
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

IMPLEMENTATION AND EXTENSION OF THE TECHNICAL
DOCUMENTATION TESTING FRAMEWORK
IMPLEMENTACE A ROZŠÍŘENÍ FRAMEWORKU PRO TESTOVÁNÍ TECHNICKÉ DOKUMENTACE

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Peter Macko

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Petr Ilgner

BRNO 2020

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Diplomová práce
magisterský navazující studijní obor Telekomunikační a informační technika

Ústav telekomunikací
Student: Bc. Peter Macko ID: 164326
Ročník: 2 Akademický rok: 2019/20

NÁZEV TÉMATU:

Implementace a rozšíření frameworku pro testování technické dokumentace

POKYNY PRO VYPRACOVÁNÍ:

Cílem diplomové práce je vytvoření uceleného frameworku určeného k testování technické dokumentace psané
ve značkovacím jazyce AsciiDoc. V rámci semestrální práce student popíše specifika tvorby technické
dokumentace a formáty používané pro tvorbu strukturované technické dokumentace, popíše význam
sémantického značkování a průběžné integrace (CI) v kontextu tvorby technické dokumentace. Dále se seznámí
se s možnostmi nabízenými systémem Emender, který je určený pro deklaraci a spouštění testů nad dokumenty.
Student seznámí s metodami pro identifikaci a označení “false positives” ve výsledcích testů, tzv. “waiver”, a pro
manuální “odmávaní” chybných výsledků testů. V praktické části student navrhne strukturu databáze vhodné pro
uložení informací získaných od uživatele a implementuje framework Emender na dokumentační set psaný ve
formátu AsciiDoc. V diplomové práci student implementuje do systému Emender webovou službu s REST API
komunikující s databází. Pro implementaci použije jazyk Python a vhodný webový framework (např. Flask).
Všechny testy budou podporovat formát AsciiDoc. Dále popíše možnosti prezentace výsledků testů a navrhne
způsob navázání testovacího frameworku na systémy pro zajištění průběžné integrace (např. systém Jenkins).
Výsledky testů na zvolených technických dokumentech vhodným způsobem prezentuje a okomentuje. Na závěr
student navrhne možnosti dalšího vývoje projektu.

DOPORUČENÁ LITERATURA:

[1] HILLAR, Gastgon. C. Building RESTful Python Web Services. Paperback. United Kingdom: Packt Publishing -
ebooks Account, 2016. ISBN 978-1786462251.

[2] GRINBERG, Miguel. Flask Web Development, 2nd Edition. 2. United Kingdom: O'Reilly Media, 2018. ISBN
9781491991725.

Termín zadání: 3.2.2020 Termín odevzdání: 1.6.2020

Vedoucí práce: Ing. Petr Ilgner
Konzultant: Pavel Tišnovský, Red Hat Czech s.r.o.

 prof. Ing. Jiří Mišurec, CSc.
předseda oborové rady

UPOZORNĚNÍ:
Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.

ABSTRACT
The thesis discusses automated testing of technical documentation written in Asci-
iDoc markup language using open-source documentation testing framework Emender
implemented in CI/CD. The framework was extended with a RESTful web applica-
tion emenderwebservice, providing a graphical user interface with test results and a
mechanism to waive false positive test results. Web application was implemented with
Flask WSGI web application framework along with a database enabling aggregation and
unique test identification. The application simplifies access to test results generated
by Emender in CI/CD and provides a concise graphical user interface for technical writers.

KEYWORDS
Automated testing of technical documentation, documentation testing framework
Emender, AsciiDoc, Jenkins, CI/CD, False positive results in technical documentation
testing, Flask

ABSTRAKT
Práca sa zaoberá automatizáciou testovania technickej dokumentácie napísanej v znač-
kovacom jazyku AsciiDoc pomocou open-source frameworku testovania technickej do-
kumentácie Emender implementovaného na CI/CD platforme. Framework bol rozšírený
o webovú aplikáciu emenderwebservice s REST API, ktorá poskytuje užívateľské grafické
rozhranie s výsledkami testov a mechanizmom na odrieknutie falošne pozitívnych vý-
sledkov testov. Webová aplikácia bola vytvorená pomocou WSGI frameworku na tvorbu
webových aplikácií Flask s databázou ktorá umožňuje agregáciu výsledkov testov a ich
unikátnu identifikáciu. Aplikácia uľahčuje prístup ku výsledkom testov vygenerovaných
frameworkom Emender v CI/CD systémoch a poskytuje technical writer-om ucelené uží-
vateľské prostredie.

KLÍČOVÁ SLOVA
Automatizácia testovania technickej dokumentácie, framework na testovanie technickej
dokumentácie Emender, AsciiDoc, Jenkins, CI/CD, falošne pozitívne výsledky pri testo-
vaní technickej dokumentácie, Flask

MACKO, Peter. Implementation and Extension of Technical Documentation Verification
Framework. Brno, Rok, 67 p. Master’s Thesis. Brno University of Technology, Fakulta
elektrotechniky a komunikačních technologií, Ústav telekomunikací. Advised by Ing. Petr
Ilgner

Vysázeno pomocí balíčku thesis verze 3.03; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT
Práca pojednáva o tvorbe technickej dokumentácie, na ktorú sa posledné roky

v rámci vývoja softvéru kladie stále väčší dôraz. Technická dokumentácia slúži
ako jedno z premostení medzi vývojárom softvéru a koncovým používateľom. Pri
čoraz komplexnejších softvérových implementáciách je preto nevyhnutnou súčasťou
dodávaného softvéru.

Fázy procesu tvorby technickej dokumentácie sú podobné ako pri vývoji soft-
véru – dizajn, implementácia a verifikácia. Jedna z úloh autora technickej dokumen-
tácie (Technical Writer) je na seba prevziať rolu koncového zákazníka. Tento po-
hľad umožňuje vývojárom mimo iného identifikovať nedostatky v technickej stránke
dokumentácie, ktoré mohli byť počas vývoja prehliadnuté.

Vo fáze verifikácie technickej dokumentácie sa vyskytujú úlohy, ktoré sú efek-
tívne automatizovateľné – napríklad testovanie funkčnosti hypertextových odkazov,
výskytu zakázaných slov alebo ľubovoľných atribútov definovaných značkovacími
jazykmi. Pre tento účel bol vyvinutý framework Emender, ktorý poskytuje plat-
formu na písanie testov technickej dokumentácie v jazyku Lua. Na tomto frame-
worku boli implementované testy použité v praxi, ako napríklad:

• testovanie funkčnosti odkazov,
• testovanie balíčkov, pri ktorom sa overí, či daný balíček patrí danej distribúcii

softvéru (Linux),
• testovanie, či dokument neobsahuje špeciálne znaky po zlučovaní vetiev (merge)

pomocou systému riadenia revízií Git,
• testovanie štylistiky,
• testovanie korektného nastavenia atribútov dokumentu, a iné.

Emender poskytuje výsledky testov v niekoľkých formátoch – JSON, JUnit XML,
HTML a čistý text. Testy môžu byť spúšťané lokálne na vyžiadanie, ale po ich im-
plementácii do systému Jenkins CI/CD aj automaticky pri zmene dokumentácie.
Pre tento spôsob použitia má však aktuálna implementácia frameworku Emender
isté nedostatky. Medzi ne patrí napríklad nutnosť poznať systém Jenkins CI/CD
a jeho štruktúru. Ten navyše zastrešuje veľa úloh, čím sa stáva pomalý a nepre-
hľadný. Výsledky testov sú dostupné len pod číslom zostavenia (buildu) v Jenkinse,
čo znemožňuje ich jednouchú identifikáciu.

Niektoré testy môžu už od svojho návrhu hlásiť chybové výsledky. Dôvodom
môže byť nesprávny návrh testu, ale tiež sa môže jednať o jeho žiadúcu vlastnosť
– chybový výsledok môže byť použitý na získanie pozornosti používateľa na danú
časť dokumentácie, ako napríklad použitie nevhodného (i keď funkčného) formátu
hypertextového odkazu. Framework Emender neobsahuje mechanizmus, ktorým by
mal používateľ možnosť takéto výsledky filtrovať.

Hlavným cieľom tejto diplomovej práce bolo navrhnutie webovej aplikácie
emenderwebservice poskytujúcej REST aplikačné rozhranie (API). Táto aplikácia
poskytuje výsledky testov v prehľadnom grafickom rozhraní, pričom obsahuje mech-
anizmus na spracovanie falošne pozitívnych (false positive) výsledkov testov agrego-
vaných v databáze SQLite. Aplikácia bola navrhnutá tak, aby bola spätne kompat-
ibilná s existujúcou implementáciou frameworku Emender v Jenkins CI/CD.

Stručné zhrnutie funkčnosti navrhnutej aplikácie v existujúcej CI/CD implemen-
tácii:

1. Používateľ spraví zmenu v dokumentácii uloženej v Git repozitári.
2. Táto zmena spustí testovanie novej revízie dokumentácie v systéme Jenkins.
3. Výsledky testov vo formáte JSON odošle Jenkins na REST API aplikácie

emenderwebservice, ktorá výsledky identifikuje podľa parametrov v URI a uloží
ich do databázy.

4. Na rovnakej URI aplikácia poskytne grafické rozhranie, čím sa zabezpečí
jednoduchá identifikácia testov. Toto grafické rozhranie poskytuje mechaniz-
mus na spracovanie chybných výsledkov.

5. Webová aplikácia vygeneruje a poskytne systému Jenkins súbor JUnit XML,
ktorý Jenkins spracuje za účelom vyhodnotenia trendov výsledkov testov
v grafickej podobe.

Pri implementácií navrhnutej webovej aplikácie emenderwebservice boli využité
nasledujúce technológie:

• WSGI (Web Server Gateway Interface) framework Flask pre vytvorenie REST
aplikačného rozhrania,

• šablónový procesor Jinja zahrnutý vo frameworku Flask pre vytvorenie grafick-
ého rozhrania,

• relačný databázový systém SQLite3 pre agregáciu testov.

Aplikácia je postavená na návrhovom vzore MVC (Model-View-Contoller), pričom:
• „Model“ predstavuje databáza, ktorej štruktúra bola navrhnutá tak, aby

vhodne reprezentovala unikátne výsledky testov,
• „View“ predstavuje Jinja šablóna, prostredníctvom ktorej sú dynamicky gen-

erované výsledky testov s mechanizmom na spracovanie falošne pozitívnych
výsledkov,

• „Controller“ predstavuje jednak poskytované REST aplikačné rozhranie, ale
tiež časti aplikácie zabezpečujúce jej riadenie a spracovanie výsledkov.

Spracovanie falošne pozitívnych výsledkov je zabezpečené tak, že používateľ má
možnosť takéto výsledky identifikovať prostredníctvom grafického rozhrania. Oz-
načením výsledku ako falošne pozitívneho sa spustí JavaScript kód, ktorý vykoná
AJAX volanie na REST API aplikácie emenderwebservice. Toto volanie obsahuje
informáciu o označení výsledku spolu s jeho identifikátorom. Aplikácia po prijatí
požiadavky cez REST API následne túto zmenu uloží do databázy.

Záver
Implementácia webovej aplikácie emenderwebservice do frameworku Emender posky-
tuje jednoduché používateľské prostredie a jednotnú agregáciu výsledkov testov prís-
tupnú cez REST API. Unikátna identifikácia testov je zabezpečená použitím či-
tateľných unikátnych URI parametrov, ktoré poskytujú informácie o danej doku-
mentácii a použitom teste. Emender je open-source projekt, ktorý našiel svoje
uplatnenie v praxi, avšak jeho nedostatky v podobe nedostatočnej dokumentácie
a neoptimálnej prezentácie výsledkov testov môžu brániť jeho širšiemu nasadeniu.

Táto práca sa usiluje niektoré tieto nedostatky odstrániť, mimo iného poskyt-
nutím uceleného prehľadu o frameworku a implementácií užívateľsky príjemnej prezen-
tácií výsledkov testov.

Prohlášení

Prohlašuji, že svou diplomovou práci na téma „Implementace a rozšíření frameworku pro
testování technické dokumentace“ jsem vypracoval samostatně pod vedením vedoucího diplomové
práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v
práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této
diplomové práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným
způsobem do cizích autorských práv osobnostních a/nebo majetkových a jsem si plně vědom
následku porušení ustanovení § 11 a následujících autorského zákona c. 121/2000 Sb., o právu
autorském, o právech souvisejících s právem autorským a o změně některých zákonu (autorský
zákon), ve znění pozdějších předpisů, včetně možných trestněprávních důsledků vyplývajících z
ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

V Brně dne 1.6.2020 ..
podpis autora

DECLARATION

I declare that I have written the Master’s Thesis titled “Implementation and Extension of
Technical Documentation Verification Framework” independently, under the guidance of
the advisor and using exclusively the technical references and other sources of information
cited in the thesis and listed in the comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Master’s
Thesis, I have not infringed any copyright or violated anyone’s personal and/or ownership
rights. In this context, I am fully aware of the consequences of breaking Regulation § 11
of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of
any breach of rights related to intellectual property or introduced within amendments to
relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009
Coll., Section 2, Head VI, Part 4.

Brno .
author’s signature

ACKNOWLEDGEMENT

I’d like to thank Ing. Petr Ilgner and Ing. Pavel Tišnovský, PhD. for the supervision of
my thesis. I’d also like to thank my family and friends for the unconditional support they
provided during the writing of the thesis.

Brno .
author’s signature

Contents

Introduction 14

1 Technical Documentation 15
1.1 Semantic Markup Languages . 16
1.2 Automated Testing of Technical Documentation 19
1.3 Continuous Integration / Continuous Deployment (CI/CD) 20

2 Emender - Documentation Testing Framework 22
2.1 Emender Framework Structure . 22
2.2 Emender Tests . 23
2.3 Presentation of Test Results . 23
2.4 Implementation of Emender on Documentation 26
2.5 Examples of Implemented Test Suites 28

3 False Positives in Tests 29

4 Current Implementation of Emender in Jenkins CI/CD 30
4.1 Characteristics of the Implementation 30
4.2 Viewing Emender Generated Test Results 31
4.3 Drawbacks of the Current Implementation 31

5 Proposed Improvements for Emender 32
5.1 List of Requirements . 32
5.2 Identification of Emender Test Results 33

5.2.1 Attributes Used for Identification of Documentation and Test
Results . 33

5.2.2 Uniquely Identifying a Specific Book 33
5.2.3 Uniquely Identifying a Specific Git Revision of a Book 33
5.2.4 Uniquely Identifying JSON Files with Test Results 34
5.2.5 Uniquely Identifying the Results within the JSON File 34

5.3 Storing the Test Results in a Database 35
5.4 Graphical User Interface (GUI) with a Waiving Mechanism 35
5.5 JUnit XML Generator . 35

6 emenderwebservice in Jenkins CI/CD 36

7 Technologies Used For Implementation 38
7.1 REST and RESTful Web Services . 38
7.2 Flask Web Development Framework 40

7.3 Jinja Template Engine . 42
7.4 SQLite3 . 43
7.5 Converting Python Applications to Web Applications with Flask . . . 43

8 emenderwebservice Implementation 44
8.1 Model-View-Controller (MVC) Architecture 45
8.2 REST API Implementation . 45

8.2.1 REST API Endpoints . 46
8.3 JSON Schema . 49
8.4 Database Implementation . 50
8.5 Database Controller . 53
8.6 GUI with Test Results . 54
8.7 results.html Test Results Jinja Template 54
8.8 Identification and Waiving of Failed Results 56

9 Implementation Testing and Deployment 57
9.1 Jenkins Configuration . 58

10 Suggestions for Further Project Development 60

11 Conclusion 61

Bibliography 62

List of abbreviations 64

List of appendices 65

A Database Relationship Diagram 66

B Attachment 67
B.1 Folder Structure . 67
B.2 Running the Development Server . 67
B.3 Project Structure . 67

List of Figures
1.1 Rendered sample AsciiDoc document 17
2.1 HTML with Test Results . 25
4.1 Test result trends generated by JUnit plugin in Jenkins. 30
5.1 emenderwebservice design diagram 32
8.1 emenderwebservice block diagram . 44
8.2 Diagram with processes in Emender web application. 45
8.3 emenderwebservice presentation of results 55
9.1 Postman API testing platform . 57
A.1 Database table relationships . 66

Listings
1.1 AsciiDoc syntax demonstration . 17
1.2 MarkDown syntax demonstration . 18
2.1 Example results.json results file generated from a Test Pack 24
2.2 Example plain-text results file generated from a Test Pack 24
2.3 Example JUnit XML file with Test results 26
3.1 Truncated results.json with false-positive result 29
7.1 Example Flask route . 41
7.2 Example Jinja HTML template generating a simple URL list 43
7.3 Example HTML generated with a Jinja template 43
8.1 JSON Schema for Emender test results, truncated 49
9.1 Testing emenderwebservice with cURL 58
9.2 Example Jenkins configuration . 59
9.3 Running emenderwebservice with Gunicorn server 59

Introduction
With growing complexity of the software, the importance of technical documentation
is becoming more significant. What was once a responsibility of a software developer
is now steadily being transferred onto dedicated technical writer teams.

The phases of writing technical documentation can be in many aspects com-
pared to software development - design, implementation, verification. The stages
for creating enterprise documentation are similar and equally important.

The documentation testing framework Emender1 was developed in cooperation
with technical writer teams as an effort to automate documentation testing tasks
that can be completed more quickly and precisely by software, reducing writing time
and mistakes from manual verification.

The thesis discusses aspects of creating technical documentation written
in AsciiDoc markup language and testing automation by CI/CD applications. The
goal is to extend the open-source documentation verification framework Emender
with a RESTful web application enabling presentation of test results through a
graphical user interface with a mechanism for tagging false-positives in test results,
colloquially "waiver".

The text is structured into several sections:
• Introduction to methods and technologies used for writing technical docu-

mentation (Semantic markup languages, rendering and publication tools, CI
(Continuous Integration) systems),

• Introduction to documentation testing framework Emender and its implemen-
tation on technical documentation,

• Research of possibilities to extend the Emender framework with a RESTful
web application providing graphical user interface providing test results with
a mechanism to waive false positive results,

• Implementation of the web application using a WSGI Python framework Flask,
complemented by SQLite3 database enabling aggregation of test results,

• Suggestions for a further development of the Emender project.

1https://github.com/emender/emender

14

1 Technical Documentation
The term technical documentation includes multiple types of documents that de-
scribe product functionality and its properties. Technical documentation in context
of software development serves as a bridge between the software user and a developer
enabling to present the software in a comprehensible manner.

The role of technical writer is to understand the needs of readers and to commu-
nicate these to the developer teams, by working with provided drafts, transforming
these into customer content, continuously testing and providing feedback and re-
quests for technical validation to another teams.

As stated in the introduction, the process of writing technical documentation is
similar to software development, and it is customary to have technical writers as a
part of developer team, not as an independent entity. This enables writers to be
a part of the software development, and to create the documentation in iterations
along with it. The integration of writers into development teams is beneficial for
the developers as well, because an experienced technical writer can provide an an-
other point-of-view on the use cases of the product (by role-playing as a customer),
possibly influencing the nuances of the implementation.

The requirements for documentation vary across products, but an example of
shared characteristics is a need to have a versioning and rendering system in place.
This is enabled by using a versioning system like Git and markup languages, that
enable the documents to be typeset in a predictable manner.

The process of writing technical documentation is not straightforward, because,
even though there are de-facto industry standards as IBM Style Guide[1], the content
has to be written with target audience and software in mind. Nevertheless, there
are universal rules that has to be met, including, but not limited to:

• Precision: Documentation has to be precise and without a personal opinion.
• Findability: Documentation tends to inflate over time, writers need to main-

tain a logical entity hierarchy, categorizing the documentation into separate
documents named Guide or Book. These terms can be used interchangeably.

• Minimalism: Less is more.
This thesis will discuss documentation typical for commercial open source soft-

ware.

15

1.1 Semantic Markup Languages
Semantic: of or relating to meaning in language.[2]

"In computer text processing, a markup language is a system for annotating a
document in a way that is syntactically distinguishable from the text."[3]

Semantic markup languages provide a mechanism to mark certain parts of a
raw text to be typeset differently by the rendering software. This enables writers
to write both human and machine readable documentation. The markup adds an
additional semantic value to parts of the text. Examples of markup usage include
command highlighting, marking headings to be typeset differently, enabling usage
of admonitions and code listings. Every semantic markup language has its pros and
cons and not every language has a universal use case.[4]

The following part will briefly introduce some of the semantic markup languages:
AsciiDoc, DocBook and widely used MarkDown.

AsciiDoc and AsciiDoctor

"AsciiDoc is a text document format for writing notes, documentation, articles,
books, ebooks, slideshows, web pages, man pages and blogs. AsciiDoc files can be
translated to many formats including HTML, PDF, EPUB, man page. AsciiDoc is
free software and is licenced under the terms of the GNU General Public License
version 2 (GPLv2)."[5]

AsciiDoc is along with DocBook widely used in production, and its importance
is backed by support of platforms such as GitHub or GitLab. Simplicity and shallow
learning curve of these languages is demonstrated by Listing 1.1 and its AsciiDoctor–
rendered version in Figure 1.1. AsciiDoc supports variables and conditional state-
ments, which enable flexibility with the writing. This enables, for example, including
a several versions of a documentation that share the same text in a single document
and rendering it selectively.

AsciiDoctor1 is an example of a rendering tool used in production. It has an
ability to generate multiple formats from the single source code, for example PDF,
HTML, DocBook, LaTeX and ePub. This enables generating content for direct
online publication as well as in a downloadable format. AsciiDoctor includes its own
"brand" - document presentation style. The presentation style can be customized.

1https://asciidoctor.org/

16

https://asciidoctor.org/

Listing 1.1: AsciiDoc syntax demonstration
1// This is a comment
2include :: attributes .adoc []
3// AsciiDoc supports including of other .adoc files.
4
5: attribute1 : attributes
6
7:toc: // generate an interactive table of contents
8
9= Heading
10== Heading
11This is a plain -text demonstrating usage of { attribute1 }.
12
13IMPORTANT : This is an admonition .
14
15* Simple
16* Bullet
17* List

Fig. 1.1: Rendered sample AsciiDoc document

17

DocBook and Publican

DocBook semantic markup language is derived from XML and is semantically equiv-
alent to AsciiDoc. DocBook uses tagging elements similar to HTML[4].

DocBook elements are divided into three classes:
• Structural elements set the type of the document and define the character-

istics of internal elements, for example if the text is wrapped in tag <book>
definition of chapters and headings are possible. Examples of structural ele-
ments are <book>, <set> and <article>.

• Block elements are similar to HTML block elements. A line break is invoked
at the end of every block element. Examples of block elements are listings -
<screen>, <itemizedlist> and paragraph <para>.

• Line elements are similar to HTML elements as well, they add a semantic
value to the text parts, for example marking of software packages <package>,
e-mail addresses <email> and software commands <command>[4].

Documentation written in DocBook can be divided into several files, but the
files has to be aggregated in one master file. DocBook also supports entities –
parts of code that can be included conditionally or in multiple locations without
redundant code. Possible use case is for including a "Product name" or "Product
version". Entities save writer from code refactoring when these attributes change [4].
Publican2 is one of the tools for rendering of a DocBook files used in production.
It has functions for preparing a required folder structure and, similarly to AsciiDoc,
implementing a document presentation style "brand",[4] .

MarkDown

MarkDown3 is a markup language for writing structured text, most notably in form
of readme files in open-source projects and is natively supported by versioning plat-
forms, such as GitHub4 and GitLab5. Example of MarkDown syntax is in Listing 1.2.

Listing 1.2: MarkDown syntax demonstration
1# Heading , level 1
2## Heading , level 2
3### Heading , level 3
4** bold text **
5- __[GitHub](https :// github .com /)__ - GitHub Homepage

2https://fedoraproject.org/wiki/Publican
3https://daringfireball.net/projects/markdown/
4https://github.com/
5https://about.gitlab.com/

18

https://fedoraproject.org/wiki/Publican
https://daringfireball.net/projects/markdown/
https://github.com/
https://about.gitlab.com/

1.2 Automated Testing of Technical Documentation
Ensuring that the technical documentation is correct plays a major role in the process
of technical writing. Although, a number of tasks in the process are very repetitive
and this can introduce a lot of unnecessary mistakes as a result.

Another part of the documentation testing is a peer review, but it is very time
consuming and doesn’t provide the same level of reliability as automated testing
frameworks.

The factors that has to be tested vary from product to product and also by
internal policies, for example IBM Style Guide [1]. IBM Style Guide has become a
major influence on technical writing and defines a set of rules that should be met in
order to produce a professional documentation.

As semantic markup languages have specific rules that has to be met, and de-
pending on a documentation builder, there are no means to enforce all rules with an
universal test. This requires a flexibility in the testing framework and a possibility
to omit some of the tests for certain scenarios.

Besides testing of overall documentation integrity and accuracy, technical doc-
umentation contains constructs that can be categorized and individually tested,
including:

• Hyperlinks,
• Software package names and functionality,
• Blacklisted text constructs or words, for example IBM Style Guide defined

phrase/word blacklist,
• Redundant words,
• Typos.
An example how automated documentation testing helps is spell checking. Even

though IDEs today contain sophisticated algorithms, these are not perfect and com-
monly not extensible with an external rule checker (or they are not easily extensible).

Another example would be link testing, where the testing framework can test all
hyperlinks individually, process the server response and report it to the user.

19

1.3 Continuous Integration / Continuous Deployment
(CI/CD)

"Continuous integration is the practice of routinely integrating code changes into the
main branch of a repository, and testing the changes, as early and often as possible.
Ideally, developers will integrate their code daily, if not multiple times a day."[6]

As with software code, documentation set needs to be rendered. Often a ren-
dered documentation contains incorrect format. This can be avoided by providing a
preview mechanism before merging the proposed changes to the main code stream.
Some servers provide this functionality in form of static page hosting (GitHub Pages)
or as a combination of CI/CD and static page hosting (Netlify CI/CD). Netlify
CI/CD also provides "pull request previews" that automatically build a documen-
tation preview for each pull request committed in a supported Git hosting server.
These previews are made available by sending an automatically generated hyperlink
as a pull request message.

The motivation behind CI is to avoid reviewing and testing a large amount of
code at the same time. Author’s technical writing experience proves that this ap-
plies to documentation as well. A paragraph shorter than this one might require
feedback from several people in order to be technically accurate. A text change with
size of this section can very likely become unmergeable.

CI principles are supported by tools such as issue trackers, for example, JIRA6

and versioning systems supporting branching. These systems are, on their own,
not sufficient and effective CI implementation, writers have to learn and implement
habits such as not posting a large amount of text at the same time.

Branching and CI principles have its downsides as well, for example, if the re-
quired change is minuscule, the user has to go through the same process (create
an issue, create a branch, post a pull request, resolve conflicts, close issue) as with
larger changes.

The code has to be verified before it is merged into the production branch, this
is where automated testing becomes a part of CI. Tests are ideally executed as soon
as the code change is proposed. Automated documentation testing as part of a
CI/CD pipeline was a motivation behind creating Emender documentation testing
framework.

In terms of Continuous Deployment/Delivery (CD) - a fully automated product
6https://www.atlassian.com/software/jira

20

https://www.atlassian.com/software/jira

delivery, the current situation is that the final verification (sanity check) of the
documentation has to be done manually, so this term does not currently apply in
the context of delivery of technical documentation.

Jenkins CI/CD

"Jenkins is a self-contained, open source automation server which can be used to
automate all sorts of tasks related to building, testing, and delivering or deploying
software."[7]

Jenkins is one of the most popular open-source CI/CD platforms, written in Java.
It supports variety of version control tools. Typical use case is an automated software
builder, where Jenkins is connected to a version control system and any change
triggers a predefined set of actions, for example, a build sequence. Its popularity
generated a vast variety of verified plugins. Jenkins can be used both from GUI and
CLI.

For automation of the technical documentation process, Jenkins is used in similar
manner. It builds the documentation set and provides reports about the builds.
Implementation of Emender into Jenkins enables the platform to generate test result
trends in form of graphs and a "weather report" in Jenkins Dashboard.

Netlify CI/CD

Netlify7 is a freemium product suite, which goal is to provide a CI/CD platform for
web development and deployment. It has a seamless integration with GitHub and
can be configured to fetch, build and deploy a website with every code change. It
utilizes Linux servers, and can be configured with custom tooling, such as Antora8.
Users can get the rendered content hosted on the Netlify subdomain or can configure
the page to be deployed on self-managed servers with custom domain name. It
can utilise GitHub Webhooks9 and GitHub commit checks, where a hyperlink with
rendered documentation preview can be accessed directly from GitHub Pull request.

7https://www.netlify.com/
8https://antora.org/
9https://developer.github.com/webhooks/

21

https://www.netlify.com/
https://antora.org/
https://developer.github.com/webhooks/

2 Emender - Documentation Testing Frame-
work

Emender is an open-source documentation testing framework written in Lua pro-
gramming language for Linux. It enables creation of Lua test scripts that can be run
upon documentation sets written in AsciiDoc or DocBook. If the required documen-
tation structure is implemented, Emender will provide various functions for content
analysis, Jenkins integration with REST API and several result presentation meth-
ods. Implementation of this framework enables users to focus on test design and not,
for example on the parsing methods of the content. Emender has been successfully
implemented in production on CI/CD pipelines, testing extensive documentation
set for a commercial product.

The Emender tests are run in Jenkins by executing a shell script that converts
the documentation into DocBook and runs the Emender framework with a Test
Pack written in Lua passed as an argument of a shell script to Emender.

2.1 Emender Framework Structure
Developers of the Emender decided to divide the core into two modules - inter-
nal functions and libraries, hosted in emender1 GitHub repository, and external
libraries, hosted in emender-lib2 GitHub repository. Libraries from both reposito-
ries are required in order to implement Emender.

This section will briefly list the available functions.

Internal Functions and Libraries

Internal functions include, but are not limited to functions for:
• File manipulation,
• Text parsing,
• Table manipulation,
• Presenting the results in various formats, including HTML, XML, JSON and

plain text,
• Functions that handle test result printing (with tags FAIL, WARN, PASS, ERROR,

INFO and others).
1https://github.com/emender/emender
2https://github.com/emender/emender-lib

22

https://github.com/emender/emender
https://github.com/emender/emender-lib

External Libraries

The external libraries add support for:
• DocBook markup language,
• XML files,
• Publican, a DocBook documentation builder,
• Several functions for handling of SQLite3 database files.

2.2 Emender Tests
Tests are implemented as Emender, in Lua language and executed by passing them
into an emend CLI provided by Emender. The tests are structured in the following
manner, enabling grouping similar tests into one unit:

Emender Test Structure

• Test Pack: Contains a number of Test Suites. Test Pack is represented
by a whole test result file, for example, results.json or results.xml.

• Test Suite: Contains a number of Test Cases. Can contain zero tests, if
more test granularity is not needed.

• Test Case: A singular unit, produces statuses and status messages for a par-
ticular test

2.3 Presentation of Test Results
Emender writes test results dynamically to several file types in the folder from which
command emend is executed:

• JSON in Listing 2.1,
• Plain-text results in Listing 2.2,
• HTML results formatted with Bootstrap, Figure 2.1
• JUnit XML test results consumed by Jenkins CI/CD to generate test result

graphs and calculate test result trends, Listing 2.3.

23

Listing 2.1: Example results.json results file generated from a Test Pack
1{
2" metadata " : {
3"name ":" Guide -Name"
4},
5" results " : {
6" Test_Suite_1 ": {
7" Test_Case_1 ": [
8{
9" status ": "fail",
10" message ": "The YEAR entity should include 2020.
11Found: ’2019’ "
12}
13]
14}
15}
16}

Listing 2.2: Example plain-text results file generated from a Test Pack
1---------------------------------
2:: CustomerPortalRequirements ::
3---------------------------------
4
5Description : Checks if the guide is prepared
6to be published on the Customer Portal .
7Authors : <author_name >
8Emails : <author_email >
9Last Modified : <date >
10Tags: DocBook , WritingStyle
11Required tools:
12
13Test Case: testChunkableTagsIDsTag PASS
14
15[INFO] Checking
16**en -US/ Desktop_Migration_and_Administration_Guide .xml **.
17[PASS] All **2** chunkable tags are ok

24

Fig. 2.1: HTML with Test Results, figure is cropped to fit the page.

25

JUnit XML Test Results

This file is consumed by Jenkins to generate statistics in Jenkins Dashboard, and
mirrors the structure of the JSON file in a specific XML format. JUnit XML files
reports only failed tests, non-reported tests are considered passed.

Listing 2.3: Example JUnit XML file with Test results
1<testsuites >
2<testsuite name =" CustomerPortalRequirements ">
3<testcase name =" testCase1 " classname =" testCase1 ">
4</testcase >
5<testcase name =" test1" classname =" test1">
6<error message =" Test failed .’"> Test failed .</error >
7</testcase >
8<testcase name =" test2" classname =" test2">
9</testcase >
10</testsuite >
11<testsuite name =" GitMergeLeftovers ">
12</testsuite >
13</testsuites >

2.4 Implementation of Emender on Documentation
This section will discuss installation and implementation of Emender onto a doc-
umentation set. Emender documentation for installation and implementation is
incomplete, so the implementation of the existing Test Suite was problematic. This
section will serve as a guide how to install Emender and implement "Technical Ac-
curacy Tests"3 onto a documentation set.

Installing Emender

Emender is hosted on GitHub and its core consists of two repositories – emender4

and emender-lib5. Resources from both repositories have to be installed with
instructions present in the respective README.md file. Each repository contains a
Makefile that facilitates the installation.

3https://github.com/emender/technical-accuracy-tests
4https://github.com/emender/emender
5https://github.com/emender/emender-lib

26

https://github.com/emender/technical-accuracy-tests
https://github.com/emender/emender
https://github.com/emender/emender-lib

Requirements for the document and document structure:

• Tested AsciiDoc file has to be named master.adoc ("include" AsciiDoc direc-
tives can be used in this file). A workaround for using different names is to
edit the shell script run.sh, but this is generally not recommended.

• It is necessary that text in AsciiDoc does not contain "less-than" (<), or "more-
than" (>) characters. This causes the test to run and seemingly exit with-
out errors, but the test fails to detect any links. This is because Publican
fails to build the documentation from DocBook format that is converted from
AsciiDoc. "Less-than" and "more-than" signs are reserved characters in XML
format, and if not escaped properly, will cause Publican to fail. Escaped char-
acters can be used instead.

• Shell script run.sh has to be executed from the documentation folder, or
anywhere with –XtestDir=<docDir> referring to the documentation folder.

The shell script doesn’t have error handling, so these requirements had to be tested
manually.

Procedure executed by the testing shell script

If the requirements for the document and document structure are met, the shell
script will execute the following procedure:

• Recognise the input file format (AsciiDoc, DocBook or other)
• If script detects an AsciiDoc format, it creates a DocBook project and converts

the AsciiDoc into DocBook. If the conversion fails, it wont report an error,
but the Test Pack will subsequently report no hyperlinks found.

• Run the Test Pack and write the results into XML, JUnit, HTML, JSON, and
plain-text files.

Executing Emender tests

Tests are implemented by writing tests in Lua, utilising Emender libraries. The
tests are executed with command emend and proper arguments as per emend
man page. Tests natively support DocBook language. AsciiDoc can be used, but
the document has to be converted to DocBook prior running the tests. In the Test
Packs available in emender GitHub project, this is done with asciidoctor and
publican by recognizing the file structure, and if needed, converting into DocBook
format and subsequently running the Test Pack, all within a single Bash script6.

6https://github.com/emender/technical-accuracy-tests/blob/master/run.sh

27

https://github.com/emender/technical-accuracy-tests/blob/master/run.sh

2.5 Examples of Implemented Test Suites
GitMergeLeftovers

Verify that the book does not contain any Git Merge Leftovers. Git merge proce-
dure uses strings of less-than(<), more-than(>) and equal (=) signs to differentiate
between existing and incoming changes. These are often left in the documentation.

TestPackages

Test that the documentation contains only current versions of the packages. This
Test Suite apply only for DocBook as AsciiDoc does not contain a markup for
packages.

• testCommandTag - Test packages discovered from parsing the command in a
tag <command>.

• testPackageTag - Test packages discovered from parsing the command in a
tag <package>.

GuideStatistics

Collects various statistics about the book, for example, page count, word count,
number of used graphics, frequency of used tags, and others.

TestLinks

Test suite verifies that all external links are functional, for example:
• The test reports codes 403, 404 or 500 (and fails),
• FTP links, if HTTP protocol is also available but not used then fail,
• Red Hat customer portal links (access.redhat.com),
• Blacklisted hyperlinks,
• Redirected hyperlinks (test fails),
• Hyperlinks without page titles (test fails).

TestWritingStyle

This Test Suite for DocBook and partly with AsciiDoc . Tests violations in writ-
ing style. The Test Suite can use external dictionaries that serve as blacklists or
whitelists. Examples of Test Cases:

• testSpellChecking compares documentation external blacklists and whitelists.
• testSentenceCase Tests that the sentences have capital letters only in the

beginning of the sentence.

28

3 False Positives in Tests
A false positive is demonstrated on example from JSON file holding test results
generated by test from Emender Test Suite "Technical Accuracy Tests". The test
is testing hyperlinks and reporting a test failure after detecting a FTP URL. The
result is not necessarily "false", but it holds an informative value to the user.

Listing 3.1: Truncated results.json with false-positive result
1{
2" metadata " : {
3"name ":" unknown "
4},
5" results " : {
6" TechnicalAccuracy ": {
7" testExternalLinks ": [
8{
9" status ": "fail",
10" message ": "ftp :// mirror .vutbr.cz/
11uses FTP protocol , but you can
12replace it with HTTP and it will work ."
13}
14]
15}
16}
17}

False positives can be induced in tests deliberately or can result from imperfect
test design. The possible motivation behind deliberate induction of false positives
might be to bring the attention to a certain part of a tested documentation, even
if it is grammatically and syntactically correct. Possible real-life scenario might be
an enforcement of internal writing style rules or as 3.1 shows, to discourage using of
FTP protocol when HTTP protocol is available. Currently, Emender does not have
a functionality to handle false positives.

29

4 Current Implementation of Emender in Jenk-
ins CI/CD

This section describes the current implementation of Emender tests in Jenkins
CI/CD infrastructure used by company’s documentation team. Even though the
framework can be run locally, this configuration automates the build and testing
process and ensures access to the results to all technical writers in the company.

4.1 Characteristics of the Implementation
• The documentation set is hosted in a Git repository.
• Emender test framework is installed on the same machine that hosts Jenkins

CI/CD.
• Each book (guide) has a specific job (item) created in a Jenkins that is con-

nected to the specific Git repository.
• The Jenkins job (item) is configured to run a specific TestPack on a documen-

tation set, triggered by a Git commit.
• The results are generated as build artifacts in Jenkins. (static HTML, JSON,

JUnit XML and plain-text results.)
• The test results are processed by Jenkins with a JUnit plugin, consuming JU-

nit XMLs that Emender creates as a build artifact. 1

Fig. 4.1: Test result trends generated by JUnit plugin in Jenkins.

Jenkins Dashboard provides a build "weather report", where user can see trends
in test results – if the tests are failing frequently (in multiple succeeding builds) the
"weather" is reported as sunny, cloudy or stormy, respectively.

1https://plugins.jenkins.io/junit/

30

4.2 Viewing Emender Generated Test Results
If the configuration is correct and the Test Pack was executed successfully, Emender
generates several test result formats, one of them being a structured JSON.

The structure of the result files reflect the three-level structure mentioned in 2.2

4.3 Drawbacks of the Current Implementation
Bad accessibility of test results

Main drawback of a Emender is that it does not provide a way to comfortably work
with the results for an inexperienced user. It was developed primarily for Jenkins
CI/CD deployment and depends on a user’s working knowledge of Jenkins and it’s
configuration to run Emender in order to be able to see and work with the test
results:

• The tests are available only through Jenkins Dashboard, which is also used for
rendering of the books – Jenkins instance is hosting a large number of projects.

• The Jenkins host machine is running a significant number of jobs and that
makes connection to it very slow.

• The tests are not available by their commit ID but by a job number that incre-
ments with each commit, which makes finding a specific Git commit difficult.

• The results in HTML are only readable when user downloads the entire job ar-
tifact folder from Jenkins (the HTML is dependent on Bootstrap and jQuery).

No mechanism for false positives handling

Another limitation of Emender documentation framework is that tests regularly re-
port false positives (tests failing on documentation that is written correctly). This
can be solved by implementation of a suitable "waiver" module.

The design of a web application presented in the following sections tries to over-
come these shortcomings and provide the user with a graphical interface that can
be accessed via a concise REST API.

31

5 Proposed Improvements for Emender
A proposed improvement for Emender implementation in CI/CD is to design an in-
dependent web application emenderwebservice. The application will serve a dynamic
test result website with a mechanism that allows waiving of false positive results.
The motivation behind a service independent from Emender is to avoid rewriting
the Emender core and subsequently the existing tests. The web application will be
subsequently incorporated into CI/CD pipeline for complete test automation.

The following section will list the requirements that were identified for the im-
plementation. These will be described in more depth in later sections.

5.1 List of Requirements

• Storing the Emender test results with unique identification in a database,
• A graphical user interface to present the test results,
• A mechanism to handle false positive results,
• A JUnit XML result file generator for each test result pack,
• REST API endpoints for:

– Retrieving the test results from Jenkins CI/CD,
– Returning results in JUnit XML format to Jenkins CI/CD,
– A graphical user interface.

Fig. 5.1: emenderwebservice design diagram

32

5.2 Identification of Emender Test Results
In order to properly store, display and manipulate the test results, their proper
identification has to be secured. JSON result files generated by Emender in Jenkins
CI/CD only contain structured test results (see Section 2.2), and limited informa-
tion about the tested document and the parent documentation set.

The identification of test results is divided into two sections – unique identifica-
tion of a specific revision (Git commit) of a guide and unique identification of test
results within the JSON results file.

5.2.1 Attributes Used for Identification of Documentation and
Test Results

Attributes uniquely identifying a specific guide (book):
• Product Name (OpenShift),
• Product Version (Dedicated, Container Platform),
• Book Name (Getting Started, Migration Guide),
• Git Commit ID identifying a specific Book revision.

Attributes uniquely identifying test results. These attributes reflect the test struc-
ture in Section 2.2:

• Test Pack name is a collection of tests run by Jenkins that produces a single
results.json file,

• Test Suite is a collection of Test Cases,
• Test Case is a most granular element in this collection, however, it runs

a number of tests under one Test Case.

5.2.2 Uniquely Identifying a Specific Book

A specific book is identified by a unique combination of Product Name, Product
Version and Guide Name.

5.2.3 Uniquely Identifying a Specific Git Revision of a Book

A specific Git revision of a book is identified by a unique combination of Product
Name, Product Version, Guide Name and Git Commit ID

33

5.2.4 Uniquely Identifying JSON Files with Test Results

A JSON test result file is associated with a specific Git revision of a Book and a
specific Test Pack that was executed on the Book. The JSON file only contains
information about Test Pack and Tests executed within it, the information about a
Book has to be received from another source.

A method for acquiring the missing information is to create a unique REST re-
source for each Product, Product Version, Guide and Test Pack (combined):

/api/results/<product>/<version>/<guide>/<git_commit>/<test_pack>

This endpoint will serve as an endpoint for Jenkins CI/CD generated test results
(in JSON format). A Jenkins build for a specific Guide will have to be configured
manually to send the test results to a specific endpoint identifying this Guide and
a Test Pack that was executed on this book. For example, curl1 can be used to
send the results to emenderwebservice.

For brevity, the following text will use an abbreviation <test_results> as an
abbreviation for <product>/<version>/<guide>/<git_commit>/<test_pack> as
it represents a single JSON file.

5.2.5 Uniquely Identifying the Results within the JSON File

The information gathered in Section 5.2.4 uniquely identifies the JSON generated by
the Emender run by the Jenkins CI/CD. In order to handle the test results and to
enable an implementation of a waiving mechanism, the identification has to include
more granularity.

These attributes have been identified as necessary for unique identification of
test results:

• Test Suite name (for example: TestLinks),
• Test Case name (for example: FTP link check, 404 checks),
• Results from Test Cases: Test Cases are not granular and hold several

tests under one name.

These two sets of attributes will be categorized in a SQLite database tables with
an appropriate relationships between tables.

1https://curl.haxx.se/

34

https://curl.haxx.se/

5.3 Storing the Test Results in a Database
In order to make the results widely available, a reliable storing mechanism has to be
implemented. The test results will be stored in a database that enables their unique
identification and easy access.

SQLite32 RDBMS (Relational Database Management System) has been chosen
for its widespread use, flexibility, simplicity and support by Flask framework and
Python.

5.4 Graphical User Interface (GUI) with a Waiving
Mechanism

GUI

A graphical user interface that will dynamically present the test results in a web
page. The web page will source the information from the SQLite3 database. The
GUI will implement a mechanism to handle false positive results ("waiver").

Mechanism to handle false positive results

Waiver is used to mark false positives in test results. With complete test automation,
when tests are implemented as a part of CI/CD, a falsely failed test will cause CI/CD
pipeline to fail as well. Tests can be (and some of the tests are) designed so certain
results are marked as FAIL even if the documentation is valid, to get the user’s
attention to the content, as stated in Section 3. Waiver gives user an option to
disregard these results and therefore further customize the testing infrastructure.

Proposed implementation is a dynamic generation of HTML input elements in
a GUI that will register the waived failed result in a database with the test results.

5.5 JUnit XML Generator
The existing implementation generates test result trends by a JUnit plugin in Jenk-
ins CI/CD. Because the results will be altered with the waiving mechanism, a new
JUnit XML will have to be generated and provided in a REST API for each com-
mit(build), so Jenkins can be configured to download and process the file. This
makes the implementation compatible with the existing infrastructure.

2https://www.sqlite.org/index.html

35

https://www.sqlite.org/index.html

6 emenderwebservice in Jenkins CI/CD
This section will introduce the process of generating the Emender test results with
Jenkins and how emenderwebservice fits into it.

The process requires the Jenkins CI/CD to be configured to run the Test Pack on
a specific guide stored in a Git repository, send the JSON test results to emenderweb-
service and subsequently retrieve the JUnit XML file from the application’s REST
API.

This section will briefly introduce the standard use case scenario of emenderweb-
service with Jenkins CI/CD.

Generation of Emender test results by Jenkins

When a user makes a Git commit to a documentation repository specified in a
Jenkins job, Jenkins runs a certain Test Pack on the documentation. This job
generates several result files, one of them being results.json.

Sending the results to a emenderwebservice REST API

Jenkins CI/CD sends results.json to emenderwebservice application’s REST API
to a specific URI: /api/results/<test_results> where <test_results> repre-
sent:
<product>/<version>/<guide>/<git_commit>/<test_pack>. This URI uniquely
identifies the results, and serves as an identifier for a web application on how to
store the results.

JSON validation with JSON Schema

The emenderwebservice validates the JSON with a JSON schema and if the JSON
is valid, it is handled for a further processing. If the JSON is invalid, the REST API
responds with an error message in JSON format and a HTTP error code.

Generation of an Test Results HTML with a "waiver" functionality

The server generates the HTML with a waiving functionality. It means that if the
test is reported as FAIL a checkbox is generated next to the result that enables user
to "waive" the failed result as a false positive. This is handled by an AJAX jQuery
JavaScript and sent to a emenderwebservice REST API for storing the waived result
in the database.

36

The server generates an HTML and serves it on the same URI as where the
results were sent: /api/results/<test_results>. The list of all available test
results pages will be available at the root URI (/).

emenderwebservice generates JUnit XML for Jenkins test result trends

The server generates a JUnit XML file with a list of Test Suites and Test Cases,
reporting failed tests. This JUnit XML will be available at a similar URI as test
results: /api/junit/<test_results>. The JUnit XML file is processed by the
Jenkins JUnit XML plugin used to generate test reports in Jenkins dashboard.

The next chapter will describe the technologies that will be used to implement
the solutions.

37

7 Technologies Used For Implementation
This section will briefly introduce the technologies and standards used for the im-
plementation of emenderwebservice.

7.1 REST and RESTful Web Services
"Representational State Transfer (REST) is a software architectural style that de-
fines a set of constraints to be used for creating web services. Web services that
conform to the REST architectural style, termed RESTful web services, provide in-
teroperability between computer systems on the Internet."[8]

• REST was designed to provide a uniform API between web services. It has
become de-facto a standard for communication between web services.

• REST provides uniform and predefined set of stateless operations, meaning
that the communicating parties have no prior knowledge of the state of the
other.

• In a RESTful web service, requests made to a resource’s URI will elicit a
response with a payload formatted in either HTML, XML, JSON or other
format. The response can confirm that some alteration has been made to the
stored resource.

REST Terminology

REST uses terminology defined by World Wide Web Consortium (W3C)[8]:

Representation: "A representation is a piece of data that describes a resource
state."

Web service: "A Web service is a software system designed to support interop-
erable machine-to-machine interaction over a network." Web services communicate
by exchanging messages.

Resource: "A resource is defined to be anything that can have an identifier.
Although resources in general can be anything, this architecture is only concerned
with those resources that are relevant to Web services and therefore have some addi-
tional characteristics. In particular, they incorporate the concepts of ownership and
control."

Identifier: "An identifier is an unambiguous name for a resource." An identifier
should be realized with a URI. An identifier identifies a resource that is relevant to
the architecture.

38

URI/Resource Relationships: "By design a URI identifies one resource."
Resource is used for anything that might be identified by a URI. All of resource’s
essential characteristics can be conveyed in a message.

Idempotency: Being idempotent in means that a specific request will always
elicit the same response. For example if client requests server to update a resource
with a HTTP method PUT, it will overwrite the existing resource present on the
particular URI. In contrast, HTTP method POST does not elicit the same response,
sending a request with a HTTP method POST will always create a new unique re-
source.

REST, CRUD and HTTP Methods

REST, being a specification, not a protocol, does not define a specific HTTP meth-
ods (or, in some literature, HTTP verbs)[9] that should be associated with either
Create, Read, Update or Delete functions.

Even though that are no recommendations for using a specific HTTP verb for
a specific CRUD function, a chosen implementation should be consistent across
modules in a given application [10], [11].

HTTP verbs are used to identify what operation client wants to do on a particular
resource, REST specification uses those to identify the CRUD methods. HTTP verbs
are transmitted in a header of HTTP request.

REST and JavaScript Object Notation (JSON)

As stated in the previous section, REST is a specification, not a protocol, the format
of response objects (send in the body of a HTTP response) is also flexible, but a
recommendation is to use either JSON or XML format. The application developed
in this thesis uses responses in JSON format[12].

39

7.2 Flask Web Development Framework
Flask1 web application framework has been selected for the implementation for its
simplicity and for being Python native. Flask is a popular web microframework.
"Micro", means that it requires little to zero boilerplate code in order to implement
a complete web application. It has a built-in development server that enables quick
deployment and debugging. Flask is by its nature extensible by plugins (imple-
mented as Python modules).[13]

Examples of companies that use Flask for web development include Netflix, Red
Hat, Reddit, Airbnb.[14]

Flask was designed to be a modular framework, by itself providing a limited
functionality. For example, it does not provide any database support, but relies on
a number of extensions (for example, Python libraries) to provide the functionality.

Flask main Python dependencies:
• Werkzeug, providing WSGI and routing and debugging subsystems
• Jinja2, a templating engine
• Click, CLI integration

The following chapter will focus on introducing the Flask dependencies Werkzeug
and Jinja.

Werkzeug Web Server Gateway Interface (WSGI)

"Web Server Gateway Interface is a specification that describes how a web server
communicates with web applications, and how web applications can be chained to-
gether to process one request. WSGI is a Python standard described in PEP 3333."[15]
[16]

WSGI is an API that allows web servers to communicate with Python web
applications. It is an interface specification, not a framework or a library.[17]

A WSGI server serves as a "translator" for request/response pairs exchanged by
the web server and a Python application. An example of WSGI server is Gunicorn2.

1http://flask.pocoo.org/
2https://gunicorn.org/

40

http://flask.pocoo.org/
https://gunicorn.org/

Werkzeug HTTP request and response processing

WSGI provides full HTTP request processing capability, where the outgoing data
are constructed to be a valid HTTP response and the incoming HTTP requests are
directly parsed into Python objects.

In Flask, the HTTP request/response pairs are handled by Python functions
and objects. Before this is enabled a Python module has to be "registered" as a
Flask application by creating a Flask object with the Python module passed as an
argument.

Route Handling

"The association between a URL and the function that handles it is called a route."[18]

Listing 7.1: Example Flask route
@<app_name >. route (’/ api/’, methods =[’GET ’])
def example ():

return ’<h1 > Example </h1 >’

The route handling is implemented by using a Python function decorator
@app.route that parses and provides the URI segments to the function it decorates.

The Listing 7.1 demonstrates a handling of /api/ route, where the route handles
a GET request send to URI <serverip>/api/. The function creates a HTTP response
with a simple HTTP heading and sends it to the client.

app used in the function decorator is a Flask object that was initialized in the
application definition file.

Flask class Response is used for response construction and can have several
forms, for example a rendered Jinja template with or without passed variables,
JSON response constructed by a jsonify() function or a simple HTML code as
showed in the Listing 7.1. The Response object is created as a return value of the
route() function.

The default media type mimetype of the response is text/html, but this can be
set according to the required response type, for example jsonify sets the mimetype
to application/json.

41

Flask folder structure

Flask recognizes the project files in a specific folder structure:
• /templates for Jinja template files,
• /static for static structures such as JavaScript code, Bootstrap source files

and images,
• routes.py for route definitions.

7.3 Jinja Template Engine
Jinja is a template engine used with Python. Flask utilizes Jinja as a web template
engine and the following text will talk exclusively about web templating. Jinja tem-
plating is also implemented in an automation tool Ansible. 3

"A template engine is software designed to combine templates with a data model
to produce result documents." [19]

Template is a text-file containing constructs that enable template engines to
dynamically generate web pages (or, in general use – any source code).

This functionality is utilized in this thesis to create a dynamic web site that
handles and provides a GUI for Emender documentation test results.

Jinja Templates

A Jinja template, rendered by a Python function flask.render_template(), pro-
vides a connection between a Python application and the HTML response with
access to variables passed from a Python script. It integrates Jinja functions, pro-
viding, among others looping functions and conditional constructs. These constructs
can be used to dynamically generate a web site content.

In Flask, any code can be incorporated and handled by a Jinja template. An
example shows how a simple iteration over a list passed by a Python script can
generate an HTML document. To maintain separation of concerns, all relevant
logic should be isolated from the template, as much as possible. To avoid injection
attacks, MarkupSafe Python package is installed as Jinja dependency. MarkupSafe
escapes untrusted input when rendering templates.4

3https://www.ansible.com/
4https://markupsafe.palletsprojects.com/en/1.1.x/

42

https://www.ansible.com/
https://markupsafe.palletsprojects.com/en/1.1.x/

Listing 7.2: Example Jinja HTML template generating a simple URL list
{% for URI in uri_list %}

{{ URI }}

{% endfor %}

Listing 7.3: Example HTML generated with a Jinja template
http :// www. google .com

http :// www.vutbr.cz

https :// flask.

palletsprojects .com

7.4 SQLite3
SQLite35 is an SQL relational database that requires zero configuration, is serverless
(It does not require a server. the database is stored in a local binary file) and
fully supported by Python standard library sqlite3. Because of these lightweight
characteristics, the library was chosen as the database engine for this project.

7.5 Converting Python Applications to Web Applica-
tions with Flask

Flask, along with Werkzeug and Jinja, enables developing and connecting of Python
application so the developer can integrate Python libraries for variety of tasks and
does not have to rely on the plugins developed natively for the framework. In other
words, a Python application that was originally designed to output information to
a console or a local graphical user interface without networking capability can be
easily, with Flask, transformed into a Web application and deployed on a WSGI
server.

5https://www.sqlite.org/about.html

43

https://www.sqlite.org/about.html

8 emenderwebservice Implementation
This chapter will describe the implementation of emenderwebservice to require-
ments defined in Chapter 5 using technologies specified in Chapter 7.

During the design of the implementation there were a number of unsuccessful
attempts with technologies that were proven to be inefficient, or the learning curve
was very steep. A direct approach was tested to be the most effective, without
ORMs (Object Relational Models) or Flask plugins.

The main blocks of the application are:
• REST API management utilizing Flask routes.py script,
• Database of resources (test results) implemented in SQLite3,
• Database controller,
• GUI with waiving mechanism generated by Flask templates and JavaScript,
• Validation of incoming JSONs with JSON schema,
• JUnit XML generator.

Fig. 8.1: emenderwebservice block diagram

The application was implemented in Flask using software pattern similar to
Model-View-Controller. This pattern emphasizes the separation of modules, so these
can be developed and tested individually. This method is called a “separation of
concerns”.

44

8.1 Model-View-Controller (MVC) Architecture
The implementation tries to follow the principles of MVC, where Models, Views
and Controllers are implemented as individual components, thus helping to achieve
separation of concerns. With an increasing separation of the components increases
the flexibility of the design and an ability to test the components individually.

"User requests are routed to a Controller which is responsible for working with
the Model to perform user actions and/or retrieve results of queries. The Con-
troller chooses the View to display to the user, and provides it with any Model
data it requires."[20]

• View in this implementation is represented by Jinja HTML templates.
• Controller is represented by a route handling script routes.py
• Model is represented by SQLite3 database and the database controller, which

defines the form of the data presented to a Jinja HTML template.

8.2 REST API Implementation

Fig. 8.2: Diagram with processes in Emender web application.

REST API serves as an access point to the application from the network. As
stated in Section 7.2, the application is accessible by sending requests to REST API
endpoints, which Werkzeug WSGI parses as various Python Flask objects, notably

45

Flask.request, that enables to access various parts of a HTTP request. Full list
of available properties are in the Flask documentation 1

The REST API in emenderwebservice is implemented and the processes managed
by the Python script routes.py. routes.py serves as a controller that constructs
views by manipulating data in the database and presenting them through the Jinja
templates.

Handling Resources

The resources are created by storing the information in a database. There are
plugins for Flask that are designed to help with development of REST APIs, for
example Flask-Restful, but after experiments, a direct approach was chosen without
Python object abstraction.

When the client sends a request for a non existing resource, Flask automatically
returns a HTTP 404 Not Found Status code. Similarly, if the request contains an
unsupported HTTP Verb for a given route, an error 400 Bad request is returned
automatically.

8.2.1 REST API Endpoints

This section will describe the implemented REST API endpoints (routes) and the
Python functions invoked with the request:

/api/results/<test_pack>

A request to this endpoint invokes rest_test_results() function, and depending
on the HTTP method used, the following scenarios are executed:

PUT method
The PUT method is used, because an idempotent result is anticipated - an existing
JSON on a specific URI will be rewritten by the subsequent calls on the same URI,
as stated in Section 7.1.

The script parses the values from the URI path variables and validates the re-
ceived body of the request.

If the received body does not comply with the JSON Schema 8.3, the script re-
turns a ValidationError exception in JSON format and HTTP 400 Bad Request
status code in the response.

1https://flask.palletsprojects.com/en/1.1.x/api/#flask.Request

46

https://flask.palletsprojects.com/en/1.1.x/api/#flask.Request

If the JSON complies with the JSON Schema, the JSON with the variables
parsed from the URI path are passed to the Database controller to be stored in the
database.

If there is a problem with parsing the values into the database, the Controller
sends a JSON status with a HTTP 500 Internal Server Error status code to
the client.

Finally, if the Test results were stored in the database successfully, the script
returns a JSON with HTTP 200 OK status code in the response to the client.

GET method
The script validates the request properties (these are parsed from URI), and sends
a request to a Database controller to retrieve the test results. If the Database
controller reports that the test results could not be found in the database, the script
returns a JSON status with a HTTP 404 Not Found status code to the client.
Otherwise, a script returns a rendered Jinja template results.html containing
GUI with the test results.

/api/junit/<test_pack>

A request to this endpoint invokes rest_junit() function and following scenarios
are executed:

GET method
The script parses the path from URI and queries the Database controller for results
for a specific Book tested by a specific Test Pack. If the Database controller is not
able to find the result an error response in JSON and HTTP 404 Not Found status
code is returned back to the client.

Otherwise, a script queries Database connector for a list of waived results for
a specific Book and a Test Pack. The list of waived results can be empty.

Finally, the function junit_rendering() is called with the results retrieved from
the database and the generated response is returned to the client.

/api/WaivedResults/<test_pack>

A request to this endpoint invokes rest_waiving() function, and the following sce-
narios are executed:

POST method
The function parses the JSON sent by the AJAX function within a Test Result GUI
and requests Database controller to process the waived failed result.

47

The function returns JSON status messages with HTTP status codes - 500
Internal Server Error if the Database controller was unable to save the result,
or 200 OK otherwise.

/api/results and /

A request to these endpoints invokes rest_list_of_results() function. The func-
tion parses the URI elements and queries the Database controller for a list of avail-
able Test Result pages in URL forms. This list is rendered and returned as a HTML
document with a Jinja template list_of_results.html. /api/results redirects
to /.

48

8.3 JSON Schema
JSON generated by Emender has a specific structure, illustrated in Listing 2.1. To
ensure that only valid JSONs are further processed, a JSON Schema validation is
implemented. 2.

Even though JSON Schema is not standardized by a authority, it is widely used
and several implementations exists. This application uses the jsonschema Python
package available from the Python standard library (PyPi).

JSON Schema in 8.1 is presented in a nested JSON format as well, with the data
structures describing the required structure.

The JSON schema is validated by jsonschema.validate() function and raises
an jsonschema.ValidationError exception when the tested JSON does not comply
to the schema.

Listing 8.1: JSON Schema for Emender test results, truncated
{

" $schema ": "http :// json - schema .org/ schema #",
"$id ": "emender -results -json - schema ",
"title ": " Emender Results JSON Schema ",

" description ": "JSON Schema for Emender ",
"type ": " object ",
" properties ": {

" metadata ": {
" description ": "Holds metadata for the results ,

typically a name object .",
"type ": " object ",
" properties ": {

"name ": {
" description ": "Holds a name of the guide .",
"type ": " string "

}
}, " required ": [" name "]

},
" results ": {},

" required ": [" metadata ", " results "]
}

2https://json-schema.org/

49

https://json-schema.org/

8.4 Database Implementation
The database is the core of the emenderwebservice implementation. It is designed to
provide a structure for the tests generated by Emender CI/CD that enable a unique
identification of tests and their relationship with a specific documentation. The
database is implemented in SQLite3, the schema visualizing relationships between
tables is included as Appendix A. There were several versions of the database design
tested, most notably an attempt in making the test results as granular as possible
(by using tables TestSuite and TestResults). These tables were unused in the
final implementation but are left in the design for further possible utilization.

This section will introduce the relationships in more detail and describe the func-
tionality the relationships enable.

The database is implemented in SQLite3 dialect of SQL. There were experiments
with ORMs (Object Relational Models) such as SQLAlchemy3, but the required ef-
fort for the steep learning curve was not effective for the implementation.

The SQL script used to generate the database is available in the archive attached
with the thesis (database-definition.sqlite). The database was created and
debugged using DB Browser for SQLite4.

Foreign keys

The relationships between tables in the implementation are defined by foreign keys.
To facilitate a unique identification of a row in a table, a Primary key is defined. For
a unique identification, the values that are used as Primary key must be unique. This
can be implemented by adding a new column with auto-indexing (auto-increment)
ability. To define a one-to-many relationship between two tables, this Primary
key is defined in the “many” side as a foreign key. This is used extensively in
the implementation, as the structure requires cascaded one-to-many relationship to
uniquely identify resources.

Constraints

“Constraints in SQL are used to specify rules for the data in the table.”[21]
Examples of commonly used constraints include PRIMARY KEY, FOREIGN KEY,

NOT NULL and UNIQUE. This keywords can define relationships between rows in a
3https://www.sqlalchemy.org/
4https://sqlitebrowser.org/

50

https://www.sqlalchemy.org/
https://sqlitebrowser.org/

table, for example, to enforce unique combination of values in the rows. This is
utilized extensively in the implementation.

ProductName, ProductVersion, BookName tables

This triad is used to uniquely identify a specific Book for a specific ProductName
and ProductVersion. The tables are connected in a cascade of one-to-many rela-
tionships with constraints ensuring a unique combination of ProductName,
ProductVersion and BookName, for example RHEL 8 Installation Guide.

ProductName

Defines a Product Name, has to be unique in the table, for example OpenShift.

ProductVersion

Defines a Product Version of a specific product. The value don’t have to be unique
in the table, but a constraint is implemented to ensure a unique ProductName and
ProductVersion combination.

BookName

Defines a specific Book type, for example Installation Guide. The value don’t have
to be unique in the table, but a constraint is implemented to ensure a unique
ProductVersion and BookName combination, and the cascaded relationship between
ProductVersion and ProductName ensures that there will be unique combinations
of ProductName, ProductVersion and BookName.

GitCommitID table

Identifies a specific revision of a specific book. Shares a one-to-many relationship
with BookName table.

TestPack table

Identifies a TestPack. TestPack is a highest structure of Tests, defined in Section
2.2.

WaivedFailedResults table

Holds unique identification for waived failed test results. The values are tied to a spe-
cific BookName and a specific TestPack. It is Git-Book-revision agnostic, meaning
that the waived results will be valid for all revisions of a BookName.

51

Originally, the design aimed to store the waived test results in TestResults table,
but because of the table being connected to a specific GitCommit, not a BookName,
this approach was chosen. The table holds values retrieved from the REST API
/api/WaivedResults/, uniquely identifying the test results with the following columns:

• TestSuiteName: A Test Suite name
• TestName: A Test Case name
• ResultMessage: A message reported with the result.
• WaivedFailedResultUniqueName is a concatenation of the previous values

in the following format TestSuiteName_TestName[Message]. This column
simplifies the algorithm for rendering of test result template.

This table is used in conjunction with RawJSONs table to generate the JUnit
XML file and to correctly generate the test result Jinja template (graph calculations
and setting the values of waiving checkboxes).

RawJSONs table

Holds raw valid JSON test result files retrieved from the Jenkins CI/CD in a string
format. These are used to simplify rendering of test result template. ResourceURIs
are stored here to simplify the process of rendering the list of available test results
with list_of_results.html template. The values in rows have to create a unique
combination. Used in conjunction with WaivedFailedResults to generate the JUnit
XML file and to correctly generate the test result Jinja template (graph calculations
and setting the values of waiving checkboxes).

TestSuite, TestName and TestResults tables

These tables enable unique identification of tests within a single JSON file. The cas-
caded relationship structure is identical to that between ProductName, ProductVersion
and BookName tables, so it won’t be reiterated in the text. TestResults table holds
uniquely identifiable test results, because it holds a Foreign key of GitCommitID.
This ensures the row values can be traced to a specific Git revision of a specific
book, tested with a specific TestPack.

These tables are populated by parsing the JSON file with the database controller.
This triad was used in the previous iterations of the implementation design. It can
be deleted but is left in the implementation to enable possible further improvements.
Downside of this decision is that the database storage will be utilized ineffectively.

52

8.5 Database Controller
The database controller is a script that utilizes the sqlite3 Python standard library.
The controller uses SQL statements to read and modify the database content. The
sqlite3 module also provides exceptions that can be handled by the script.

Parsing and storing the test results from a JSON file

The function add_and_parse_json() processes information retrieved from the client,
containing identification of a specific tested book and a JSON file with test results.

The information about the book is processed first by sequentially adding the
ProductName, ProductVersion, BookName and GitcommitID. Subsequently, the JSON
is added in its raw (string) form with a ResourceURI containing the URI of the Test
Results, and finally, the test results are parsed and stored by iterating through the
JSON structure.

The data are committed to the database only when all information all processed
correctly without raising a sqlite3.OperationalError exception. If the exception
is raised, the data are not committed to the database and a a JSON object and
HTTP status code Internal Status Error 500 is sent to the client (with Flask
Response object constructed by function jsonify).

Handling Waived failed results in a database

Waived results are handled by functions get_waived_results(), add_waived_result()
and remove_waived_result().
These functions receive an identification of a specific Book, Test Pack and Test
Result that is to be added or removed from the database. These functions uti-
lize helper functions to retrieve a specific primary key for a Book and Test Pack
get_bookname_pk() and get_testpack_pk().

Handling Database exceptions

The controller implements handling of sqlite3.OperationalError and
sqlite3.DatabaseError exception. These exceptions cause the functions to return
a negative value, which the main function represents in a JSON format and HTTP
Error Code to the client.

Current implementation does not contain an optimal exception handling, so the
database debugging has to be done in server’s Python console, where the function
name that caught the exception is displayed.

53

8.6 GUI with Test Results
HTMLs presenting the test results are generated with Jinja templates and are con-
structed by calling a Python Flask function return_template. The following section
will describe the Jinja templates in more detail.

There are two documents generated with templates:
• results.html serves as a responsive dynamic website with presentation of

test results of a specific revision of a book tested with a specific Test Pack.
A single results.html document is regarded as a "test resource".

• list_of_results.html retrieves the list of available "test resources".

8.7 results.html Test Results Jinja Template
This template is used to render a dynamic and responsive HTML file. The HTML
file includes a mechanism for reporting of false positive results by implementing
a JavaScript jQuery library. The example of a generated HTML from the results.html
template is presented in Figure 8.3

The template is formatted with Bootstrap framework and a supplemental CSS
(Cascading Style Sheets) utilizing its grid system with containers, rows and naviga-
tion pillars.

The Test Suite tabbing functionality is implemented by the tabbable class from
jQuery JavaScript library. The jQuery library is also used to issue AJAX calls to a
waiving mechanism.

Sections of the results.html template:

• A header, containing the information about the book and Test Pack, sourced
from the Test URI

• A row with tabs, containing Test Suite selectors with status bullets, signaliz-
ing the state of the Test Suite (Passed = Green bullet, Failed = Red bullet,
No tests = Blue bullet)

• A row with a selected Test Suite, containing graph statistics about the Test
Cases and foldable tabs, each containing a Test Case with a status bullet.
The tab contains test results with a possibility to waive failed results.

54

Fig. 8.3: emenderwebservice presentation of results

Sources of data for results.html template

Jinja template is populated by generating a HTML code by iterating through several
Python dictionaries holding the data. These data are retrieved from the database
and constructed when the user makes and API call to an endpoint
/api/results/<test_pack>.

Sources of data:
• json_dict

A dictionary that contains a JSON object converted into a dictionary. It is
dynamically built by a script which retrieves the JSON from the database.
(JSON is stored in the database as a string).

• product, version, book, gitcommitid, testpack
Values parsed from the request’s URI.

55

• json_dict_graphs_suites, json_dict_graphs_tests
Dictionaries calculated dynamically and source data for test statistics.

• waived_results
A list is generated by retrieving a list of waived failed results for a specific
Book tested by a specific Test Pack.

Generation of test statistics

The statistics about tests are dynamically generated by calculate_graphs function
that calculates the percentages of the graph rows and the states of the status bullets,
stores it in dictionaries json_dict_graphs_suites and json_dict_graphs_tests
for Test Suite and Test Case statistics. These dictionaries reflect the json_dict
structure to simplify the identification of the graphs.

The graphs for individual Test Cases were not implemented, the dictionary holds
bullet statuses displayed next to an individual Test Case.

8.8 Identification and Waiving of Failed Results
While the HTML with the results is being generated, the logic in template recog-
nizes a failed test result and generates a HTML input field with a checkbox, with a
unique identification (HTML input tag attribute id) next to the result. The tem-
plate sets or unsets the checkbox depending on the results registration in the waiving
mechanism by comparing the generated identification of the checkbox with the list
in waived_results. Previous experiments included generating a form with WT-
Forms5 plugin.

When the user changes the value of the checkbox, a JavaScript included in the
template sends an AJAX request to the REST endpoint
/api/WaivedResults/<test_pack> with the unique identification of checkbox and
its state. AJAX is only implemented for the waiving mechanism and user has to
send another request to the API to receive an updated GUI (reload the page).

Asynchronous JavaScript and XML (AJAX)

"AJAX enables web applications to send and retrieve data from a server asyn-
chronously (in the background) without interfering with the display and behavior
of the existing page."[22]

5https://wtforms.readthedocs.io/en/2.3.x/

56

https://wtforms.readthedocs.io/en/2.3.x/

9 Implementation Testing and Deployment
The testing of emenderwebservice application was done by running the application
in a Flask development server and using Postman API testing platform1, illustrated
in Figure 9.1, to generate custom HTTP requests and analyze the responses.

Fig. 9.1: Postman API testing platform

Testing JSON Schema

To test the JSON schema, various minimal changes were made to a valid JSON that
made the JSON to be rejected with an error message in JSON format, which was
then analyzed.

Testing database

Database was tested by sending several valid JSON files to the application and
browsing the database with DB Browser for SQLite and visually, through the gen-
erated GUI with tes

1https://www.postman.com/

57

https://www.postman.com/

Testing the application with cURL

Application can be tested with cURL by sending a JSON file and retrieving the
results, see Listing 9.1. A valid and invalid JSON file is included in the attached
archive, folder project_root/emenderwebservice/jsons/.

Listing 9.1: Testing emenderwebservice with cURL
#!/ usr/bin/env sh

send JSON to emenderwebservice
curl -X PUT \
http ://< server_ip >/ api/ results /< product_name >\
/< product_version >/< book_name >/< commit_ID >/< test_pack_name >\
-H "Content -Type: application /json "\
-d @< relative_path_to_json >

retrieve junit xml
curl -X GET \
http ://< server_ip >/ api/junit/< product_name >\
/< product_version >/< book_name >/< commit_ID >\
/< test_pack_name > > results .junit

see GUI with test results in a browser
<browser > \
http ://< server_ip >/ api/ results /< product_name >\
/< product_version >/< book_name >/< commit_ID >/< test_pack_name >

9.1 Jenkins Configuration
The following section presents the example configuration of the Jenkins project. The
example assumes that the Git repositories are set to correctly and contain a specific
documentation. Listing 9.2 shows a configuration for RHEL 4.1 Product Guide
tested with Test Pack named technical_accuracy. The Jenkins job first generates
the test results files with a pre-configured Emender tests and sends a results.json
file to the emenderwebservice REST API. The script then downloads and re-writes
the results.junit file.

Because of the nature of the jobs, to incorporate the waived results into the
Jenkins project (and process the JUnit XML file) a new build has to be triggered.
(The author did not find a suitable way that would enable rewriting of existing build
artifacts or re-running the same build).

58

Listing 9.2: Example Jenkins configuration
#!/ usr/bin/env sh

./ run_emend .sh

curl -X PUT \
http ://< server_ip >/ api/ results /RHEL /4.1/ Product_Guide /\
$GIT_COMMIT / technical_accuracy \
-H "Content -Type: application /json" -d @results .json

curl -X GET \
http ://< server_ip >/ api/junit/RHEL /4.1/ Product_Guide /\
$GIT_COMMIT / technical_accuracy > results .junit
$GIT_COMMIT contains a Git commit that triggered the build.

Implementation of project into a production server

Flask provides a development server, but using it for production is not recommended.
A production-grade WSGI server is recommended, for example Gunicorn2 Listing
9.3 shows an example how to run the application with the server.

Listing 9.3: Running emenderwebservice with Gunicorn server
gunicorn <name_of_python_script >:< Flask_app_name >
gunicorn main:app

2https://gunicorn.org/

59

https://gunicorn.org/

10 Suggestions for Further Project Develop-
ment

Automated Jenkins job generation

The module emenderwebservice can be a starting point for a more complex web
application. As stated in Section 4.3, the integration in Jenkins CI/CD requires user
to understand the platform and its configuration, The adding of new documentation
is not straightforward for the inexperienced users, even though the configuration
would be very similar if not the same with the existing documentation. To solve
this, a Jenkins REST API capabilities can be implemented into emenderwebservice
to create new Jenkins jobs interactively.

Improved documentation for the project

The Emender project on GitHub is divided into several repositories. The reposito-
ries contain read-me files that document the implementation, but having a concise
documentation, hosted on, for example GitHub Pages1 might bring more popularity
to the project. This thesis might serve as a suitable source of documentation.

Tutorials how to develop Lua tests

The tests developed for the framework cover a significant number of use cases. The
documentation across different documentation teams might be structured differently
and require test modifications. Currently, even though the source code for the test
is well documented, the further development of tests is for the inexperienced user
complicated.

Supporting pull request testing in Jenkins CI/CD

The current implementation is designed to test the main branches of the documen-
tation. The process of submitting new documentation uses pull request method.
Configuring Jenkins CI/CD to test pull requests would bring less incomplete contri-
butions. The downside for the Jenkins CI/CD host would be a significant increase
of builds that will require more server resources.

1https://pages.github.com/

60

https://pages.github.com/

11 Conclusion
The goal of the thesis was to implement an integrated framework for testing of
technical documentation written in AsciiDoc markup language.

First sections discussed the aspects of writing technical documentation, pre-
sented several semantic markup languages, principles of Continuous Integration and
Delivery and its role in technical writing. An open-source documentation testing
framework Emender and its capabilities were introduced along with false positives
in testing of technical documentation and a mechanism for their handling.

The thesis further discussed current implementation of Emender in an enter-
prise environment and a proposal of its extension with a RESTful web application
providing test aggregation and a mechanism to handle false positive results. The
implementation of the web application was discussed with a brief description of
used technologies. The thesis was concluded with a testing of an implementation
and suggestions for a further project development.

The major disadvantage of Emender project is an incomplete documentation,
despite being extensively developed and successfully implemented onto enterprise
documentation. This thesis tried to partly cover these shortcomings by providing
an overview of functions and a description of implementation of the framework onto
a technical documentation written in AsciiDoc. The implementation of emender-
webservice partly mitigates the problems with the current Emender implementation
in CI/CD and provide a concise graphical user interface with test results aggregation
in SQLite3.

The utilization of Flask web development framework in the implementation
proved that it is ideal for a development of Python-based dynamic websites and
provides excellent capabilities for RESTful services. Its extensibility enables fur-
ther possible improvements of the application, notably an interface utilizing Jenkins
REST API for documentation test management.

Implementation of emenderwebservice has a potential to bring more flexibility to
the automated documentation testing process and may encourage new contributions
to the Emender project.

61

Bibliography
[1] DERESPINIS, Francis. The IBM style guide: conventions for writers and ed-

itors. 2011. Upper Saddle River, NJ: IBM Press/Pearson, c2012. ISBN 978-0-
13-210130-1.

[2] Semantic | Definition of Semantic by Merriam-Webster [online]. [cit.
2020-05-31]. Available at: https://www.merriam-webster.com/dictionary/
semantic

[3] Markup Language | Definition of Markup Language by Merriam-Webster [on-
line]. [cit. 2020-05-31]. Available at: https://www.merriam-webster.com/
dictionary/markup%20language

[4] VOMÁČKA, Pavel. Automatizovaná kontrola technické dokumentace. Brno,
2017 [cit. 2020-05-31]. Diplomová práce. Masarykova univerzita, Fakulta in-
formatiky. Vedoucí práce RNDr. Adam Rambousek, Ph.D..

[5] AsciiDoc Home Page [online]. [cit. 2020-05-31]. Available at: http://
asciidoc.org/

[6] Continuous integration vs. continuous delivery vs. continuous deployment
[online]. [cit. 2020-05-31]. Available at: https://www.atlassian.com/
continuous-delivery/ci-vs-ci-vs-cd

[7] Jenkins User Documentation [online]. [cit. 2020-05-31]. Available at: https:
//jenkins.io/doc/

[8] Web Services Architecture [online]. [cit. 2020-05-31]. Available at: https://
www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[9] HTTP request methods - HTTP | MDN [online]. [cit. 2020-05-31]. Available at:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

[10] Are REST and HTTP the same thing? - The RESTful cookbook [online].
[cit. 2020-05-31]. Available at: http://restcookbook.com/Miscellaneous/
rest-and-http/

[11] What is REST – Learn to create timeless RESTful APIs [online]. [cit. 2020-05-
31]. Available at: https://restfulapi.net/

[12] JSON vs XML – REST API Tutorial [online]. [cit. 2020-05-31]. Available at:
https://restfulapi.net/json-vs-xml/

62

https://www.merriam-webster.com/dictionary/semantic
https://www.merriam-webster.com/dictionary/semantic
https://www.merriam-webster.com/dictionary/markup%20language
https://www.merriam-webster.com/dictionary/markup%20language
http://asciidoc.org/
http://asciidoc.org/
https://www.atlassian.com/continuous-delivery/ci-vs-ci-vs-cd
https://www.atlassian.com/continuous-delivery/ci-vs-ci-vs-cd
https://jenkins.io/doc/
https://jenkins.io/doc/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
http://restcookbook.com/Miscellaneous/rest-and-http/
http://restcookbook.com/Miscellaneous/rest-and-http/
https://restfulapi.net/
https://restfulapi.net/json-vs-xml/

[13] Foreword;Flask 1.0.2 documentation [online]. [cit. 2020-05-31]. Available at:
http://flask.pocoo.org/docs/1.0/foreword

[14] Flask - Reviews, Pros & Cons | Companies using Flask [online]. [cit. 2020-05-
31]. Available at: https://stackshare.io/flask

[15] PEP 3333 – Python Web Server Gateway Interface v1.0.1 | Python.org [on-
line]. [cit. 2020-05-31]. Available at: https://www.python.org/dev/peps/
pep-3333/.

[16] What is WSGI? — WSGI.org [online]. [cit. 2020-05-31]. Available at: https:
//wsgi.readthedocs.io/en/latest/what.html.

[17] Werkzeug — Werkzeug Documentation [online]. [cit. 2020-05-31]. Available at:
https://werkzeug.palletsprojects.com/en/1.0.x/.

[18] GRINBERG, Miguel. Flask web development: developing web applications with
Python. Second edition. Beijing: O’Reilly, 2018. ISBN 978-1491991732.

[19] MANOLESCU, Dragos, Markus VOELTER and James NOBLE. Pattern lan-
guages of program design 5. Upper Saddle River: Addison-Wesley, 2006. ISBN
03-213-2194-4.

[20] Overview of ASP.NET Core MVC [online]. [cit. 2020-05-31]. Available at:
https://docs.microsoft.com/en-us/aspnet/core/mvc/.

[21] SQL Constraints [online]. [cit. 2020-05-31]. Available at: https://www.
w3schools.com/sql/sql_constraints.asp

[22] GUNASUNDARAM, Rajesh. Learning Angular for .NET Developers. Birming-
ham: Packt Publishing, 2017. ISBN 978-1-78588-428-3.

63

http://flask.pocoo.org/docs/1.0/foreword
https://stackshare.io/flask
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://wsgi.readthedocs.io/en/latest/what.html
https://wsgi.readthedocs.io/en/latest/what.html
https://werkzeug.palletsprojects.com/en/1.0.x/
https://docs.microsoft.com/en-us/aspnet/core/mvc/
https://www.w3schools.com/sql/sql_constraints.asp
https://www.w3schools.com/sql/sql_constraints.asp

List of abbreviations
API Application Programming Interface
CD Continuous Delivery/Deployment
CI Continuous Integration
CLI Command Line Interface
FTP File Transfer Protocol
GUI Graphical User Interface
IDE Integrated Development Environment
HTTP HyperText Transfer Protocol
IDE Integrated Development Environment
JSON JavaScript Object Notation
MVC Model-View-Controller
ORM Object Relational Model
RDBMS Relational Database Management System
REST Representational State Transfer
SQL Structured Query Language
URI Uniform Resource Identifier
XML eXtensible Markup Language

64

List of appendices

A Database Relationship Diagram 66

B Attachment 67
B.1 Folder Structure . 67
B.2 Running the Development Server . 67
B.3 Project Structure . 67

65

A Database Relationship Diagram

Fig. A.1: Database table relationships

66

B Attachment

B.1 Folder Structure
/

project_root/.............................Project root folder
emenderwebservice/...........................Python module

database/
database.db..........................SQLite3 database
database-definition.sql

jsons.....................Sample JSONs with test results
static...............Bootstrap, jQuery libraries and CSS
templates................................Jinja templates
__init__.py........................Module initialization
calculate_graphs.py
database_controller.py
json_schema.py
junit_rendering.py
routes.py............................REST API definition

flask_run.sh...........Bash script that runs a local server
.flaskenv.......................Flask environment variables
Pipfile..........................Dependency definition file
main.py

PeterMackoDiplomaThesis.pdf

B.2 Running the Development Server
1. Install pipenv.
2. Navigate to the project_root folder.
3. Run $pipenv shell. This installs the dependencies from the Pipfile.
4. Run $./flask_run.sh. This starts the development server and deploys the Flask
application emenderwebservice on 0.0.0.0:5000.
5. See Section 9 for application testing.

B.3 Project Structure
The project was implemented inside Python virtual environment, managed by pipenv.
A folder structure recommended by Flask and Python was implemented, with the
main Python package called emenderwebservice. The Flask application is defined
in main.py which includes the Python package emenderwebservice.

67

	Introduction
	Technical Documentation
	Semantic Markup Languages
	Automated Testing of Technical Documentation
	Continuous Integration / Continuous Deployment (CI/CD)

	Emender - Documentation Testing Framework
	Emender Framework Structure
	Emender Tests
	Presentation of Test Results
	Implementation of Emender on Documentation
	Examples of Implemented Test Suites

	False Positives in Tests
	Current Implementation of Emender in Jenkins CI/CD
	Characteristics of the Implementation
	Viewing Emender Generated Test Results
	Drawbacks of the Current Implementation

	Proposed Improvements for Emender
	List of Requirements
	Identification of Emender Test Results
	Attributes Used for Identification of Documentation and Test Results
	Uniquely Identifying a Specific Book
	Uniquely Identifying a Specific Git Revision of a Book
	Uniquely Identifying JSON Files with Test Results
	Uniquely Identifying the Results within the JSON File

	Storing the Test Results in a Database
	Graphical User Interface (GUI) with a Waiving Mechanism
	JUnit XML Generator

	emenderwebservice in Jenkins CI/CD
	Technologies Used For Implementation
	REST and RESTful Web Services
	Flask Web Development Framework
	Jinja Template Engine
	SQLite3
	Converting Python Applications to Web Applications with Flask

	emenderwebservice Implementation
	Model-View-Controller (MVC) Architecture
	REST API Implementation
	REST API Endpoints

	JSON Schema
	Database Implementation
	Database Controller
	GUI with Test Results
	results.html Test Results Jinja Template
	Identification and Waiving of Failed Results

	Implementation Testing and Deployment
	Jenkins Configuration

	Suggestions for Further Project Development
	Conclusion
	Bibliography
	List of abbreviations
	List of appendices
	Database Relationship Diagram
	Attachment
	Folder Structure
	Running the Development Server
	Project Structure

