BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION

FAKULTA ELEKTROTECHNIKY
A KOMUNIKACNICH TECHNOLOGII

DEPARTMENT OF TELECOMMUNICATIONS

USTAV TELEKOMUNIKACI

IMPLEMENTATION AND EXTENSION OF THE TECHNICAL
DOCUMENTATION TESTING FRAMEWORK

IMPLEMENTACE A ROZSIRENIi FRAMEWORKU PRO TESTOVANI TECHNICKE DOKUMENTACE

MASTER'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. Peter Macko
AUTOR PRACE
SUPERVISOR Ing. Petr ligner

VEDOUCI PRACE

BRNO 2020

VYSOKE UCENI FAKULTA ELEKTROTECHNIKY

TECHNICKE A KOMUNIKACNICH
V BRNE TECHNOLOGII

Diplomova prace

magistersky navazujici studijni obor Telekomunikaéni a informaéni technika

Ustav telekomunikaci

Student: Bc. Peter Macko ID: 164326
Roc¢nik: 2 Akademicky rok: 2019/20
NAZEV TEMATU:

Implementace a rozsireni frameworku pro testovani technické dokumentace

POKYNY PRO VYPRACOVANI:

Cilem diplomové prace je vytvoreni uceleného frameworku uréeného k testovani technické dokumentace psané
ve znacCkovacim jazyce AsciiDoc. V ramci semestralni prace student popiSe specifika tvorby technické
dokumentace a formaty pouzivané pro tvorbu strukturované technické dokumentace, popiSe vyznam
sémantického znackovani a prabézné integrace (Cl) v kontextu tvorby technické dokumentace. Déle se seznami
se s moznostmi nabizenymi systémem Emender, ktery je uréeny pro deklaraci a spousténi testll nad dokumenty.
Student seznami s metodami pro identifikaci a oznaceni “false positives” ve vysledcich test(, tzv. “waiver”, a pro
manualni “odmavani” chybnych vysledku test(l. V praktické ¢asti student navrhne strukturu databaze vhodné pro
ulozeni informaci ziskanych od uzivatele a implementuje framework Emender na dokumentaéni set psany ve
formatu AsciiDoc. V diplomové praci student implementuje do systému Emender webovou sluzbu s REST API
komunikujici s databazi. Pro implementaci pouzije jazyk Python a vhodny webovy framework (napf. Flask).
VSechny testy budou podporovat format AsciiDoc. Dale popiSe mozZnosti prezentace vysledkd testl a navrhne
zpUsob navazani testovaciho frameworku na systémy pro zajisténi pribézné integrace (napf. systém Jenkins).
Vysledky testl na zvolenych technickych dokumentech vhodnym zplisobem prezentuje a okomentuje. Na zaveér
student navrhne moznosti dal$iho vyvoje projektu.

DOPORUCENA LITERATURA:

[1]1 HILLAR, Gastgon. C. Building RESTful Python Web Services. Paperback. United Kingdom: Packt Publishing -
ebooks Account, 2016. ISBN 978-1786462251.

[2] GRINBERG, Miguel. Flask Web Development, 2nd Edition. 2. United Kingdom: O'Reilly Media, 2018. ISBN
9781491991725.

Termin zadani: 3.2.2020 Termin odevzdani: 1.6.2020

Vedouci prace: Ing. Petr ligner
Konzultant: Pavel TiSnovsky, Red Hat Czech s.r.o.

prof. Ing. Jifi MiSurec, CSc.
pfedseda oborové rady

UPOZORNENI:

Autor diplomové prace nesmi pfi vytvareni diplomové prace porusit autorska prava tretich osob, zejména nesmi zasahovat nedovolenym
zpusobem do cizich autorskych prav osobnostnich a musi si byt piné védom nasledkd poruseni ustanoveni § 11 a nasledujicich autorského
zakona €. 121/2000 Sb., v€etné moznych trestnépravnich disledkd vyplyvajicich z ustanoveni ¢asti druhé, hlavy VI. dil 4 Trestniho zakoniku
€.40/2009 Sb.

Fakulta elektrotechniky a komunika¢nich technologii, Vysoké uceni technické v Brné / Technicka 3058/10 / 616 00 / Brno

ABSTRACT

The thesis discusses automated testing of technical documentation written in Asci-
iDoc markup language using open-source documentation testing framework Emender
implemented in ClI/CD. The framework was extended with a RESTful web applica-
tion emenderwebservice, providing a graphical user interface with test results and a
mechanism to waive false positive test results. Web application was implemented with
Flask WSGI web application framework along with a database enabling aggregation and
unique test identification. The application simplifies access to test results generated
by Emender in Cl/CD and provides a concise graphical user interface for technical writers.

KEYWORDS

Automated testing of technical documentation, documentation testing framework
Emender, AsciiDoc, Jenkins, CI/CD, False positive results in technical documentation
testing, Flask

ABSTRAKT

Praca sa zaoberd automatizaciou testovania technickej dokumentacie napisanej v znac-
kovacom jazyku AsciiDoc pomocou open-source frameworku testovania technickej do-
kumentacie Emender implementovaného na CI/CD platforme. Framework bol rozsireny
o webovl aplikaciu emenderwebservice s REST API, ktora poskytuje uzivatelské grafické
rozhranie s vysledkami testov a mechanizmom na odrieknutie faloSne pozitivnych vy-
sledkov testov. Webova aplikacia bola vytvorend pomocou WSGI frameworku na tvorbu
webovych aplikacii Flask s databazou ktord umoznuje agregaciu vysledkov testov a ich
unikatnu identifikaciu. Aplikacia ulahCuje pristup ku vysledkom testov vygenerovanych
frameworkom Emender v Cl/CD systémoch a poskytuje technical writer-om ucelené uzi-
vatelské prostredie.

KLICOVA SLOVA

Automatizacia testovania technickej dokumentacie, framework na testovanie technickej
dokumentacie Emender, AsciiDoc, Jenkins, Cl/CD, falosne pozitivne vysledky pri testo-
vani technickej dokumentacie, Flask

MACKO, Peter. Implementation and Extension of Technical Documentation Verification
Framework. Brno, Rok, 67 p. Master's Thesis. Brno University of Technology, Fakulta
elektrotechniky a komunikaénich technologii, Ustav telekomunikaci. Advised by Ing. Petr
ligner

Vysazeno pomoci balicku thesis verze 3.03; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZSIRENY ABSTRAKT

Praca pojednava o tvorbe technickej dokumentacie, na ktort sa posledné roky
v ramci vyvoja softvéru kladie stdle vacsi doraz. Technicka dokumentacia sluzi
ako jedno z premosteni medzi vyvojarom softvéru a koncovym pouzivatelom. Pri
coraz komplexnejsich softvérovych implementéciach je preto nevyhnutnou sicastou
dodavaného softvéru.

Fazy procesu tvorby technickej dokumentacie si podobné ako pri vyvoji soft-
véru — dizajn, implementdcia a verifikacia. Jedna z tiloh autora technickej dokumen-
tacie (Technical Writer) je na seba prevziat rolu koncového zakaznika. Tento po-
hlad umoznuje vyvojarom mimo iného identifikovat nedostatky v technickej stranke
dokumentacie, ktoré mohli byt pocas vyvoja prehliadnuté.

Vo faze verifikdcie technickej dokumentacie sa vyskytuji tlohy, ktoré st efek-
tivne automatizovatelné — napriklad testovanie funkénosti hypertextovych odkazov,
vyskytu zakazanych slov alebo Tubovolnych atributov definovanych znackovacimi
jazykmi. Pre tento tcel bol vyvinuty framework Emender, ktory poskytuje plat-
formu na pisanie testov technickej dokumentacie v jazyku Lua. Na tomto frame-
worku boli implementované testy pouzité v praxi, ako napriklad:

e testovanie funkc¢nosti odkazov,

 testovanie balickov, pri ktorom sa overi, ¢i dany balicek patri danej distribucii

softvéru (Linux),

* testovanie, ¢i dokument neobsahuje Speciélne znaky po zlu¢ovani vetiev (merge)

pomocou systému riadenia revizii Git,

» testovanie stylistiky,

o testovanie korektného nastavenia atributov dokumentu, a iné.

Emender poskytuje vysledky testov v niekolkych formatoch — JSON, JUnit XML,
HTML a cisty text. Testy moézu byt spustané lokalne na vyziadanie, ale po ich im-
plementacii do systému Jenkins CI/CD aj automaticky pri zmene dokumentécie.
Pre tento sp6sob pouzitia ma vsak aktualna implementicia frameworku Emender
isté nedostatky. Medzi ne patri napriklad nutnost poznat systém Jenkins CI/CD
a jeho struktiru. Ten navyse zastresuje vela tloh, ¢im sa stava pomaly a nepre-
hladny. Vysledky testov si dostupné len pod ¢islom zostavenia (buildu) v Jenkinse,
¢o znemoznuje ich jednouchu identifikaciu.

Niektoré testy mozu uz od svojho navrhu hlasit chybové vysledky. Dévodom
moze byt nespravny navrh testu, ale tiez sa moze jednat o jeho Ziadicu vlastnost
— chybovy vysledok moze byt pouzity na ziskanie pozornosti pouzivatela na dant
¢ast dokumentdacie, ako napriklad pouzitie nevhodného (i ked funkéného) formatu
hypertextového odkazu. Framework Emender neobsahuje mechanizmus, ktorym by

mal pouzivatel moznost takéto vysledky filtrovaf.

Hlavnym cielom tejto diplomovej prace bolo navrhnutie webovej aplikacie

emenderwebservice poskytujicej REST aplika¢né rozhranie (API). Téato aplikacia

poskytuje vysledky testov v prehladnom grafickom rozhrani, pricom obsahuje mech-

anizmus na spracovanie falosne pozitivnych (false positive) vysledkov testov agrego-

vanych v databaze SQLite. Aplikacia bola navrhnuta tak, aby bola spatne kompat-

ibilné s existujicou implementaciou frameworku Emender v Jenkins CI/CD.

Stru¢éné zhrnutie funkénosti navrhnutej aplikdcie v existujicej CI/CD implemen-

tacii:
1.
2.
3.

Pouzivatel spravi zmenu v dokumentacii ulozenej v Git repozitari.

Tato zmena spusti testovanie novej revizie dokumentacie v systéme Jenkins.
Vysledky testov vo formate JSON odosle Jenkins na REST API aplikécie
emenderwebservice, ktora vysledky identifikuje podla parametrov v URI a ulozi
ich do databazy.

. Na rovnakej URI aplikdcia poskytne grafické rozhranie, ¢im sa zabezpeci

jednoduchéa identifikacia testov. Toto grafické rozhranie poskytuje mechaniz-

mus na spracovanie chybnych vysledkov.

. Webova aplikacia vygeneruje a poskytne systému Jenkins subor JUnit XML,

ktory Jenkins spracuje za tc¢elom vyhodnotenia trendov vysledkov testov
v grafickej podobe.

Pri implementéacii navrhnutej webovej aplikacie emenderwebservice boli vyuzité

nasledujice technologie:

WSGI (Web Server Gateway Interface) framework Flask pre vytvorenie REST
aplikacného rozhrania,

sablénovy procesor Jinja zahrnuty vo frameworku Flask pre vytvorenie grafick-
¢ho rozhrania,

relacny databdzovy systém SQLite3 pre agregaciu testov.

Aplikacia je postavend na ndvrhovom vzore MVC (Model-View-Contoller), pri¢om:

»,Model“ predstavuje databaza, ktorej struktira bola navrhnuta tak, aby
vhodne reprezentovala unikatne vysledky testov,

»,View" predstavuje Jinja sablona, prostrednictvom ktorej su dynamicky gen-
erované vysledky testov s mechanizmmom na spracovanie falosne pozitivnych
vysledkov,

,Controller predstavuje jednak poskytované REST aplikacné rozhranie, ale

tiez cCasti aplikacie zabezpecujice jej riadenie a spracovanie vysledkov.

Spracovanie falosne pozitivnych vysledkov je zabezpecené tak, ze pouzivatel ma
moznost takéto vysledky identifikovat prostrednictvom grafického rozhrania. Oz-
nacenim vysledku ako falosne pozitivneho sa spusti JavaScript kod, ktory vykond
AJAX volanie na REST API aplikicie emenderwebservice. Toto volanie obsahuje
informaciu o oznaceni vysledku spolu s jeho identifikdtorom. Aplikacia po prijati

poziadavky cez REST API nasledne ttto zmenu ulozi do databazy.

Zaver

Implementacia webovej aplikacie emenderwebservice do frameworku Emender posky-
tuje jednoduché pouzivatelské prostredie a jednotni agregaciu vysledkov testov pris-
tupnu cez REST API. Unikatna identifikicia testov je zabezpecena pouzitim Ci-
tatelnych unikatnych URI parametrov, ktoré poskytuji informacie o danej doku-
mentacii a pouzitom teste. Emender je open-source projekt, ktory nasiel svoje
uplatnenie v praxi, avsak jeho nedostatky v podobe nedostatocénej dokumentacie
a neoptimalnej prezentacie vysledkov testov mézu branit jeho SirSiemu nasadeniu.
Tato praca sa usiluje niektoré tieto nedostatky odstranift, mimo iného poskyt-
nutim uceleného prehladu o frameworku a implementéacii uzivatelsky prijemnej prezen-

tacii vysledkov testov.

Prohlaseni

Prohlasuji, Ze svou diplomovou praci na téma ,,Jmplementace a rozsireni frameworku pro
testovani technické dokumentace® jsem vypracoval samostatné pod vedenim vedouciho diplomové
prace a s pouzitim odborné literatury a dalSich informacnich zdroj, které jsou vSechny citovany v
praci a uvedeny v seznamu literatury na konci prace.

Jako autor uvedené diplomové prace dale prohlasuji, Ze v souvislosti s vytvorenim této
diplomové prace jsem neporusSil autorska prava tretich osob, zejména jsem nezasahl nedovolenym
zpusobem do cizich autorskych prav osobnostnich a/nebo majetkovych a jsem si plné védom
nasledku poruSeni ustanoveni § 11 a nasledujicich autorského zakona c. 121/2000 Sb., o pravu
autorském, o pravech souvisejicich s pravem autorskym a o zméné nékterych zakonu (autorsky
zakon), ve znéni pozdéjsich predpisti, vCetné moznych trestnépravnich disledki vyplyvajicich z
ustanoveni Casti druhé, hlavy VI. dil 4 Trestniho zakoniku ¢. 40/2009 Sb.

V Brné dne 1.6.2020 e
podpis autora

DECLARATION

| declare that | have written the Master's Thesis titled “Implementation and Extension of
Technical Documentation Verification Framework” independently, under the guidance of
the advisor and using exclusively the technical references and other sources of information
cited in the thesis and listed in the comprehensive bibliography at the end of the thesis.

As the author | furthermore declare that, with respect to the creation of this Master's
Thesis, | have not infringed any copyright or violated anyone’s personal and/or ownership
rights. In this context, | am fully aware of the consequences of breaking Regulation §11
of the Copyright Act No.121/2000 Coll. of the Czech Republic, as amended, and of
any breach of rights related to intellectual property or introduced within amendments to
relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009
Coll., Section 2, Head VI, Part 4.

author’s signature

ACKNOWLEDGEMENT

I'd like to thank Ing. Petr ligner and Ing. Pavel TiSnovsky, PhD. for the supervision of
my thesis. I'd also like to thank my family and friends for the unconditional support they

provided during the writing of the thesis.

author’s signature

Contents

Introductionl 14
1__Technical Documentation| 15
(1.1~ Semantic Markup Languages|. 16
(1.2 Automated Testing of Technical Documentation| 19
(1.3 Continuous Integration / Continuous Deployment (CI/CD)[. 20

2 Emender - Documentation Testing Framework | 22
2.1 Emender Framework Structurel. o000 22
2.2 Fmender Testdo 23
2.3 Presentation of Test Resultsl 23
[2.4 Implementation of Emender on Documentation| 26
[2.5 Examples of Implemented Test Suites| 28

B TFalse Positi 1 Tests 29
[4 Current Implementation of Emender in Jenkins CI/CD)| 30
[4.1 Characteristics of the Implementation. 30
[4.2 Viewing Emender Generated Test Results| 31
[4.3 Drawbacks of the Current Implementation| 31

[5 Proposed Improvements for Emender] 32
[>.1 List of Requirements|, 32
0.2 Identification of mender lest Results 33
b.2.1 Attributes Used for Identification of Documentation and Test |

[Results. 33
[5.2.2 Uniquely Identifying a Speciic Book| 33

[5.2.3 Uniquely Identitying a Specific Git Revision of a Bookl 33

[5.2.4 Uniquely Identifying JSON Files with Test Results| 34

[5.2.5 Uniquely Identifying the Results within the JSON File| 34

(5.3 Storing the Test Results in a Databasel 35
[5.4 Graphical User Interface (GUI) with a Waiving Mechanism| 35
.o JUnit XML Generator]o 35

[6 emenderwebservice in Jenkins CI/CD)| 36
[Technologies Used For Implementation| 38
(1 REST and RESTTul Web Servicesl 000000 . 38
[7.2 Flask Web Development Framework{. 40

(7.3 Jinja Template Engine| oo

7.4 SQLite3]
[7.5 Converting Python Applications to Web Applications with Flask|. . .

[8 emenderwebservice Implementation|
8.1 Model-View-Controller (MVC) Architecture|
(8.2 REST API Implementation|
(8.2.1 REST API Endpoints]

(8.7 results.html lest Results Jinja Template]
[8.8 Identification and Waiving of Failed Results|

[9 Implementation Testing and Deployment)|

[9.1 Jenkins Configuration|.

[10 Suggestions for Further Project Development|

(11 Conclusion|

[Bibliography|

G Fabl fions

[List of appendices|

[A Database Relationship Diagram |

[B__Attachment |

[B.2 Running the Development Server |
[B.3 Project Structure|.o

44
45
45
46
49
50
23
b4
o4
56

57
o8

60

61

62

64

65

66

List of Figures

(1.1 Rendered sample AsciiDoc document| 17
2.1 HTMIL with Test Resultsfo 000000 . 25
[4.1 Test result trends generated by JUnit plugin in Jenkins.|. 30
[>.1 emenderwebservice design diagram| L. 32
[8.1 emenderwebservice block diagram| 44
[8.2 Diagram with processes in Emender web application.| 45
[8.3 emenderwebservice presentation of results] 55
[9.1 Postman API testing platform| 57

[A.1 Database table relationships| 66

Listings

(1.1~ AsciiDoc syntax demonstration| 17
(1.2 MarkDown syntax demonstration| 18
[2.1 Example results.json results file generated from a Test Packl 24
[2.2 Example plain-text results file generated from a Test Pack| 24
2.3 Example JUnit XML file with Test results| 26
[3.1 Truncated results.json with false-positive result| 29
[7.1 Example Flask route] 0. 41
(7.2 Example Jinja HI'ML template generating a simple URL list[. 43
[7.3 Example HT'ML generated with a Jinja template, 43
(8.1 JSON Schema for Emender test results, truncated| 49
9.1 Testing emenderwebservice with cURL| 58
9.2 Example Jenkins configuration/. 59
[9.3 Running emenderwebservice with Gunicorn server{ 59

Introduction

With growing complexity of the software, the importance of technical documentation
is becoming more significant. What was once a responsibility of a software developer
is now steadily being transferred onto dedicated technical writer teams.

The phases of writing technical documentation can be in many aspects com-
pared to software development - design, implementation, verification. The stages
for creating enterprise documentation are similar and equally important.

The documentation testing framework Emenderf] was developed in cooperation
with technical writer teams as an effort to automate documentation testing tasks
that can be completed more quickly and precisely by software, reducing writing time

and mistakes from manual verification.

The thesis discusses aspects of creating technical documentation written
in AsciiDoc markup language and testing automation by CI/CD applications. The
goal is to extend the open-source documentation verification framework Emender
with a RESTful web application enabling presentation of test results through a
graphical user interface with a mechanism for tagging false-positives in test results,

colloquially "waiver".

The text is structured into several sections:
e Introduction to methods and technologies used for writing technical docu-
mentation (Semantic markup languages, rendering and publication tools, CI

(Continuous Integration) systems),

o Introduction to documentation testing framework Emender and its implemen-

tation on technical documentation,
o Research of possibilities to extend the Emender framework with a RESTful
web application providing graphical user interface providing test results with

a mechanism to waive false positive results,

o Implementation of the web application using a WSGI Python framework Flask,
complemented by SQLite3 database enabling aggregation of test results,

o Suggestions for a further development of the Emender project.

Thttps://github.com/emender /emender

14

1 Technical Documentation

The term technical documentation includes multiple types of documents that de-
scribe product functionality and its properties. Technical documentation in context
of software development serves as a bridge between the software user and a developer
enabling to present the software in a comprehensible manner.

The role of technical writer is to understand the needs of readers and to commu-
nicate these to the developer teams, by working with provided drafts, transforming
these into customer content, continuously testing and providing feedback and re-
quests for technical validation to another teams.

As stated in the introduction, the process of writing technical documentation is
similar to software development, and it is customary to have technical writers as a
part of developer team, not as an independent entity. This enables writers to be
a part of the software development, and to create the documentation in iterations
along with it. The integration of writers into development teams is beneficial for
the developers as well, because an experienced technical writer can provide an an-
other point-of-view on the use cases of the product (by role-playing as a customer),

possibly influencing the nuances of the implementation.

The requirements for documentation vary across products, but an example of
shared characteristics is a need to have a versioning and rendering system in place.
This is enabled by using a versioning system like Git and markup languages, that

enable the documents to be typeset in a predictable manner.

The process of writing technical documentation is not straightforward, because,
even though there are de-facto industry standards as IBM Style Guide[I], the content
has to be written with target audience and software in mind. Nevertheless, there
are universal rules that has to be met, including, but not limited to:

e Precision: Documentation has to be precise and without a personal opinion.

o Findability: Documentation tends to inflate over time, writers need to main-

tain a logical entity hierarchy, categorizing the documentation into separate
documents named Guide or Book. These terms can be used interchangeably.

o Minimalism: Less is more.

This thesis will discuss documentation typical for commercial open source soft-

ware.

15

1.1 Semantic Markup Languages

Semantic: of or relating to meaning in language.[2]

"In computer text processing, a markup language is a system for annotating a
document in a way that is syntactically distinguishable from the text."[3]

Semantic markup languages provide a mechanism to mark certain parts of a
raw text to be typeset differently by the rendering software. This enables writers
to write both human and machine readable documentation. The markup adds an
additional semantic value to parts of the text. Examples of markup usage include
command highlighting, marking headings to be typeset differently, enabling usage
of admonitions and code listings. Every semantic markup language has its pros and
cons and not every language has a universal use case.[4]

The following part will briefly introduce some of the semantic markup languages:
AsciiDoc, DocBook and widely used MarkDown.

AsciiDoc and AsciiDoctor

"AsciiDoc is a text document format for writing notes, documentation, articles,
books, ebooks, slideshows, web pages, man pages and blogs. AsciiDoc files can be
translated to many formats including HTML, PDF, EPUB, man page. AsciiDoc is
free software and is licenced under the terms of the GNU General Public License
version 2 (GPLv2)."[5]

AsciiDoc is along with DocBook widely used in production, and its importance
is backed by support of platforms such as GitHub or GitLab. Simplicity and shallow
learning curve of these languages is demonstrated by Listing[I.1]and its AsciiDoctor—
rendered version in Figure [I.I} AsciiDoc supports variables and conditional state-
ments, which enable flexibility with the writing. This enables, for example, including
a several versions of a documentation that share the same text in a single document
and rendering it selectively.

AsciiDoctOIﬂ is an example of a rendering tool used in production. It has an
ability to generate multiple formats from the single source code, for example PDF,
HTML, DocBook, LaTeX and ePub. This enables generating content for direct
online publication as well as in a downloadable format. AsciiDoctor includes its own

"brand" - document presentation style. The presentation style can be customized.

"https://asciidoctor.org/

16

https://asciidoctor.org/

Listing 1.1: AsciiDoc syntax demonstration

// This is a comment

include::attributes.adoc []

// AsciiDoc supports including of other .adoc files.
rattributel: attributes

ttoc: // generate an interactive table of contents

= Heading
== Heading

This is a plain-text demonstrating usage of {attributell}.

IMPORTANT: This is an admonition.

* Simple
* Bullet

* List

Table of Contents

Heading
Heading

Heading

Heading

This is a plain-text demonstrating usage of attributes.
IMPORTANT This is an admonition

e Simple
s Bullet

e List

Fig. 1.1: Rendered sample AsciiDoc document

17

© 00 N O Ot s W N

S e T o S S G S G G
N O O s W NN = O

DocBook and Publican

DocBook semantic markup language is derived from XML and is semantically equiv-
alent to AsciiDoc. DocBook uses tagging elements similar to HTML[4].

DocBook elements are divided into three classes:

e Structural elements set the type of the document and define the character-
istics of internal elements, for example if the text is wrapped in tag <book>
definition of chapters and headings are possible. Examples of structural ele-
ments are <book>, <set> and <article>.

« Block elements are similar to HTML block elements. A line break is invoked
at the end of every block element. Examples of block elements are listings -
<screen>, <itemizedlist> and paragraph <para>.

e Line elements are similar to HTML elements as well, they add a semantic
value to the text parts, for example marking of software packages <package>,
e-mail addresses <email> and software commands <command>[4].

Documentation written in DocBook can be divided into several files, but the
files has to be aggregated in one master file. DocBook also supports entities —
parts of code that can be included conditionally or in multiple locations without
redundant code. Possible use case is for including a "Product name" or "Product
version'. Entities save writer from code refactoring when these attributes change [4].
Publicanf] is one of the tools for rendering of a DocBook files used in production.
It has functions for preparing a required folder structure and, similarly to AsciiDoc,

implementing a document presentation style "brand",[4] .

MarkDown

MarkDownf| is a markup language for writing structured text, most notably in form

of readme files in open-source projects and is natively supported by versioning plat-
forms, such as GitHuHYand GitLah’] Example of MarkDown syntax is in Listing[1.2]

Listing 1.2: MarkDown syntax demonstration

Heading, level 1

Heading, level 2

Heading, level 3

bold text

- __[GitHub]l (https://github.com/) __ - GitHub Homepage

’https://fedoraproject.org/wiki/Publican
3https://daringfireball.net/projects/markdown/
“https://github.com/
Shttps://about.gitlab.com/

18

Tt = W NN =

https://fedoraproject.org/wiki/Publican
https://daringfireball.net/projects/markdown/
https://github.com/
https://about.gitlab.com/

1.2 Automated Testing of Technical Documentation

Ensuring that the technical documentation is correct plays a major role in the process
of technical writing. Although, a number of tasks in the process are very repetitive
and this can introduce a lot of unnecessary mistakes as a result.

Another part of the documentation testing is a peer review, but it is very time
consuming and doesn’t provide the same level of reliability as automated testing

frameworks.

The factors that has to be tested vary from product to product and also by
internal policies, for example IBM Style Guide [I]. IBM Style Guide has become a
major influence on technical writing and defines a set of rules that should be met in
order to produce a professional documentation.

As semantic markup languages have specific rules that has to be met, and de-
pending on a documentation builder, there are no means to enforce all rules with an
universal test. This requires a flexibility in the testing framework and a possibility
to omit some of the tests for certain scenarios.

Besides testing of overall documentation integrity and accuracy, technical doc-
umentation contains constructs that can be categorized and individually tested,
including;:

o Hyperlinks,

o Software package names and functionality,

o Blacklisted text constructs or words, for example IBM Style Guide defined

phrase/word blacklist,

e Redundant words,

e Typos.

An example how automated documentation testing helps is spell checking. Even
though IDEs today contain sophisticated algorithms, these are not perfect and com-
monly not extensible with an external rule checker (or they are not easily extensible).

Another example would be link testing, where the testing framework can test all

hyperlinks individually, process the server response and report it to the user.

19

1.3 Continuous Integration / Continuous Deployment
(Cl/CD)

"Continuous integration is the practice of routinely integrating code changes into the
main branch of a repository, and testing the changes, as early and often as possible.

Ideally, developers will integrate their code daily, if not multiple times a day."[6]

As with software code, documentation set needs to be rendered. Often a ren-
dered documentation contains incorrect format. This can be avoided by providing a
preview mechanism before merging the proposed changes to the main code stream.
Some servers provide this functionality in form of static page hosting (GitHub Pages)
or as a combination of CI/CD and static page hosting (Netlify CI/CD). Netlify
CI/CD also provides "pull request previews" that automatically build a documen-
tation preview for each pull request committed in a supported Git hosting server.
These previews are made available by sending an automatically generated hyperlink

as a pull request message.

The motivation behind CI is to avoid reviewing and testing a large amount of
code at the same time. Author’s technical writing experience proves that this ap-
plies to documentation as well. A paragraph shorter than this one might require
feedback from several people in order to be technically accurate. A text change with

size of this section can very likely become unmergeable.

CI principles are supported by tools such as issue trackers, for example, JIRAF|
and versioning systems supporting branching. These systems are, on their own,
not sufficient and effective CI implementation, writers have to learn and implement
habits such as not posting a large amount of text at the same time.

Branching and CI principles have its downsides as well, for example, if the re-
quired change is minuscule, the user has to go through the same process (create
an issue, create a branch, post a pull request, resolve conflicts, close issue) as with
larger changes.

The code has to be verified before it is merged into the production branch, this
is where automated testing becomes a part of CI. Tests are ideally executed as soon
as the code change is proposed. Automated documentation testing as part of a
CI/CD pipeline was a motivation behind creating Emender documentation testing
framework.

In terms of Continuous Deployment/Delivery (CD) - a fully automated product

Shttps://www.atlassian.com/software/jira

20

https://www.atlassian.com/software/jira

delivery, the current situation is that the final verification (sanity check) of the
documentation has to be done manually, so this term does not currently apply in

the context of delivery of technical documentation.

Jenkins CI/CD

"Jenkins is a self-contained, open source automation server which can be used to
automate all sorts of tasks related to building, testing, and delivering or deploying
software."]

Jenkins is one of the most popular open-source CI/CD platforms, written in Java.
It supports variety of version control tools. Typical use case is an automated software
builder, where Jenkins is connected to a version control system and any change
triggers a predefined set of actions, for example, a build sequence. Its popularity
generated a vast variety of verified plugins. Jenkins can be used both from GUI and
CLL

For automation of the technical documentation process, Jenkins is used in similar
manner. It builds the documentation set and provides reports about the builds.
Implementation of Emender into Jenkins enables the platform to generate test result

trends in form of graphs and a "weather report" in Jenkins Dashboard.

Netlify CI/CD

Netlify[] is a freemium product suite, which goal is to provide a CI/CD platform for
web development and deployment. It has a seamless integration with GitHub and
can be configured to fetch, build and deploy a website with every code change. It
utilizes Linux servers, and can be configured with custom tooling, such as Antoraf|
Users can get the rendered content hosted on the Netlify subdomain or can configure
the page to be deployed on self-managed servers with custom domain name. It
can utilise GitHub Webhooks”| and GitHub commit checks, where a hyperlink with

rendered documentation preview can be accessed directly from GitHub Pull request.

"https://www.netlify.com/
8https://antora.org/
Ynttps://developer.github.com/webhooks/

21

https://www.netlify.com/
https://antora.org/
https://developer.github.com/webhooks/

2 Emender - Documentation Testing Frame-
work

Emender is an open-source documentation testing framework written in Lua pro-
gramming language for Linux. It enables creation of Lua test scripts that can be run
upon documentation sets written in AsciiDoc or DocBook. If the required documen-
tation structure is implemented, Emender will provide various functions for content
analysis, Jenkins integration with REST API and several result presentation meth-
ods. Implementation of this framework enables users to focus on test design and not,
for example on the parsing methods of the content. Emender has been successfully
implemented in production on CI/CD pipelines, testing extensive documentation
set for a commercial product.

The Emender tests are run in Jenkins by executing a shell script that converts
the documentation into DocBook and runs the Emender framework with a Test

Pack written in Lua passed as an argument of a shell script to Emender.

2.1 Emender Framework Structure

Developers of the Emender decided to divide the core into two modules - inter-
nal functions and libraries, hosted in emendelﬂ GitHub repository, and external
libraries, hosted in emender-libﬂ GitHub repository. Libraries from both reposito-
ries are required in order to implement Emender.

This section will briefly list the available functions.

Internal Functions and Libraries

Internal functions include, but are not limited to functions for:

e File manipulation,

o Text parsing,

o Table manipulation,

e Presenting the results in various formats, including HTML, XML, JSON and
plain text,

« Functions that handle test result printing (with tags FAIL, WARN, PASS, ERROR,
INFO and others).

Ihttps://github.com/emender/emender
’https://github.com/emender/emender-1ib

22

https://github.com/emender/emender
https://github.com/emender/emender-lib

External Libraries

The external libraries add support for:
e DocBook markup language,
o XML files,
o Publican, a DocBook documentation builder,
o Several functions for handling of SQLite3 database files.

2.2 Emender Tests

Tests are implemented as Emender, in Lua language and executed by passing them
into an emend CLI provided by Emender. The tests are structured in the following

manner, enabling grouping similar tests into one unit:

Emender Test Structure

e Test Pack: Contains a number of Test Suites. Test Pack is represented
by a whole test result file, for example, results. json or results.xml.

e Test Suite: Contains a number of Test Cases. Can contain zero tests, if
more test granularity is not needed.

o Test Case: A singular unit, produces statuses and status messages for a par-

ticular test

2.3 Presentation of Test Results

Emender writes test results dynamically to several file types in the folder from which
command emend is executed:
o JSON in Listing [2.1]
« Plain-text results in Listing [2.2]
e HTML results formatted with Bootstrap, Figure [2.1
o JUnit XML test results consumed by Jenkins CI/CD to generate test result
graphs and calculate test result trends, Listing [2.3]

23

Listing 2.1: Example results.json results file generated from a Test Pack

"metadata" : {
"name":"Guide -Name"
},
"results" : {

"Test _Suite 1": {
"Test_Case_1": [

{
"status": "fail",
"message": "The YEAR entity should include 2020.
Found: ’2019° "

b

Listing 2.2: Example plain-text results file generated from a Test Pack

Description: Checks if the guide is prepared

to be published on the Customer Portal.

Authors: <author_name >

Emails: <author_email>

Last Modified: <date>

Tags: DocBook, WritingStyle

Required tools:
Test Case: testChunkableTagsIDsTag PASS
[INFO] Checking

x*en-US/Desktop_Migration_and_Administration_Guide.xml*x*.
[PASS] All #**2%* chunkable tags are ok

24

© 00 N O Ot s W N

e e e e e T
S O = W NN = O

© 00 J O Tt = W NN

el e e e e
N O T s W NN = O

® Technical Accuracy

The Techical Accuracy test verifies that documentation is technically accurate. For example, it reports non-functional or blacklisted external links.

Summary for Technical Accuracy

Passed: 0
Faiec 1 (S
Erors: 0

Test Results for Technical Accuracy

@ External Links

(not commented)

PASS ANALYZING REGULAR LINKS...

FAIL ftp://mirror.vutbr.cz/ uses FTP protocol, but you can replace it with
HTTP and it will work.

FAIL https:/fwww.openshift.org/ gets redirected.

PASS https:/fgithub.com/minishift/minishift/issues/1287 is OK.

PASS https:/github.com/openshift/originfissues/18747 is OK.

FAIL https:/github.com/opens hift/origin/blob/master
[docs/cluster_up_down.md#prerequisites is broken (404 status code).

FAIL https:/github.com/opens hift/origin/blob/master
[docs/cluster_up_down.md#macos-with-docker-for-mac is broken {404
status code).

FAIL https:/fwww.openshift.org/download.html gets redirected.

FAIL https:/github.com/opens hift/origin/blob/master
Idocs/cluster_up_down.md#getting-started is broken (404 status
code).

FAIL hittps:/fhub.docker.com/ has no page title.

FAIL https://docs.ansible.com/ansible/latest/installation_guide
[intro_installation.htm! gets redirected.

PASS https:/github.com/aerogear/mobile-core is OK.

FAIL mobile-clients.xml has 000 status code.

Fig. 2.1: HTML with Test Results, figure is cropped to fit the page.

25

JUnit XML Test Results

This file is consumed by Jenkins to generate statistics in Jenkins Dashboard, and
mirrors the structure of the JSON file in a specific XML format. JUnit XML files

reports only failed tests, non-reported tests are considered passed.

Listing 2.3: Example JUnit XML file with Test results

<testsuites>

<testsuite name="CustomerPortalRequirements">
<testcase name="testCasel" classname="testCasel">
</testcase>
<testcase name="testl" classname="testl">

<error message="Test failed.’">Test failed.</error>

</testcase>
<testcase name="test2" classname="test2">
</testcase>

</testsuite>

<testsuite name="GitMergelLeftovers">

</testsuite>

</testsuites>

2.4 Implementation of Emender on Documentation

This section will discuss installation and implementation of Emender onto a doc-
umentation set. Emender documentation for installation and implementation is
incomplete, so the implementation of the existing Test Suite was problematic. This
section will serve as a guide how to install Emender and implement "Technical Ac-

curacy Tests'T| onto a documentation set.

Installing Emender

Emender is hosted on GitHub and its core consists of two repositories — emenderf]
and emender-1iH’] Resources from both repositories have to be installed with
instructions present in the respective README.md file. Each repository contains a
Makefile that facilitates the installation.

3https://github.com/emender/technical-accuracy-tests
“https://github.com/emender/emender
Shttps://github.com/emender/emender-1ib

26

© 00 J O T = W NN

— = = =
w NN = O

https://github.com/emender/technical-accuracy-tests
https://github.com/emender/emender
https://github.com/emender/emender-lib

Requirements for the document and document structure:

o Tested AsciiDoc file has to be named master.adoc ("include" AsciiDoc direc-
tives can be used in this file). A workaround for using different names is to
edit the shell script run.sh, but this is generally not recommended.

o It is necessary that text in AsciiDoc does not contain "less-than' (<), or "more-
than" (>) characters. This causes the test to run and seemingly exit with-
out errors, but the test fails to detect any links. This is because Publican
fails to build the documentation from DocBook format that is converted from
AsciiDoc. "Less-than" and "more-than" signs are reserved characters in XML
format, and if not escaped properly, will cause Publican to fail. Escaped char-
acters can be used instead.

o Shell script run.sh has to be executed from the documentation folder, or
anywhere with -XtestDir=<docDir> referring to the documentation folder.

The shell script doesn’t have error handling, so these requirements had to be tested

manually.

Procedure executed by the testing shell script

If the requirements for the document and document structure are met, the shell
script will execute the following procedure:

» Recognise the input file format (AsciiDoc, DocBook or other)

o If script detects an AsciiDoc format, it creates a DocBook project and converts
the AsciiDoc into DocBook. If the conversion fails, it wont report an error,
but the Test Pack will subsequently report no hyperlinks found.

o Run the Test Pack and write the results into XML, JUnit, HTML, JSON, and
plain-text files.

Executing Emender tests

Tests are implemented by writing tests in Lua, utilising Emender libraries. The
tests are executed with command emend and proper arguments as per emend
man page. Tests natively support DocBook language. AsciiDoc can be used, but
the document has to be converted to DocBook prior running the tests. In the Test
Packs available in emender GitHub project, this is done with asciidoctor and
publican by recognizing the file structure, and if needed, converting into DocBook

format and subsequently running the Test Pack, all within a single Bash script|

Shttps://github.com/emender/technical-accuracy-tests/blob/master/run.sh

27

https://github.com/emender/technical-accuracy-tests/blob/master/run.sh

2.5 Examples of Implemented Test Suites

GitMergeLeftovers

Verify that the book does not contain any Git Merge Leftovers. Git merge proce-
dure uses strings of less-than(<), more-than(>) and equal (=) signs to differentiate

between existing and incoming changes. These are often left in the documentation.

TestPackages

Test that the documentation contains only current versions of the packages. This
Test Suite apply only for DocBook as AsciiDoc does not contain a markup for
packages.
o testCommandTag - Test packages discovered from parsing the command in a
tag <command>.
o testPackageTag - Test packages discovered from parsing the command in a

tag <package>.

GuideStatistics

Collects various statistics about the book, for example, page count, word count,

number of used graphics, frequency of used tags, and others.

TestLinks

Test suite verifies that all external links are functional, for example:
» The test reports codes 403, 404 or 500 (and fails),
e FTP links, if HT'TP protocol is also available but not used then fail,
« Red Hat customer portal links (access.redhat.com),
» Blacklisted hyperlinks,
o Redirected hyperlinks (test fails),
» Hyperlinks without page titles (test fails).

TestWritingStyle

This Test Suite for DocBook and partly with AsciiDoc . Tests violations in writ-
ing style. The Test Suite can use external dictionaries that serve as blacklists or
whitelists. Examples of Test Cases:
o testSpellChecking compares documentation external blacklists and whitelists.
o testSentenceCase Tests that the sentences have capital letters only in the

beginning of the sentence.

28

3 False Positives in Tests

A false positive is demonstrated on example from JSON file holding test results
generated by test from Emender Test Suite "Technical Accuracy Tests'. The test
is testing hyperlinks and reporting a test failure after detecting a FTP URL. The
result is not necessarily "false", but it holds an informative value to the user.

Listing 3.1: Truncated results.json with false-positive result

{
"metadata" : {
"name" :"unknown"
3,
"results" : {
"TechnicalAccuracy": {
"testExternalLinks": [
{
"status": "fail",
"message": "ftp://mirror.vutbr.cz/
uses FTP protocol, but you can
replace it with HTTP and it will work."
3
]
+
}
3

False positives can be induced in tests deliberately or can result from imperfect
test design. The possible motivation behind deliberate induction of false positives
might be to bring the attention to a certain part of a tested documentation, even
if it is grammatically and syntactically correct. Possible real-life scenario might be
an enforcement of internal writing style rules or as|3.1|shows, to discourage using of
FTP protocol when HTTP protocol is available. Currently, Emender does not have

a functionality to handle false positives.

29

© 00 N O Ot s W N

e e e e
N O O e W N = O

4 Current Implementation of Emender in Jenk-
ins CI/CD

This section describes the current implementation of Emender tests in Jenkins
CI/CD infrastructure used by company’s documentation team. Even though the
framework can be run locally, this configuration automates the build and testing

process and ensures access to the results to all technical writers in the company.

4.1 Characteristics of the Implementation

e The documentation set is hosted in a Git repository.

o Emender test framework is installed on the same machine that hosts Jenkins
CI/CD.

« Each book (guide) has a specific job (item) created in a Jenkins that is con-
nected to the specific Git repository.

+ The Jenkins job (item) is configured to run a specific TestPack on a documen-
tation set, triggered by a Git commit.

o The results are generated as build artifacts in Jenkins. (static HTML, JSON,
JUnit XML and plain-text results.)

e The test results are processed by Jenkins with a JUnit plugin, consuming JU-
nit XMLs that Emender creates as a build artifact. [

Test Statistics Chart Test Trend Chart 7 o
1800

1600
failed

=358 1400

20%,) 1200
skipped| 1000

=0

0%} 200

oount

Fig. 4.1: Test result trends generated by JUnit plugin in Jenkins.

Jenkins Dashboard provides a build "weather report", where user can see trends
in test results — if the tests are failing frequently (in multiple succeeding builds) the

"weather" is reported as sunny, cloudy or stormy, respectively.

Thttps://plugins.jenkins.io/junit/

30

4.2 Viewing Emender Generated Test Results

If the configuration is correct and the Test Pack was executed successfully, Emender
generates several test result formats, one of them being a structured JSON.

The structure of the result files reflect the three-level structure mentioned in 2.2]

4.3 Drawbacks of the Current Implementation

Bad accessibility of test results

Main drawback of a Emender is that it does not provide a way to comfortably work
with the results for an inexperienced user. It was developed primarily for Jenkins
CI/CD deployment and depends on a user’s working knowledge of Jenkins and it’s
configuration to run Emender in order to be able to see and work with the test
results:
o The tests are available only through Jenkins Dashboard, which is also used for
rendering of the books — Jenkins instance is hosting a large number of projects.
e The Jenkins host machine is running a significant number of jobs and that
makes connection to it very slow.
o The tests are not available by their commit ID but by a job number that incre-
ments with each commit, which makes finding a specific Git commit difficult.
o The results in HTML are only readable when user downloads the entire job ar-
tifact folder from Jenkins (the HTML is dependent on Bootstrap and jQuery).

No mechanism for false positives handling

Another limitation of Emender documentation framework is that tests regularly re-
port false positives (tests failing on documentation that is written correctly). This

can be solved by implementation of a suitable "waiver" module.
The design of a web application presented in the following sections tries to over-

come these shortcomings and provide the user with a graphical interface that can
be accessed via a concise REST API.

31

5 Proposed Improvements for Emender

A proposed improvement for Emender implementation in CI/CD is to design an in-
dependent web application emenderwebservice. The application will serve a dynamic
test result website with a mechanism that allows waiving of false positive results.
The motivation behind a service independent from Emender is to avoid rewriting
the Emender core and subsequently the existing tests. The web application will be

subsequently incorporated into CI/CD pipeline for complete test automation.

The following section will list the requirements that were identified for the im-

plementation. These will be described in more depth in later sections.

5.1 List of Requirements

Storing the Emender test results with unique identification in a database,

A graphical user interface to present the test results,
A mechanism to handle false positive results,
A JUnit XML result file generator for each test result pack,
REST API endpoints for:
— Retrieving the test results from Jenkins CI/CD,
— Returning results in JUnit XML format to Jenkins CI/CD,

— A graphical user interface.

/ emender_web service \\\

(Flask Application)

Waiver ‘
JSON with test results | JUnit XML to existing

from Emender tests Jenkins Cl/CD pipelines
> o | | saLitespatabase | |RE3T >

Test result GUI

\ REST API /

Test Result
GUI and result
waiving

Fig. 5.1: emenderwebservice design diagram

32

5.2 Identification of Emender Test Results

In order to properly store, display and manipulate the test results, their proper
identification has to be secured. JSON result files generated by Emender in Jenkins
CI/CD only contain structured test results (see Section [2.2)), and limited informa-

tion about the tested document and the parent documentation set.

The identification of test results is divided into two sections — unique identifica-
tion of a specific revision (Git commit) of a guide and unique identification of test
results within the JSON results file.

5.2.1 Attributes Used for Identification of Documentation and
Test Results

Attributes uniquely identifying a specific guide (book):
e Product Name (OpenShift),
e Product Version (Dedicated, Container Platform),
« Book Name (Getting Started, Migration Guide),
o Git Commit ID identifying a specific Book revision.

Attributes uniquely identifying test results. These attributes reflect the test struc-
ture in Section 2.2}
o Test Pack name is a collection of tests run by Jenkins that produces a single
results. json file,
o Test Suite is a collection of Test Cases,
o Test Case is a most granular element in this collection, however, it runs

a number of tests under one Test Case.

5.2.2 Uniquely Identifying a Specific Book

A specific book is identified by a unique combination of Product Name, Product

Version and Guide Name.

5.2.3 Uniquely ldentifying a Specific Git Revision of a Book

A specific Git revision of a book is identified by a unique combination of Product
Name, Product Version, Guide Name and Git Commit ID

33

5.2.4 Uniquely ldentifying JSON Files with Test Results

A JSON test result file is associated with a specific Git revision of a Book and a
specific Test Pack that was executed on the Book. The JSON file only contains
information about Test Pack and Tests executed within it, the information about a

Book has to be received from another source.

A method for acquiring the missing information is to create a unique REST re-

source for each Product, Product Version, Guide and Test Pack (combined):
/api/results/<product>/<version>/<guide>/<git_commit>/<test_pack>

This endpoint will serve as an endpoint for Jenkins CI/CD generated test results
(in JSON format). A Jenkins build for a specific Guide will have to be configured
manually to send the test results to a specific endpoint identifying this Guide and
a Test Pack that was executed on this book. For example, curl[] can be used to

send the results to emenderwebservice.

For brevity, the following text will use an abbreviation <test_results> as an
abbreviation for <product>/<version>/<guide>/<git_commit>/<test_pack> as
it represents a single JSON file.

5.2.5 Uniquely ldentifying the Results within the JSON File

The information gathered in Section [5.2.4 uniquely identifies the JSON generated by
the Emender run by the Jenkins CI/CD. In order to handle the test results and to
enable an implementation of a waiving mechanism, the identification has to include

more granularity.

These attributes have been identified as necessary for unique identification of
test results:

o Test Suite name (for example: TestLinks),

« Test Case name (for example: FTP link check, 404 checks),

o Results from Test Cases: Test Cases are not granular and hold several

tests under one name.

These two sets of attributes will be categorized in a SQLite database tables with

an appropriate relationships between tables.

"https://curl.haxx.se/

34

https://curl.haxx.se/

5.3 Storing the Test Results in a Database

In order to make the results widely available, a reliable storing mechanism has to be
implemented. The test results will be stored in a database that enables their unique
identification and easy access.

SQLite?E] RDBMS (Relational Database Management System) has been chosen
for its widespread use, flexibility, simplicity and support by Flask framework and
Python.

5.4 Graphical User Interface (GUI) with a Waiving

Mechanism

GUI

A graphical user interface that will dynamically present the test results in a web
page. The web page will source the information from the SQLite3 database. The

GUI will implement a mechanism to handle false positive results ("waiver").

Mechanism to handle false positive results

Waiver is used to mark false positives in test results. With complete test automation,
when tests are implemented as a part of CI/CD, a falsely failed test will cause CI/CD
pipeline to fail as well. Tests can be (and some of the tests are) designed so certain
results are marked as FAIL even if the documentation is valid, to get the user’s
attention to the content, as stated in Section [3] Waiver gives user an option to
disregard these results and therefore further customize the testing infrastructure.
Proposed implementation is a dynamic generation of HT'ML input elements in

a GUI that will register the waived failed result in a database with the test results.

5.5 JUnit XML Generator

The existing implementation generates test result trends by a JUnit plugin in Jenk-
ins CI/CD. Because the results will be altered with the waiving mechanism, a new
JUnit XML will have to be generated and provided in a REST API for each com-
mit(build), so Jenkins can be configured to download and process the file. This

makes the implementation compatible with the existing infrastructure.

’https://www.sqlite.org/index.html

35

https://www.sqlite.org/index.html

6 emenderwebservice in Jenkins CI/CD

This section will introduce the process of generating the Emender test results with
Jenkins and how emenderwebservice fits into it.

The process requires the Jenkins CI/CD to be configured to run the Test Pack on
a specific guide stored in a Git repository, send the JSON test results to emenderweb-
service and subsequently retrieve the JUnit XML file from the application’s REST
API.

This section will briefly introduce the standard use case scenario of emenderweb-
service with Jenkins CI/CD.

Generation of Emender test results by Jenkins

When a user makes a Git commit to a documentation repository specified in a
Jenkins job, Jenkins runs a certain Test Pack on the documentation. This job

generates several result files, one of them being results. json.

Sending the results to a emenderwebservice REST API

Jenkins CI/CD sends results. json to emenderwebservice application’s REST API
to a specific URIL: /api/results/<test_results> where <test_results> repre-
sent:

<product>/<version>/<guide>/<git_commit>/<test_pack>. This URI uniquely
identifies the results, and serves as an identifier for a web application on how to
store the results.

JSON validation with JSON Schema

The emenderwebservice validates the JSON with a JSON schema and if the JSON
is valid, it is handled for a further processing. If the JSON is invalid, the REST API

responds with an error message in JSON format and a HT'TP error code.

Generation of an Test Results HTML with a "waiver" functionality

The server generates the HTML with a waiving functionality. It means that if the
test is reported as FAIL a checkbox is generated next to the result that enables user
to "waive" the failed result as a false positive. This is handled by an AJAX jQuery
JavaScript and sent to a emenderwebservice REST API for storing the waived result

in the database.

36

The server generates an HTML and serves it on the same URI as where the
results were sent: /api/results/<test_results>. The list of all available test

results pages will be available at the root URI (/).

emenderwebservice generates JUnit XML for Jenkins test result trends

The server generates a JUnit XML file with a list of Test Suites and Test Cases,
reporting failed tests. This JUnit XML will be available at a similar URI as test
results: /api/junit/<test_results>. The JUnit XML file is processed by the
Jenkins JUnit XML plugin used to generate test reports in Jenkins dashboard.

The next chapter will describe the technologies that will be used to implement

the solutions.

37

7 Technologies Used For Implementation

This section will briefly introduce the technologies and standards used for the im-

plementation of emenderwebservice.

7.1 REST and RESTful Web Services

' Representational State Transfer (REST) is a software architectural style that de-
fines a set of constraints to be used for creating web services. Web services that
conform to the REST architectural style, termed RESTful web services, provide in-

teroperability between computer systems on the Internet."[§]

o« REST was designed to provide a uniform API between web services. It has
become de-facto a standard for communication between web services.

o« REST provides uniform and predefined set of stateless operations, meaning
that the communicating parties have no prior knowledge of the state of the
other.

e In a RESTful web service, requests made to a resource’s URI will elicit a
response with a payload formatted in either HTML, XML, JSON or other
format. The response can confirm that some alteration has been made to the

stored resource.

REST Terminology

REST uses terminology defined by World Wide Web Consortium (W3C)[S]:

Representation: "A representation is a piece of data that describes a resource
state."

Web service: "A Web service is a software system designed to support interop-
erable machine-to-machine interaction over a network." Web services communicate
by exchanging messages.

Resource: "A resource is defined to be anything that can have an identifier.
Although resources in general can be anything, this architecture is only concerned
with those resources that are relevant to Web services and therefore have some addi-
tional characteristics. In particular, they incorporate the concepts of ownership and
control."

Identifier: "An identifier is an unambiguous name for a resource." An identifier
should be realized with a URI. An identifier identifies a resource that is relevant to

the architecture.

38

URI/Resource Relationships: "By design a URI identifies one resource."
Resource is used for anything that might be identified by a URI. All of resource’s
essential characteristics can be conveyed in a message.

Idempotency: Being idempotent in means that a specific request will always
elicit the same response. For example if client requests server to update a resource
with a HTTP method PUT, it will overwrite the existing resource present on the
particular URI. In contrast, HI'TP method POST does not elicit the same response,
sending a request with a HT'TP method POST will always create a new unique re-

source.

REST, CRUD and HTTP Methods

REST, being a specification, not a protocol, does not define a specific HT'TP meth-
ods (or, in some literature, HTTP verbs)[9] that should be associated with either
Create, Read, Update or Delete functions.

Even though that are no recommendations for using a specific HTTP verb for
a specific CRUD function, a chosen implementation should be consistent across
modules in a given application [10], [11].

HTTP verbs are used to identify what operation client wants to do on a particular
resource, REST specification uses those to identify the CRUD methods. HT'TP verbs

are transmitted in a header of HTTP request.

REST and JavaScript Object Notation (JSON)

As stated in the previous section, REST is a specification, not a protocol, the format
of response objects (send in the body of a HTTP response) is also flexible, but a
recommendation is to use either JSON or XML format. The application developed

in this thesis uses responses in JSON format[12].

39

7.2 Flask Web Development Framework

FlaskE] web application framework has been selected for the implementation for its
simplicity and for being Python native. Flask is a popular web microframework.
"Micro", means that it requires little to zero boilerplate code in order to implement
a complete web application. It has a built-in development server that enables quick
deployment and debugging. Flask is by its nature extensible by plugins (imple-
mented as Python modules).[13]

Examples of companies that use Flask for web development include Netflix, Red
Hat, Reddit, Airbnb.[I4]

Flask was designed to be a modular framework, by itself providing a limited
functionality. For example, it does not provide any database support, but relies on

a number of extensions (for example, Python libraries) to provide the functionality.

Flask main Python dependencies:

o Werkzeug, providing WSGI and routing and debugging subsystems
« Jinja2, a templating engine

o Click, CLI integration

The following chapter will focus on introducing the Flask dependencies Werkzeug

and Jinja.

Werkzeug Web Server Gateway Interface (WSGI)

"Web Server Gateway Interface is a specification that describes how a web server
communicates with web applications, and how web applications can be chained to-
gether to process one request. WSGI is a Python standard described in PEP 3333."[15]
[16]

WSGI is an API that allows web servers to communicate with Python web
applications. It is an interface specification, not a framework or a library.[17]
A WSGI server serves as a "translator" for request/response pairs exchanged by

the web server and a Python application. An example of WSGI server is Gunicorn?]

"http://flask.pocoo.org/
’https://gunicorn.org/

40

http://flask.pocoo.org/
https://gunicorn.org/

Werkzeug HTTP request and response processing

WSGI provides full HT'TP request processing capability, where the outgoing data
are constructed to be a valid HT'TP response and the incoming HT'TP requests are
directly parsed into Python objects.

In Flask, the HTTP request/response pairs are handled by Python functions
and objects. Before this is enabled a Python module has to be 'registered" as a
Flask application by creating a Flask object with the Python module passed as an

argument.

Route Handling

" The association between a URL and the function that handles it is called a route."[1§]

Listing 7.1: Example Flask route

@<app_name>.route(’/api/’, methods=[’GET’])
def example():
return ’<hl1> Example </h1>’

The route handling is implemented by using a Python function decorator
@app.route that parses and provides the URI segments to the function it decorates.

The Listing[7.1]demonstrates a handling of /api/ route, where the route handles
a GET request send to URI <serverip>/api/. The function creates a HT'TP response
with a simple HT'TP heading and sends it to the client.

app used in the function decorator is a Flask object that was initialized in the
application definition file.

Flask class Response is used for response construction and can have several
forms, for example a rendered Jinja template with or without passed variables,
JSON response constructed by a jsonify() function or a simple HTML code as
showed in the Listing [7.1] The Response object is created as a return value of the
route() function.

The default media type mimetype of the response is text/html, but this can be
set according to the required response type, for example jsonify sets the mimetype

to application/json.

41

Flask folder structure

Flask recognizes the project files in a specific folder structure:
o /templates for Jinja template files,
e /static for static structures such as JavaScript code, Bootstrap source files
and images,

e routes.py for route definitions.

7.3 Jinja Template Engine

Jinja is a template engine used with Python. Flask utilizes Jinja as a web template
engine and the following text will talk exclusively about web templating. Jinja tem-

plating is also implemented in an automation tool Ansible. []

"A template engine is software designed to combine templates with a data model

to produce result documents." [19]

Template is a text-file containing constructs that enable template engines to
dynamically generate web pages (or, in general use — any source code).
This functionality is utilized in this thesis to create a dynamic web site that

handles and provides a GUI for Emender documentation test results.

Jinja Templates

A Jinja template, rendered by a Python function flask.render template(), pro-
vides a connection between a Python application and the HTML response with
access to variables passed from a Python script. It integrates Jinja functions, pro-
viding, among others looping functions and conditional constructs. These constructs

can be used to dynamically generate a web site content.

In Flask, any code can be incorporated and handled by a Jinja template. An
example shows how a simple iteration over a list passed by a Python script can
generate an HTML document. To maintain separation of concerns, all relevant
logic should be isolated from the template, as much as possible. To avoid injection
attacks, MarkupSafe Python package is installed as Jinja dependency. MarkupSafe

escapes untrusted input when rendering templates.ﬁ]

3https://www.ansible.com/
“https://markupsafe.palletsprojects.com/en/1.1.x/

42

https://www.ansible.com/
https://markupsafe.palletsprojects.com/en/1.1.x/

Listing 7.2: Example Jinja HTML template generating a simple URL list

{% for URI in uri_list %}
{{ URI }}

{% endfor %}

Listing 7.3: Example HTML generated with a Jinja template

http://www.google.com

http://www.vutbr.cz

https://flask.

palletsprojects.com

7.4 SQLite3

SQLiteSE] is an SQL relational database that requires zero configuration, is serverless
(It does not require a server. the database is stored in a local binary file) and
fully supported by Python standard library sqlite3. Because of these lightweight

characteristics, the library was chosen as the database engine for this project.

7.5 Converting Python Applications to Web Applica-

tions with Flask

Flask, along with Werkzeug and Jinja, enables developing and connecting of Python
application so the developer can integrate Python libraries for variety of tasks and
does not have to rely on the plugins developed natively for the framework. In other
words, a Python application that was originally designed to output information to
a console or a local graphical user interface without networking capability can be
easily, with Flask, transformed into a Web application and deployed on a WSGI

server.

Shttps://www.sqlite.org/about.html

43

https://www.sqlite.org/about.html

8 emenderwebservice Implementation

This chapter will describe the implementation of emenderwebservice to require-
ments defined in Chapter [5| using technologies specified in Chapter

During the design of the implementation there were a number of unsuccessful
attempts with technologies that were proven to be inefficient, or the learning curve
was very steep. A direct approach was tested to be the most effective, without
ORMs (Object Relational Models) or Flask plugins.

The main blocks of the application are:

o REST API management utilizing Flask routes.py script,

» Database of resources (test results) implemented in SQLite3,

« Database controller,

o GUI with waiving mechanism generated by Flask templates and JavaScript,
« Validation of incoming JSONs with JSON schema,

o JUnit XML generator.

emender_web_service
(Flask Application)

database_controller.py

Test result GUI Jinja template

JUnit XML

REST API
Generator JUnit XML to existing

Bootstrap
Waived Results Handling
JSON with Emender test results | REST API with jQuery AJAX L
from Jenkins Cl/CD PUT GET " Jenkins CI/CD pipelines
‘apl/junil >

apiresults T T) g
<tesi_packs l l <test_packs

1 Route Handling routes.py (REST API) }4_1‘

REST API REST API
GET /api'results/<test_packs POST /api/WaivedResults/<test_pack> /

| [

Instance of Test Result GUI (specific <test_resultss) with an ability to mark
false positive results (Waiver)

Fig. 8.1: emenderwebservice block diagram

The application was implemented in Flask using software pattern similar to
Model-View-Controller. This pattern emphasizes the separation of modules, so these
can be developed and tested individually. This method is called a “separation of

concerns”.

44

8.1 Model-View-Controller (MVC) Architecture

The implementation tries to follow the principles of MVC, where Models, Views
and Controllers are implemented as individual components, thus helping to achieve
separation of concerns. With an increasing separation of the components increases

the flexibility of the design and an ability to test the components individually.

"User requests are routed to a Controller which is responsible for working with
the Model to perform user actions and/or retrieve results of queries. The Con-
troller chooses the View to display to the user, and provides it with any Model
data it requires."[20]

e View in this implementation is represented by Jinja HTML templates.

o Controller is represented by a route handling script routes.py

e Model is represented by SQLite3 database and the database controller, which
defines the form of the data presented to a Jinja HTML template.

8.2 REST API Implementation

Emender CI/CD Documentation Testing environment
8 "~ Runs Emender))))
G | | Testna ramenork Send JSON results to a specific WebApp REST API Requests JUnit XML file for a specific Build
H test_pack gn the Git PUT /apiiresults/<test_resultss GET /apiijunit/<test_resulis>
E ~ Commit) h g h Y
- i }
i
Yes - - p
£ lSVJIS{?'PN Parse the JSON Create a resource with test resuits | | S5 ?:I'f:lp lélﬁr:lléif\:l:dkf);ig;przgglfstest_p L
2 alid? —* > ter out w ts.
= into the database /apiiresults/<test_results> /apijuniti<test _results>
o -
=
o
< l No
2
= e .
[(Send Response |
L] Return rendered
400 (Bad Request) Send Response Resource : - N
5 with.a 404 [NotSF‘:)und} exists? —® HIMLwithTest | [Handle waived results by storing them in a
g ValidationEror) RESTES database
reason A
A

e \ - ¥ ™\ - Y
H Makes changes to Requests a web page with specific test Submits an AJAX request to waive a specific
g documentation and results failed results through Web App GUI via

Submits a Git Commit GET /api‘results/<test_resulis> POST /api/WaivedResulis/<test_results>

Fig. 8.2: Diagram with processes in Emender web application.
REST API serves as an access point to the application from the network. As

stated in Section [7.2] the application is accessible by sending requests to REST API
endpoints, which Werkzeug WSGI parses as various Python Flask objects, notably

45

Flask.request, that enables to access various parts of a HT'TP request. Full list
of available properties are in the Flask documentationﬂ

The REST API in emenderwebservice is implemented and the processes managed
by the Python script routes.py. routes.py serves as a controller that constructs
views by manipulating data in the database and presenting them through the Jinja

templates.

Handling Resources

The resources are created by storing the information in a database. There are
plugins for Flask that are designed to help with development of REST APIs, for
example Flask-Restful, but after experiments, a direct approach was chosen without
Python object abstraction.

When the client sends a request for a non existing resource, Flask automatically
returns a HTTP 404 Not Found Status code. Similarly, if the request contains an
unsupported HTTP Verb for a given route, an error 400 Bad request is returned

automatically.

8.2.1 REST API Endpoints

This section will describe the implemented REST API endpoints (routes) and the

Python functions invoked with the request:

/api/results/<test_pack>

A request to this endpoint invokes rest_test_results() function, and depending

on the HTTP method used, the following scenarios are executed:

PUT method
The PUT method is used, because an idempotent result is anticipated - an existing
JSON on a specific URI will be rewritten by the subsequent calls on the same URI,
as stated in Section [Z.1]

The script parses the values from the URI path variables and validates the re-
ceived body of the request.

If the received body does not comply with the JSON Schema [8.3] the script re-
turns a ValidationError exception in JSON format and HT'TP 400 Bad Request

status code in the response.

"https://flask.palletsprojects.com/en/1.1.x/api/#flask.Request

46

https://flask.palletsprojects.com/en/1.1.x/api/#flask.Request

If the JSON complies with the JSON Schema, the JSON with the variables
parsed from the URI path are passed to the Database controller to be stored in the
database.

If there is a problem with parsing the values into the database, the Controller
sends a JSON status with a HT'TP 500 Internal Server Error status code to
the client.

Finally, if the Test results were stored in the database successfully, the script
returns a JSON with HTTP 200 OK status code in the response to the client.

GET method
The script validates the request properties (these are parsed from URI), and sends
a request to a Database controller to retrieve the test results. If the Database
controller reports that the test results could not be found in the database, the script
returns a JSON status with a HTTP 404 Not Found status code to the client.
Otherwise, a script returns a rendered Jinja template results.html containing
GUI with the test results.

/api/junit/<test_pack>

A request to this endpoint invokes rest_junit() function and following scenarios

are executed:

GET method
The script parses the path from URI and queries the Database controller for results
for a specific Book tested by a specific Test Pack. If the Database controller is not
able to find the result an error response in JSON and HTTP 404 Not Found status
code is returned back to the client.

Otherwise, a script queries Database connector for a list of waived results for
a specific Book and a Test Pack. The list of waived results can be empty.

Finally, the function junit_rendering() is called with the results retrieved from

the database and the generated response is returned to the client.

/api/WaivedResults/<test_pack>
A request to this endpoint invokes rest_waiving() function, and the following sce-

narios are executed:

POST method
The function parses the JSON sent by the AJAX function within a Test Result GUI

and requests Database controller to process the waived failed result.

47

The function returns JSON status messages with HTTP status codes - 500
Internal Server Error if the Database controller was unable to save the result,
or 200 OK otherwise.

/api/results and /

A request to these endpoints invokes rest_list_of results() function. The func-
tion parses the URI elements and queries the Database controller for a list of avail-
able Test Result pages in URL forms. This list is rendered and returned as a HTML
document with a Jinja template 1list_of_results.html. /api/results redirects
to /.

48

8.3 JSON Schema

JSON generated by Emender has a specific structure, illustrated in Listing To
ensure that only valid JSONs are further processed, a JSON Schema validation is
implemented. [

Even though JSON Schema is not standardized by a authority, it is widely used
and several implementations exists. This application uses the jsonschema Python
package available from the Python standard library (PyPi).

JSON Schema in is presented in a nested JSON format as well, with the data

structures describing the required structure.

The JSON schema is validated by jsonschema.validate() function and raises
an jsonschema.ValidationError exception when the tested JSON does not comply
to the schema.

Listing 8.1: JSON Schema for Emender test results, truncated

"$schema": "http://json-schema.org/schema#",
"$id": "emender -results-json-schema",

"title": "Emender Results JSON Schema",

"description": "JSON Schema for Emender",
"type": "object",
"properties": {
"metadata": {
"description": "Holds metadata for the results,
typically a name object.",
"type": "object",
"properties": {
"name": {
"description": "Holds a name of the guide.",
"type": "string"
b
}, "required": ["name"]
3,
"results": {2},

"required": ["metadata", "results"]

’https://json-schema.org/

49

https://json-schema.org/

8.4 Database Implementation

The database is the core of the emenderwebservice implementation. It is designed to
provide a structure for the tests generated by Emender CI/CD that enable a unique
identification of tests and their relationship with a specific documentation. The
database is implemented in SQLite3, the schema visualizing relationships between
tables is included as Appendix[A] There were several versions of the database design
tested, most notably an attempt in making the test results as granular as possible
(by using tables TestSuite and TestResults). These tables were unused in the

final implementation but are left in the design for further possible utilization.

This section will introduce the relationships in more detail and describe the func-

tionality the relationships enable.

The database is implemented in SQLite3 dialect of SQL. There were experiments
with ORMs (Object Relational Models) such as SQLAlchemyE], but the required ef-

fort for the steep learning curve was not effective for the implementation.

The SQL script used to generate the database is available in the archive attached
with the thesis (database-definition.sqlite). The database was created and
debugged using DB Browser for SQLitd]

Foreign keys

The relationships between tables in the implementation are defined by foreign keys.
To facilitate a unique identification of a row in a table, a Primary key is defined. For
a unique identification, the values that are used as Primary key must be unique. This
can be implemented by adding a new column with auto-indexing (auto-increment)
ability. To define a one-to-many relationship between two tables, this Primary
key is defined in the “many” side as a foreign key. This is used extensively in
the implementation, as the structure requires cascaded one-to-many relationship to

uniquely identify resources.

Constraints

“Constraints in SQL are used to specify rules for the data in the table.”[21]
Examples of commonly used constraints include PRIMARY KEY, FOREIGN KEY,
NOT NULL and UNIQUE. This keywords can define relationships between rows in a

3https://www.sqlalchemy.org/
“https://sqlitebrowser.org/

20

https://www.sqlalchemy.org/
https://sqlitebrowser.org/

table, for example, to enforce unique combination of values in the rows. This is
utilized extensively in the implementation.
ProductName, ProductVersion, BookName tables

This triad is used to uniquely identify a specific Book for a specific ProductName
and ProductVersion. The tables are connected in a cascade of one-to-many rela-
tionships with constraints ensuring a unique combination of ProductName,
ProductVersion and BookName, for example RHEL 8 Installation Guide.

ProductName

Defines a Product Name, has to be unique in the table, for example OpenShift.

ProductVersion

Defines a Product Version of a specific product. The value don’t have to be unique
in the table, but a constraint is implemented to ensure a unique ProductName and

ProductVersion combination.

BookName

Defines a specific Book type, for example Installation Guide. The value don’t have
to be unique in the table, but a constraint is implemented to ensure a unique
ProductVersion and BookName combination, and the cascaded relationship between
ProductVersion and ProductName ensures that there will be unique combinations

of ProductName, ProductVersion and BookName.

GitCommitID table

Identifies a specific revision of a specific book. Shares a one-to-many relationship
with BookName table.

TestPack table

Identifies a TestPack. TestPack is a highest structure of Tests, defined in Section
2.2l

WaivedFailedResults table

Holds unique identification for waived failed test results. The values are tied to a spe-
cific BookName and a specific TestPack. It is Git-Book-revision agnostic, meaning

that the waived results will be valid for all revisions of a BookName.

51

Originally, the design aimed to store the waived test results in TestResults table,
but because of the table being connected to a specific GitCommit, not a BookName,
this approach was chosen. The table holds values retrieved from the REST API
/api/WaivedResults/, uniquely identifying the test results with the following columns:

o TestSuiteName: A Test Suite name

o TestName: A Test Case name

o ResultMessage: A message reported with the result.

e WaivedFailedResultUniqueName is a concatenation of the previous values
in the following format TestSuiteName TestName [Message]. This column
simplifies the algorithm for rendering of test result template.

This table is used in conjunction with RawJSONs table to generate the JUnit

XML file and to correctly generate the test result Jinja template (graph calculations

and setting the values of waiving checkboxes).

RawJSONs table

Holds raw valid JSON test result files retrieved from the Jenkins CI/CD in a string
format. These are used to simplify rendering of test result template. ResourceURIs
are stored here to simplify the process of rendering the list of available test results
with 1ist_of results.html template. The values in rows have to create a unique
combination. Used in conjunction with WaivedFailedResults to generate the JUnit
XML file and to correctly generate the test result Jinja template (graph calculations

and setting the values of waiving checkboxes).

TestSuite, TestName and TestResults tables

These tables enable unique identification of tests within a single JSON file. The cas-
caded relationship structure is identical to that between ProductName, ProductVersion
and BookName tables, so it won’t be reiterated in the text. TestResults table holds
uniquely identifiable test results, because it holds a Foreign key of GitCommitID.
This ensures the row values can be traced to a specific Git revision of a specific
book, tested with a specific TestPack.

These tables are populated by parsing the JSON file with the database controller.
This triad was used in the previous iterations of the implementation design. It can
be deleted but is left in the implementation to enable possible further improvements.

Downside of this decision is that the database storage will be utilized ineffectively.

52

8.5 Database Controller

The database controller is a script that utilizes the sqlite3 Python standard library.
The controller uses SQL statements to read and modify the database content. The
sqlite3 module also provides exceptions that can be handled by the script.

Parsing and storing the test results from a JSON file

The function add_and_parse_json() processes information retrieved from the client,

containing identification of a specific tested book and a JSON file with test results.

The information about the book is processed first by sequentially adding the
ProductName, ProductVersion, BookName and GitcommitID. Subsequently, the JSON
is added in its raw (string) form with a ResourceURI containing the URI of the Test
Results, and finally, the test results are parsed and stored by iterating through the
JSON structure.

The data are committed to the database only when all information all processed
correctly without raising a sqlite3.0perationalError exception. If the exception
is raised, the data are not committed to the database and a a JSON object and
HTTP status code Internal Status Error 500 is sent to the client (with Flask

Response object constructed by function jsonify).

Handling Waived failed results in a database

Waived results are handled by functions get_waived_results(), add_waived_result()
and remove_waived _result().

These functions receive an identification of a specific Book, Test Pack and Test
Result that is to be added or removed from the database. These functions uti-
lize helper functions to retrieve a specific primary key for a Book and Test Pack

get_bookname pk() and get_testpack_pk().

Handling Database exceptions

The controller implements handling of sqlite3.0perationalError and
sqlite3.DatabaseError exception. These exceptions cause the functions to return
a negative value, which the main function represents in a JSON format and HT'TP
Error Code to the client.

Current implementation does not contain an optimal exception handling, so the
database debugging has to be done in server’s Python console, where the function

name that caught the exception is displayed.

23

8.6 GUI with Test Results

HTMLs presenting the test results are generated with Jinja templates and are con-
structed by calling a Python Flask function return_template. The following section

will describe the Jinja templates in more detail.

There are two documents generated with templates:

e results.html serves as a responsive dynamic website with presentation of
test results of a specific revision of a book tested with a specific Test Pack.
A single results.html document is regarded as a "test resource".

e list_of results.html retrieves the list of available "test resources".

8.7 results.html Test Results Jinja Template

This template is used to render a dynamic and responsive HTML file. The HTML
file includes a mechanism for reporting of false positive results by implementing
a JavaScript jQuery library. The example of a generated HTML from the results.html

template is presented in Figure 8.3

The template is formatted with Bootstrap framework and a supplemental CSS
(Cascading Style Sheets) utilizing its grid system with containers, rows and naviga-

tion pillars.

The Test Suite tabbing functionality is implemented by the tabbable class from
jQuery JavaScript library. The jQuery library is also used to issue AJAX calls to a

waiving mechanism.

Sections of the results.html template:

o A header, containing the information about the book and Test Pack, sourced
from the Test URI

o A row with tabs, containing Test Suite selectors with status bullets, signaliz-
ing the state of the Test Suite (Passed = Green bullet, Failed = Red bullet,
No tests = Blue bullet)

o A row with a selected Test Suite, containing graph statistics about the Test
Cases and foldable tabs, each containing a Test Case with a status bullet.

The tab contains test results with a possibility to waive failed results.

o4

Emender Documentation Tests

Documentation: product Guide
Commit ID: bdasati

Test Pack: technical_accuracy

Test Suites

‘ @ CustomerPortalRequirements | @ GitMergeLeftovers @® GuideStatistic @ PrepublishTest @ TestLinks

@ TestPackages @ TestRelease @ TestWritingStyle @ TestXMLValidity

Test Suite: "CustomerPortalRequirements”

Passed Tests: 231

99.6%.
Failed Tests: 1
[
L}

Emender Errors: 0

Tests:

@ Test Name: testChunkableTagsIDsTag
Hide &

Checking **en-US/Desktop_Migration_and_Administration_Guide.xml**.

FAIL Test Failed. Waive

Fig. 8.3: emenderwebservice presentation of results

Sources of data for results.html template

Jinja template is populated by generating a HTML code by iterating through several
Python dictionaries holding the data. These data are retrieved from the database
and constructed when the user makes and API call to an endpoint

/api/results/<test_pack>.

Sources of data:

e json_dict
A dictionary that contains a JSON object converted into a dictionary. It is
dynamically built by a script which retrieves the JSON from the database.
(JSON is stored in the database as a string).

e product, version, book, gitcommitid, testpack

Values parsed from the request’s URI.

95

e json_dict_graphs_suites, json_dict_graphs_tests

Dictionaries calculated dynamically and source data for test statistics.

e waived_results
A list is generated by retrieving a list of waived failed results for a specific
Book tested by a specific Test Pack.

Generation of test statistics

The statistics about tests are dynamically generated by calculate_graphs function
that calculates the percentages of the graph rows and the states of the status bullets,
stores it in dictionaries json_dict_graphs_suites and json_dict_graphs_tests
for Test Suite and Test Case statistics. These dictionaries reflect the json_dict

structure to simplify the identification of the graphs.

The graphs for individual Test Cases were not implemented, the dictionary holds

bullet statuses displayed next to an individual Test Case.

8.8 Identification and Waiving of Failed Results

While the HTML with the results is being generated, the logic in template recog-
nizes a failed test result and generates a HTML input field with a checkbox, with a
unique identification (HTML input tag attribute id) next to the result. The tem-
plate sets or unsets the checkbox depending on the results registration in the waiving
mechanism by comparing the generated identification of the checkbox with the list
in waived_results. Previous experiments included generating a form with W7T-

Formd’| plugin.

When the user changes the value of the checkbox, a JavaScript included in the
template sends an AJAX request to the REST endpoint
/api/WaivedResults/<test_pack> with the unique identification of checkbox and
its state. AJAX is only implemented for the waiving mechanism and user has to

send another request to the API to receive an updated GUI (reload the page).

Asynchronous JavaScript and XML (AJAX)

"AJAX enables web applications to send and retrieve data from a server asyn-
chronously (in the background) without interfering with the display and behavior
of the existing page."[22]

Shttps://wtforms.readthedocs.io/en/2.3.x/

26

https://wtforms.readthedocs.io/en/2.3.x/

9 Implementation Testing and Deployment

The testing of emenderwebservice application was done by running the application
in a Flask development server and using Postman API testing platformEL illustrated
in Figure [0.1] to generate custom HTTP requests and analyze the responses.

Postman
File Edit View Help

BRNSWNSN import Runner I~

Q

) No Environment + © ¥
[CONFLICT] 0. PUT 0.0.0.0:5000/apif

EStoly I CollectiDns) G5 + 0.0.0.0:5000/api/results/OpenShift/4.3/Product_Guide/commit200300/technical_accuracy Examples 0 ~
+ New Collectior

PUT v | 0.00.05000/api/results/Openshift/4.3/Product_Guide/example_commiti/technical accuracy m Save
™ collection

Params Authorizaion Headers (9) Body® PrerequestScript Tests Settings

none form-data xww-form-urlencoded @ raw binary GraphQL v
L
metadata”: {
nane”: “Openshift 4.3 product guide
fesults™: {
CustomerPor talRequirements”: {
tEst[hur\kable'ags:Ds'ag + [
status”: “info

message”: “Checking **en-Us/Desktop_Migration_and_Adninistration_Guide.xnl®s.

status™: “pass”,
message”: “ALL #72%% chunkable tegs are ok

status™: “info”,
message”: “Checking **en-Us/8ack_Info.xml®.

status™: “pass’,
message”: Ok *#no** chunkable tags found

status™: “info”,

Body Cookies Headers (4) TestResults

1 200 OK 59ms 2278 Save Response v
Pretty Raw Preview Visualize JSON ¥
1

"status": "Json Parsed inte d8 OK",
"Resource Status': "Resource Added."

dl

mQ

4 B
© Bootamp [@

Fig. 9.1: Postman API testing platform

Testing JSON Schema

To test the JSON schema, various minimal changes were made to a valid JSON that

made the JSON to be rejected with an error message in JSON format, which was
then analyzed.

Testing database

Database was tested by sending several valid JSON files to the application and

browsing the database with DB Browser for SQLite and visually, through the gen-
erated GUI with tes

"https://www.postman.com/

o7

https://www.postman.com/

Testing the application with cURL

Application can be tested with cURL by sending a JSON file and retrieving the
results, see Listing [0.I] A valid and invalid JSON file is included in the attached

archive, folder project_root/emenderwebservice/jsons/.

Listing 9.1: Testing emenderwebservice with cURL

#!/usr/bin/env sh

send JSON to emenderwebservice

curl -X PUT \

http://<server_ip>/api/results/<product_name >\
/<product_version>/<book_name>/<commit_ID>/<test_pack_name >\
-H "Content-Type: application/json"\

-d @<relative_path_to_json>

retrieve junit xml

curl -X GET \
http://<server_ip>/api/junit/<product_name >\
/<product_version>/<book_name>/<commit_ID>\

/<test_pack_name> > results.junit

see GUI with test results in a browser

<browser> \

http://<server_ip>/api/results/<product_name >\
/<product_version>/<book_name>/<commit_ID>/<test_pack_name>

9.1 Jenkins Configuration

The following section presents the example configuration of the Jenkins project. The
example assumes that the Git repositories are set to correctly and contain a specific
documentation. Listing shows a configuration for RHEL 4.1 Product Guide
tested with Test Pack named technical _accuracy. The Jenkins job first generates
the test results files with a pre-configured Emender tests and sends a results. json
file to the emenderwebservice REST API. The script then downloads and re-writes
the results. junit file.

Because of the nature of the jobs, to incorporate the waived results into the
Jenkins project (and process the JUnit XML file) a new build has to be triggered.
(The author did not find a suitable way that would enable rewriting of existing build

artifacts or re-running the same build).

o8

Listing 9.2: Example Jenkins configuration

#!/usr/bin/env sh
./run_emend.sh

curl -X PUT \
http://<server_ip>/api/results/RHEL/4.1/Product_Guide/\
$GIT_COMMIT/technical_accuracy \

-H "Content-Type: application/json" -d G@results. json

curl -X GET \
http://<server_ip>/api/junit/RHEL/4.1/Product_Guide/\
$GIT_COMMIT/technical_accuracy > results. junit

$GIT_COMMIT contains a Git commit that triggered the build.

Implementation of project into a production server

Flask provides a development server, but using it for production is not recommended.
A production-grade WSGI server is recommended, for example GunicornP| Listing

[9.3] shows an example how to run the application with the server.

Listing 9.3: Running emenderwebservice with Gunicorn server

#gunicorn <name_of_python_script>:<Flask_app_name>

gunicorn main:app

’https://gunicorn.org/

29

https://gunicorn.org/

10 Suggestions for Further Project Develop-
ment

Automated Jenkins job generation

The module emenderwebservice can be a starting point for a more complex web
application. As stated in Section the integration in Jenkins CI/CD requires user
to understand the platform and its configuration, The adding of new documentation
is not straightforward for the inexperienced users, even though the configuration
would be very similar if not the same with the existing documentation. To solve
this, a Jenkins REST API capabilities can be implemented into emenderwebservice

to create new Jenkins jobs interactively.

Improved documentation for the project

The Emender project on GitHub is divided into several repositories. The reposito-
ries contain read-me files that document the implementation, but having a concise
documentation, hosted on, for example GitHub PagesE] might bring more popularity

to the project. This thesis might serve as a suitable source of documentation.

Tutorials how to develop Lua tests

The tests developed for the framework cover a significant number of use cases. The
documentation across different documentation teams might be structured differently
and require test modifications. Currently, even though the source code for the test
is well documented, the further development of tests is for the inexperienced user

complicated.

Supporting pull request testing in Jenkins CI/CD

The current implementation is designed to test the main branches of the documen-
tation. The process of submitting new documentation uses pull request method.
Configuring Jenkins CI/CD to test pull requests would bring less incomplete contri-
butions. The downside for the Jenkins CI/CD host would be a significant increase

of builds that will require more server resources.

"https://pages.github.com/

60

https://pages.github.com/

11 Conclusion

The goal of the thesis was to implement an integrated framework for testing of
technical documentation written in AsciiDoc markup language.

First sections discussed the aspects of writing technical documentation, pre-
sented several semantic markup languages, principles of Continuous Integration and
Delivery and its role in technical writing. An open-source documentation testing
framework Emender and its capabilities were introduced along with false positives
in testing of technical documentation and a mechanism for their handling.

The thesis further discussed current implementation of Emender in an enter-
prise environment and a proposal of its extension with a RESTful web application
providing test aggregation and a mechanism to handle false positive results. The
implementation of the web application was discussed with a brief description of
used technologies. The thesis was concluded with a testing of an implementation

and suggestions for a further project development.

The major disadvantage of Emender project is an incomplete documentation,
despite being extensively developed and successfully implemented onto enterprise
documentation. This thesis tried to partly cover these shortcomings by providing
an overview of functions and a description of implementation of the framework onto
a technical documentation written in AsciiDoc. The implementation of emender-
webservice partly mitigates the problems with the current Emender implementation
in CI/CD and provide a concise graphical user interface with test results aggregation
in SQLite3.

The utilization of Flask web development framework in the implementation
proved that it is ideal for a development of Python-based dynamic websites and
provides excellent capabilities for RESTful services. Its extensibility enables fur-
ther possible improvements of the application, notably an interface utilizing Jenkins

REST API for documentation test management.
Implementation of emenderwebservice has a potential to bring more flexibility to

the automated documentation testing process and may encourage new contributions

to the Emender project.

61

Bibliography

[1] DERESPINIS, Francis. The IBM style guide: conventions for writers and ed-
itors. 2011. Upper Saddle River, NJ: IBM Press/Pearson, ¢2012. ISBN 978-0-
13-210130-1.

2] Semantic | Definition of Semantic by Merriam-Webster [online]. [cit.
2020-05-31]. Available at: https://www.merriam-webster.com/dictionary/

semantic

3] Markup Language | Definition of Markup Language by Merriam-Webster [on-
line]. [cit. 2020-05-31]. Available at: https://www.merriam-webster.com/
dictionary/markup’%20language

[4] VOMACKA, Pavel. Automatizovand kontrola technické dokumentace. Brno,
2017 [cit. 2020-05-31]. Diplomova prace. Masarykova univerzita, Fakulta in-
formatiky. Vedouci prace RNDr. Adam Rambousek, Ph.D..

[5] AscitDoc Home Page [online]. [cit. 2020-05-31]. Available at: http://

asciidoc.org/

(6] Continuous integration wvs. continuous delivery wvs. continuous deployment
[online]. [cit. 2020-05-31]. Available at: https://www.atlassian.com/

continuous-delivery/ci-vs-ci-vs-cd

[7] Jenkins User Documentation [online]. [cit. 2020-05-31]. Available at: https:
//jenkins.io/doc/

8] Web Services Architecture [online]. [cit. 2020-05-31]. Available at: https://
www.w3.org/TR/2004/N0TE-ws-arch-20040211/

9] HTTP request methods - HTTP | MDN [online]. [cit. 2020-05-31]. Available at:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

[10] Are REST and HTTP the same thing? - The RESTful cookbook [online].
[cit. 2020-05-31]. Available at: http://restcookbook.com/Miscellaneous/
rest-and-http/

[11] What is REST — Learn to create timeless RESTful APIs [online]. [cit. 2020-05-
31]. Available at: https://restfulapi.net/

[12] JSON vs XML — REST API Tutorial [online]. [cit. 2020-05-31]. Available at:
https://restfulapi.net/json-vs-xml/

62

https://www.merriam-webster.com/dictionary/semantic
https://www.merriam-webster.com/dictionary/semantic
https://www.merriam-webster.com/dictionary/markup%20language
https://www.merriam-webster.com/dictionary/markup%20language
http://asciidoc.org/
http://asciidoc.org/
https://www.atlassian.com/continuous-delivery/ci-vs-ci-vs-cd
https://www.atlassian.com/continuous-delivery/ci-vs-ci-vs-cd
https://jenkins.io/doc/
https://jenkins.io/doc/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
http://restcookbook.com/Miscellaneous/rest-and-http/
http://restcookbook.com/Miscellaneous/rest-and-http/
https://restfulapi.net/
https://restfulapi.net/json-vs-xml/

[13] Foreword;Flask 1.0.2 documentation [online]. [cit. 2020-05-31]. Available at:
http://flask.pocoo.org/docs/1.0/foreword

[14] Flask - Reviews, Pros & Cons | Companies using Flask [online]. [cit. 2020-05-
31]. Available at: https://stackshare.io/flask

[15] PEP 3333 — Python Web Server Gateway Interface vi1.0.1 | Python.org [on-
line]. [cit. 2020-05-31]. Available at: https://www.python.org/dev/peps/
pep-3333/.

[16] What is WSGI? — WSGI.org [online]. [cit. 2020-05-31]. Available at: https:
//wsgi.readthedocs.io/en/latest/what.html.

[17] Werkzeug — Werkzeug Documentation [online]. [cit. 2020-05-31]. Available at:
https://werkzeug.palletsprojects.com/en/1.0.x/.

[18] GRINBERG, Miguel. Flask web development: developing web applications with
Python. Second edition. Beijing: O’Reilly, 2018. ISBN 978-1491991732.

[19] MANOLESCU, Dragos, Markus VOELTER and James NOBLE. Pattern lan-
guages of program design 5. Upper Saddle River: Addison-Wesley, 2006. ISBN
03-213-2194-4.

[20] Overview of ASP.NET Core MVC [online]. [cit. 2020-05-31]. Available at:

https://docs.microsoft.com/en-us/aspnet/core/mvc/.

[21] SQL Constraints [online]. [cit. 2020-05-31]. Available at: https://www.

w3schools.com/sql/sql constraints.asp

[22] GUNASUNDARAM, Rajesh. Learning Angular for .NET Developers. Birming-
ham: Packt Publishing, 2017. ISBN 978-1-78588-428-3.

63

http://flask.pocoo.org/docs/1.0/foreword
https://stackshare.io/flask
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://wsgi.readthedocs.io/en/latest/what.html
https://wsgi.readthedocs.io/en/latest/what.html
https://werkzeug.palletsprojects.com/en/1.0.x/
https://docs.microsoft.com/en-us/aspnet/core/mvc/
https://www.w3schools.com/sql/sql_constraints.asp
https://www.w3schools.com/sql/sql_constraints.asp

List of abbreviations

API
CD

CI
CLI
FTP
GUI
IDE
HTTP
IDE
JSON
MVC
ORM
RDBMS
REST
SQL
URI
XML

Application Programming Interface
Continuous Delivery/Deployment
Continuous Integration

Command Line Interface

File Transfer Protocol

Graphical User Interface

Integrated Development Environment
HyperText Transfer Protocol
Integrated Development Environment
JavaScript Object Notation
Model-View-Controller

Object Relational Model

Relational Database Management System

Representational State Transfer
Structured Query Language
Uniform Resource Identifier

eXtensible Markup Language

64

List of appendices

[A Database Relationship Diagram | 66
[B_Attachment | 67
(B.1 Folder Structure| o 67
[B.2 Running the Development Server | 67
[B.3 Project Structure|.o 67

65

99

A Database Relationship Diagram

3 rows 1>

TestPack [table]
TestPackPK
TestPack
| 1 rnwl 3>
BookName [table]
BookNamePK
ProductVersion [table] BookMName
ProductVersionPK ——o+¢ | ProductVersionFK
ProductName [table] ProductVersion =1 4 rows| 2=
ProductNamePK ———0« ProductNameFK
ProductName <1 4rows| 1>

TestSuite [table]

TestSuitePK

TestSuite

TestPackFK
<1 | 9 rowsl 1>

TestName [table]

TestNamePK

TestName
TestSuiteFK
<1 |39rows|1 >

TestResults [table]

TestResultsPK

ResultStatus

Raw]SONs [table]

Raw]SONPK

WaivedFailedResults [table]

Raw]SON

WaivedFailedResultsPK

ResourceURI

ResultMessage

TestNameFK

GitCommitIDFK

<2 | 7,020 rows

WaivedFailedResultUniqueName

TestPackFK

TestSuiteName

GitCommitiDFK

TestName

4 rows

<2

ResultMessage

BookNameFK

TestPackFK

| 62 rows|

<2

GitCommitlD [table]

GitCommitIDPK

GitCommitlD

BookNameFK
| 4rnws| 2>

<1

Fig. A.1: Database table relationships

B Attachment

B.1 Folder Structure

/
| project _root/. Project root folder
| _emenderwebservice/........... ... Python module
database/
kdatabase.db SQLite3 database
database-definition.sql
jsons...... ... Sample JSONs with test results
static............... Bootstrap, jQuery libraries and CSS
templates............ il Jinja templates
_dinit__py.... Module initialization

calculate_graphs.py
database_controller.py
json_schema.py
junit_rendering.py

TOUtesS.pY. ...ttt REST API definition
| flask run.sh........... Bash script that runs a local server
| . flaskenv.................. Flask environment variables
| Pipfile........ Dependency definition file

| _main.py
| PeterMackoDiplomaThesis.pdf

B.2 Running the Development Server

1. Install pipenv.

2. Navigate to the project_root folder.

3. Run $pipenv shell. This installs the dependencies from the Pipfile.

4. Run $./flask_run.sh. This starts the development server and deploys the Flask
application emenderwebservice on 0.0.0.0:5000.

5. See Section [J for application testing.

B.3 Project Structure

The project was implemented inside Python virtual environment, managed by pipenv.
A folder structure recommended by Flask and Python was implemented, with the
main Python package called emenderwebservice. The Flask application is defined

in main.py which includes the Python package emenderwebservice

67

	Introduction
	Technical Documentation
	Semantic Markup Languages
	Automated Testing of Technical Documentation
	Continuous Integration / Continuous Deployment (CI/CD)

	Emender - Documentation Testing Framework
	Emender Framework Structure
	Emender Tests
	Presentation of Test Results
	Implementation of Emender on Documentation
	Examples of Implemented Test Suites

	False Positives in Tests
	Current Implementation of Emender in Jenkins CI/CD
	Characteristics of the Implementation
	Viewing Emender Generated Test Results
	Drawbacks of the Current Implementation

	Proposed Improvements for Emender
	List of Requirements
	Identification of Emender Test Results
	Attributes Used for Identification of Documentation and Test Results
	Uniquely Identifying a Specific Book
	Uniquely Identifying a Specific Git Revision of a Book
	Uniquely Identifying JSON Files with Test Results
	Uniquely Identifying the Results within the JSON File

	Storing the Test Results in a Database
	Graphical User Interface (GUI) with a Waiving Mechanism
	JUnit XML Generator

	emenderwebservice in Jenkins CI/CD
	Technologies Used For Implementation
	REST and RESTful Web Services
	Flask Web Development Framework
	Jinja Template Engine
	SQLite3
	Converting Python Applications to Web Applications with Flask

	emenderwebservice Implementation
	Model-View-Controller (MVC) Architecture
	REST API Implementation
	REST API Endpoints

	JSON Schema
	Database Implementation
	Database Controller
	GUI with Test Results
	results.html Test Results Jinja Template
	Identification and Waiving of Failed Results

	Implementation Testing and Deployment
	Jenkins Configuration

	Suggestions for Further Project Development
	Conclusion
	Bibliography
	List of abbreviations
	List of appendices
	Database Relationship Diagram
	Attachment
	Folder Structure
	Running the Development Server
	Project Structure

