázka, pre ktoré gramatiky sa jazyk generovaný gramatikou odlišuje od jazyka
prijímaného algoritmom za využitia tabuľky založenej na tejto gramatike. Ďalšie smery,
ktorými sa dá od tejto práce uberať, sú analýza zacyklenia algoritmu pre všeobecnejšie
typy programovaných gramatík a prípadné vylepšenia základných mechanizmov algoritmu,
predovšetkým konštrukcie TR tabuľky.
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Chapter 1

Introduction

Regulated grammars provide an interesting extension to context-free grammars; however,
parsing them is in general not as well-explored and well-handled. This thesis introduces
and explores an extension of the LL parser designed to parse a subclass of programmed
grammars.

In chapters 2 and 3, the necessary theory is reviewed – chapter 2 introduces the basics
of formal languages and regulated grammars, and chapter 3 talks about approaches to the
parsing of context-free grammars, notably LL(1) parsing.

In chapter 4, an algorithm to parse programmed grammars called the table-resort algo-
rithm is suggested, which is based on LL(1) parsing. The first, naive version turns out to
have the disadvantage of possibly not halting for certain inputs. This is examined in the rest
of the chapter, and at the end, an improved version is proposed, which is just as powerful,
but also guaranteed to halt for propagating grammars without appearance checking.

An implementation of the presented algorithms can be found on the accompanying CD,
described in appendix A.
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Chapter 2

Basic Concepts

In this chapter, we will briefly discuss the terms necessary for studying formal languages
and grammars, and some parsing techniques applied to particular classes of grammars. We
will also introduce several kinds of regulated grammars.

This chapter assumes a basic knowledge of set theory (sets, set operations, binary
relations, . . . ). The knowledge of formal language theory is also useful, but these terms are
reviewed in the first sections.

2.1 Basic Definitions
For completness, we will begin by defining the basic terms related to formal languages.

For a more complete or alternative description of these concepts, many publications can
be consulted. One such publication is [6], which also serves as the basis for the study of
regulated grammars in this thesis.

2.1.1 Strings

An alphabet is a finite, nonempty set of symbols. We do not define symbols more closely,
other than as being distinct from one another and as basic elements of strings. Some simple
examples of alphabets include {0, 1}, {𝑎, 𝑏, 𝑐} or {♡,♢,♣,♠}, but we can also think of a
set of words from a particular language as an alphabet.

Let Σ be an alphabet. A sequence 𝑤 = 𝑎1 . . . 𝑎𝑛 of (not necessarily distinct) symbols
from Σ is called a string over Σ (𝑎𝑖 ∈ Σ for 1 ≤ 𝑖 ≤ 𝑛). The number 𝑛 of symbols from
which the string is composed is called its length, denoted as |𝑤|. For example, 𝑎𝑎𝑐𝑏, 𝑏𝑐𝑏𝑐𝑏𝑐
and 𝑏 are examples of strings over {𝑎, 𝑏, 𝑐} (of lengths 4, 6 and 1, respectively). Sentences
of some natural language (e.g. English) can be thought of as strings over the set of its
words, and programs written in a particular programming language are strings over the set
of its lexemes. We will usually simply refer to strings over a particular alphabet simply as
strings, omitting the alphabet, unless the distinction is desirable.

A special case of a string is the empty string, denoted as 𝜀1, which is a sequence of 0
symbols. Note that |𝜀| = 0, and for any alphabet Σ, 𝜀 is a string over Σ.

We can also consider the number of occurences of a particular symbol 𝑎 ∈ Σ in a string
𝑤 ∈ Σ* – we will denote it as |𝑤|𝑎. For example, |𝑎𝑏𝑏𝑐𝑏𝑎𝑎𝑏|𝑏 = 4, |0111|0 = 1 and |𝑎𝑏𝑎|𝑐 = 0.

1In literature, the symbol 𝜆 is often used instead.
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For a set of symbols Γ ⊆ Σ, we can denote by |𝑤|Γ the number of occurences of any symbol
from Γ in 𝑤 – for example, |𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒|{𝑐,𝑒} = 5. Note that |𝑤|Γ =

∑︀
𝑎∈Γ |𝑤|𝑎.

The concatenation of two strings, 𝑢 = 𝑎1 . . . 𝑎𝑚 and 𝑤 = 𝑏1 . . . 𝑏𝑛 is the string 𝑢𝑤 =
𝑎1 . . . 𝑎𝑚𝑏1 . . . 𝑏𝑛. Note that 𝜀𝑤 = 𝑤𝜀 = 𝑤 for any string 𝑤, and that concatenation is
not commutative, so in general, 𝑢𝑤 ̸= 𝑤𝑢. Concatenation is, however, associative, so
𝑢(𝑣𝑤) = (𝑢𝑣)𝑤 for any strings 𝑢, 𝑣, 𝑤.

The power of a string 𝑤, 𝑤𝑛, is the string 𝑤 repeated 𝑛 times. More precisely, we can
define it recursively as follows:

𝑤0 = 𝜀,

𝑤𝑛 = 𝑤𝑤𝑛−1, for 𝑛 ≥ 1.

The reversal of a string 𝑤 = 𝑎1 . . . 𝑎𝑛 is the string 𝑤𝑅 = 𝑎𝑛 . . . 𝑎1, that is, the symbols
of 𝑤 in reverse order. For example, 𝑘𝑜𝑜𝑏 is the reversal of the string 𝑏𝑜𝑜𝑘.

Any contiguous subsequence of 𝑤 = 𝑎1 . . . 𝑎𝑛 is called a substring of 𝑤. More precisely,
𝑢 is a substring of 𝑤 if and only if 𝑤 = 𝑥𝑢𝑦 for some strings 𝑥, 𝑦. Furthermore, 𝑢 is a
proper substring if 𝑢 ̸= 𝜀 and 𝑢 ̸= 𝑤. We call 𝑢 a prefix of 𝑤 if 𝑤 = 𝑢𝑦 for some 𝑦 and we
call 𝑢 a suffix of 𝑤 if 𝑤 = 𝑥𝑢 for some 𝑥. For example, the string 𝑎𝑏𝑏𝑎 has the substrings
𝜀, 𝑎, 𝑏, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏, 𝑎𝑏𝑏, 𝑏𝑏𝑎, 𝑎𝑏𝑏𝑎, with 𝜀, 𝑎, 𝑎𝑏, 𝑎𝑏𝑏, 𝑎𝑏𝑏𝑎 being prefixes and 𝜀, 𝑎, 𝑏𝑎, 𝑏𝑏𝑎, 𝑎𝑏𝑏𝑎 be-
ing suffixes.

2.1.2 Languages

We denote by Σ* the set of all strings over Σ, and any of its subsets 𝐿 ⊆ Σ* is a language
over Σ. That is, any language over Σ is simply a set of some strings over Σ. For example,
{0, 01, 10, 1010}, {0000}, {0𝑛1𝑛 : 𝑛 ∈ N}, {𝜀}, ∅ and {0, 1}* are all languages over {0, 1}.
As with strings, we will simply talk about languages, not mentioning the specific alphabet
unless we need to.

As languages are sets, we can combine them using the usual set operations such as
union, intersection, and complement (over an alphabet). For any 𝐿1, 𝐿2:

𝐿1 ∪ 𝐿2 = {𝑤 : 𝑤 ∈ 𝐿1 ∨ 𝑤 ∈ 𝐿2} – the union of 𝐿1, 𝐿2,

𝐿1 ∩ 𝐿2 = {𝑤 : 𝑤 ∈ 𝐿1 ∧ 𝑤 ∈ 𝐿2} – the intersection of 𝐿1, 𝐿2,

𝐿1 ∖ 𝐿2 = {𝑤 : 𝑤 ∈ 𝐿1 ∧ 𝑤 /∈ 𝐿2} – the difference of 𝐿1, 𝐿2,

𝐿1 = Σ* ∖ 𝐿1 = {𝑤 ∈ Σ* : 𝑤 /∈ 𝐿1} – the complement of 𝐿1 over Σ.

Note that the value of the complement depends on the alphabet chosen. We can also
introduce new operations, such as concatenation and iteration.

The concatenation of the languages 𝐿1, 𝐿2 is the language 𝐿1𝐿2 = {𝑥𝑦 : 𝑥 ∈ 𝐿1, 𝑦 ∈ 𝐿2}.
In other words, it is the set of all concatenations 𝑥𝑦 of any string 𝑥 from the first language
with any string 𝑦 from the second language. For example, for 𝐿1 = {𝑎, 𝑎𝑏} and 𝐿2 = {𝑏𝑐, 𝑐},
𝐿1𝐿2 = {𝑎𝑏𝑐, 𝑎𝑏𝑏𝑐, 𝑎𝑐}. Note that for any language 𝐿, 𝐿∅ = ∅𝐿 = ∅ and 𝐿{𝜀} = {𝜀}𝐿 = 𝐿.
Just like with strings, concatenation of languages is non-commutative and associative.

We can now define the power 𝐿𝑛 of a language 𝐿 analogously as with strings:

𝐿0 = {𝜀},

4



𝐿𝑛 = 𝐿𝐿𝑛−1, for 𝑛 ≥ 1.

We can also define the iteration 𝐿* and positive iteration 𝐿+ of a language 𝐿 as follows:

𝐿* =
⋃︀

𝑖≥0 𝐿
𝑖 = 𝐿0 ∪ 𝐿1 ∪ 𝐿2 ∪ . . . ,

𝐿+ =
⋃︀

𝑖≥1 𝐿
𝑖 = 𝐿1 ∪ 𝐿2 ∪ . . . .

Note that 𝐿+ = 𝐿*𝐿 = 𝐿𝐿*, whereas 𝐿* = 𝐿+ ∪ {𝜀}. Also note that we can think of
Σ* as the iteration of the set of all strings over Σ of length 1 – we will end up with exactly
the set of all strings over Σ.

Relatively small, finite languages can be described simply by enumerating all their
strings. For more complex languages, possible approaches include the set builder notation,
as with {𝑤 ∈ {𝑎, 𝑏} : |𝑤| is a prime}, or applying known operations to simpler languages,
as with {𝑎}{𝑎, 𝑏, 𝑐}*, which is the set of all strings over {𝑎, 𝑏, 𝑐} that start with 𝑎. In
fact, using only finite languages and finitely many applications of union, concatenation and
iteration, we can describe exactly the class REG of regular languages (described later in
section 2.1.4, see [5] for proof of equivalence).

If we want to discuss more complex languages, however, these approaches might be
impractical or even insufficient. There are two kinds of mechanisms that are commonly used
to describe languages – grammars and automata, the former of which will be introduced in
the following section, and the latter of which will be briefly discussed in section 3.2.

2.1.3 Grammars

This section will introduce a practical mechanism for describing more complex languages –
grammars.

The idea behind grammars is to start with a string consisting only of a single symbol,
called the start symbol, and keep rewriting parts of this string according to production
rules of the form 𝛼 → 𝛽 (rewrite 𝛼 to 𝛽), where 𝛼 and 𝛽 are strings. Strings that can
be produced this way are called sentential forms, and those consisting solely of terminal
symbols are said to be the sentences generated by the grammar. The language generated
by a grammar consists exactly of the sentences it generates.

These ideas will be illustrated by an example later in the section, and are made more
precise in the following definitions:

Definition 2.1.1. A (phrase structure) grammar is a 4-tuple 𝐺 = (𝑁,Σ, 𝑃, 𝑆), where:

∙ 𝑁 is the set of nonterminal symbols (nonterminals);

∙ Σ is the set of terminal symbols (terminals);

∙ For convenience, let 𝑉 denote 𝑁 ∪ Σ;

∙ 𝑃 ⊆ (𝑉 *𝑁𝑉 *)× 𝑉 * is the set of production rules;

∙ 𝑆 ∈ 𝑁 is the start symbol.

A production rule 𝑟 = (𝛼, 𝛽) ∈ 𝑃 will be denoted as 𝛼 → 𝛽. 𝛼 is called the left-hand
side of the rule, denoted by lhs(𝑟), whereas 𝛽 is called the right-hand side of the rule,
denoted by rhs(𝑟). We can also add labels to the rules, in the form of a set Ψ of labels and
a bijection 𝜓 : Ψ ↔ 𝑃 , which will assign a unique label to each rule. We can then mark
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rules as 𝑟 : 𝛼→ 𝛽 ∈ 𝑃 (which means that 𝜓(𝑟) = 𝛼→ 𝛽 ∈ 𝑃 ) and denote the grammar as
a 5-tuple 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆). When using this notation, we will talk about rules and their
labels interchangeably where appropriate. We will use this notation in section 2.2, when
talking about regulated grammars.

Definition 2.1.2. Let 𝐺 = (𝑁,Σ, 𝑃, 𝑆) be a grammar. The string 𝜇 derives 𝜆 in one step,
denoted by 𝜇 ⇒𝐺 𝜆, where 𝜇, 𝜆 ∈ 𝑉 *, if and only if there exists a rule (𝛼 → 𝛽) ∈ 𝑃 and
strings 𝛾, 𝛿 ∈ 𝑉 *, such that 𝜇 = 𝛾𝛼𝛿 and 𝜆 = 𝛾𝛽𝛿.

In other words, 𝜇⇒𝐺 𝜆 means that a substring 𝛼 of 𝜇 can be replaced by 𝛽 according
to the rule (𝛼 → 𝛽) ∈ 𝑃 , thus creating 𝜆. We will omit the 𝐺 if it is clear what grammar
we are talking about, preferring to simply write 𝜇⇒ 𝜆.

For grammars with rule labels, we can write the label of the rule used for rewriting next
to the derivation: 𝜇 ⇒𝐺 𝜆 [𝑟] means that 𝜇 was rewritten to 𝜆 using the rule 𝑟 : 𝛼 → 𝛽
(the only rule with the label 𝑟).

Definition 2.1.3. Let 𝐺 be a grammar and ⇒𝐺 the relation on 𝑉 * as defined above. Then
we can define the relations ⇒𝑘

𝐺 for 𝑘 ∈ N, ⇒*
𝐺 and ⇒+

𝐺 as follows:

∙ 𝜇⇒0
𝐺 𝜆 if and only if 𝜇 = 𝜆;

∙ 𝜇 ⇒𝑘
𝐺 𝜆 for 𝑘 ≥ 1 if and only if there exists a string 𝜅 ∈ 𝑉 *, such that 𝜇 ⇒𝐺 𝜅 and

𝜅⇒𝑘−1
𝐺 𝜆 (⇒𝑘

𝐺 is the 𝑘-th power of ⇒𝐺);

∙ 𝜇 ⇒*
𝐺 𝜆 if and only if 𝜇 ⇒𝑘

𝐺 𝜆 for some 𝑘 ≥ 0 (⇒*
𝐺 is the transitive and reflexive

closure of ⇒𝐺);

∙ 𝜇⇒+
𝐺 𝜆 if and only if 𝜇⇒𝑘

𝐺 𝜆 for some 𝑘 ≥ 1 (⇒+
𝐺 is the transitive closure of ⇒𝐺).

Again, we prefer to write⇒𝑘, ⇒* and⇒+, omitting the 𝐺 subscript wherever possible.
Strings over 𝑉 that can be derived from the start symbol, that is, strings 𝛼 ∈ 𝑉 *, such that
𝑆 ⇒*

𝐺 𝛼, are called sentential forms.
For grammars with rule labels, we can write the sequence of rules used for a particular

derivation next to it: 𝜇⇒𝑘
𝐺 𝜆 [𝑟1 . . . 𝑟𝑘].

Finally, we can define the language generated by a grammar:

Definition 2.1.4. Let 𝐺 = (𝑁,Σ, 𝑃, 𝑆) be a grammar. The language generated by 𝐺 is
the language 𝐿(𝐺) = {𝑤 ∈ Σ* : 𝑆 ⇒*

𝐺 𝑤}.

An example of a grammar is 𝐺 = ({𝑆}, {𝑎, 𝑏}, {𝑆 → 𝑎𝑆𝑏, 𝑆 → 𝜀}, 𝑆). It can be shown
that the language of this grammar is 𝐿(𝐺) = {𝑎𝑛𝑏𝑛 : 𝑛 ≥ 0}. An example of a derivation
using this grammar is 𝑆 ⇒𝐺 𝑎𝑆𝑏 ⇒𝐺 𝑎𝑎𝑆𝑏𝑏 ⇒𝐺 𝑎𝑎𝑏𝑏. The existence of such a derivation
means that 𝑎𝑎𝑏𝑏 ∈ 𝐿(𝐺).

2.1.4 The Chomsky Hierarchy

By placing varying limitations on the form of production rules of grammars, we can restrict
the generative power of grammars, meaning that certain languages cannot be generated
by grammars with certain limitations on their production rules. One important hierarchy
arising from such limitations is the Chomsky Hierarchy, named after Noam Chomsky, which
will be used throughout this thesis as a reference scale for the power of various types of
grammars.
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The Chomsky Hierarchy consists of four types of grammars, all complying with definition
2.1.1, but introducing more limitations on the production rules with each level, which also
leads to the corresponding classes of languages being strictly smaller than their superclasses:

∙ Type 0 grammars, also called phrase structure grammars or unrestricted grammars,
have production rules of the form 𝛼 → 𝛽, where 𝛼 ∈ 𝑉 *𝑁𝑉 *, 𝛽 ∈ 𝑉 *. That is, they
correspond exactly to definition 2.1.1 with no additional restrictions placed on the
form of the production rules.
The languages generated by type 0 grammars are referred to as type 0 languages or
as recursively enumerable languages. The class of these languages is denoted as ℒ0 or
RE.

∙ Type 1 grammars, also called context-sensitive grammars, have production rules of the
form 𝛼𝐴𝛽 → 𝛼𝛾𝛽, where 𝛼, 𝛽 ∈ 𝑉 *, 𝐴 ∈ 𝑁, 𝛾 ∈ 𝑉 +. That is, they only rewrite one
nonterminal with a non-empty string, with 𝛼 and 𝛽 serving as a context – different
rewritings of the same nonterminal might be possible in different contexts.
One exception for the non-emptiness of the right-hand side must be made possible to
allow generating the empty string – for this reason, a context-sensitive grammar may
have a single rule of the form 𝑆 → 𝜀, where 𝑆 is the start symbol, in which case 𝑆
cannot appear on the right-hand side of any rule.
The languages generated by type 1 grammars are referred to as type 1 languages or
as context-sensitive languages. The class of these languages is denoted as ℒ1 or CS.
We also add without proof that the very same class of languages is generated by
essentially noncontracting grammars, which have rules of the unrestricted form 𝛼→
𝛽, but with the additional requirement that |𝛼| ≤ |𝛽|, again with the same single
exception for 𝑆 → 𝜀, in which case 𝑆 may not appear on the right-hand side of any
rule.

∙ Type 2 grammars, also called context-free grammars, have rules of the form 𝐴 →
𝛾, where 𝐴 ∈ 𝑁, 𝛾 ∈ 𝑉 *. That is, compared to unrestricted grammars, only a
single nonterminal is on the left-hand side of any rule, and unlike in context-sensitive
grammars, no context is considered. Also note that the right-hand side of any rule
can be empty.
The languages generated by type 2 grammars are referred to as type 2 languages or
as context-free languages. The class of these languages is denoted as ℒ2 or CF.

∙ Type 3 grammars, also called right-linear grammars, have rules of the form 𝐴→ 𝑥𝐵
or 𝐴 → 𝑥, where 𝐴,𝐵 ∈ 𝑁, 𝑥 ∈ Σ*. That is, just like with context-free grammars,
only a single nonterminal is on the left-hand side of any rule, and in addition, there
is at most one nonterminal on the right-hand side, always in the rightmost position.
The languages generated by type 3 grammars are referred to as type 3 languages or
as regular languages. The class of these languages is denoted as ℒ3 or REG.
We add without proof that the same class of languages is generated by left-linear
grammars – grammars with rules of the form 𝐴 → 𝐵𝑥 or 𝐴 → 𝑥, so the same as
right-linear, except the nonterminal on the right-hand side is always in the leftmost
position. Note that combining both types of rules (with a nonterminal on either side)
would result in a greater expressive power.
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Another common variant of type 3 grammars are right-regular (and left-regular) gram-
mars – these have production rules of the form 𝐴→ 𝑎𝐵 (𝐴→ 𝐵𝑎) or 𝐴→ 𝑎, where
𝑎 ∈ Σ is a single terminal, with a possible exception for 𝑆 → 𝜀 as with type 1
grammars.

Each of the aforementioned classes is a proper subclass of all the classes with smaller
type numbers. This can be summarized as follows:

REG ⊂ CF ⊂ CS ⊂ RE

It should be noted that not all languages can be described by phrase structure grammars
– there is an even greater class of all languages, which RE is a proper subclass of. In fact,
for any nonempty finite alphabet Σ, there are countably many recursively enumerable
languages, but there are uncountably many languages.

2.2 Regulated Grammars
Grammars, as described in the previous sections, can be enhanced with various regulation
mechanisms, enabling them to place further restrictions on when various rules can be used,
possibly increasing their generative power. In this section, we will discuss three such en-
hancements – regular-controlled grammars, matrix grammars, and programmed grammars,
which all use variants of so-called rule-based regulation, and which all turn out to generate
the same classes of languages. For a more complete treatment of these and more types of
regulated grammars, see [6], which this section is based on.

Before we introduce the first type of regulated grammars, recall that a grammar can be
defined as a 5-tuple 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆), where Ψ is a set of rule labels, from which every
production rule is assigned a unique rule label, and these rule labels can be written next to
derivations to specify which production rules they are based on.

2.2.1 Regular-Controlled Grammars

Definition 2.2.1. A regular-controlled (context-free) grammar is a pair 𝐻 = (𝐺,Ξ), where

∙ 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) is a context-free grammar called the core grammar with the set Ψ
of rule labels,

∙ Ξ ⊆ Ψ* is a regular language over the set Ψ of rule labels called the control language.

The idea behind regular-controlled grammars is that a derivation is only considered
valid if the sequence of rules used to produce it is a string of the control language. This
idea is formalized in the following definition:

Definition 2.2.2. The language 𝐿(𝐻) generated by a regular-controlled grammar 𝐻 =
(𝐺,Ξ) is defined as 𝐿(𝐻) = {𝑤 ∈ Σ* : 𝑆 ⇒*

𝐺 𝑤 [𝛼], 𝛼 ∈ Ξ}.

Note that for Ξ = Ψ*, it is the case that 𝐿(𝐻) = 𝐿(𝐺) – the language generated by 𝐻
is the same as the language generated by its core grammar 𝐺. So context-free grammars
can be though of as special cases of regular controlled grammars (with Ξ = Ψ*). Also note
that the derivation relation ⇒𝐺 is defined the same as for ordinary grammars – the only
difference is the introduction of the control language.
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As an example of a regular controlled grammar, consider 𝐻𝑎𝑏𝑐 = (𝐺𝑎𝑏𝑐,Ξ), where 𝐺𝑎𝑏𝑐 =
({𝑆,𝐴,𝐶}, {𝑎, 𝑏, 𝑐},Ψ, 𝑃, 𝑆), with 𝑃 containing the following rules with the following labels
from Ψ:

0 : 𝑆 → 𝐴𝐶,
1 : 𝐴→ 𝑎𝐴𝑏,
2 : 𝐶 → 𝑐𝐶,
3 : 𝐴→ 𝜀,
4 : 𝐶 → 𝜀,

and Ξ = {0}{12}*{34}. It can be shown that 𝐿(𝐻𝑎𝑏𝑐) = {𝑎𝑛𝑏𝑛𝑐𝑛 : 𝑛 ≥ 0}, which
is a non-context-free language, immediately showing that regular-controlled grammars are
strictly stronger than ordinary context-free grammars. For example, the following deriva-
tion can be considered:

𝑆 ⇒ 𝐴𝐶 ⇒ 𝑎𝐴𝑏𝐶 ⇒ 𝑎𝐴𝑏𝑐𝐶 ⇒ 𝑎𝑎𝐴𝑏𝑏𝑐𝐶 ⇒ 𝑎𝑎𝐴𝑏𝑏𝑐𝑐𝐶 ⇒ 𝑎𝑎𝑏𝑏𝑐𝑐𝐶 ⇒ 𝑎𝑎𝑏𝑏𝑐𝑐 [0121234]

Seeing as 0121234 ∈ Ξ, it is also the case that 𝑎𝑎𝑏𝑏𝑐𝑐 ∈ 𝐿(𝐻𝑎𝑏𝑐). After any application of
rule 1 (generation of 𝑎 and 𝑏), an application of rule 2 (generation of 𝑐) must follow. Even-
tually, an application of rule 3 must occur (erasing 𝐴), which will necessarily be followed
by an application of rule 4 (erasing 𝐶). This will keep the numbers of 𝑎, 𝑏 and 𝑐 in balance,
restricting the language of the core grammar, which is 𝐿(𝐺𝑎𝑏𝑐) = {𝑎𝑚𝑏𝑚𝑐𝑛 : 𝑚,𝑛 ≥ 0}.

We can further introduce an additional mechanism – appearance checking. The idea is
that we will allow certain rules to be ”skipped“ if their left-hand side does not appear in
the sentential form. The labels of all such rules comprise the appearance checking set. Let
us state this notion formally:

Definition 2.2.3. A regular-controlled (context-free) grammar with appearance checking
is a triple 𝐻 = (𝐺,Ξ,𝑊 ), where

∙ 𝐺, Ξ have the same meaning as in definition 2.2.1;

∙ 𝑊 ⊆ Ψ is the appearance checking set.

We must also define a special kind of derivation:

Definition 2.2.4. Let 𝐻 = (𝐺,Ξ,𝑊 ) be a regular-controlled grammar with appearance
checking, 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆), 𝑉 = 𝑁 ∪ Σ. For any 𝜇 ∈ 𝑉 +, 𝜆 ∈ 𝑉 *, 𝑟 : 𝛼 → 𝛽 ∈ 𝑃 , we
write

𝜇⇒(𝐺,𝑊 ) 𝜆 [𝑟]

if and only if one of the following is true:

a) 𝜇 = 𝛾𝛼𝛿 and 𝜆 = 𝛾𝛽𝛿 for some 𝛾, 𝛿 ∈ 𝑉 * (in other words, 𝜇⇒𝐺 𝜆 [𝑟]),

b) 𝑟 ∈𝑊 , 𝜇 does not contain 𝛼 as a substring, and 𝜆 = 𝜇.

Note that this relation is independent of the control language Ξ – it only depends on the
core grammar 𝐺 and the appearance checking set 𝑊 . We can also define ⇒𝑘

(𝐺,𝑊 ), ⇒
*
(𝐺,𝑊 ),

and ⇒+
(𝐺,𝑊 ) as before.
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Definition 2.2.5. The language generated by a regular-controlled grammar with appearance
checking 𝐻 = (𝐺,Ξ,𝑊 ) is defined as 𝐿(𝐻) = {𝑤 ∈ Σ* : 𝑆 ⇒*

(𝐺,𝑊 ) 𝑤 [𝛼], 𝛼 ∈ Ξ*}.

Note that the ordinary regular-controlled grammar, specified in definition 2.2.1 earlier in
this section is just a special case of a regular-controlled grammar with appearance checking,
where the appearance checking set is empty (𝑊 = ∅).

Generative Power

A regular-controlled grammar (with appearance checking) is called propagating, if it contains
no derivation rules of the form 𝐴→ 𝜀, with a possible exception for 𝑆 → 𝜀, as described in
section 2.1.4 (𝑆 may not appear on the right-hand side of any rule in that case).

We denote the class of languages generated by regular-controlled grammars as rC, and
we add a subscript 𝑎𝑐 or a superscript −𝜀 to specify grammars with appearance checking
or propagating grammars, respectively. To sum this up explicitly, we use the following
notation:

∙ rC – the class of languages generated by regular-controlled grammars,

∙ rC−𝜀 – the class of languages generated by propagating regular-controlled grammars,

∙ rC𝑎𝑐 – the class of languages generated by regular-controlled grammars with appear-
ance checking,

∙ rC−𝜀
𝑎𝑐 – the class of languages generated by propagating regular-controlled grammars

with appearance checking.

It is clear from the definitions given in this section that CF ⊆ rC−𝜀 ⊆ rC ⊆ rC𝑎𝑐, and
that rC−𝜀 ⊆ rC−𝜀

𝑎𝑐 ⊆ rC𝑎𝑐. In fact, almost all of these inclusions are known to be proper
– the only exception is rC−𝜀 ⊆ rC, where it is an open problem whether the inclusion is
proper or whether the classes are equal. Furthermore, it turns out that rC−𝜀

𝑎𝑐 ⊂ CS and
rC𝑎𝑐 = RE. The proofs of these claims may be found in [1].

These relations are summed up in the Hasse diagram on figure 2.1, where a dashed line
is used to represent improper inclusion, and all other inclusions are proper.

rC𝑎𝑐 = RE

CS

rC

rC−𝜀
𝑎𝑐

rC−𝜀

CF

Figure 2.1: Generative power of regular-controlled grammars
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2.2.2 Matrix Grammars

Matrix grammars use a slightly different approach to rule-based regulation than regular-
controlled grammars – rather than specifying a language of allowed derivations, they specify
sequences of rules, called matrices, and require that any derivation in the grammar be
composed of these matrices. Let us state this formally, introducing appearance checking
right away this time, as the version without appearance checking will just be a special case
again:
Definition 2.2.6. A Matrix grammar with appearance checking is a triple 𝐻 = (𝐺,𝑀,𝑊 ),
where

∙ 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) is a context-free grammar called the core grammar,

∙ 𝑀 ⊆ Ψ+ is a finite language, the elements of which are called matrices,

∙ 𝑊 ⊆ Ψ is the appearance checking set.

We can now define a derivation in such a grammar and thereafter its language.
Definition 2.2.7. Let 𝐻 = (𝐺,𝑀,𝑊 ) be a matrix grammar with appearance checking. For
any 𝑥, 𝑦 ∈ 𝑉 *, we say that 𝑥 derives 𝑦 in one step in 𝐻, denoted by 𝑥⇒𝐻 𝑦, if and only if
there exists a matrix 𝑚 = 𝑟1 . . . 𝑟𝑛 ∈ 𝑀 such that 𝑥⇒𝑛

(𝐺,𝑊 ) 𝑦 [𝑟1 . . . 𝑟𝑛] (using the relation
⇒(𝐺,𝑊 ) as defined in definition 2.2.4).

In other words, to perform a derivation in a matrix grammar (with appearance checking),
you cannot in general apply just a single rule, you must apply a whole matrix – an entire
sequence of rules from a pre-defined finite set. It is, however, possible for matrices to be of
length 1, in which case they correspond to single rules. We can define ⇒𝑘

𝐻 , ⇒*
𝐻 and ⇒+

𝐻

as usual.
Definition 2.2.8. Let 𝐻 = (𝐺,𝑀,𝑊 ) be a matrix grammar with appearance checking.
The language generated by 𝐻 is defined as 𝐿(𝐻) = {𝑤 ∈ Σ* : 𝑆 ⇒*

𝐻 𝑤}.
If 𝑊 = ∅, the grammar is simply called a matrix grammar (without appearance check-

ing) and can be thought of as just a pair 𝐻 = (𝐺,𝑀). Note that a context-free grammar
is a special case of a matrix grammar, where 𝑀 = Ψ.

Generative Power

Again, a propagating matrix grammar (with appearance checking) is a grammar with no
rules of the form 𝐴 → 𝜀 (with the usual exception for 𝑆 → 𝜀, as described in 2.1.4). To
describe the classes of languages generated by matrix grammars, we will use the symbol
M, the subscript 𝑎𝑐 and the superscript −𝜀, as before:

∙ M – the class of languages generated by matrix grammars,

∙ M−𝜀 – the class of languages generated by propagating matrix grammars,

∙ M𝑎𝑐 – the class of languages generated by matrix grammars with appearance checking,

∙ M−𝜀
𝑎𝑐 – the class of languages generated by propagating matrix grammars with appear-

ance checking.

It turns out that these classes are equal to the classes generated by regular-controlled
grammars – that is, the following equalities hold: M = rC, M−𝜀 = rC−𝜀, M𝑎𝑐 = rC𝑎𝑐,
and M−𝜀

𝑎𝑐 = rC−𝜀
𝑎𝑐 . The proofs of these equalities can be found in [1].
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2.2.3 Programmed Grammars

Let us now take a slightly different approach – instead of adding an extra control mechanism
on top of the unchanged structure of ordinary context-free grammars, we will modify the
production rules themselves. Each rule 𝑟 will now contain two extra sets, subsets of Ψ,
which will be the sets of rules that can follow rule 𝑟 in a derivation. The first set, 𝜎𝑟, called
the success field of 𝑟, is the set of rules that can be used after using 𝑟 to rewrite a part of
the sentential form (so after successfully applying rule 𝑟), whereas the second set, 𝜙𝑟, called
the failure field of 𝑟, is the set of rules that can be used after 𝑟 if 𝑟 could not be applied
due to its left-hand side not appearing in the sentential form (so after failing to apply rule
𝑟). The latter set serves as an analogue to appearance checking.

Definition 2.2.9. A programmed grammar with appearance checking is a quintuple 𝐺 =
(𝑁,Σ,Ψ, 𝑃, 𝑆), where

∙ 𝑁 , Σ, Ψ and 𝑆 are defined as usual (see definition 2.1.1),

∙ 𝑃 ⊆ Ψ×𝑁 ×𝑉 *× 2Ψ× 2Ψ 2 is the set of production rules, with the requirement that
if (𝑟,𝐴, 𝑥, 𝜎𝑟, 𝜙𝑟), (𝑠,𝐴, 𝑥, 𝜎𝑠, 𝜙𝑟) ∈ 𝑃 , then (𝑟,𝐴, 𝑥, 𝜎𝑟, 𝜙𝑟) = (𝑠,𝐴, 𝑥, 𝜎𝑠, 𝜙𝑟).

We denote a rule (𝑟,𝐴, 𝑥, 𝜎𝑟, 𝜙𝑟) ∈ 𝑃 as (𝑟 : 𝐴 → 𝑥, 𝜎𝑟, 𝜙𝑟). As mentioned before, the
sets 𝜎𝑟, 𝜙𝑟 ⊆ Ψ are called the success field and the failure field of 𝑟, respectively.

We will define derivations in these grammars slightly differently than usual: ⇒𝐺 will
be a binary relation over 𝑉 * × Ψ rather than just 𝑉 *. It should be noted that the very
same symbol (⇒𝐺) is used for this relation and the relation defined for phrase-structure
grammars (in definition 2.1.2). The distinction between these two relations depends on the
type of the grammar 𝐺 – whether it’s a programmed grammar (with appearance checking)
or an ordinary phrase-structure grammar. In this section, we will always assume the former
case.

Definition 2.2.10. Let 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) be a programmed grammar with appearance
checking. For any 𝜇, 𝜆 ∈ 𝑉 *, (𝑟 : 𝐴 → 𝑥, 𝜎𝑟, 𝜙𝑟) ∈ 𝑃 , and 𝑠 ∈ Ψ, it holds that (𝜇, 𝑟) ⇒
(𝜆, 𝑠) [𝑟] if and only if one of the following statements holds:

a) 𝜇 = 𝑦𝐴𝑧 and 𝜆 = 𝑦𝑥𝑧 for some 𝑦, 𝑧 ∈ 𝑉 *, and 𝑠 ∈ 𝜎𝑟;

b) 𝜇 = 𝜆, 𝜇 does not contain 𝐴 and 𝑠 ∈ 𝜙𝑟.

We can define ⇒𝑘
𝐺,⇒*

𝐺,⇒
+
𝐺 as usual.

Definition 2.2.11. Let 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) be a programmed grammar with appearance
checking. The language generated by 𝐺 is defined as 𝐿(𝐺) = {𝑤 ∈ Σ* : (𝑆, 𝑟) ⇒*

𝐺

(𝑤, 𝑠) for some 𝑟, 𝑠 ∈ Ψ}.

Furthermore, we define an ordinary programmed grammar (without appearance check-
ing) to be a programmed grammar with appearance checking 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) such that
for all 𝑟 ∈ Ψ, 𝜙𝑟 = ∅. That is, the failure field is empty for all production rules of the
grammar.

Based on these definitions, we can remark that a context-free grammar is a special case
of a programmed grammar – one in which for each rule, the success field contains all rules,
and the failure field is empty. That is, 𝜎𝑟 = Ψ and 𝜙𝑟 = ∅ for all 𝑟 ∈ Ψ.

2The notation 2Ψ is used to denote the power set of Ψ, that is, the set of all subsets of the set Ψ.

12



2.2.4 Generative power

Just like before, we will define a propagating programmed grammar (with appearance check-
ing) as a programmed grammar (with appearance checking) with no rules of the form
(𝑟 : 𝐴→ 𝜀, 𝜎𝑟, 𝜙𝑟), with the usual possible exception for a rule (𝑠 : 𝑆 → 𝜀, 𝜎𝑠, 𝜙𝑠), in which
case 𝑆 may not appear on the right-hand side of any rule.

We will use the symbol P, the subscript 𝑎𝑐 and the superscript −𝜀, just like before, to
describe the classes of languages generated by the various types of programmed grammars:

∙ P – the class of languages generated by programmed grammars,

∙ P−𝜀 – the class of languages generated by propagating programmed grammars,

∙ P𝑎𝑐 – the class of languages generated by programmed grammars with appearance
checking,

∙ P−𝜀
𝑎𝑐 – the class of languages generated by propagating programmed grammars with

appearance checking.

Just like with matrix grammars, it can be shown that these classes are equal to the
classes generated by regular-controlled grammars – that is, the following equalities hold:
P = rC, P−𝜀 = rC−𝜀, P𝑎𝑐 = rC𝑎𝑐, and P−𝜀

𝑎𝑐 = rC−𝜀
𝑎𝑐 . For the proof of these equalities see

[1].
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Chapter 3

Parsing of Context-Free Grammars

Let us discuss some properties of context-free grammars and then introduce some models
of their parsing, which we will later use as inspiration for designing parsers for regulated
grammars. The only kind of grammars we will discuss in the entire chapter are context-free
grammars.

3.1 Leftmost Derivations
The derivation relation defined in definition 2.1.2 allows the rewriting of any nonterminal
of the sentential form. We can, however, restrict this to a specific nonterminal, such as
the leftmost one. It turns out that such a restriction does not affect the language of a
context-free grammar.

Definition 3.1.1. Let 𝐺 = (𝑁,Σ, 𝑃, 𝑆) be a context-free grammar. We define the binary
relation ⇒𝑙𝑚 on 𝑉 * as follows: For any 𝜇, 𝜆 ∈ 𝑉 *, 𝜇 ⇒𝑙𝑚 𝜆 if and only if there exists a
rule (𝐴→ 𝛼) ∈ 𝑃 and strings 𝛽 ∈ Σ* and 𝛾 ∈ 𝑉 *, such that 𝜇 = 𝛽𝐴𝛾 and 𝜆 = 𝛽𝛼𝛾. Note
that 𝛽 ∈ Σ*, so no nonterminals appear to the left of the one rewritten in the derivation –
the leftmost nonterminal is rewritten.

We call this relation the leftmost derivation. We can now define the language of a
context-free grammar 𝐺 derived by leftmost derivations as 𝐿𝑙𝑚(𝐺) = {𝑤 ∈ Σ* : 𝑆 ⇒*

𝑙𝑚 𝑤}.
It can be shown that for any context-free grammar 𝐺, 𝐿𝑙𝑚(𝐺) = 𝐿(𝐺) (see [5] for proof).
This makes sense, as in a context-free grammar, once you generate a nonterminal 𝐴, you
can derive the same strings from 𝐴, regardless of what context it appears in, as context-free
rules only have a single nonterminal on their left-hand side. Therefore, whenever you have
multiple nonterminals in a sentential form, it doesn’t matter which one you rewrite first –
it won’t affect what you can do with the others.

As another exmample, we could define a rightmost derivation, ⇒𝑟𝑚, similarly to defi-
nition 3.1.1, except that we would require that 𝛽 ∈ 𝑉 *, 𝛾 ∈ Σ* – this time, the rightmost
nonterminal would be rewritten.

3.2 Pushdown Automata
We will now introduce the (extended) pushdown automaton (the PDA, or EPDA), another
model for describing context-free grammars. While grammars start with a start symbol and
try to generate a string using various rewritings, automata take the reverse approach – they
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start with a string on their input, perform some computation over it, and eventually either
accept or reject it (or, in some special cases, loop indefinitely). Automata are discussed
only very briefly in this thesis – a more detailed introduction can be found in [5].

A simpler variant, the finite automaton (FA), is a finite state machine – it has a finite set
of states and can be in exactly one of them at any given time. Always starting in a specified
initial state, it goes through an input string from left to right, making a transition from one
state to the next with each input symbol processed. The next state is defined as a function
of the current state and the currently read symbol. Some of the states can be denoted as
final states. The input string is accepted or rejected based on whether the automaton ends
up in a final or a non-final state after reading the whole input. Finite automata accept
exactly the class of regular languages, REG (see section 2.1.4 for definition and see [5] for
proof).

A pushdown automaton is essentially a finite automaton extended with a pushdown –
a last-in, first-out memory. In every computational step, it reads a symbol from the top of
the pushdown (or a string, in the case of the extended pushdown automaton), and based on
this data, the current state, and the current input symbol, it decides what state to move to
and what string to write to the top of the pushdown. Just like finite automata, pushdown
automata accept or reject a string based on whether they end up in a final or a non-final
state after processing the whole input. However, we can define a variant of the PDA, which
accepts the string if and only if its pushdown is empty after processing the input. Yet
another variant requires both a final state and an empty pushdown.

All the aformentioned variants of the pushdown automaton (EPDA/PDA, three accep-
tance conditions variants) have the same accepting power – they accept exactly the class
of context-free languages, CF (see section 2.1.4 for definition and see [5] for proof).

We will first define the EPDA, as the PDA can be considered a special case thereof.

Definition 3.2.1. An extended pushdown automaton (EPDA) is a septuple

𝑃 = (𝑄,Σ,Γ, 𝛿, 𝑧0, 𝑞0, 𝐹 ),

where:

∙ 𝑄 is a finite set of states,

∙ Σ is the input alphabet,

∙ Γ is the pushdown alphabet,

∙ 𝛿 : 𝑄× (Σ ∪ {𝜀})× Γ* → 2𝑄×Γ* is the transition function,

∙ 𝑧0 ∈ Γ is the start pushdown symbol,

∙ 𝑞0 ∈ 𝑄 is the start state,

∙ 𝐹 ⊆ 𝑄 is the set of final states.

The transition function gives a set of possible pairs of state and pushdown string that
can be chosen for the current computational step, based on the current state, the current
input symbol and the top of the pushdown. From a selected pair, the state becomes the
current state of the EPDA, and the string gets pushed to the top of the pushdown. This
will be defined more rigorously in definiton 3.2.2.
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The definition of a PDA is the same with a small difference in the definition of the
transition function – on its input, it only has Γ rather than Γ*:

𝛿 : 𝑄× (Σ ∪ {𝜀})× Γ→ 2𝑄×Γ*

That is, an ordinary PDA only reads a single symbol from the pushdown when deciding
on the next step.

To get the full picture of the purpose of each component, we need a couple more def-
initions – the configuration, which contains not only the current state of the EPDA, but
also its unprocessed input and pushdown contents; the transition relation, analogous to the
derivation relation of grammars, which describes what configurations can be reached from
another configuration in a single computational step; and the language of an EPDA:

Definition 3.2.2. Let 𝑃 = (𝑄,Σ,Γ, 𝛿, 𝑧0, 𝑞0, 𝐹 ) be an EPDA. A configuration of 𝑃 is any
triple 𝜉 ∈ 𝑄 × Σ* × Γ*. A configuration of the form (𝑞0, 𝑤, 𝑧0) for some 𝑤 ∈ Σ* is called
an initial configuration, while a configuration of the form (𝑓, 𝜀, 𝛾) for some 𝑓 ∈ 𝐹, 𝛾 ∈ Γ*

is called a final configuraion when considering acceptance by a final state. We can also
consider acceptance by empty pushdown, in which case a final configuration is of the form
(𝑞, 𝜀, 𝜀) for any 𝑞 ∈ 𝑄, or acceptance by a final state and empty pushdown, in which case
a final configuration is of the form (𝑓, 𝜀, 𝜀) for any 𝑓 ∈ 𝐹 , We define the transition relation
⊢𝑃 on the set of configurations as follows:

(𝑞, 𝑤, 𝛽) ⊢𝑃 (𝑞′, 𝑤′, 𝛽′)⇔ 𝑤 = 𝑎𝑤′, 𝛽 = 𝛼𝜂, 𝛽′ = 𝛾𝜂, (𝑞′, 𝛾) ∈ 𝛿(𝑞, 𝑎, 𝛼), 𝜂 ∈ Γ*.

We can also define ⊢𝑘, ⊢* and ⊢+ as before.
We will define the language of 𝑃 in three ways, depending on whether we accept strings

by a final state, by empty pushdown, or by both – these three languages will in general be dif-
ferent from each other for a particular 𝑃 , and will respectively be denoted as 𝐿𝑓 (𝑃 ), 𝐿𝜀(𝑃 ),
and 𝐿𝑓𝜀(𝑃 ). In each case, it will be the set of strings that allow the EPDA to move from
the initial configuration to a final configuration of the corresponding type:

∙ 𝐿𝑓 (𝑃 ) = {𝑤 ∈ Σ* : (𝑞0, 𝑤, 𝑧0) ⊢* (𝑓, 𝜀, 𝛾), 𝑓 ∈ 𝐹, 𝛾 ∈ Γ*};

∙ 𝐿𝜀(𝑃 ) = {𝑤 ∈ Σ* : (𝑞0, 𝑤, 𝑧0) ⊢* (𝑞, 𝜀, 𝜀), 𝑞 ∈ 𝑄};

∙ 𝐿𝑓𝜀(𝑃 ) = {𝑤 ∈ Σ* : (𝑞0, 𝑤, 𝑧0) ⊢* (𝑓, 𝜀, 𝜀), 𝑓 ∈ 𝐹};

Although in general, the three languages defined by a particular EPDA 𝑃 (that is,
𝐿𝑓 (𝑃 ), 𝐿𝜀(𝑃 ), and 𝐿𝑓𝜀(𝑃 )) will not be the same, it can be shown that for any 𝑃 and any
two selected acceptance conditions 𝑎, 𝑏 ∈ {𝑓, 𝜀, 𝑓𝜀}, there exists an EPDA 𝑃 ′ such that
𝐿𝑎(𝑃 ) = 𝐿𝑏(𝑃

′), so no matter which acceptance condition we choose, we get the same class
of languages. Furthermore, it can be shown that for any EPDA 𝑃 , there is an equivalent
PDA 𝑃 ′, regardless of which specific acceptance conditions we choose, and conversely, PDAs
are a special case of EPDAs, so PDAs are as computationally strong as EPDAs. The proof
of these claims can again be found in [5].

Note that EPDAs (and PDAs) are nondeterministic in general – for any particular
configuration (𝑞, 𝑤, 𝛼), where 𝑤 starts with 𝑎, we can make a move according to 𝛿(𝑞, 𝑎, 𝛽)
or 𝛿(𝑞, 𝜀, 𝛽) for any 𝛽 which is a prefix of 𝛼 – this can be many sets in general, each of
which can contain multiple pairs (𝑞′, 𝛾). Even if we restrict ourselves to PDAs, that is we
decide on a move based on a symbol 𝑧 ∈ Γ, which is just the first symbol of 𝛼, we still get
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two sets (𝛿(𝑞, 𝑎, 𝑧) and 𝛿(𝑞, 𝜀, 𝑧)) to choose from, each of which may contain multiple pairs
(𝑞′, 𝛾). If we add the requirement that there can be at most one such pair in the union
of all applicable rules, we get deterministic EPDAs, or deterministic PDAs, shortened to
DEPDAs and DPDAs.

DEPDAs and DPDAs are strictly weaker than EPDAs and PDAs – the class of languages
accepted by them (by a final state), called the deterministic context-free languages, denoted
by DCF, is a strict subclass of context-free languages: REG ⊂ DCF ⊂ CF. Furthermore,
the different acceptance conditions no longer lead to the same language classes – for example,
no DEPDA accepting with empty pushdown can accept the language {𝑎𝑖𝑏𝑗 : 𝑗 = 𝑖∨ 𝑗 = 0}
(see [5] for proof).

In the two following sections, we will describe two approaches to transforming context-
free grammars into equivalent pushdown automata, which are used as a basis for practical
parsing algorithms.

3.3 Top-Down Parsing
In top-down parsing, we start with the start symbol 𝑆 on the pushdown and try to derive
the input string on the pushdown according to the production rules of the grammar, while
also checking that the input corresponds to what was generated on the pushdown.

The rules of the pushdown automaton we will create can be divided into two types:

∙ Expand – when a nonterminal 𝐴 is on top of the pushdown, expand it according to a
production rule 𝐴→ 𝛼;

∙ Pop – when a terminal 𝑎 is on top of the pushdown, remove it from the pushdown
while also reading the same terminal from the input.

Note that for this to work, we need to push the right-hand sides of the production
rules to the pushdown in such a way, that the leftmost symbol will be nearest to the top
of the pushdown – this happens to coincide with how we defined a computational step of
the EPDA (which the PDA is a special case of), so we don’t need to do any explicit string
reversal.

Formally, this approach to parsing can be specified as follows. Let 𝐺 = (𝑁,Σ, 𝑃, 𝑆) be
a context-free grammar. We will define a PDA 𝑀 accepting with empty pushdown, such
that 𝐿(𝐺) = 𝐿𝜀(𝑀), as 𝑀 = ({𝑞},Σ, 𝑁 ∪ Σ, 𝛿, 𝑆, 𝑞, ∅), with 𝛿 defined as follows:

∙ (𝑞, 𝛼) ∈ 𝛿(𝑞, 𝜀, 𝐴) for any rule (𝐴→ 𝛼) ∈ 𝑃 – the expand moves;

∙ 𝛿(𝑞, 𝑎, 𝑎) = {(𝑞, 𝜀)} for all 𝑎 ∈ Σ – the pop moves.

It can be proven by mathematical induction, that for any 𝐴 ∈ 𝑁,𝑤 ∈ Σ*, the following
holds:

𝐴⇒* 𝑤 ⇔ (𝑞, 𝑤,𝐴) ⊢* (𝑞, 𝜀, 𝜀)

Plugging in 𝐴 = 𝑆, we get 𝐿(𝐺) = 𝐿𝜀(𝑀).
Note that with this approach, you are always simulating a leftmost derivation of the

input string on the pushdown – you are always rewriting the nonterminal on top of the
pushdown, which corresponds to the left of the unprocessed sentential form.
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This approach can serve as a basis for parsing context-free languages, but we must come
up with a resolution to the possible nondeterminism: with a nonterminal 𝐴 ∈ 𝑁 on top of
the pushdown, we can expand it according to any rule of the form 𝐴→ 𝛼 ∈ 𝑃 , and we need
to know which rule to use. One possible approach to this, called LL parsing, is described
in section 3.5.

3.4 Bottom-Up Parsing
In this section we will introduce a converse approach – we will push symbols of the input
string onto the pushdown, and once there is a string on top of the pushdown that corre-
sponds to the right-hand side of a production rule, we can replace it with the left-hand side
of said rule. If we manage to reduce the input string all the way to 𝑆, we can move to a
final state.

Note that with this approach, we will move input symbols to the pushdown one by one,
resulting in the leftmost symbols being nearer the bottom. However, we have defined the
top of the stack as the left side of the pushdown string in a configuration (see definition
3.2.2). Therefore, when reducing substrings on the stack according to production rules, we
must consider the reversal of the right-hand sides. (We would not need to do this reversal
if we defined the top of the pushdown to be on the right in the transition relation.)

Let us state these notions formally. Let 𝐺 = (𝑁,Σ, 𝑃, 𝑆) be a context-free grammar.
We will define an EPDA 𝑀 accepting with final state, such that 𝐿(𝐺) = 𝐿𝑓 (𝑀), as
𝑀 = ({𝑞, 𝑟},Σ, 𝑁 ∪ Σ ∪ {#}, 𝛿,#, 𝑞, {𝑟}), with 𝛿 defined as follows:

∙ (𝑞, 𝐴) ∈ 𝛿(𝑞, 𝜀, 𝛼𝑅) for any rule 𝐴→ 𝛼 ∈ 𝑃 – the reduce moves;

∙ 𝛿(𝑞, 𝑎, 𝜀) = {(𝑞, 𝑎)} for all 𝑎 ∈ Σ – the shift moves;

∙ 𝛿(𝑞, 𝜀, 𝑆#) = {(𝑟, 𝜀)} – the single end rule.

Again, it can be shown by induction that 𝐿(𝐺) = 𝐿𝑓 (𝑀).
Note that this method simulates the reverse of a rightmost derivation of the input string

on the pushdown – at the end, you reduce the sentential form on the pushdown to 𝑆, and
for any nonterminals appearing there, the ones nearest to the top are the ones that were
reduced to the latest, which would mean they appear the earliest in the actual derivation.
Seeing as we’re working with the reversal of the actual sentential form (due to how we define
a computational step of an EPDA), the top of the pushdown corresponds to the right side
of the sentential form, so the rightmost nonterminals are derived from first.

This method has a similar problem as top-down parsing from the perspective of de-
terminism – the right-hand sides of various rules may be prefixes of one another, which
means that from a particular configuration, you might be able to perform several different
reductions, or you may be able to wait until more symbols are shifted, after which you
would be able to perform different reductions. To base a parsing algorithm on this method,
we need a mechanism to determine which rules should be chosen for reductions. One such
mechanism is offered by so-called LR parsers, which are not discussed in this thesis, but
more information on them can be found in [4].
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3.5 LL Parsing
We can now define a variant of top-down parsing that can be used to parse a subset of
context-free languages efficiently (in linear time) – LL parsing, with the LL denoting the fact
that this algorithm reads the input from Left to right, and constructs a Leftmost derivation
– in every step, the leftmost nonterminal of the current sentential form is rewritten. More
specifically, we will talk about LL(1) parsing, meaning that 1 symbol of the unprocessed
input is used to help decide which rule to use. It is possible to define LL(𝑘) parsers
analogously, and it turns out that they get more powerful with increasing 𝑘, but we will
not deal with that in this thesis.

The idea is that we will enhance the top-down parsing algorithm with a table which will
help decide which rule to use whenever multiple rules are applicable. The table will decide
based on the nonterminal 𝐴 on top of the pushdown, and the terminal 𝑎 in the front of the
unprocessed input. We will also use the symbol $ to denote the end of the input. The table
is based on a set 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 of terminals that can start a string derivable from 𝐴 and the rest
of the sentential form following it, if 𝐴 is rewritten using a particular production rule. We
will describe this set in the following section.

The 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 set

Definition 3.5.1. Let 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) be a context-free grammar and 𝑟 ∈ Ψ the label
of a production rule 𝐴 → 𝛼 ∈ 𝑃 . We define the set 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟) (alternatively denoted as
𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝐴→ 𝛼)) as follows:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟) = {𝑎 ∈ Σ : 𝑆 ⇒* 𝛽𝐴𝛽′ ∧ 𝛽𝛼𝛽′ ⇒* 𝛽𝑎𝛾, where 𝛽, 𝛽′, 𝛾 ∈ 𝑉 *}

∪ {$ : 𝑆 ⇒* 𝛽𝐴𝛽′ ∧ 𝛽𝛼𝛽′ ⇒* 𝛽, where 𝛽, 𝛽′, 𝛾 ∈ 𝑉 *}

The idea is that if we have a nonterminal 𝐴 on top of the pushdown and a terminal 𝑎 at
the start of the unprocessed input, we must apply a rule 𝑟 : 𝐴→ 𝛼 such that 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟).
Otherwise, there is no way we can continue the derivation and end up with 𝑎 as the starting
symbol of the remainder.

Ignoring 𝜀-rules, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝐴 → 𝛼) is simply the set of possible leftmost terminals of
strings derivable from 𝐴 starting with 𝐴 → 𝛼. However, we must consider whatever may
follow 𝐴, if it can eventually be rewritten to 𝜀 starting with 𝐴 → 𝛼. We also include $ if
𝐴 can occur at the end of a sentential form and can also be rewritten to 𝜀 after using this
rule.

We can put 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 in more easily readable terms and also describe how to compute it
at the same time, if we define a few other sets first:

Definition 3.5.2. Let 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) be a context-free grammar. For any string
𝜇 ∈ 𝑉 *, we define the following two sets:

∙ 𝐸𝑚𝑝𝑡𝑦(𝜇) = {𝜀 : 𝜇⇒* 𝜀},

∙ 𝐹𝑖𝑟𝑠𝑡(𝜇) = {𝑎 ∈ Σ : 𝜇⇒* 𝑎𝛾, 𝛾 ∈ 𝑉 *}.

Furthermore, for any nonterminal 𝐴 ∈ 𝑁 , we may define the following set:

∙ 𝐹𝑜𝑙𝑙𝑜𝑤(𝐴) = {𝑎 ∈ Σ : 𝑆 ⇒* 𝛽𝐴𝑎𝛾, where 𝛽, 𝛾 ∈ 𝑉 *} ∪ {$ : 𝑆 ⇒* 𝛽𝐴, 𝛽 ∈ 𝑉 *}.
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From the definition, 𝐸𝑚𝑝𝑡𝑦(𝜇) will be {𝜀} if the empty string can be derived from 𝜇,
and it will be empty otherwise. 𝐹𝑖𝑟𝑠𝑡(𝜇) is the set of terminals that can begin a string
derived from 𝜇. Both of these can be precomputed for sentential forms of length 1 (that is,
members of 𝑉 ) and then used to compute the value for any sentential form.

The set 𝐹𝑜𝑙𝑙𝑜𝑤(𝐴) is the set of terminals that can immediately follow 𝐴 in a sentential
form derivable in the grammar. If 𝐴 can occur at the end of such a sentential form,
𝐹𝑜𝑙𝑙𝑜𝑤(𝐴) also includes $. This set can be computed based on the production rules of the
grammar, using any rules where 𝐴 appears on the right-hand side and the strings following
it.

We will now provide an alternative definition of 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 which can be shown to co-
incide with the previous one. In a context-free grammar 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) we define
𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝐴→ 𝛼) for any 𝐴→ 𝛼 ∈ 𝑃 as follows:

∙ If 𝐸𝑚𝑝𝑡𝑦(𝛼) = ∅, then 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝐴→ 𝛼) = 𝐹𝑖𝑟𝑠𝑡(𝛼);

∙ If 𝐸𝑚𝑝𝑡𝑦(𝛼) = {𝜀}, then 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝐴→ 𝛼) = 𝐹𝑖𝑟𝑠𝑡(𝛼) ∪ 𝐹𝑜𝑙𝑙𝑜𝑤(𝐴).

Having defined this set, we can define an LL(1) grammar:

Definition 3.5.3. A context-free grammar 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) is an LL(1) grammar if
and only if for every 𝑎 ∈ Σ and every 𝐴 ∈ 𝑁 , there is at most one rule 𝑟 ∈ Ψ, such that 𝐴
is the left-hand side of 𝑟 and 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟).

We may sometimes refer to these simply as LL grammars, as the general case of LL(𝑘)
grammars is not covered in this thesis.

So if we encounter a pair 𝐴, 𝑎 such that there are multiple 𝐴-rules in 𝑃 with 𝑎 in their
𝑃𝑟𝑒𝑑𝑖𝑐𝑡 sets, the grammar is not an LL(1) grammar and the LL(1) parsing algorithm cannot
be used to parse it. It is possible to transform some non-LL(1) grammars into equivalent
LL(1) grammars, but this is not possible for all context-free grammars. In fact, if we denote
by LL(1) the class of languages generated by LL(1) grammars, it can be shown that it is
a strict subclass of the context-free languages: REG ⊂ LL(1) ⊂ CF.

The LL Table

Based on the 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 set, we can now define the LL table for a particular grammar 𝐺. We
will denote the entry of the table corresponding to a nonterminal 𝐴 ∈ 𝑁 and a terminal
𝑎 ∈ Σ ∪ {$} as 𝑇 [𝐴, 𝑎].

Definition 3.5.4. Let 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) be an LL(1) grammar. For any 𝑎 ∈ Σ ∪ {$},
𝐴 ∈ 𝑁 , we define 𝑇 [𝐴, 𝑎] as the single rule 𝑟 : 𝐴→ 𝛼 ∈ 𝑃 such that 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟), or as
empty if no such rule exists. There cannot be more than one such rule by the definition of
an LL(1) grammar (3.5.3).

We can therefore construct the LL table by first constructing the 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 sets for all
rules (which would be itself preceded by computing the 𝐹𝑖𝑟𝑠𝑡, 𝐸𝑚𝑝𝑡𝑦 and 𝐹𝑜𝑙𝑙𝑜𝑤 sets) and
then simply going through all terminals and nonterminals and asking how many applicable
rules there are. During this process, we can also detect if a particular grammar is not LL
– if we end up with any pair 𝐴, 𝑎 with multiple applicable rules.

Having built the LL table, we can now go through with describing the LL parsing
algorithm itself.
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The LL Parsing Algorithm

The description of the algorithm itself can be seen labeled as algorithm 1. In the description
of this algorithm, we will denote the bottom of the stack by # and the end of the input by
$. We will also use 𝑎 to denote the current input symbol, that is, the first symbol of the
unprocessed input (or $ if the whole string has already been processed), and 𝑋 to denote
the symbol on top of the pushdown (which can be a nonterminal, a terminal, or #).

Algorithm 1: LL table parsing algorithm
Input : The LL table 𝑇 for a grammar 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆), a string 𝑤 ∈ Σ*

Output: A sequence of rules to produce a leftmost derivation of 𝑤 in 𝐺, if
𝑤 ∈ 𝐿(𝐺), or an error otherwise.

𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑃𝑢𝑠ℎ(#);
𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑃𝑢𝑠ℎ(𝑆);
while ¬𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝐸𝑚𝑝𝑡𝑦() do

𝑋 ← 𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑇𝑜𝑝();
𝑎← 𝐼𝑛𝑝𝑢𝑡.𝐶𝑢𝑟𝑟𝑒𝑛𝑡();
switch 𝑋 do

case 𝑋 = # do
if 𝑎 = $ then

𝑆𝑈𝐶𝐶𝐸𝑆𝑆 – the input string was successfully parsed;
else

𝐸𝑅𝑅𝑂𝑅 – unprocessed input remaining after the derivation is
finished;

case 𝑋 ∈ Σ do
if 𝑋 = 𝑎 then

𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑃𝑜𝑝();
𝐼𝑛𝑝𝑢𝑡.𝑀𝑜𝑣𝑒();

else
𝐸𝑅𝑅𝑂𝑅 – string generated on pushdown does not agree with string
on input;

case 𝑋 ∈ 𝑁 do
if 𝑟 : 𝑋 → 𝛼 ∈ 𝑇 [𝑋, 𝑎] then

𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑃𝑜𝑝();
𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑃𝑢𝑠ℎ(𝛼);
𝑂𝑢𝑡𝑝𝑢𝑡(𝑟);

else
𝐸𝑅𝑅𝑂𝑅 – no 𝐴-rule 𝑟 with 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟);

We use the following operations in the algorithm:

∙ 𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑃𝑢𝑠ℎ(𝛾) – pushes the string 𝛾 to the pushdown, starting from the right;

∙ 𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑇𝑜𝑝() – returns the symbol currently on top of the pushdown;

∙ 𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑃𝑜𝑝() – removes the top of the pushdown from the pushdown;

∙ 𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝐸𝑚𝑝𝑡𝑦() – returns 𝑇𝑟𝑢𝑒 if the pushdown is empty, 𝐹𝑎𝑙𝑠𝑒 otherwise;

∙ 𝐼𝑛𝑝𝑢𝑡.𝐶𝑢𝑟𝑟𝑒𝑛𝑡() – returns the first symbol of the unprocessed input string;
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∙ 𝐼𝑛𝑝𝑢𝑡.𝑀𝑜𝑣𝑒() – marks the first symbol of the unprocessed input string as processed,
removing it from the unprocessed portion;

∙ 𝑂𝑢𝑡𝑝𝑢𝑡(𝑥) – prints 𝑥 to the output (𝑥 will always be a rule label in this case).

We also use the following two keywords to mark the end of the algorithm:

∙ 𝑆𝑈𝐶𝐶𝐸𝑆𝑆 – the algoritm has successfully parsed the input string and the rule labels
printed previously can be used to reconstruct the leftmost derivation of the input
string;

∙ 𝐸𝑅𝑅𝑂𝑅 – the algorithm has ruled that the input is not in the language generated
by the supplied grammar.
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Chapter 4

Deterministic Parsing of
Programmed Grammars

We would now like to design an efficient algorithm for parsing programmed grammars. In
fact, we will settle for a parser that only works with some, not all programmed grammars
– we know that P𝜀

𝑎𝑐 = RE, so parsing all of them would be way too ambitious. We would
like to base this algorithm on the ideas of LL parsing (as described in section 3.5), but in
such a way that will allow us to parse a greater class of languages.

We will first summarize the basic ideas behind a proposed extension in section 4.1, then
formalize these ideas by defining the table used by the parsing algorithm in section 4.2,
and describing a naive version of the algorithm in section 4.3, which also includes a quick
analysis of the algorithm. This naive version will turn out to have a serious flaw – it may
not halt for certain inputs. This problem is further analysed in section 4.4, at the end
of which an improved version of the algorithm is proposed for propagating programmed
grammars without appearance checking.

An implementation of all the algorithms presented in this chapter can be found on the
accompanying CD, as described in appendix A.

4.1 Basic Ideas
One straightforward way of extending the LL parsing algorithm to programmed grammars is
to consider the success and failure fields of the last used rule 𝑟, 𝜎𝑟 and 𝜙𝑟, before consulting
a table. If the corresponding set contains at most one rule, it’s clear what rule needs to be
applied next. Otherwise, we can consult a table, but this time, instead of just deciding based
on the topmost nonterminal 𝐴 on the pushdown and the leftmost unprocessed terminal 𝑎
on the input, we can also consider the set 𝜌 (corresponding to 𝜎𝑟 or 𝜙𝑟 of the previous
rule 𝑟) of rule labels which we are restricting ourselves to. The table therefore needs to be
three-dimensional, with entries of the form 𝑇 [𝐴, 𝑎, 𝜌]. This will allow us to make choices
we wouldn’t be able to do with LL parsing, because while there might be multiple 𝐴-rules
𝑟′ with 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟′), it might happen that only one of them is in 𝜌. We will usually use
the symbol 𝜌 to denote the set of rule labels being selected from, regardless of whether it
is the success field or the failure field of the previous rule.

We will call the resulting algorithm the Table-resort algorithm, or the TR algorithm
for short, as the algorithm first checks whether there is at most one rule in the set 𝜌 of
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currently permitted rules, and only resorts to the table otherwise. This three-dimensional
table, described precisely in section 4.2, will be called a TR Table.

For the purposes of determinism, we will always need to rewrite the leftmost nontermi-
nal, or the leftmost occurence of the left-hand side of the selected rule. However, unlike with
context-free grammars, rewriting the nonterminals in different orders can lead to different
rules being applicable after individual derivation steps, so this focus of leftmost occurences
of nonterminals can lead to the language of the grammar changing. Therefore, the language
of strings accepted by the algorithm using a table based on a particular grammar 𝐺, which
we will denote by 𝐿𝑇𝑅(𝐺), may be different from the actual language 𝐿(𝐺) of all strings
generated by the grammar. It will always be the case that 𝐿𝑇𝑅(𝐺) ⊆ 𝐿(𝐺), as the algo-
rithm will only ever accept strings that are generated by the grammar, but this inclusion
will sometimes be proper.

4.2 The TR Table
We will now define 𝑇 [𝐴, 𝑎, 𝜌] for all relevant 𝐴, 𝑎, 𝜌, where 𝐴 is the topmost nonterminal on
the pushdown and 𝑎 is the leftmost unprocessed terminal on the input, just like in the LL
table, while 𝜌 is the set of rules we are allowed to select from. The table will be defined very
similarly to an LL table, just restricting the considered rules to ones in 𝜌 – if we used 𝑇 ′ to
denote a variant of the LL table of the underlying context-free grammar, in which 𝑇 ′[𝐴, 𝑎]
can contain the set of all the 𝐴-rules 𝑟′ such that 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟′) (not just the one, but
multiple ones, allowing us to construct an ”LL table“ for non-LL context-free grammars),
we could simply use a definition akin to 𝑇 [𝐴, 𝑎, 𝜌] = 𝑇 ′[𝐴, 𝑎] ∩ 𝜌. In other words, an entry
for 𝑇 [𝐴, 𝑎, 𝜌] will contain rules all rules 𝑟 ∈ 𝜌 of the form 𝐴→ 𝛼 such that 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟).

For practical reasons, we also need to require that |𝑇 [𝐴, 𝑎, 𝜌]| ≤ 1, as nondeterminism
could arise in the table-resort algorithm otherwise. If any such entries appear in a grammar,
we must reject the grammar (although this does not necessarily mean that the language
of the grammar cannot be generated by another grammar, which can be processed by the
table-resort algorithm).

We also need to consider the selection of the first rule – programmed grammars add no
extra restrictions on this compared to ordinary context-free grammars, so we will have to
require that just like with LL grammars, there is at most one 𝑆-rule 𝑟𝑎 for each 𝑎 ∈ Σ∪{$},
such that 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟𝑎). However, this is not guaranteed by what was discussed in the
previous paragraphs.

Let Ψ𝑆 := {𝑟 ∈ Ψ : lhs(𝑟) = 𝑆} be the set of possible starting rules. This is the set we
must select the first rule from, but we have no assurance that Ψ𝑆 = 𝜎𝑟 or Ψ𝑆 = 𝜙𝑟 for some
𝑟 ∈ Ψ, so the TR table as described so far may not contain the information necessary for
this selection, and the uniqueness of 𝑆-rules 𝑟𝑎 such that 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟𝑎) is not guaranteed.
We could resolve this by adding entries of the form 𝑇 [𝑆, 𝑎,Ψ𝑆 ] to the table, but we will
take a different approach – we will add an implicit starting rule (𝑟0 : 𝑆′ → 𝑆,Ψ𝑆 , ∅)1 o the
grammar, where 𝑆′ will be the new start symbol of the grammar.

This can be done for any programmed grammar and it has no effect on the grammar’s
generated language. There are grammars which would be TR under the original, more

1 We cannot set 𝜎𝑟0 = Ψ, as we would then include Ψ among the sets for which TR table entries are
computed, suddenly requiring that for each 𝐴 ∈ 𝑁, 𝑎 ∈ Σ ∪ {$}, there is at most one 𝐴-rule 𝑟𝐴,𝑎 among
all rules, such that 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟𝐴,𝑎), effectively asking that the underlying grammar be LL. It is for this
reason that in general, if Ψ appears as 𝜎𝑟 or 𝜙𝑟 for any rule 𝑟 ∈ Ψ, the grammar is TR only if the underlying
context-free grammar is LL.
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relaxed requirements, but will no longer be TR after this rule is added. However, this
will happen exactly when it might not be clear what rule to start the derivation of some
particular input with, so this is exactly the sort of nondeterminism we are trying to combat.
We will therefore require that each TR grammar has an implicit starting rule like the one
described above, although we will often not mention explicitly it in example grammars,
simply relying on the fact that it can be done.

With these ideas in mind, let us now formally define TR grammars and the TR table:

Definition 4.2.1. Let 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) be a programmed grammar (with appearance
checking) with an implicit starting rule and 𝐺′ be its underlying context-free grammar (so
𝐺 without the success and failure fields in the rules). Then 𝐺 is a TR grammar if and only
if for each 𝐴 ∈ 𝑁 , 𝑎 ∈ Σ ∪ {$} and 𝜌 ∈ {𝜎𝑟, 𝜙𝑟 : 𝑟 ∈ Ψ}, there is at most one rule 𝑟 ∈ 𝜌,
such that 𝐴 is the left-hand side of 𝑟 and 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟), where 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 is computed on
the underlying context-free grammar 𝐺′.

Definition 4.2.2. Let 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) be a TR grammar. For any 𝑎 ∈ Σ ∪ {$},
𝐴 ∈ 𝑁 , 𝜌 ∈ {𝜎𝑟, 𝜙𝑟 : 𝑟 ∈ Ψ}, we define 𝑇 [𝐴, 𝑎, 𝜌] as the single rule 𝑟 : 𝐴 → 𝛼 ∈ 𝜌, such
that 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟), or as empty if no such rule exists. There cannot be more than one
such rule by the definition of a TR grammar (4.2.1).

Seeing as we are indexing the table by subsets of Ψ, it might appear that the table will
grow exponentially with the number of production rules, but notice that we are only using
sets that are either Ψ𝑆 or correspond to 𝜎𝑟 or 𝜙𝑟 of some production rule 𝑟, meaning there
will be at most 2|𝑃 | + 1 such relevant subsets, so the size will only grow linearly with the
number of rules in the grammar (as well as with the number of nonterminals and with the
number of terminals).

Restricting the applicable rules to 𝑟 such that 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟) is valid, as by definition
of 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟), no other rules can be used to derive a string beginning with 𝑎. However, this
restriction may be too permissive for some grammars, as 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 is defined for context-
free rules and the computation of the set does not take the success and failure fields into
account. To make this clear, let us define a set 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 (𝑟) for each 𝑟 ∈ Ψ, which will take
these fields into account:

Definition 4.2.3. Let 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) be a programmed grammar (with appearance
checking) and 𝑟 ∈ Ψ the label of a production rule (𝑟 : 𝐴 → 𝛼, 𝜎𝑟, 𝜙𝑟) ∈ 𝑃 . We define the
set 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 (𝑟) as follows:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 (𝑟) = {𝑎 ∈ Σ : (𝑆, 𝑟0)⇒* (𝛽𝐴𝛽′, 𝑟) ∧ (𝛽𝛼𝛽′, 𝑟1)⇒* (𝛽𝑎𝛾, 𝑟2),

𝛽, 𝛽′, 𝛾 ∈ 𝑉 *, 𝑟1 ∈ 𝜎𝑟, 𝑟0, 𝑟2 ∈ Ψ}

∪ {$ : (𝑆, 𝑟0)⇒* (𝛽𝐴𝛽′, 𝑟) ∧ (𝛽𝛼𝛽′, 𝑟1)⇒* (𝛽, 𝑟2),

𝛽, 𝛽′, 𝛾 ∈ 𝑉 *, 𝑟1 ∈ 𝜎𝑟, 𝑟0, 𝑟2 ∈ Ψ}

This is really just an analogy to the 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 set for ordinary context-free grammars – for
an 𝐴-rule 𝑟, where 𝐴 ∈ 𝑁 , 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 (𝑟) is the set of terminals that can, in some derivation
of the programmed grammar (not just the underlying context-free grammar), eventually
stand where 𝐴 currently stands in the sentential form, provided that 𝑟 is the very next
rule applied. A derivation in a programmed grammar can be thought of as a special
case of a derivation in the underlying context-free grammar, so it is to be expected that
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 (𝑟) ⊆ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟) for any given rule 𝑟 ∈ Ψ. However, this inclusion is sometimes
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strict: Consider a grammar 𝐺 = ({𝑆,𝐴,𝐵}, {𝑎, 𝑏}, {0, 1, 2, 3, 4}, 𝑃, 𝑆) with the following
production rules in 𝑃 :

0 : 𝑆 → 𝐴𝐵, {1, 2}, ∅
1 : 𝐴→ 𝜀, {3}, ∅
2 : 𝐴→ 𝑎, {4}, ∅
3 : 𝐵 → 𝑏, {0}, ∅
4 : 𝐵 → 𝑎, {0}, ∅

Considering just the underlying context-free grammar, clearly 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(1), as 𝐵 can
be rewritten to 𝑎. However, in the actual programmed grammar, this will never happen
– an application of rule 1 will be followed by an application of rule 3, and the only string
that can be generated this way is 𝑏, so 𝑎 /∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 (1).

This demonstrates that 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟) can contain terminals that can not actually be de-
rived at the start of a string when deriving using 𝑟, so we will reject grammars that could
be parsed by this algorithm perfectly well if we used better approximations of the 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃
sets. However, as the following theorem shows, we cannot compute the 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 sets
algorithmically in the general case:

Theorem 4.2.1. Let 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 = {⟨𝐺, 𝑎, 𝑟⟩ : 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 (𝑟)} denote the decision
problem of whether in a particular programmed grammar with appearance checking 𝐺 =
(𝑁,Σ,Ψ, 𝑃, 𝑆), for a particular terminal 𝑎 ∈ Σ and for a particular rule 𝑟 ∈ Ψ it is the case
that 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 (𝑟). Then 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 is undecidable.

Proof. We will prove this by reduction from 𝑁𝐸𝑃 = {⟨𝑀⟩ : 𝐿(𝑀) ̸= ∅}, the nonemptiness
problem for Turing Machines. For a given Turing Machine 𝑀 , we must construct a triple
𝐺, 𝑎, 𝑟, where 𝐺 is a programmed grammar with appearance checking and 𝑎 ∈ Σ, 𝑟 ∈ Ψ,
such that 𝐿(𝑀) ̸= ∅ ⇔ 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 (𝑟).

From M, we can easily construct a Turing Machine 𝑀 ′ such that 𝐿(𝑀 ′) = {𝑎}𝐿(𝑀).
Clearly, 𝐿(𝑀) = ∅ ⇔ 𝐿(𝑀 ′) = ∅. We can also construct a programmed grammar with
appearance checking 𝐺′ equivalent to 𝑀 ′ – that is, 𝐿(𝐺′) = 𝐿(𝑀 ′) (see [3] for the proof
that this is possible). Then we construct a grammar 𝐺 from 𝐺′ by the addition of a
new start symbol, 𝑆, and a rule (𝑟 : 𝑆 → 𝑆′,Ψ, ∅), where 𝑆′ is the start symbol of 𝐺′

(assuming, without loss of generality, that 𝑆 and 𝑟 don’t yet represent anything in the
grammar 𝐺′). This addition will clearly not affect the language of 𝐺′, so 𝐿(𝐺) = 𝐿(𝐺′) =
𝐿(𝑀 ′) = {𝑎}𝐿(𝑀). Clearly, any string generated by 𝐺 will begin with 𝑎, and the derivation
must start with the rule 𝑟. Therefore, 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 (𝑟) ⇔ 𝐿(𝐺) ̸= ∅, and furthermore,
𝐿(𝐺) ̸= ∅ ⇔ 𝐿(𝑀) ̸= ∅. By the transitive property of equivalence, 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 (𝑟) ⇔
𝐿(𝑀) ̸= ∅.

This means that there are limits to how well we can restrict the set of rules applicable
to a nonterminal in a leftmost position based on the first unprocessed terminal. However,
it does not mean that we cannot do better than 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟) – this approach was chosen for
its simplicity and is the only one used in this thesis, but other approaches can be explored.
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4.3 A Naive Table-resort Algorithm
Employing the TR table defined in the previous section, we can now define a simple exten-
sion of the LL parsing algorithm with the ideas introduced in section 4.1. The algorithm
itself is described as algorithm 2.

We will assume that the input grammar will have an implicit starting rule labelled 𝑟0,
which can be the unique rule with the start symbol as its left-hand side, or can be added as
suggested in section 4.2 if there is no such rule. This is mostly useful so that Ψ𝑆 is included
among the sets for which entries of the TR table are defined and it is therefore clear what
rule to start with.

As mentioned before, the algorithm only resorts to the table when the set 𝜌 of allowed
rules contains more than one rule. When selecting a rule from the table, the algorithm
decides based on the following information:

∙ The nonterminal on the top of the pushdown, 𝐴,

∙ The latest input, a terminal 𝑎,

∙ The set from which the next rule is to be selected, 𝜌 (which corresponds to 𝜎𝑟 or 𝜙𝑟

of the previous rule 𝑟, depending on whether its application was successful, or to Ψ
at the very beginning of the algorithm).

When indexed, 𝑇 [𝐴, 𝑎, 𝜌] will contain at most a single rule label 𝑟, such that 𝐴 is on
the right-hand side of the corresponding rule, 𝑟 ∈ 𝜌 and 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑟), as it is required
that the input grammar be a TR grammar. The last used rule is not used without being
rewritten first, so it doesn’t matter very much how we initialize it for now.

The algorithm utilizes a pushdown with the start symbol # and an input, the end of
which will be denoted by $. The following notation is also used:

∙ 𝑎 – the latest input, a terminal;

∙ 𝑋 – the symbol at the top of the pushdown (can be a terminal, a nonterminal, or #
– the bottom of the pushdown);

∙ 𝑟 – the rule applied in the previous step, or the rule being currently applied after
selection;

– The individual components of the rule to be applied are denoted as follows:
(𝑟 : 𝐴→ 𝛼, 𝜎𝑟, 𝜙𝑟)

∙ 𝜌 – the set from which a next rule must be selected.

We also use the same operations and keywords as described in section 3.5 for algorithm
1, with the addition of the following operations:

∙ 𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑅𝑒𝑝𝑙𝑎𝑐𝑒(𝐴,𝛼) – replaces the topmost instance of the nonterminal 𝐴 with
the string 𝛼, with the leftmost symbol of 𝛼 being placed nearest to the top.

∙ 𝜌.𝐺𝑒𝑡() – returns any member of the set 𝜌 – is only be used when |𝜌| = 1 so that it’s
always clearly defined which member to select;

The following sections will provide some basic analysis of the algorithm, such as its
accepting power. Note that as mentioned before, the algorithm may never halt for certain
inputs and certain grammars, which is discussed in more depth in section 4.4.
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Algorithm 2: Table-resort algorithm
Input : The TR table 𝑇 for a TR 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) with an implicit starting rule

labelled 𝑟0, a string 𝑤 ∈ Σ*

Output: A sequence of rules to produce a derivation of 𝑤 in 𝐺, if 𝑤 ∈ 𝐿𝑇𝑅(𝐺), or
an error otherwise.

𝑟 ← 𝑟0;
𝜌← Ψ𝑆 ;
𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑃𝑢𝑠ℎ(#);
𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑃𝑢𝑠ℎ(𝑆);
while ¬𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝐸𝑚𝑝𝑡𝑦() do

𝑋 ← 𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑇𝑜𝑝();
𝑎← 𝐼𝑛𝑝𝑢𝑡.𝐶𝑢𝑟𝑟𝑒𝑛𝑡();
switch 𝑋 do

case 𝑋 = # do
if 𝑎 = $ then

𝑆𝑈𝐶𝐶𝐸𝑆𝑆 – the input string has been successfully processed, printed
rule labels can be used to construct a derivation of 𝑤 in 𝐺;

else
𝐸𝑅𝑅𝑂𝑅 – unprocessed input remaining after the derivation is
finished;

case 𝑋 ∈ Σ do
if 𝑋 = 𝑎 then

𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑃𝑜𝑝();
𝐼𝑛𝑝𝑢𝑡.𝑀𝑜𝑣𝑒();

else
𝐸𝑅𝑅𝑂𝑅 – string generated on pushdown does not agree with string
on input;

case 𝑋 ∈ 𝑁 do
switch |𝜌| do

case 0 do
𝐸𝑅𝑅𝑂𝑅 – no rule to apply;

case 1 do
(𝑟 : 𝐴→ 𝛼, 𝜎𝑟, 𝜙𝑟)← 𝜌.𝐺𝑒𝑡();
if 𝐴 not on pushdown then

𝜌← 𝜙𝑟;
else

𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑅𝑒𝑝𝑙𝑎𝑐𝑒(𝐴,𝛼);
𝑂𝑢𝑡𝑝𝑢𝑡(𝑟);
𝜌← 𝜎𝑟;

otherwise do
if (𝑟 : 𝐴→ 𝛼, 𝜎𝑟, 𝜙𝑟) ∈ 𝑇 [𝑋, 𝑎, 𝜌] then

𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑅𝑒𝑝𝑙𝑎𝑐𝑒(𝐴,𝛼);
𝑂𝑢𝑡𝑝𝑢𝑡(𝑟);
𝜌← 𝜎𝑟;

else
𝐸𝑅𝑅𝑂𝑅 – no rule to apply;
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4.3.1 Language Discrepancy

As mentioned before, one problem of the algorithm is that for some grammars 𝐺, the
language accepted by this algorithm, denoted by 𝐿𝑇𝑅(𝐺), may differ from the language
𝐿(𝐺) of the gramar from which we build the TR table. Consider these simple examples:
Let 𝐺1 = ({𝑆,𝐴}, {𝑎, 𝑏}, {0, 1, 2}, 𝑃, 𝑆) and let 𝑃 consist of the following rules:

0 : 𝑆 → 𝐴𝐴, {1}, ∅
1 : 𝐴→ 𝑎, {2}, ∅
2 : 𝐴→ 𝑏, {0}, ∅

Clearly, 𝐿(𝐺1) = {𝑎𝑏, 𝑏𝑎}, however, 𝑏𝑎 /∈ 𝐿𝑇𝑅(𝐺1) – after rewriting 𝑆 to 𝐴𝐴, rule 1
must be used, and the algorithm will insist on applying it to the leftmost nonterminal,
so only 𝑎𝑏 can be accepted. Next, let 𝐺2 = ({𝑆,𝐴,𝐵}, {𝑎, 𝑏}, {0, 1, 2, 3}, 𝑃, 𝑆) and let 𝑃
consist of the following rules:

0 : 𝑆 → 𝐴𝐵, {1, 2}, ∅
1 : 𝐴→ 𝑎, {3}, ∅
2 : 𝐵 → 𝑎, {1}, ∅
3 : 𝐵 → 𝑏, {1}, ∅

It can be shown that 𝐿(𝐺2) = {𝑎𝑎, 𝑎𝑏}, but 𝑎𝑎 /∈ 𝐿𝑇𝑅(𝐺). This is because after
rewriting 𝑆 to 𝐴𝐵, the algorithm will be selecting the next rule from the set {1, 2}, so
it will only consider rules with the topmost nonterminal on the pushdown (that is, 𝐴)
as their left-hand side, so rule 1 will always be chosen with 𝑎 on the input. Finally, let
𝐺3 = ({𝑆,𝐴,𝐵}, {𝑎, 𝑏, 𝑐}, {0, 1, 2, 3}, 𝑃, 𝑆) and let 𝑃 consist of the following rules:

0 : 𝑆 → 𝐴𝐵, {2, 3}, ∅
1 : 𝐴→ 𝑎, {0}, ∅
2 : 𝐵 → 𝑏, {1}, ∅
3 : 𝐵 → 𝑐, {1}, ∅

The language of the grammar is 𝐿(𝐺3) = {𝑎𝑏, 𝑎𝑐}, but if we compute the TR table 𝑇
for this grammar, it turns out that 𝑇 [𝐴, 𝑎, {2, 3}] for this grammar would be empty. This
means that 𝐿𝑇𝑅(𝐺3) = ∅.

All of these grammars are artificial examples constructed to have properties incompati-
ble with the algorithm and can quite easily be transformed into grammars which will work
well with the algorithm (and don’t even need such a complex algorithm, given that they
all generate small finite languages), but they nevertheless demonstrate that such problems
can come up in the general case.

The deviations from the grammar’s language happen for two reasons, both related to
the last switch in algorithm 2:

∙ If |𝜌| = 1, it is clear what rule needs to be applied, but the algorithm will always
try to apply it to the leftmost instance of the particular nonterminal in the current
sentential form (that is, to the instance of the particular nonterminal nearest to the
top of the pushdown). However, unlike for context-free grammar, the order in which
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nonterminals are rewritten matters for programmed grammars. More precisely, a
programmed grammar might generate some particular words only by derivations,
which at some point rewrite a nonterminal which is not the leftmost of its kind in
the current sentential form, as is the case with the string 𝑏𝑎 and the grammar 𝐺1 in
the exmaple above. The algorithm cannot simulate these derivations, and therefore
won’t accept such words;

∙ If |𝜌| > 1, the algorithm will insist on rewriting the leftmost nonterminal of the
sentential form (so the topmost nonterminal on the pushdown). This means that not
only will the algorithm forgo any other instances of that particular nonterminal, like
in the previous case, but it will also ignore other nonterminals on the pushdown that
can be rewritten with other rules from 𝜌 (see grammar 𝐺2 above for illustration).
This is even the case if the corresponding TR table entry is empty – the algorithm
will simply reject the input, even though it could concievably explore rewriting some
of the other nonterminals using the other rules from 𝜌 (see grammar 𝐺3). However,
this would introduce new questions of nondeterminism, so we abandon these cases for
simplicity.

Therefore, even though 𝐿𝑇𝑅(𝐺) ⊆ 𝐿(𝐺) always holds, there will be cases when 𝐿𝑇𝑅(𝐺) ⊂
𝐿(𝐺) holds. Most of these problems are a consequence of the algorithm always looking for
leftmost derivations, so we would have to move further away from LL analysis to resolve
them. Furthermore, any attempts to consider other derivations would have to provide a
way to deal with the ensuing nondeterminism.

4.3.2 Accepting Power

Let us now discuss the accepting power of the algorithm. We will denote the class of
languages that can be accepted by the table-resort algorithm as described in this section by
ℒ𝑇𝑅. For now, we will not burden ourselves with the fact that the algorithm may not halt
for some inputs – we will deal with it in a later section, and from a theoretical standpoint,
we can consider these inputs as not accepted by the algorithm, therefore not a part of its
accepted language for the particular grammar.

It’s not straightforward to consider the relation between this class and the classes gen-
erated by various kinds of programmed grammars – even if we could delimit the class of
languages generated by TR grammars, it wouldn’t necessarily be the same as ℒ𝑇𝑅, as the
languages accepted by the algorithm will sometimes differ from the languages generated by
the grammars. This difference might lead to unexpected results – the class of languages
generated by programmed grammars restricted to leftmost derivations is simply the class
of context-free languages, but for slightly different definitions of leftmost derivations, which
also consider the current set 𝜌 of applicable rules, we can even increase the power of certain
types of programmed grammars by such a restriction – see [2] for details and proofs.

If we use any LL(1) grammar (with 𝜎𝑟 = Ψ and 𝜙𝑟 = ∅ for all 𝑟 ∈ Ψ) as the input
grammar of the algorithm, it should accept exactly the language generated by said grammar,
as the algorithm is an extension of LL(1) parsing – it will always simply resort to the table
in this case, from which we can remove the third dimension, as the only success and failure
fields of any rules are Ψ and ∅, and we don’t have to worry about restricting Ψ to 𝑆-rules
for the initialization of the algorithm, as the grammar is LL(1) anyway, so we can think of
the table as simply the LL table as described in section 3.5. From this, we can infer that
LL(1) ⊆ ℒ𝑇𝑅.
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Furthermore, the algorithm can accept some non-LL(1) languages. Consider the gram-
mar 𝐺4 = ({𝑆,𝑋}, {𝑎, 𝑏, 𝑐}, {0, 1, 2, 3}, 𝑃, 𝑆), where 𝑃 consists of the following rules:

0 : 𝑆 → 𝑎𝑆𝑋, {0, 1}, ∅
1 : 𝑆 → 𝜀, {2, 3}, ∅
2 : 𝑋 → 𝑏, {2}, ∅
3 : 𝑋 → 𝑐, {3}, ∅

The language of this grammar is 𝐿(𝐺4) = 𝐿𝑇𝑅(𝐺4) = {𝑎𝑛𝑏𝑛, 𝑎𝑛𝑐𝑛 : 𝑛 ≥ 0}, which is a
typical example of a deterministic context-free language, which is not LL(𝑘) for any 𝑘 ≥ 1.
This is enough to prove that the inclusion shown above is proper – LL(1) ⊂ ℒ𝑇𝑅.

In fact, the algorithm can accept languages that are not even context-free. Consider
𝐺5 = ({𝑆,𝐴,𝐶}, {𝑎, 𝑏, 𝑐}, {0, 1, 2, 3, 4}, 𝑃, 𝑆), where 𝑃 consists of the following rules:

0 : 𝑆 → 𝐴𝐶, {1, 2}, ∅
1 : 𝐴→ 𝑎𝐴𝑏, {3}, ∅
2 : 𝐴→ 𝜀, {4}, ∅
3 : 𝐶 → 𝑐𝐶, {1, 2}, ∅
4 : 𝐶 → 𝜀, {0}, ∅

It can be shown that 𝐿(𝐺5) = 𝐿𝑇𝑅(𝐺5) = {𝑎𝑛𝑏𝑛𝑐𝑛 : 𝑛 ≥ 0}, which is a context-sensitive
language that is not context-free. Therefore, ℒ𝑇𝑅 ∖CF ̸= ∅. It is not clear whether there
are also non-context-sensitive languages which can be parsed by the TR algorithm.

However, although no formal proof is provided in this thesis, it appears that conversely,
there are context-free languages that cannot be parsed by the TR algorithm. Consider the
language 𝐿𝑤𝑤𝑟 = {𝑤𝑤𝑅 |𝑤 ∈ {𝑎, 𝑏}*}. The nondeterminism in not being able to tell where
the first half of the word ends and where the second half begins makes it problematic to
construct a TR grammar 𝐺, such that 𝐿𝑇𝑅(𝐺) = 𝐿𝑤𝑤𝑟 – the algorithm would necessarily
end up in the same configuration after processing the whole of the word 𝑎𝑏, the first half
of the word 𝑎𝑏𝑏𝑎, as well as the first third of the word 𝑎𝑏𝑏𝑏𝑏𝑎, and so on.

It appears that even the relatively simple language 𝐿𝑖𝑗 = {𝑎𝑖𝑏𝑗 |𝑖 ≥ 𝑗}, cannot by parsed
by TR analysis. This would delimit ℒ𝑇𝑅 more precisely, as unlike 𝐿𝑤𝑤𝑟, it is a deterministic
context-free language (which is not LL(𝑘) for any 𝑘 ≥ 0). We can consider a grammar like
𝐺6 = ({𝑆,𝑋}, {𝑎, 𝑏}, {0, 1, 2, 3}, 𝑃, 𝑆) with the rules in 𝑃 as follows:

0 : 𝑆 → 𝑎𝑆𝑋, {0, 1}, ∅
1 : 𝑆 → 𝜀, {2, 3}, ∅
2 : 𝑋 → 𝑏, {2, 3}, ∅
3 : 𝑋 → 𝜀, {3}, ∅

It is the case that 𝐿(𝐺6) = 𝐿𝑖𝑗 , but 𝐺6 is not a TR grammar, as 𝑇 [𝑋, 𝑏, {2, 3}] would
have to contain multiple rules – the algorithm has no way of knowing, which rule to apply
when it comes to process the 𝑏’s on the input, even though it’s clear to us that it should
apply 2 until the 𝑏’s run out and then switch to 3. This does not mean that there cannot
be a different grammar 𝐺, which is TR and 𝐿𝑇𝑅(𝐺) = 𝐿𝑖𝑗 , but it illustrates how it might
be hard for this algorithm to parse this language.

To summarize, here’s what we know (or assume) about ℒ𝑇𝑅:
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∙ LL(0) ⊂ ℒ𝑇𝑅,

∙ ℒ𝑇𝑅 ∖CF ̸= ∅,

∙ Presumably, CF ∖ ℒ𝑇𝑅 ̸= ∅ and even DCF ∖ ℒ𝑇𝑅 ̸= ∅.

This is summed up graphically in figure 4.1, with ℒ𝑇𝑅 filled in.

REG

LL(0)

DCF

CF

ℒ𝑇𝑅

Figure 4.1: Accepting power of the TR algorithm

4.4 Looping
As noted in the previous section, the TR algorithm as described may not ever halt for
certain inputs. We will refer to such occurences as looping. For example, consider 𝐺0 =
({𝑆}, {𝑎}, {0, 1, 2}, 𝑃, 𝑆) where 𝑃 contains the following rules:

0 : 𝑆 → 𝐴, {1}, ∅
1 : 𝐴→ 𝑆, {0}, ∅
2 : 𝐴→ 𝑎, {2}, ∅2.

With e.g. the string 𝑎 as the input, 𝜌 = {0} every step of the way, so it is always
clear what rule to apply, and the algorithm will simply keep rewriting 𝑆 to 𝐴 and back
to 𝑆, never halting. In this example, it is fairly obvious, but such control loops may be
well-hidden in the structure of more complex grammars, and we must examine when the
looping can happen and when it can be avoided.

In this section, we will first reduce this problem to the question of how many com-
putation steps can occur without a terminal being generated (or without an even stricter
condition occuring), and then try to resolve this new question. This seems to be fairly hard
if we consider 𝜀-rules, so we will restrict ourselves to propagating grammars in this section.

2Rule 2 is only included so that 𝑎 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡(0), which is important for the initialization of the algorithm.
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4.4.1 Restricting Sentential Form Size

One fairly simple mechanism we can add to the algorithm is to add the knowledge of the
lenght of the input, |𝑤|. This way we can know for sure when we’ve derived too many
terminals. In fact, we can include nonterminals in this analysis, if we wish to do so: In a
grammar 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆), define for each 𝐴 ∈ 𝑁 the value of 𝐴 as the minimum length
of a terminal string that can eventually be generated from 𝐴: ‖𝐴‖𝐺 := min{|𝑤| : 𝐴 ⇒*

𝐺

𝑤}. For a programmed grammar, analysis on the underlying context-free grammar 𝐺′ will
suffice, providing ‖𝐴‖𝐺′ as a lower bound for ‖𝐴‖𝐺3. If we also define ‖𝑎‖𝐺 := 1 for all
𝑎 ∈ Σ, we can define the value of a string 𝛼 = 𝑋1 . . . 𝑋𝑛 as ‖𝑋1 . . . 𝑋𝑛‖𝐺 :=

∑︀𝑛
𝑖=1 ‖𝑋𝑖‖𝐺

for all 𝑋1 . . . 𝑋𝑛 ∈ (𝑁 ∪ Σ)*. We will omit the suffix in the rest of the chapter, as it does
not matter in principle whether ‖𝛼‖𝐺 or ‖𝛼‖𝐺′ is used.

Note that other lower bounds of ‖𝐴‖𝐺 may suffice as ‖𝐴‖ for our purposes, although
they may diminish the advantages of this approach – for the extreme case of ‖𝐴‖ = 0 for
all 𝐴 ∈ 𝑁 , the value of a string is simply equal to the number of terminals it contains. For
propagating grammars, we can increase this global lower bound to 1, as every nonterminal
will eventually generate at least one terminal (with the usual exception for 𝑆 → 𝜀).

When analyzing an input string 𝑤, we can keep track of the value of the sentential form
𝛾 generated so far: We initialize it as ‖𝑆‖, and for each rule of the form 𝛼→ 𝛽 applied, we
can subtract ‖𝛼‖ and add ‖𝛽‖. If we check in every step that the value of the sentential
form has not superseded the length of the input, that is ‖𝛾‖ ≤ |𝑤|, we can detect all infinite
loops which increase the value of the sentential form. Note that as ‖𝐴‖ for 𝐴 ∈ 𝑁 is
defined as the minimum length of a terminal string derivable from 𝐴 (or a lower bound of
said minimum), we can be sure that ‖𝛾‖ will never decrease, assuming we use a reasonable
lower bound, such as one of the ones mentioned above. Alternatively, we can count the
number 𝑛𝑡 of terminals generated so far and ensure that it doesn’t go beyond |𝑤|, which
is what we will eventually use in the improved algorithm, although this approach is more
permissive – we would detect fewer loops in the general case.

This means that the only loops that can occur undetected must not increase the value
of the sentential form (or not generate terminals), so the question of whether the algorithm
will loop for a particular input gets transformed into how many computation steps can the
algorithm take without increasing the value of the sentential form (or generating terminals).
In the upcoming sections, we will show how to answer this question for propagating gram-
mars without appearance checking, which will also provide a starting point for the same
analysis for propagating grammars with appearance checking. Propagating grammars have
two great advantages that will make this analysis possible:

∙ In a propagating grammar, we can be sure that ‖𝐴‖ > 0 for any 𝐴 ∈ 𝑁 , as no
nonterminal can generate an empty string (with the usual exception for 𝑆 → 𝜀).
This means that if we use the lower bound ‖𝐴‖ = 1 for the values of the individual
nonterminals, the only way to not increase the value of the sentential form and at the
same time not generate terminals is to use simple rules – rules of the form 𝐴 → 𝐵,
where 𝐴,𝐵 ∈ 𝑁 (or fail to apply a rule, in the case of grammars with appearance
checking), so we can restrict our analysis to these;

∙ In a propagating grammar, it’s easier to keep track of the leftmost nonterminal of
the sentential form – unless it gets rewritten to a terminal, it only changes when it is
rewritten according to a rule, whereupon the leftmost nonterminal of the right-hand

3 Any derivation possible in 𝐺 must also be possible in 𝐺′, thus clearly ‖𝐴‖𝐺′ ≤ ‖𝐴‖𝐺 for all 𝐴.
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side of said rule becomes the leftmost nonterminal of the sentential form. This makes
the analysis of possible loops easier thanks to specific properties of the TR algorithm.
Conversely, in a grammar with 𝜀-rules, the leftmost nonterminal can be erased, where-
upon the formerly second leftmost nonterminal becomes the leftmost nonterminal,
which can be erased again, and so on. Therefore we would need to keep track of
the entire sentential form to be sure we don’t lose the leftmost nonterminal, making
complete analysis significantly harder.

In the rest of this section, unless specified otherwise, we will restrict ourselves to prop-
agating grammars without appearance checking.

4.4.2 Finding Candidate Loops

We are now looking for candidate loops – possibly infinite branches of computation that
the algorithm can fall into, which don’t generate terminals or even increase the value of the
sentential form. We will presume we are analyzing a grammar 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆).

For analyzing loops that can happen without generating terminals, we can obviously
restrict the space of rules we explore to rules without terminals on their right-hand sides.
In fact, as we are only discussing propagating grammars, we can restrict ourselves to simple
rules, that is, rules of the form 𝐴 → 𝐵, 𝐴,𝐵 ∈ 𝑁 , as every nonterminal will generate at
least one terminal, so there can never be more than |𝑤| nonterminals in the sentential form,
so no non-simple rules may appear infinitely many times in infinite loops that don’t increase
the value of the sentential form. Let us therefore denote 𝑃𝑠 as the set of simple rules in 𝑃 ,
where 𝑃 is the set of production rules of the grammar being analysed. Unless there is a
candidate loop consisting of loops in 𝑃𝑠, there is no candidate loop in 𝑃 .

In each step, the TR algorithm decides what to do based on three variables: The topmost
symbol 𝑋 on the pushdown, The leftmost unprocessed symbol 𝑎 on the input, and the set
of rules 𝜌 where the next rule gets selected from. We can ignore the cases of 𝑋 being the
bottom of the pushdown # or a terminal, as the former can only occur at the end of the
algorithm, and the latter can only keep occuring in a loop which generates terminals. When
analysing the time between generating terminals, we can therefore assume that 𝑋 = 𝐴 ∈ 𝑁
is a nonterminal, and furthermore, 𝑎 does not change.

We can use the values of these three variables, 𝐴, 𝑎 and 𝜌, to fully determine the rule 𝑠
that gets applied to the sentential form. Assuming grammars without appearance checking,
𝜌 is also fully determined by the previous rule 𝑟, as 𝜌 = 𝜎𝑟. (the only other option is 𝑟
not being applicable, in which case we don’t care, because that means an error, and errors
cannot happen in infinite loops). We can therefore represent the values needed to determine
the next steps by the triple (𝐴, 𝑎, 𝑟).

A useful property of the TR algorithm is that if we restrict ourselves to propagating
grammars without appearance checking, the knowledge of this rule allows us to uniquely
determine the only possible next triple (𝐴′, 𝑎′, 𝑟′), or whether a terminal was generated, in
which case our analysis doesn’t care about this branch of the computation, as it cannot be
a part of an infinite loop:

∙ The next rule 𝑟′ is fully determined by (𝐴, 𝑎, 𝜎𝑟), either by 𝜎𝑟 only containing one
rule, or through the TR table. We might also learn that there is no next rule, so the
computation simply fails and we are therefore not in a loop;

∙ Assuming we haven’t left the space of simple rules, it will be the case that 𝑎′ = 𝑎;
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∙ The next leftmost nonterminal 𝐴′ can be inferred from the rule 𝑟′ being applied in
this computation step:

a) If 𝑟′ is not a simple rule, we have left 𝑃𝑠, so we are not in a loop and we don’t
care about 𝐴′;

b) If 𝑟′ : 𝐴→ 𝐵, the current leftmost nonterminal gets rewritten, so 𝐴′ = 𝐵;
c) if 𝑟′ : 𝐶 → 𝐷 with 𝐶 ̸= 𝐴, some other nonterminal gets rewritten, so 𝐴′ = 𝐴.

We can look for candidate loops simply by exploring the space 𝑇 := 𝑁 × (Σ∪{$})×𝑃𝑠

of possible triples, using the special symbol ⊥ to denote that we have left any possibility
of being in a loop – either by leaving the space of simple rules, or by reaching an error
and the algorithm failing. Having established this notation, we can sum up the previous
paragraphs formally by defining a function next : 𝑇 ∪ {⊥} → 𝑇 ∪ {⊥} for any applicable
𝐴, 𝑎, 𝑟 as follows:

∙ next(𝐴, 𝑎, 𝑟) = (𝐴′, 𝑎′, 𝑟′) as described above, if 𝑟′ is defined and simple;

∙ next(𝐴, 𝑎, 𝑟) = ⊥ otherwise, that is, if the algorithm cannot select a next rule, or if
the next rule is not simple;

∙ next(⊥) = ⊥.

We can now construct a directed graph 𝑆𝑅 = (𝑇 ∪ {⊥}, 𝐸), where the aformentioned
triples and ⊥ are the vertices, and the set of edges is 𝐸 = {(𝑢, 𝑣) : next(𝑢) = 𝑣}. Any
candidate loop in the grammar will manifest as a cycle in this graph – if there is a candidate
loop which can get executed for some input, it will necessarily only consist of simple rules,
and the algorithm will be deciding based on some triple (𝐴, 𝑎, 𝑟) ∈ 𝑇 at some point in its
execution. This however fully defines the remaining trajectory of the algorithm in 𝑇 , which
will either by a cycle, or lead to ⊥, in which case the computation we considered wasn’t
actually a loop. We can also leave out ⊥ altogether, as its inclusion will have no effect on
the results of the analysis.

Looking for cycles in this graph is a question of looking for strongly connected com-
ponents (SCCs) – as each node has only one outgoing edge, all nontrivial SCCs must be
cycles. All SCCs with no outgoing edges will be either {⊥}, or correspond to a candidate
loop.

We can construct a table, called the candidate loop table, or CL table for short, denoted
by 𝐶𝐿, indexed by entries from 𝑇 marking whether a particular triple (𝐴, 𝑎, 𝑟) is part of a
cycle corresponding to a candidate loop, and in each step of the algorithm after applying
a simple rule, we can check the relevant entry 𝐶𝐿[𝐴, 𝑎, 𝑟] – we can be sure that the triples
corresponding to candidate loops won’t lead to anything meaningful, as they mean we are
stuck in simple rule space. However, they don’t necessarily mean the algorithm would
actually loop – for the candidate loop to correspond to an actual loop, two conditions must
be met:

∙ The loop must be self-sustainable – it must produce at least as many of each kind of
nonterminal as it consumes. Otherwise, the sentential form will eventually ”run out“
of nonterminals necessary for the candidate loop’s execution;

∙ The loop must be executable – the current sentential form must contain at least the
minimum number of occurences of each nonterminal required for executing the loop
the first time.

35



Furthermore, even a self-sustainable candidate loop may not be reachable – there might
not exist any 𝑤 ∈ Σ* such that the algorithm will eventually reach a configuration where
it will decide based on a triple contained in a cycle corresponding to said candidate loop.

For convenience, we can also define 𝐶𝐿[𝐴, 𝑎, 𝑟] := 𝑓𝑎𝑙𝑠𝑒 for all 𝑟 ∈ 𝑃 ∖ 𝑃𝑠 and all
𝐴 ∈ 𝑁, 𝑎 ∈ Σ, which will allow us to describe the final algorithm more compactly. Also
note that we can define for each 𝑎 ∈ Σ ∪ {$} a subspace 𝑇𝑎 := 𝑁 × {𝑎} × 𝑃𝑠 of 𝑇 and a
separate graph 𝑆𝑅𝑎 as 𝑆𝑅 restricted to nodes from 𝑇𝑎 and analyze these graphs separately
if we prefer – we will not lose any edges this way, as the terminal on the input cannot
change without leaving the simple rule space.

To sum up, the information we need for detecting loops at runtime is stored in the table
𝐶𝐿, which we can construct as follows:

1. Prepare the set 𝑃𝑠 of simple rules and compute next(𝐴, 𝑎, 𝑟) for all relevant triples in
𝑇 ;

2. Construct the graph 𝑆𝑅 and compute its SCCs (strongly connected components);

3. Mark all the entries 𝐶𝐿[𝐴, 𝑎, 𝑟] corresponding to triples which occur in SCCs with no
outgoing edges as 𝑡𝑟𝑢𝑒, meaning the triple corresponds to a candidate loop. Mark all
the other entries as 𝑓𝑎𝑙𝑠𝑒.

4.5 An Improved Table-resort Algorithm
We can now add the improvements discussed in the previous sections – counting the number
of terminals generated in a variable 𝑛𝑡, and checking the 𝐶𝐿 table for whether we have
reached a candidate loop. The algorithm is described as algorithm 3. This algorithm will
accept the same input strings as algorithm 2 described in section 4.3, but in addition, it
will always halt for propagating grammars without appearance checking.

The only changes from algorithm 2 are the periodic checking of the CL table and the
number of terminals generated. Unlike with algorithm 2, we must make sure that the last
used rule 𝑟 is defined in the beginning, as it is used to index the CL table.

To use the algorithm with non-propagating grammars, or grammars with appearance
checking, we will either have to provide a dummy CL table or modify the algorithm to skip
the CL table checking. However, doing so will open us up to the algorithm possibly not
halting for some inputs.

Note, however, that even if we restrict ourselves to propagating programmed grammars
without appearance checking, we can still parse all the languages mentioned explicitly in
section 4.3.2 – in particular, all the LL(1) languages, and the languages {𝑎𝑖𝑏𝑖, 𝑎𝑖𝑐𝑖 : 𝑖 ≥ 0}
and {𝑎𝑛𝑏𝑛𝑐𝑛 : 𝑛 ≥ 0}, as evidenced by their grammars being TR as well as propagating
and without appearance checking.
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Algorithm 3: Table-resort algorithm with loop detection
Input : The TR table 𝑇 for a TR 𝐺 = (𝑁,Σ,Ψ, 𝑃, 𝑆) with an implicit starting rule

𝑟0, a CL table 𝐶𝐿 for 𝐺, a string 𝑤 ∈ Σ* of known length |𝑤|
Output: A sequence of rules to produce a derivation of 𝑤 in 𝐺, if 𝑤 ∈ 𝐿𝑇𝑅(𝐺), or

an error otherwise.
𝑛𝑡 ← 0, 𝑟 ← 𝑟0, 𝜌← Ψ𝑆 ;
𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑃𝑢𝑠ℎ(#);
𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑃𝑢𝑠ℎ(𝑆);
while ¬𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝐸𝑚𝑝𝑡𝑦() do

𝑋 ← 𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑇𝑜𝑝();
𝑎← 𝐼𝑛𝑝𝑢𝑡.𝐶𝑢𝑟𝑟𝑒𝑛𝑡();
switch 𝑋 do

case 𝑋 = # do
if 𝑎 = $ then

𝑆𝑈𝐶𝐶𝐸𝑆𝑆 – the input string has been successfully processed, printed
rule labels can be used to construct a derivation of 𝑤 in 𝐺;

else
𝐸𝑅𝑅𝑂𝑅 – unprocessed input remaining after the derivation is
finished;

case 𝑋 ∈ Σ do
if 𝑋 = 𝑎 then

𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑃𝑜𝑝();
𝐼𝑛𝑝𝑢𝑡.𝑀𝑜𝑣𝑒();

else
𝐸𝑅𝑅𝑂𝑅 – string generated on pushdown does not agree with string
on input;

case 𝑋 ∈ 𝑁 do
if 𝐶𝐿[𝑋, 𝑎, 𝑟] is 𝑡𝑟𝑢𝑒 then

𝐸𝑅𝑅𝑂𝑅 – we have reached a candidate loop, the parsing will not be
successful;

switch |𝜌| do
case 0 do

𝐸𝑅𝑅𝑂𝑅 – no rule to apply;
case 1 do

(𝑟 : 𝐴→ 𝛼, 𝜎𝑟, 𝜙𝑟)← 𝜌.𝐺𝑒𝑡();
if 𝐴 not on pushdown then

𝜌← 𝜙𝑟;
else

𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑅𝑒𝑝𝑙𝑎𝑐𝑒(𝐴,𝛼);
𝑂𝑢𝑡𝑝𝑢𝑡(𝑟), 𝜌← 𝜎𝑟, 𝑛𝑡 ← 𝑛𝑡 + |𝛼|Σ;

otherwise do
if (𝑟 : 𝐴→ 𝛼, 𝜎𝑟, 𝜙𝑟) ∈ 𝑇 [𝑋, 𝑎, 𝜌] then

𝑃𝑢𝑠ℎ𝑑𝑜𝑤𝑛.𝑅𝑒𝑝𝑙𝑎𝑐𝑒(𝐴,𝛼);
𝑂𝑢𝑡𝑝𝑢𝑡(𝑟), 𝜌← 𝜎𝑟, 𝑛𝑡 ← 𝑛𝑡 + |𝛼|Σ;

else
𝐸𝑅𝑅𝑂𝑅 – no rule to apply;

if 𝑛𝑡 > |𝑤| then
𝐸𝑅𝑅𝑂𝑅 – too many terminals were generated;
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Chapter 5

Conclusion

This thesis introduced an extension of LL parsing, called the table-resort algorithm, which
can be used to parse certain programmed grammars. The class of languages accepted by
this algorithm turns out to be a strict superclass of LL(1) languages, and includes certain
non-context-free languages, but is incomparable with context-free languages.

One disadvantage of the algorithm is that it will not always accept the same language
as the input grammar generates. However, this cannot be helped in general if we want to
restrict ourselves to rewriting the leftmost nonterminal.

The improved version of the algorithm, presented at the end of chapter 4, is guaran-
teed to halt for propagating programmed grammars without appearance checking, but the
analysis of whether the algorithm will halt seems to be more complicated for more general
versions of programmed grammars.

The TR table which both versions of the algorithm are based on is computed only using
the information about the underlying context-free grammar, ignoring the success and failure
fields of the rules. This information could conceivably be used to improve the accuracy of
the approximations of the 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 sets (and thus hopefully also the accepting power of
the algorithm), but as is proven in section 4.2, the approximation can never be perfect in
general.

Some questions related to the algorithm remain open:

∙ What exactly is the class of languages accepted by this algorithm? Is it really impos-
sible to use it to parse some context-free languages, such as {𝑤𝑤𝑅 : 𝑤 ∈ {𝑎, 𝑏}*} or
{𝑎𝑖𝑏𝑗 : 𝑖 ≥ 𝑗 ≥ 0}?

∙ When is the language 𝐿(𝐺) of the underlying grammar 𝐺 different from the lan-
guage 𝐿𝑇𝑅(𝐺) accepted by the algorithm? Can we transform such a grammar into a
grammar 𝐺′, such that 𝐿(𝐺) = 𝐿𝑇𝑅(𝐺′)? What grammars is this possible for?

∙ Can we detect candidate loops in more general grammars, especially propagating
grammars with appearance checking? Is the problem significantly harder for gram-
mars with appearance checking, given the very different structure of the graph 𝑆𝑅
that would arise, owing to each point of the space being explored having up to two
different successors, and with the requirement to take the presence of various nonter-
minals in the sentential form into account?

∙ Can we provide a better foundation for constructing the TR table than the 𝑃𝑟𝑒𝑑𝑖𝑐𝑡
set computed on the underlying context-free grammar, such as a better approximation
of the 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑃 set?
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∙ Are there other changes that can be made to the core concepts behind the algorithm
in order to increase its accepting power?

Exploring these and other questions can not only lead to a better understanding of
the algorithm and possible increases in its accepting power, but also to more interesting
questions about the properties of programmed grammars and their parsing in general.
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Appendix A

Contents of the Attached CD

On the accompanying CD, a simple implementation of the algorithms presented in this
thesis can be found. It is intended for demonstration, as neither efficiency nor generality
were big goals when implementing it, but it can in principle be used for possible applications.
To run it, you will need Python 3 with the networkx1 library installed.

The following files can be found on the CD:

∙ README.txt – A short summary of information necessary for using the application;

∙ grammars – A directory containing several example grammars, including most of the
ones used in this thesis;

∙ Grammar.py – Source file defining the structure used for programmed grammars, along
with some basic analysis, including the computation of 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 sets;

∙ TRParser.py – Source file implementing the actual algorithms introduced in this
thesis, that is:

– TR table construction,
– Naive TR parsing,
– CL table construction,
– Improved TR parsing;

∙ Main.py – A simple main function calling the functionality implemented in the other
files.

For a quick example run of the application, try executing something like the following:

$ python3 Main.py grammars/g_abc.txt

1https://networkx.github.io/
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