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ABSTRAKT

Tato  práce  se  zabývá  automatickou  detekcí  vysokofrekvenčních
oscilací  jakožto  moderního  elektrofyziologického  biomarkru
epileptogenní  tkáně  v  intrakraniálním  EEG,  jehož  vizuální  detekce  je
zdlouhavý proces, který je ovlivněn subjektivitou hodnotitele.  Epilepsie
je  jedním z  nejčastějších  neurologických  onemocnění  postihující   1%
obyvatelstva.  Přestože  jsou  přibližně  dvě  třetiny  případů  léčitelné
farmakologicky,  zbylá  třetina  pacientů  je  odkázána  zejména  na  léčbu
chirurgickým zákrokem, pro nějž je zapotřebí přesně lokalizovat ložisko
patologické tkáně. Vysokofrekvenční oscilace jsou v posledním desetiletí
studovány pro jejich potenciál lokalizace patologické tkáně. Součástí této
práce  je  shrnutí  dosavadního  výzkumu  vysokofrekvenčních  oscilací  a
výčet detektorů používaných ve výzkumu. V rámci práce byly vyvinuty či
vylepšeny  tři  detektory  vysokofrekvenčních  oscilací,  na  jejichž  popis
navazuje evaluace z hlediska shody s manuální detekcí, přesnosti výpočtu
příznaků  oscilací  a  schopnosti  lokalizace  patologické  tkáně.  V závěru
práce  jsou  představeny  vyvinuté  metody  vizualizace  výskytu
vysokofrekvenčních  oscilací  a  stručně  uvedeny  dosažené  vědecké
výsledky.

KLÍČOVÁ SLOVA

Epilepsie, zóna počátku záchvatu, vysokofrekvenční oscilace, detekce
vysokofrekvenčních oscilací.



ABSTRACT

This  work  deals  with  automated  detection  of  high-frequency
oscillations  as  a  novel  electrophysiologic  biomarker  of  epileptogenic
tissue in intracranial EEG. Visual detection of these oscillations is a time-
consuming process and is prone to reviewer bias. Epilepsy is one of the
most  common neurological  diseases  affecting  1% of  population.  Even
though  two thirds  of  cases  are  successfully  treated  with  anti-epileptic
drugs, the rest of the patients are dependent mainly on surgical procedure,
which requires precise localization of pathologic focus. High-frequency
oscillations have been studied over the last decade for their potential to
localize  the focus  of  pathological  tissue.  Initial  part  of  this  work is  a
summary of the current state of high-frequency oscillations research and a
detailed list of detectors used in research. Within the scope of this work
three high-frequency oscillation detectors were developed or enhanced.
The description of the algorithms is followed by detector evaluation with
regard to the concordance with expert reviewed events, feature estimation
and the ability to correctly localize pathological tissue. The final part of
the work provides an overview of developed visualization methods and a
short summary of achieved scientific results.

KEYWORDS

Epilepsy, seizure onset zone, high-frequency oscillations, detection of
high frequency oscillations.
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INTRODUCTION

Epilepsy is a group of diseases which affect the brain of the patients and
significantly impairs their quality of life and limits them in their everyday
activities. About 60% of epileptic patients can be treated with antiepileptic
drugs, however, the remaining 30% of patients have to undergo a surgery to
remove epileptogenic tissue causing their seizures. Even though the surgery
is a highly invasive procedure the positive outcome is never guaranteed due
to poor localization of pathological part of the brain.

Nowadays  the  localization  of  the  epileptogenic  focus  is  done  by  a
number  of  methods,  including  scalp  electroencephalography,  magnetic
resonance  imaging  and  neuropsychologic  examination.  If  the  results  of
these  examinations  are  inconclusive,  the  patient  undergoes  an  electrode
implantation to map the seizure onset zone in the brain. While seizure onset
zone is located in majority of the cases, the resection of the tissue often
does  not  bring  seizure  freedom  to  the  patients.  Thus,  other  biological
markers  of  epileptogenic  tissue,  which  would  correctly  localize  the
pathologic tissue, are essential for good outcome of the surgery.

High frequency oscillations (HFOs) in frequencies ranging from 80-600
Hz are a relatively novel and promising electrophysiological biomarker that
could improve localization of epileptogenic focus and help the physicians
minimize the resection area while achieving better surgery outcome and
protecting  the  functional  brain  sites  necessary  for  everyday  life  of  the
patient.  Apart  from being linked to the epileptogenic foci,  they are also
present  in  healthy  brain  during  cognitive  processing.  Distinguishing
between the physiological HFOs and pathological ones is one of current
endeavors of neuroscientists.

Manual revision and marking of high frequency oscillations is a time
consuming process and is prone to reviewer bias. Moreover, interviewer
concordance  is  often  poor  leading  to  discrepancies  in  the  analyses.
Therefore, an objective, robust and fast method is needed to eliminate the
drawbacks of visual detection. Development of such algorithm is hindered
by an unclear HFO definition.

To  date  a  number  of  detectors  based  on  different  HFO features  and
signal  metrics  have  been  developed  but  most  of  them were  applied  on
preselected  data  sets  or  animal  recordings  solely  for  research  work.
Moreover, evaluation of the detectors is  not uniform which makes them
nearly impossible to compare.
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The  aim  of  this  work  is  to  develop  and  evaluate  high-frequency
oscillation detectors that are robust and feasible for clinical application and
research.  Such tools could provide physicians with valuable information
about the patient's brain and could improve the well being of patients while
reducing the costs of their stay in hospital. It also allows for studying HFOs
in cognition and broadening the knowledge of brain processing.

Three  detectors  were  developed  or  improved  within  this  work.  One
based  on  well  known  line-length  metric,  second  which  uses  a  novel
frequency homogeny metric  to  overcome effects  of  Gibb's  phenomenon
and third based on normalized Hilbert transformed signals.

All  detectors  were  evaluated  from  three  different  perspectives.
Agreement  between  human scored  events  and  automated  detection  was
evaluated using precision-recall analysis. Correctness of feature estimation
was assessed with the use of artificial events and comparison of their set
features  with automatically  computed features.  Lastly,  the ability  of  the
detectors  to  correctly  localize  pathological  tissue  was  measured  using
pathological  channels  marked by expert  reviewers and resected areas  in
patients with good surgical outcome.

To  provide  clinicians  and  researchers  with  information  about  HFO
occurrence and their features three visualization methods developed for this
purpose  are  presented.  One  is  based  on  HFO  rates  in  individual
frequencies, other uses MRI scans to simultaneously provide information
about  the  anatomy  of  the  studied  brain  and  the  last  one  providing
information about HFO rates, their features and brain connectivity.

The results of this work are currently being used in St. Anne's University
Hospital in Brno, Czech Republic and Mayo Systems Electrophysiology
Laboratory at Mayo Clinic,  USA. Further work will  focus on algorithm
optimization, on-line implementation and HFO clustering.

1 FOCAL EPILEPSY, ITS TREATMENT AND 
DIAGNOSTICS

Epileptic  seizures  and  epileptic  syndromes  have  high  prevalence  and
incidence rates affecting both sexes, all ages and all races. Their estimated
incidence ranges  between 0.5% and 1% [1]. They constitute an important
part  of  everyday  neurological  practice  and  are  listed  among  the  most
frequent  neurological  diseases  along  with  Parkinson's  and  Alzheimer's
disease.
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The ultimate aim of epilepsy treatment is total seizure freedom with no
clinically  significant  adverse  effects.  The  majority  of  epilepsies  are
successfully  treated  with  anti-epileptic  drugs  (AEDs)  in  continuous
prophylactic schemes with drug mixtures tailored to each patient. However,
AEDs are ineffective for about 20% of epileptic patients. These patients are
candidates for neurosurgical interventions, other pharmacological or non-
pharmacological treatments.

A successful surgical intervention requires the epileptogenic tissue to be
well localized, and located in the brain area that can be removed safely
without  significantly  impairing  the  normal  function  of  the  brain.  The
correct localization of the pathological tissue is often crucial for the surgery
to  have  a  good  outcome  by  achieving  seizure  freedom for  the  patient.
Despite the development of neuroimaging diagnostic methods, additional
information is often needed to better localize the focus of epileptic seizures.
This  information  is  provided  by  the  intracranial  EEG  (iEEG)  which
involves highly invasive, albeit necessary, craniotomy procedure or access
to the brain through drilled holes in the skull and implantation of depth
or/and subdural electrodes.

Apart  from  intracranial  EEG  other  medical  technologies  have  an
increasing impact on diagnosis and treatment in epilepsy where the use of
technologies  is  inevitable  due  to  relative  inaccessibility  of  the  brain.
Nowadays epileptologists have a wide array of methods to choose from.
The neuropsychological testing serves for determination of cognitive brain
areas  which  might  be  affected  by  epilepsy.  Video-EEG  is  capable  of
capturing patients behavior along with EEG recording which helps to map
all cognitive deficiencies. Neuroimaging techniques serve for detection of
anatomical and histological brain abnormalities as well as changes in brain
metabolism.

2 HIGH-FREQUENCY OSCILLATIONS

High-frequency oscillations (HFOs) are electrophysiological phenomena
visible in intrcranial EEG signals with frequencies above the usual clinical
range of analysis, so called Berger bands [2]. Since their initial description
in  1992  [3] HFOs  have  been  intensively  studied  as  biomarkers  of
epileptogenic tissue and as signs of cognitive functions. 
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HFOs were first described in hippocampus of freely behaving rats as a
physiologic phenomenon. They were named ripples with their frequency
band  ranging  from  80-200  Hz  [3].  Later,  the  same  group  of  scientists
described another type of HFOs in epileptic rats which were called fast
ripples due to their high frequency bands 200-600 Hz. Similar to the model
of epileptic rats both ripple and fast ripple oscillations were identified in
human  epileptogenic  hippocampus.  A typical  HFO  appearing  in  iEEG
signal is depicted in  Figure 1 [2].  Some recent studies also suggest  that
HFOs are occurring at frequencies above the FR range ( > 1000 Hz) but are
deemed to be a different pathophysiological phenomenon [4].

2.1 CURRENT STATE OF HFO RESEARCH

Ranging from 80 to 600 of cycles per second, high frequency oscillations
are likely to bridge the local action potential firing of individual neurons
with the large-scale interactions of neuronal networks. Studies of HFOs in
cognition have largely focused on frequencies of the gamma range up to
120Hz which overlaps with the reported ripple frequencies. Nevertheless,
neuronal  interactions  are  known  to  extend  beyond  the  classic  gamma
oscillations, e.g. synchronous firing of neuronal populations was shown to
correlate most strongly with the 80-200Hz frequencies [5]. 

4

Figure 1: Representative examples of HFOs.

Each plot shows two views of HFOs in 300ms window: (A) unfiltered iEEG
with  an HFO located  in  the  center  ~150  ms,  (B)  spectrogram (2.6  ms
window). (1 & 3) Typical HFOs in fast ripple range. (2) Typical HFO in
ripple range. Amp: Amplitude, Freq: Frequency [2].



Much less is known about the roles of HFOs in the ripple, fast ripple and
novel  very  high-frequency  oscillations  bands  (125-1000Hz)  during
cognition. The underlying mechanism of ripple is believed to be  discharges
of  synchronized  firing  between  specific  neuronal  ensembles,  mainly
occurring during states of rest and sleep [3]. In sleep, ripples were shown to
comprise  sequential  firing of  specific  hippocampal  assemblies  that  were
active  during  preceding  behavior  in  rats  [6].  Interestingly,  ripples  were
shown to be generated by the same neuronal networks and mechanisms as
the  gamma oscillations  [7].  Whether  the  human ripple-frequency  HFOs
support the same function as the hippocampal sharp-wave ripple complexes
in  rodents  remains  to  be  established,  as  well  as  the  role  of  cortical
oscillations in the ripple frequencies.

HFOs have been investigated in number of human studies, all of which
confirmed  the  link  between  higher  HFO  rates  and  pathologic  brain
[8][9][10][11][12][13][14][15][16][17]. Unlike spikes which are deemed to
be  another  biomarker,  HFOs  have  been  proven  to  better  localize
pathological tissue  [13]. Studies investigating the relation of post surgical
persistent  seizures  and  areas  with  present  pathological  HFOs showed  a
better surgical outcome when the area of the brain with HFOs was resected
[18][19].  All  of  these studies,  however,  evaluated HFOs only in limited
number of  patients  (~10) and/or reviewed only short  segments of  iEEG
which lowers their statistical power. Most of the studies are also based on
visual  identification  of  HFOs  which  is  a  time  consuming  process,  can
introduce human bias into the results and is not feasible for large data sets.
Lastly, results of HFO studies are often reported relative change of HFO
rate  in  SOZ rather  than  absolute  HFO rates  which  are  not  suitable  for
prospective studies, thus cannot be translated into clinical environment.
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3 CURRENT STATE OF HIGH-FREQUENCY 
OSCILLATION DETECTION

Generally  the  detection  of  a  graphical  element  in  a  signal  requires
definition  of  its  features.  The  features  can  differ  significantly  based  on
anatomy or whether the tissue is pathologic or not [20].

The  three  most  obvious  and  most  common  features  used  in  EEG
processing  are  amplitude,  duration  and  frequency.  HFOs  are  a  short-
duration, high frequency events standing out from the background so all
these features can be utilized for their detection.

3.1 HFO DETECTORS DEVELOPED TO DATE

Every detector designed to date utilizes a method that preprocesses the
signal by applying frequency filters,  calculates the energy of the filtered
signal  and  pick  candidate  events  as  those  exceeding  the  set  statistical
threshold.

The detector designed by Staba et al. adopted the moving average of root
mean square  of  the  preprocessed  signal  as  the  energy  metric  [10].  The
preprocessing stage involves band-pass filtration of iEEG signal (100-500
Hz). The metric threshold was set to 5 standard deviations above the mean
of the whole signal. Events shorter than 6ms were disregarded and events
less than 10ms apart were regarded as one HFO. The reported sensitivity of
this algorithm was 84%. The algorithm was originally developed for micro-
electrode recordings in rats and humans.

Nelson et al.  [21] suggested a detector using the energy metric called
Teager energy which was initially designed for applications in acoustics
[22].  In their  experiment the signal  was filtered by a  Butterworth filter,
however,  the  cut  off  frequencies  were  not  reported  even  though  the
frequency  setting  is  crucial.  No  sensitivity  or  specificity  results  were
provided.  The  Teager  energy  metric  was  suggested  for  rat  micro-wire
recordings.

Gardner et al. [23] developed a detector based on line length of the iEEG
signal  originally  designed  for  detection  of  high-gamma  events  and
subsequently used for HFOs [12]. In the preprocessing stage the signal was
filtered by a Butterworth band pass filter (30 – 100 Hz  [23], 80 – 1 kHz
[12]).  The  statistical  threshold  was  set  to  95  percentile  of  the  given
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statistical window (3 minutes). The sensitivity of this detector was reported
to be 89.5 %  [23]. The recordings for which this detector was designed
were micro as well as macro-electrode human iEEG [23].

Amplitude  envelope  of  filtered  iEEG  signal  calculated  by  Hilbert
transform was used in semi-automated detector designed by Crepon et al.
[17]. The band pass filter used in preprocessing was set to 180 – 400 Hz.
HFOs were detected as 5 SDs of iEEG signal amplitude. The detector was
developed for HFO detection in human macro-electrode recordings.

In contrast with the previously described algorithms Zelmann et al. [24]
created an algorithm that uses previously detected background activity to
calculate the signal statistics. The filter settings were confined to the band
pass 80-450 Hz. The threshold for putative HFO detection is calculated as
the 95 percentile of the cumulative distribution function of the previously
detected background segments. The reported detector sensitivity was 96.8
+/-  8.91%  and  specificity  99.1  +/-  8.91%.  The  target  recordings  were
human macro-electrodes.

A detector based on some of the metrics used in previous works. The
detector aims on detection in ripple band only, meaning that the frequency
band in which it operates is 80 – 250 Hz. It utilizes signal energy, line-
length and instantaneous frequency. These metrics are processed by a radial
basis  function  neural  network.  The  reported  sensitivity  was  49.1% and
specificity 36.3 % [25].

An online detector proposed by Lopez-Cuevas et al. [26] uses metric of
signal  complexity  (Approximate  entropy  [27][28])  rather  than  signal
energy. After calculation of approximate entropy of raw signal an artificial
neural network was trained to detect HFOs with 4 neurons in the initial
layer  using  last  4  values  of  approximate  entropy  as  their  inputs.  This
algorithm was designed for micro-electrode rat recordings.

The algorithm designed by Sahbi-Chaibi et al. [29] uses part of Hilbert-
Hunag  transform  and  its  integral  part  empirical  mode  decomposition
(EMD) for HFO detection. Firstly the intrinsic mode functions (IMFs) are
acquired using EMD. Instantaneous frequency and amplitude is calculated
in  each  IMF  with  Hilbert  spectral  analysis.  Because  instantaneous
frequencies are sensitive to noise, smoothing is applied to circumvent this
drawback.  Subsequently  instantaneous  amplitude  coefficients  are
accumulated only in function of IMFs traces presented in HFOs band 80-
500  Hz.  The  obtained  1-D  signal  is  smoothed  by  root  mean  square
operation and thresholded for detection of HFOs. 
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The method for detection of FR in iEEG created by Birot et al.  uses
frequency band of 256 – 512 Hz, which was chosen for methodological
reasons. First, the signal energy is obtained by calculating line-length. After
thresholding,  the  putative  HFOs are  further  processed  by either  Fourier
transform or  wavelet  transform,  where  the  ratio  between  FR frequency
band  and  lower  frequency  band  is  calculated.  This  metric  is  further
thresholded  and  the  final  HFO  detection  is  obtained.  The  reported
sensitivity  and  specificity  were  not  reported,  however,  the  best  AUC
achieved was  reported  to  be  0.983 and 0.986 for  the  Fourier  transform
method and wavelet transform method respectively. [30].

Capable of detection in both ripple and fast-ripple frequency range the
detector  proposed by Burnos et  al.  utilizes  Stockwell  transform. During
first stage of the algorithm the signal is filtered and amplitude envelopes
are calculated using Hilbert transform. Such signal is thresholded with low
threshold setting to detect putative HFOs with high sensitivity. The putative
HFOs are further processed by Stockwell transform. The power spectral
density  was  used  to  distinguish  between  HFO  detections  and  putative
detections produced by Gibb's phenomenon, such as artifacts and spikes
[31].  The  sensitivity  and  specificity  was  evaluated  for  each  recording
separately, and average values were not calculated.
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4 AIMS OF DISSERTATION

The  main  goal  of  this  work  was  development  and  validation  of
automated  HFO  detectors,  study  of  HFOs  in  patients  suffering  from
intractable  epilepsy  and  localization  of  epileptogenic  zones  within
pathologic  brain.  Apart  from  the  main  focus  on  automated  detection
algorithms,  HFO  occurrence  analyzes  were  carried  out  and  result
presentation tools were created within this work. The main analyzes and
methods that may in the future contribute to basic research of the brain as
well as improved diagnostics are listed below:

• Fast  and  robust  algorithms  for  detection  of  high-frequency  
oscillations and their validation with regard to gold standard data sets
as well  as  SOZ and resected area in  patients  with good surgical  
outcome.

• Modular software tools to validate any HFO detection algorithm.

• Characterization of HFOs with regard to the behavioral state of the 
patient, anatomical structure, type of epilepsy, etc.

• Software tools to detect HFOs close to real-time detection with a lag 
approximately 10s make it possible to view HFO occurrence inside 
the operation room to evaluate the feasibility of such approach to  
map and resect the epileptogenic focus in one procedure.

• Tools  to  present  HFO  occurrence  in  a  comprehensive  form  for  
physicians.

The ultimate gold of this work is to provide physicians with additional
information about HFO occurrence, and thus, better localize pathological
tissue in patients with pharmacoresistant focal epilepsies and improve the
outcome of the brain surgery, therefore life and well-being of the patients.
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5 DEVELOPED AND IMPROVED ALGORITHMS

Three detectors of HFOs were used within the frame of this work. Each
of the detectors was developed for different definitions of HFO and distinct
purposes.  This section is divided into three chapters each describing the
algorithms,  their  purposes,  advantages  and  disadvantages.  All  HFO
detection  algorithms  can  generally  be  divided  into  three  stages:  pre-
processing, detection, post-processing. All of these stages are described in
individual sub-sections. 

5.1 LINE LENGTH DETECTOR WITH FEATURE CASCADE

This algorithm was developed to analyze enormous data sets produced
by long term clinical iEEG recordings (TB of data). The main purpose was
to retrospectively evaluate the relationship between the pathological brain
and HFO rates recorded with iEEG electrodes. The core of this algorithm,
i.e.  the  processing  part  was  developed  by  Benjamin  H.  Brinkmann
(MSEL). The main advantage of the line-length metric is that it  reflects
increases in both signal amplitude and frequency. However, it is dependent
on sampling frequency and prone to presence of noise in the signal. The
algorithm was already used in number of works [23, 30, 32, 33].

In the pre-processing stage the signals are usually visually checked for
excessive noise levels or even channels that include no useful signal. These
channels  are  excluded  from  the  analysis.  The  rest  of  the  channels  are
filtered with a band-pass 4-pole butterworth filter to 100-600 Hz frequency
band. In the detection stage a 10s statistical  window is  created and the
filtered signal is converted to line-length signal (Equation 1), using 50ms (5
oscillations at 100 Hz) sliding window with ¼ overlap. These parameters
can be varied as needed. Mean and standard deviation are calculated and a
fraction of standard deviation above the mean is used as a threshold. The
threshold is set so that the sensitivity of this step is 100%. The possible
danger here is that if signal-to-noise ratio is low, the noise can increase
overall line-length metric and the HFO is not detected because it does not
stand out from the background. Conversely, if the threshold is set too low,
the signals that are less active yield more detections than active channels.
This  happens  due  to  higher  line-length  standard  deviation  in  active
channels.
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Equation 1: Line-length metric.

The post-processing stage was added within this work and it involves
calculation of HFO features – duration, amplitude, frequency (using multi-
taper power spectral density) and event to background ratio and correlation
with low-passed signal for improvement of algorithm specificity. 

5.2 ALGORITHM BASED ON FREQUENCY HOMOGENY

The purpose of this algorithm was to be able to process large datasets
while  improving  specificity  compared  to  less  sophisticated  methods.
Originally  designed  by Mathew Stead (MSEL)  the  algorithm efficiently
removes  false  positive  HFO  detections  that  occur  due  to  Gibb's
phenomenon while maintaining reasonable speed of detection.

In the first step the signal is filtered with band pass butterworth filters in
a sequence of overlapping frequency bands that cover the whole frequency
span of high-frequency oscillations (80 – 600 Hz). Each filtered band is
processed separately in the subsequent steps in the same fashion.

First,  the amplitude envelope of the filtered signal is calculated using
Hilbert transform (Equation 2). 

Equation 2: Hilbert transformation.

Second,  a  metric  evaluating  frequency  stability  is  calculated  as  the
“signal-to-noise” ratio (Equation 3). The numerator of the equation is the
root mean squared cosine representation of the narrow-band signal phase
(Equation  4)  and  the  denominator  is  the  root  mean  squared  difference
between  the  cosine  representation  of  the  broad-band  and  narrow-band
filtered signal phases (Equation 5). The broad-band filtered signal has the
same cut-off frequency as the narrow-band passed signal but the low cut-
off  frequency  is  four  times  smaller.  This  second  metric  servers  for
elimination  of  detections  caused  by  higher  amplitude  in  filtered  signal
which is produced by Gibb's phenomenon.
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Equation 3: Frequency homogeny metric.

where

Equation 4: Frequency homogeny numerator.

and

Equation 5: Frequency homogeny denominator.

The  third  step  of  metric  calculation  consists  of  calculating  the  dot
product  of  the  normalized  signal  amplitude  envelopes  and  frequency
stability  metric,  thus obtaining a  signal  that  utilizes  both amplitude and
frequency features of the analyzed signal. If one of the metrics is negative
the resulting signal is put to 0.

To account for non-stationary character of EEG signal all  metrics are
normalized by Poisson normalization. The detection of putative HFOs is
done by thresholding the normalized product metric. Each putative HFO
enters the cascade of minimum and maximum value boundary thresholds
for amplitude, frequency stability, dot product and duration. The thresholds
are calculated from cumulative distribution functions that were generated
from the features of HFOs visually marked by expert reviewers.

5.3 HILBERT 2D DETECTION ALGORITHM

The algorithm was developed to detect  physiological  HFOs occurring
during cognitive and memory tasks and to broaden the understanding of
pathological HFOs with regard to their features. The aim of this algorithm
is to provide detailed study of  individual pathological  and physiological
HFO features, and thus contribute to the distinction between the two groups
and their behaviors.
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Instead of using a wider frequency band of interest, such as 80 – 600 Hz
this algorithm uses a series of band passed signals using 4-pole butterworth
filter. This can be achieved by band-passing the original signal with 1 Hz
step.  Z-score  for  each signal  is  calculated.  (EQ)  Such approach can be
visualized in a time-frequnecy matrix.  This matrix differs from classical
time-frequency analysis in three aspects. The produced matrix does not use
sliding windows so each sample corresponds exactly to the sample of raw
signal. Furthermore, each band reflects changes in amplitude rather than
power of the band, result of which is that baseline noise, such as 60 Hz, is
not visible in the matrix. Finally, the 1/f characteristic of EEG is overcome
by individual z-score normalization of each band.

Equation 6: Standard score (z-score) calculation.

As it  is  apparent  from the  higher  frequencies  of  the  histogram carry
redundant  information.  Therefore,  choosing  a  logarithmically  spaced
frequency  bands  is  a  logical  approach  to  reduce  the  information
redundancy  and  increase  algorithm  speed.  The  logarithmically  spaced
equivalent is depicted in.

In order to overcome the consequences of Gibb's phenomenon the cross
correlation is  calculated between band-passed signal  and the low-passed
signal  with  the  common  high  cut-off  frequency.  To  speed  up  this
calculation  the  relationship  between  convolution  and  correlation  is
exploited (Equation 8)  and convolution is  done by multiplication in the
frequency domain (Equation 9). The cross correlation signals can be again
visualized in a matrix.

Equation 7: Correlation

Equation 8: Convolution

Equation 9: Convolution in frequency domain.

13

z-score=
x− x̄

s x

corr (x [n ] ,h [n])=∑
k=0

∞

h [k ] x [n+k ]

x [n]∗h[n]=∑
k=0

∞

h[k ] x [n−k ]

f (x)∗f (h)=F (x )⋅F ( y)



To create  a  metric  that  takes  into  account  both  amplitude  and  cross
correlation the square root of the dot product is calculated. 

The detection of events is done by thresholding the final metric in each
frequency  band.  Since  the  metrics  are  z-scored,  the  used  threshold
represents a fraction of standard deviation above the mean. The detections
with less than one cycle period apart in one frequency band are joined into
one event. The detections in different frequency bands overlapping in time
domain are joined into a single HFO detection.

Only one post-processing step is applied to reduce the number of false
positive detections. The number of cycles is calculated using event peak
frequency and duration and the events  that  are  shorter  than 1 cycle  are
discarded. The detections then enter a cascade of feature calculations.

14



6 DETECTOR EVALUATION

To quantify the efficiency of HFO detection algorithms they have to be
evaluated.  Even  though  each  publication  of  HFO  detection  algorithm
method contains some form of efficiency quantification the methods for
detection  evaluation  are  not  unified  which  makes  a  direct  comparison
almost impossible.  This chapter presents the methodology and results of
algorithm evaluation used in this work.

6.1 USED EVALUATION METHODS

Since each detector  was developed under slightly different  conditions
and for varied purposes the results acquired for the given data set might not
correspond to the results when applied to data sets that have, for example,
different montage.

6.1.1 Analysis based on gold standard data sets

Acquisition of the gold standard detections was done separately by two
expert reviewers in  iEEG signals from 5 minute segments in 3 patients. 9
channels per patient were evaluated; 3 channels were localized in SOZ, 3 in
IZ  and  3  in  nonSOZ area  of  the  epileptic  brain  which  was  previously
selected by epileptologists in clinical recordings. The HFOs were marked
as segments of filtered signals that had 4 times higher amplitude than the
surrounding  signal  and  the  amplitude  spanned  at  least  4  cycles.  To
eliminate  false  detection  produced  by  filter  ringing  care  was  taken  to
review  the  detection  in  the  raw  signal  for  sharp  transients.  Only  the
detections where both reviewers agreed were considered true positives.

Evaluation was carried out for detected events without any correction
and for detections with visually excluded noisy segments.

Numbers of  true positive,  false  positive and false  negative detections
were  collected  and  precision-recall  characteristics  were  calculated  and
plotted.  Numerical  evaluation  was  done  by  calculating  F1,  F2,  and  F0.5

measures that can be found in the full version of the thesis.

6.1.2 Analysis based on feature estimation precision

To evaluate the feature estimation of the detectors, artificial HFOs were
inserted into 20 minute long iEEG signal, which was previously visually
checked for absence of visible HFOs. The used signal was taken from a
contact  located  in  white  matter  to  avoid  muscle  artifacts  and  possible
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contamination  by  physiological  HFOs  from  neocortex  or  structures  of
lymbic system. Furthermore, the signal was visually checked for any signs
of  pathologic  activity  and  artifacts.  The  artificial  events  in  form  of
simulated spikes, HFOs, delta functions, line noise and HFO-spikes (HFOs
coincident with spikes), were inserted in 3 second intervals with varying
amplitude,  frequency  and  duration.  To  assess  the  influence  of  event
amplitude  on  feature  estimation  the  signals  with  artificial  events  were
created for different amplitudes separately with the values spanning from
0.1  to  0.5  std  (0.1  std  step)  of  iEEG signal  amplitude.  In  order  to  to
investigate  whether  noise  produces  any  distortion  in  feature  estimation,
separated analysis was conducted on signals with superimposed pink noise,
which is typical for EEG. All algorithms were run with the lowest threshold
settings to achieve the highest sensitivity possible.

This analysis is somewhat limited by the detection methodology. In case
of the line-length detection algorithm the amplitude and frequency have to
be computed in post-processing steps because it utilizes only one frequency
band and the line-length metric takes both features into account. Frequency
homogeny algorithm uses rigid frequency bands thus a priori creates error
in the estimation of this feature. 

6.1.3 Analysis  of  HFO  rates  with  regard  to  localization  of
pathologic tissue

A sample  of  30 minute recordings from 5 patients  was  processed  by
automated  detectors  developed  and  modified  in  this  work.  Clinical
recordings were reviewed by experienced epileptologists and seizure onset
zone, irritative zone and normal channels were marked. Irritative zone was
marked  within  the  channels  that  had  clear  pathologic  activity.
Determination of resected area and subsequent channel marking was done
by  experienced  clinicians  using  overlapped  pre  and  post-surgical  MRI.
Surgery outcome was evaluated based on Engel class.  Four patients had
favorable  outcome  of  Engel  IA while  one  had  persisting  seizures  with
outcome Engel IIIA.

The detection was done by all algorithms for varying threshold settings
and best performing threshold was determined using the lowest p value (t-
test). ROC for each detector was constructed using either SOZ, SOZ+IZ or
resected  channels  as  targets,  the  varying  variable  was  HFO  rate.  To
compensate for potential differences in patients the same analysis was done
for per patient normalized rates. The AUC were calculated for each ROC
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separately to evaluate pathologic tissue localization.

6.1.4 Analysis of algorithm speed

All algorithms were run on one channel of itracranial EEG data with the
length  of  30  mins  and  5  kHz  sampling  frequency.  Standard  desktop
computer  unit  was  used for  evaluation  with  12 GB RAM memory and
Intel® Xeon(R) CPU E5-1620 0 @ 3.60GHz × 8 processors. Algorithms
were all implemented in Python programming language.

6.2 RESULTS

Automated HFO detection is a complex task that is still being actively
developed.  Individual  detection  methods  vary  in  HFO  definition,  the
purpose for  which they were developed and the datasets  on which they
were  tested.  This  makes  the  comparison  across  multiple  institutions
difficult.  The detection methods created in this work do not suffer from
these problems because they are tested on the same datasets and evaluated
by uniform methods.

6.2.1 Results of comparison with gold standard detections

Construction of precision-recall curves proved that frequency homogeny
algorithm achieved the best performance at  detecting human scored events
with the lowest F scores.

The performance of  line-length detector  proves the usefulness  of  this
algorithm in HFO detection. The reasonable performance shows that this
method is robust, albeit simple.

Hilbert detector exhibits poorest performance regarding agreement with
gold standard detections.

Similar analysis with semi-automated approach, where noisy segments
in the data  were  marked by reviewers  and all  detections  in  these  areas
discarded,  was  performed.  All  detectors  showed  improved  performance
(Figure 2).
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6.2.2 Results of feature estimation precision

The  analysis  of  amplitude  estimation  precision  revealed  that  all
algorithms overestimated event amplitude (Table 1). Increased amplitude of
simulated events showed improved mean amplitude estimation error in all
detectors, however, the standard deviation increased. The best performing
algorithm  for  this  feature  was  the  Hilbert  detector  while  frequency
homogeny and line-length detectors showed similar results.

Similarly  to  amplitude,  all  algorithms  exhibited  overestimation  of
duration (Table 1). Changes in artificial event amplitude did not have any
impact  on  duration  estimation.  The  Hilbert  algorithm  was  the  best
performing while the worst was line-length algorithm.
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Figure 2: Precision-recall analysis of gold standard HFO detection.

Precision-recall curves of agreement with gold standard reviewer marks.
Blue – automated detection, green – semi-automated detection.

Table 1: Mean feature differences from artificial HFO events.

STD fraction
Feature Algorithm 0.1 0.2 0.3 0.4 0.5
Amplitude FH 2.033 1.488 1.751 1.755 0.761

Hilbert 1.704 1.213 1.371 1.415 0.632
LL 2.366 1.564 1.717 1.609 0.664

Duration FH 0.009 0.011 0.011 0.012 0.011
Hilbert -0.001 0.001 0.002 0.003 0.002
LL 0.095 0.096 0.104 0.097 0.095

Frequency FH -6.526 -11.126 -14.242 -10.71 -17.863
Hilbert -0.091 -8.234 -6.193 -4.917 -6.342
LL -212.206 -189.411 -148.561 -92.388 -93.625



Contrary  to  amplitude  and  duration  all  algorithms  underestimated
frequency irrespective of the event amplitude (Table 1). Increasing event
amplitude worsened frequency estimation in Hilbert detector and frequency
homogeny detector only in transition between the lowest threshold setting
to the second lowest setting. The most precise algorithm was the Hilbert
algorithm and the worst was the line-length algorithm. 

In general,  Hilbert  algorithm showed best  performance in  analysis  of
feature  estimation.  Frequency  homogeny  algorithm  performed  roughly
similarly to line-length detector in amplitude estimation but was worse in
duration  and  frequency  estimation.  Line-length  algorithm  had  poorest
performance in feature estimation. Noise in signal had the highest impact
on  amplitude  estimation.  Duration  and  frequency  showed  similar  mean
differences as the signal without noise.

6.2.3 Results of pathologic tissue localization

Investigation of pathological tissue localization with regard to detector
threshold revealed a trend for line-length detector where higher thresholds
improved localization both in normal vs. pathological (SOZ + IZ), normal
vs. SOZ analysis (disregarding IZ) and resected channels in patients with
good outcomes (Table 2).

Threshold analysis of pathological tissue localization revealed that line-
length  and  Hilbert  algorithms  showed  a  similar  trend  where  increasing
threshold led to improved detection. Contrary to the other two algorithms
frequency homogeny detector had inverse trend where the lowest threshold
achieved the best results. The best performing thresholds were 5, 0.1, 5 for
line-length, frequency homogeny and Hilbert algorithms respectively.

ROC curves  for  best  performing thresholds  were done for  pathology,
SOZ and resected channels as target instances (Table 2 and Figure 3). Line-
length  detector  had the  highest  values  of  AUC for  pathology and SOZ
analysis. Hilbert detector had the highest AUC for resected channels.

Using  per  patient  normalized  HFO  rates  generally  improved
performance of all HFO detectors.
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Table 2: AUC values for pathological channel localization.

Algorithm Feature Pathology Seizure onset zone Resection
Line-length HFO count 0.778 0.951 0.704

normalized HFO count 0.783 0.957 0.709
Hilbert HFO count 0.537 0.787 0.719

normalized HFO count 0.613 0.822 0.803
Frequency homogeny HFO count 0.565 0.628 0.637

normalized HFO count 0.593 0.584 0.752

Figure 3: ROC analysis  of pathologic tissue localization.

ROC curves for localization of pathological tissue. Line-length algorithm
outperforms the other two in clinically determined channels (Pathology,
Seizure onset zone) but is the worst in determination of resected channels
in  patients  with  good  outcome.  Hilbert  algorithm  shows  the  best
performance in this regard. Top – ROC for HFO rates, bottom – ROC for
per patient normalized HFO rates. Blue – line-length, green – frequency
homogeny, red – Hilbert.



6.2.4 Algorithm speed results

The fastest algorithm was the line-length based detector which processed
the dataset in 265 s which is 6.79 times faster than real time (30 mins). The
second algorithm was the frequency homogeny with the computation time
of 1592 s which is 1.13 times faster than real time. The slowest algorithm
was the Hilbert detector with the processing time of 7840 s and 0.23 times
slower than real time.

6.3 SUMMARY OF RESULTS AND DISCUSSION

Four types of evaluation were performed: ability of detectors to correctly
detect gold standard HFOs marked by expert reviewers, ability to correctly
estimate  HFO  features,  ability  to  correctly  localize  tissue  that  exhibits
pathologic electrophysiologic activity (SOZ+IZ), seizure onset zone (SOZ)
or resected channels in patients with good surgical outcome and processing
time of each algorithm.

Evaluation of detector performance based on expertly reviewed events is
often used in scientific literature dealing with HFO detection [29, 31, 32].
Within the scope of this work the best performing algorithm was the one
based  on  the  frequency  homogeny  metric.  This  result  confirms  the
assumption that the algorithm improves specificity compared to earlier and
simpler detectors such as line-length and RMS detector  [10, 23]. Higher
specificity  can  be  explained  by  the  novel  metric  which  effectively
eliminates Gibb's phenomenon as well as to post-processing steps that take
reviewer expertise into account.

The second best  performing algorithm was the  line-length algorithm
with  added  simple  post-processing  steps.  The  results  in  this  work
corroborate previous findings in earlier studies  [23, 32]. The fact that the
specificity  is  lower  might  reflect  insufficient  elimination  of  Gibb's
phenomenon with use of correlation and detection of events that are not
visible for naked human eye.

The design and purpose of the algorithm based on Hilbert envelopes,
which is feature extraction while maintaining high sensitivity, was reflected
in  very  poor  specificity.  This  confirms  that  post-processing  steps  or
methods of machine learning have to be applied in order to achieve better
concordance with human reviewers.

Results of the same analysis performed in semi-automated fashion where
noisy  segments  were  removed  by  reviewers  improved  in  all  tested
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algorithms.  The  highest  improvement  by  0.07  in  F1 score  was  seen  in
frequency  homogeny  algorithm.  This  suggest  that  either  a  manual  or
automated detection of noise and artifacts can lead to a substantial increase
in performance.

The feature estimation aspect of detectors was evaluated using artificial
HFO  events  with  known  amplitude,  frequency  and  duration  that  were
inserted into one channel of non-pathologic iEEG signal. Increasing event
amplitude was applied to estimate change in feature estimation error.

All algorithms showed trend to overestimate the amplitude. This could
be ascribed to the noise of the original iEEG signal into which the artificial
signals  were  inserted.  Increased  amplitude  of  simulated  events  showed
improved mean amplitude estimation in all detectors which is likely due to
higher  signal  to noise ratio  but  the standard deviation of  the estimation
error increased presumably because of high amplitude of spikes in HFO-
spike artificial events. The Hilbert algorithm showed the best performance
which is likely due to precise detection of event onset and offset.

Analysis of duration estimation precision revealed the same trend as with
amplitude where all algorithms overestimated this feature. This could be
caused by algorithm methodology, which is further discussed below, and by
filtration that  smears the extent  of  the event  to some extent.  The worst
performing algorithm was the line-length based algorithm while the Hilbert
algorithm  showed  the  best  performance.  These  results  stem  from  the
algorithm nature since line-length algorithm utilizes sliding window with
only 25% overlap it introduces error into duration estimation. Contrarily,
Hilbert  algorithm  uses  sample  by  sample  detection  leading  to  higher
precision.  Frequency  homogeny  algorithm  introduces  estimation  error
likely due to the sliding window nature of frequency homogeny metric.

Frequency  estimation  showed  inverse  trend  to  those  of  duration  and
amplitude  and  all  algorithms  underestimated  frequencies  of  simulated
events which could be ascribed to frequency band sequences used by these
detectors. Hilbert detector and frequency homogeny detector showed stable
frequency estimation with increasing event amplitude which worsened only
in  transition  between  the  lowest  threshold  setting  to  the  second  lowest
setting. The possible cause here is the more precise detection of event onset
and offset with lowest threshold settings. The frequency calculation in line-
length algorithm is done by detection of the maximum peak in frequency
spectrum leading to a substantial  error  which,  however,  diminishes with
event amplitude where the maximum spectrum peak is more prominent.
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In summary, the Hilbert detector outperformed the other two detectors in
estimation of all evaluated features. This result confirms that the Hilbert
detector  design  is  the  most  suitable  tool  for  in  depth  study  of  HFOs.
Frequency  homogeny  algorithm  performance  exhibited  reasonable
estimation error proving that it can be used for rough overview of HFO
features in the detected dataset.  Line-length detector showed the poorest
performance which is due to the simplistic nature of the algorithm.

The  capability  of  pathological  tissue  localization  is  vital  for  clinical
applications.  This  is  often tested in the literature along with analysis  of
successful  detection of gold standard detections  [24, 30, 31]. While this
approach is the most important in clinical applications the best performance
in  this  regard  does  not  necessarily  mean  that  the  algorithm  can  as
efficiently serve for basic research of HFO.

All algorithms were able to successfully show increased HFO activity in
pathological tissue based on HFO detection. Relatively high thresholds in
line-length and Hilbert detector showed the best performance with regard
to SOZ localization. This can be explained by the core of these algorithms
which  is  based  mainly  on  signal  amplitude.  Frequency  homogeny
algorithm showed the best performance in the lowest threshold setting. 

Analysis of tissue generating pathological interictal epileptiform spikes
and HFOs (SOZ+IZ)  decreased the performance of all algorithms. HFOs
have  been  proved  to  be  more  localized  in  SOZ  [9],  thus  this  finding
corroborates these previous results. 

Analysis of HFO rates in patients with good surgical outcome showed
improvement  in  frequency  homogeny  and  Hilbert  algorithm  while
decreasing the performance of line-length algorithm. The result highlights
low  specificity  of  line-length  algorithm  suggesting  that  it  might  be
influenced by false positive detections of spikes.

ROC curves were created with the best  performing threshold of each
algorithm with HFO rate in individual channels as the threshold metric and
pathological  channels  as  targets.  Interestingly,  the  line-length  algorithm
showed  the  best  performance  in  SOZ  localization  while  frequency
homogeny  the  worst.  Hilbert  algorithm showed the  best  localization  of
resected channels. When the HFO rates were normalized on the per patient
bases  the  results  improved  for  resected  channels  in  patients  with  good
outcome suggesting that HFO rates may vary depending on implantation
sites and patient's brain.
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Processing  time  for  each  algorithm  was  measured  using  one  iEEG
signal. Line-length algorithm had the shortest processing time mainly due
to its simplicity. Frequency homogeny algorithm needed more processing
time but it was still faster than real time. Hilbert detection algorithm was
approximately 5 times slower than real  time suggesting that  a compiled
version  of  the  algorithm  should  be  developed  in  order  to  allow  this
algorithm to be used in clinic.

The line-length algorithm with simple post-processing steps (correlation
and event to background ratio) showed very poor feature estimation yet the
localization  of  SOZ  was  superior  to  other  detectors.  However,  in
localization of resected channels the algorithm performed poorly. With its
speed this algorithm can be very useful in online HFO detection and use in
clinic to give clinicians a rough idea about the HFO distribution in epileptic
foci, thus highlighting the channels they should focus on.

Feature estimation error was the lowest for the Hilbert algorithm. This
outcome demonstrates  the algorithm's  capability  of  HFO feature precise
determination.  Given the results  in  analysis  of  gold standard HFOs and
pathologic  tissue  localization  analysis  this  algorithm  shows  promising
results that can be further improved by post-processing steps and machine
learning methods. 

Frequency  homogeny  algorithm  showed  the  best  performance  in
concordance with gold standard detections.  Interestingly,  the analysis  of
SOZ channel localization did not reveal  good results  but  localization of
resected  channels  was  superior  to  line-length  while  inferior  to  Hilbert
algorithm.  As  mentioned  earlier  in  this  work  HFO  marking  is  highly
subjective.  Enlarging the  dataset  on which the  algorithm was trained is
likely to improve the results.  Feature estimation evaluation revealed that
this detector can provide rough estimation of detected events' features.
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7 DETECTION RESULT PRESENTATION

Conveying  the  results  in  simple  and  visually  appealing  way  to  the
interpreter while preserving as much information as possible is crucial for
wide  spread  usage  of  any  detection  algorithm  in  clinic  and  science.
Consequently, development of result presentation is almost as important as
the detection itself.

In this regard information acquired from the brain present a challenge.
The electrophysiological  signals  have  intrinsic  features  – amplitude and
frequency. In case of HFOs, two other features can be acquired – duration
and  count.  However,  the  physiology  of  the  brain  and  its  electrical
properties  change  in  time  (cognition,  sleep,  etc.),  space  (neocortex,
archicortex,  etc.)  and  is  dependent  on  external  factors  (drugs,  external
stimuli, etc.).

As  it  is  apparent  from  the  previous  paragraph,  it  is  not  possible  to
visualize all information at once. Instead, the visualizations are focused on
the desired application. Nonetheless, the interpreter should always be aware
of the limitations.

7.1 HFO COUNT PER CHANNEL

Basic visualization used by vast majority of current publications dealing
with HFO is usually a simple bar graph used to highlight channels with
higher HFO occurrence. While this is sufficient for a general overview the
loss  of  information  about  HFOs  is  significant.  There  is  no  information
about  HFO  occurrence  in  time  domain,  which  obstructs  a  potential
feedback  by  medical  staff  or  adjustment  of  medication.  The  frequency
information is reduced to that  of  the frequency band used by algorithm
filters. And the person reading the plot has to be aware of the individual
contact locations within the brain in order to interpret the results correctly.

This type of  visualization could stress  the results by color-coding the
HFO count in individual bars which would make it easier to identify the
channels of interest. Furthermore, temporal information could be included
by  creating  a  video  or  by  plotting  numerous  bar  graphs  for  each  time
segment.
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7.2 HFO COUNT WITH REGARD TO HFO FREQUENCY

This type of visualization was created as part of this PhD thesis and is
useful for clinicians since fast ripples (250 – 600 Hz) are currently deemed
to be correlated with pathologic brain more than ripples (80-250 Hz). The
color-coded  table  presents  HFO  counts  in  individual  frequencies  and
provide  simplified information about  the  HFO distribution  in  frequency
domain.  The visualization  was  designed  to  present  results  of  frequency
homogeny algorithm, hence the frequency bands are set accordingly.
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Figure  4:  Color-coded  HFO  rate  in  individual  electrodes  across
frequencies.

Image showing HFO occurrence in individual channels and in frequency
bands with  color-coded cells  to  stress  the  highest  values.  Color-coding
contributes to simple immediate recognition of the areas with highest HFO
rates.



Even though, this visualization provides fast overview about the tissue
surrounding  individual  contacts  there  is  still  some  information  loss.
Temporal  aspect  of  HFO  occurrence  is  completely  neglected  and
information about HFO are represented solely by their count in frequency
bands.

This type of visualization can be further developed by creating a video
where changing colors would show shifts in HFO counts with regard to
channels and frequency. This would account for temporal changes.

7.3 HFO COUNT WITH REGARD TO ANATOMY

Anatomical structure may play a crucial role in spatial distribution of
HFO.  It  is,  therefore,  useful  to  visualize  the  information  about  HFO
occurrence in MRI scans so that clinical staff has immediate information
about  the  location  of  HFO  generating  tissue  and  can  tie  together  the
information of  electrophysiology and anatomy of  the particular  patient's
brain.

Figure 5: Color-coded HFO count in MRI slices.

MRI scan of a patient with temporal lobe epilepsy. HFO counts are color
coded  as  dots  in  places  where  electrode  contacts  were  located.  A  –
transversal plane B- coronal plane.
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This method was created as a diploma thesis  [34] which was mentored
by the author of this work. 

Further  enhancements  of  this  type  of  visualization  can  be  again
incorporation of  information about  HFO occurrence in time by creating
video  clips.  Moreover,  tractography  analysis  can  be  joined  with  this
visualization in order to elucidate communication between different brain
structures.

7.4 CIRCULAR GRAPHS

Inspired by data visualization in  genome research,  this  type of  graph
reduces  information  loss  to  minimum  while  allowing  for  display  of
interactions between areas of the brain from which iEEG signal is acquired.
The visualization was created within this work  and is freely available as an
open-source  library  which  is  being  actively  updated  and  developed
(https://github.com/cimbi/pancircs)  and  can  be  easily  installed  through
python package index.

Circular graphs can have multiple layers each expressing different piece
of  information.  HFO  counts  and  their  mean  attributes  can  be  simply
visualized this way although any type of electrophysiological information
can be included such as spike rates or their features. Individual layers  can
also  represent  development  of  HFO  occurrence  in  time,  space  and
frequency.

Inner  area  of  the circular  graph can be used to  visualize  interactions
between signals such as correlation or other connectivity metrics which can
contribute  to  correct  localization  of  pathologic  tissue.  Channels  can  be
grouped according to their location in brain structures but any grouping
variable can be used. Circles can be assembled into a series to create either
an array or a video to capture the development of electrophysiological data
in time.
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Figure 6: Circular visualization.

Correlation between individual contacts (inner connections). Histogram of
HFO count in frequency bands from low frequencies to high, inner to outer
direction  (inner  circle).  Total  relative  HFO  count  (middle  circle).
Pathology of channels (outer circle, SOZ -red, IZ – green, nonSOZ – blue).
Contact sections are divided according to the structure in which they were
located



CONCLUSION

High-frequency oscillations have been studied for over a decade now.
All  the  studies  conducted  to  date  have  proven  that  HFOs  can  indeed
localize epileptogenic foci in focal epileptic patients and that by resecting
pathological tissue with HFO a better surgical outcome can be achieved,
leading to improvement of patients' lives. Nonetheless, most of the studies
used  retrospective  visual  or  semiautomated  detections  of  HFOs.  Such
approach is a time-consuming process and is prone to reviewer bias. An
automated detection algorithm is needed as a fast and objective method of
detection.

A number of HFO detectors have been developed to date at different
institutions around the world. However, due to unclear definition of HFOs,
their characteristics and different recording techniques, all detectors were
trained and tested on different datasets. Moreover, evaluation of developed
detectors is not uniform rendering the results of automated HFO detection
incomparable. 

The main aim of the presented work was to develop a robust detector
which would be useful  for  physicians  and provide them with additional
information  about  the  localization  and  spatial  spread  of  epileptogenic
focus.  The  secondary  goal  was  to  create  a  tool  for  research  of  HFO
produced by pathological  and healthy  tissue  as  well  as  during different
cognitive stages such as somatosensory processing or sleep and wake cycle.

Three  HFO detection  algorithms were  developed  or  enhanced  in  this
work.  One  is  the  line-length  algorithm  which  was  improved  by  post-
processing  steps,  aims  at  use  in  clinic  and  has  already  been  used  to
investigate the spatiotemporal dynamics of HFOs in patients with mesio-
temporal epilepsy. The second is an algorithm based on a novel frequency
homogeny metric that effectively reduces the false positive detections and
takes human expertise into account through a set of boundary thresholds
calculated from distribution functions created from visually marked HFOs.
The last algorithm was developed for detailed HFO analysis with precise
HFO feature estimation and is based on normalized amplitude envelopes
and  convolution  of  narrow  band-passed  signal  and  broad-band  passed
signal. Its earlier version has been already used for study of HFO behavior
during cognitive task to investigate the normal function of the brain.

To  test  the  feasibility  of  detectors  from  different  points  of  view  all
detectors were subjected to three different evaluation methods designed to
overcome the common drawbacks appearing in literature. To test agreement
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with human reviewers the detections produced by automated methods were
compared  with  gold  standard  detections  created  by  manual  review.
Precision  in  HFO  feature  estimation  was  tested  with  artificial  events
inserted into iEEG signal and calculated feature values were compared with
the  known  features  of  artificial  events.  Lastly,  the  ability  to  localize
pathological  tissue  based  on the  count  of  HFO detections  in  individual
channels was compared with clinically determined channels from which the
seizures originated.

Results of evaluation confirmed effectiveness of each algorithm in the
task they were designed for. While frequency homogeny algorithm had the
best  performance  in  agreement  with  gold  standard  detections,  Hilbert
algorithm showed the best feature estimation and localization of resected
channels  and  line-length  algorithm  outperformed  the  remaining  two  in
pathological tissue localization.

In order to convey the results to the end user, which is usually a clinician
or a researcher, apt result visualization has to be chosen. Apart from wide-
spread bar graph visualization of HFO count in individual channels, two
other methods were developed in this work. One is a color-coded table with
count  in  individual  channels  and  frequency  information.  This  allows
clinicians to immediately evaluate the HFO analysis and is currently being
used  in  St.  Anne's  University  Hospital  in  Brno.  The  second  method  is
inspired  by  visualization  techniques  in  genome  research  and  utilizes
circular graphs. That allows for visualization of different HFO qualities as
well as relationships between individual channels or brain structures.

The future work will focus on detector improvement and on combining
their capabilities to provide better localization of pathological tissue while
mapping the normal function of the brain. For that purpose more visually
reviewed events  will  be acquired as well  as  data from multiple centers.
HFO differentiation will be done with the use of machine learning methods
and HFO spread will be studied with the use of brain connectivity methods
and  causality  information.  These  future  studies  should  improve  both
detection as well as general understanding of epilepsy and normal brain
function.

All detection algorithms as well as evaluation codes mentioned in this
work will be over time published online within the HFO-detect initiative
(https://github.com/HFO-detect)  that  aims  at  creating  a  library  of  HFO
detectors  along  with  standardized  evaluation  tools.  In  conjunction  with
other algorithms developed around the world and publicly accessible iEEG

31

https://github.com/HFO-detect


datasets  this  will  allow for  objective  evaluation  of  each algorithm with
precisely defined evaluation methods. Moreover, it will allow other centers
around the world that have not yet started using HFOs in their research and
in clinic to immediately begin automated detection in intracranial EEG and
contribute with their datasets to the world wide pool. Circular visualization
library is already available  for  easy installation through python package
index  (name:  “pancircs”)  and  the  source  code  is  accessible  on  GitHub
(https://github.com/cimbi/pancircs). 
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