
��������	
���

��������������
���������
���
�����

��������

�����
���������	�����

���������
��
�����

���
�
��������
���

�����
������������
����

��������
�
���
�
�
������

����
�
����

��

�������������

�
��������������
�
�
��������

���
�
�	�������

����
�
���

��
�������
 ��
�����

��
��
���

������ !�

��������	
���

��������������
���������
���
�����

��������

�����
���������	�����

���������
��
�����

���
�
��������
���

�����
������������
����

��������
�
���
�
�
������

����
�
����

��

�������������

�
��������������
�
�
��������
����"�����

�
���������
�������"�����������

���
�
�	�������

����
�
���

��
�������
 �#$%���
�����

��
��
���

&����

� '()*%��#$%�
���&���+���,��-�%
���
������

&����

����
������
� ��#$%�����������.
��,��-�%
��/���
������

���������

Abstract

The thesis starts by providing a taxonomy of concurrency-related errors and an over-
view of their dynamic detection. Then, concurrency coverage metrics which measure
how well the synchronisation and concurrency-related behaviour of tested programs
has been examined are proposed together with a methodology for deriving such met-
rics. The proposed metrics are especially suitable for saturation-based and search-
based testing. Next, a novel coverage-based noise injection techniques that maximise
the number of interleavings witnessed during testing are proposed. A comparison of
various existing noise injection heuristics and the newly proposed heuristics on a set
of benchmarks is provided, showing that the proposed techniques win over the exist-
ing ones in some cases. Finally, a novel use of stochastic optimisation algorithms in
the area of concurrency testing is proposed in the form of their application for finding
suitable combinations of values of the many parameters of tests and the noise injec-
tion techniques. The approach has been implemented in a prototype way and tested
on a set of benchmark programs, showing its potential to significantly improve the
testing process.

Abstrakt

V disertačnı́ práci je nejprve uvedena taxonomie chyb v souběžném zpracovánı́ dat a
přehled technik pro jejich dynamickou detekci. Následně jsou navrženy nové metriky
pro měřenı́ synchronizace a souběžného chovánı́ programů společně s metodologiı́ je-
jich odvozovánı́. Tyto techniky se zejména uplatnı́ v testovánı́ využı́vajı́cı́m techniky
prohledávánı́ prostoru a v saturačnı́m testovánı́. Práce dále představuje novou heuris-
tiku vkládánı́ šumu, jejı́mž cı́lem je maximalizace proloženı́ instrukcı́ pozorovaných
během testovánı́. Tato heuristika je porovnána s již existujı́cı́mi heuristikami na
několika testech. Výsledky ukazujı́, že nová heuristika překonává ty existujı́cı́ v
určitých přı́padech. Nakonec práce představuje inovativnı́ aplikaci stochastických
optimalizačnı́ch algoritmů v procesu testovánı́ vı́cevláknových aplikacı́. Principem
metody je hledánı́ vhodných kombinacı́ parametrů testů a metod vkládánı́ šumu.
Tato metoda byla prototypově implementována a otestována na množině testovacı́ch
přı́kladů. Výsledky ukazujı́, že metoda má potenciál vyznamně vylepšit testovánı́
vı́cevláknových programů.

Key Words

software testing, concurrency errors, dynamic analysis, verification, coverage met-
rics, noise injection, metaheuristics, genetic algorithms

Klı́čová slova

testovánı́ software, chyby v souběžném zpracovánı́, dynamická analýza, verifikace,
metriky pokrytı́, vkládánı́ šumu, metaheuristické algoritmy, genetické algoritmy

Zdeněk Letko, Brno, 2012

Acknowledgement

First and foremost, I would like to thank my supervisor Tomáš Vojnar for his guid-
ance and constructive criticism which have greatly helped me to progress towards
the successful completion of this work. I would also like to gratefully thank Shmuel
Ur for his motivating ideas and patience. My thanks also belong to Vendula Hrubá,
Yarden Nir-Buchbinder, Rachel Tzoref-Brill, and Bohuslav Křena who were always
open to hear my ideas and to share their opinions. I must also thank to other PhD
students in the A219 and A220 offices of FIT BUT who allow me to perform my
time and resource demanding experiments on their personal computers. Finally, I
would also like to express my deepest thanks to my parents for their support and to
my wife Anna for her patience and tolerance without which I would never finish this
dissertation.

The work presented in this thesis was supported by the Czech Science Foundation
(projects P103/10/0306 and 102/09/H042), the Czech Ministry of Education (projects
COST OC10009 and MSM 0021630528), the EU/Czech IT4Innovations Centre of
Excellence project CZ.1.05/1.1.00/02.0070, the European FP6 project IST-035157
SHADOWS, and the internal BUT projects (FIT-10-1, FIT-11-1, and FIT-12-1).

Contents

1 Introduction 1
1.1 Verification of Multi-threaded Software 2
1.2 Metaheuristic Techniques . 6
1.3 Goals of the Thesis . 7
1.4 Structure of the Thesis . 8

2 Verification of Concurrent Programs 9
2.1 Introduction to Multi-threaded Software 10
2.2 Taxonomy of Concurrency Errors 14

2.2.1 Safety Errors . 15
2.2.2 Liveness and Mixed Errors 18

2.3 Advanced Techniques of Testing Concurrent Programs 20
2.3.1 Noise Injection Techniques 20
2.3.2 Deterministic Testing . 22

2.4 Dynamic Analysis of Concurrent Programs 24
2.4.1 Detection of Safety Errors 25
2.4.2 Detection of Liveness Errors 33

3 Concurrency Coverage Metrics 35
3.1 Related Work . 36
3.2 Methodology of Deriving New Coverage Metrics 38
3.3 Novel Coverage Metrics . 40
3.4 Abstract Object and Thread Identification 43
3.5 A Comparison of Coverage Metrics 44
3.6 Summary . 51

4 Noise Injection Heuristics 53
4.1 Existing Noise Seeding and Placement Heuristics 54
4.2 A New Coverage-based Noise Placement Heuristics 55
4.3 A Comparison of Noise Injection Techniques 57

4.3.1 Testing Environment Used for Comparison 58

ii

4.3.2 A Comparison of Noise Seeding Heuristics 60
4.3.3 A Comparison of Noise Placement Heuristics 73
4.3.4 The Best Improvement Achieved by Noise-based Testing . . 81

4.4 Suggestions for Noise-based Testing 83
4.5 Summary . 84

5 Search-based Testing of Concurrent Programs 85
5.1 Related Work . 86
5.2 Concurrent Programs Testing as a Search Problem 89

5.2.1 The Test and Noise Configuration Search Problem 89
5.2.2 Objective Functions for the Context of the TNCS Problem . 90

5.3 Initial Experiments with the Hill-Climbing Algorithm 91
5.4 A Genetic Approach to the TNCS Problem 95
5.5 Parameters of Genetic Algorithms and the TNCS Problem 96
5.6 A Concrete Application of the Proposed Approach 99
5.7 Experimental Results . 101

5.7.1 An Evaluation of the Best Individuals 102
5.7.2 An Evaluation of the Search Process 104

5.8 Summary . 105

6 Conclusions and Future Directions 106
6.1 Summary . 106
6.2 Future Research Directions . 107
6.3 Publications Related to This Work 108

References 108

A Experiments with Parameters of Genetic Algorithms 120
A.1 Population Size, Mutation, and Crossover Parameters 121
A.2 Elitism and Random Individuals 124
A.3 Selection Operators . 128

B An Infrastructure for Search-based Testing of Concurrent Programs 130
B.1 The Architecture of SearchBestie 131
B.2 A Tool Chain for Search-based Testing and Analysis 136

iii

Chapter 1

Introduction

The arrival of multi-core processors into regular computers accelerated develop-
ment of software that uses multi-threaded design to utilize the available hardware
resources. Modern operating systems allow hundreds of separate processes to run
and communicate at any time. Switching among running processes requires a certain
computation cost to be paid. Therefore, a lightweight version of processes were intro-
duced. Threads, tasklets, and similar entities are lightweight processing units that can
commonly be scheduled by the operating systems. Threads which exist within a pro-
cess share process resources such as memory which makes communication among
threads seemingly easier but, on the other hand, prone to errors. In this work, we
primarily focus on problems that may arrise when multiple threads and/or processes
use a common shared memory.

Concurrent or multi-threaded programming has become popular and supported
by a wide range of programming languages including object-oriented languages like
Java, C++, C#, and others. These languages allow programmers to relatively eas-
ily create multi-threaded programs. But, on the other hand, they put more demands
on skills of programmers. Indeed, errors in concurrency in such languages are not
only easy to cause, but also very difficult to discover and localize due to the non-
deterministic nature of multi-threaded computation. Many different kinds of such
errors exist. They can be broadly categorised according to the program properties
they violate to safety errors such as data races, atomicity violations, deadlocks and
liveness errors such as livelocks. A more detailed taxonomy of these errors is pro-
vided in Chapter 2.

The described situation stimulates research efforts which are currently devoted to
all sorts of methods for discovering errors in concurrency (or, for proving their ab-
sence), including testing, dynamic analysis, as well as various approaches of formal
verification. These approaches are briefly discussed in Section 1.1. Besides these
approaches targeting quality assurance, the research also focuses on a new program-
ming languages such as, e.g., Scala [102] or Go! [23], and new paradigms such as,

1

e.g., transactional memory [97]. These languages and paradigms introduce concur-
rency mechanisms that allow to get the most out of modern multi-core processors
while keeping the difficulty of programming on a reasonable level. Despite the ad-
vantages that these new approaches offer, the software industry accepts them very
slowly mainly due to the fact that companies already invested a lot of effort, money,
and human resources into products written in traditional programming languages.
Therefore, testing, analysis, and verification of multi-threaded programs written in
common languages like Java is still subject to heavy research. And, it is also the
subject of this thesis.

The general subject of our interest in this thesis is finding concurrency errors
in complex multi-threaded software systems written in object-oriented programming
languages—especially in Java. In our approach, we focus on a combination of three
already existing approaches described below: (i) noise injection that helps to increase
the number of different scheduling scenarios that can be observed during repeated
executions of a test case, (ii) dynamic analysis which is in certain cases able to detect
errors based on information collected along an execution path even when the error
does not show up, and (iii) stochastic optimisation algorithms and their application
in the testing process.

Below, in the rest of this chapter, a brief overview of existing approaches for
verification of multi-threaded software is provided. A special emphasis is devoted to
program testing and dynamic analysis. Next, an overview of stochastic optimization
algorithms is provided in Section 1.2. After this introduction, the goals of the thesis
are described in Section 1.3. Finally, the structure of the following text is introduced
in the last section of this chapter.

1.1 Verification of Multi-threaded Software

Plenty of research papers devoted to verification of multi-threaded software are pub-
lished every year. The proposed approaches include program testing, dynamic analy-
sis, static analysis, abstract interpretation, theorem proving, as well as model check-
ing. We can compare these techniques by their ability to detect real errors. An ideal
verification technique should be sound and complete. A sound technique does not
produce any false negatives (i.e., it does not miss errors). A complete does not pro-
duce any false positives (i.e., warnings about errors that are not real and are some-
times called as false alarms). So, a sound and complete technique detects all and only
real errors. Let us briefly introduce all mentioned techniques and focus on problems
they have to face when multi-threaded programs are considered.

Program testing. Program testing is the most common way of finding errors in
programs. The purpose of testing is to find program failures—situations when a pro-
gram produces unintended results. Failures are caused by a software defect (also
called as a fault or bug) which is a result of a programming error [24]. The process

2

of finding and correcting of a program error that causes an observed failure is called
debugging. When testing, a programmer or tester creates a test case which is defined
by inputs and corresponding outputs. The test case is executed. If a failure occurs,
there is an error in the program or in the test case. Program testing checks only the
code along the execution path of the test case and usually does not provide informa-
tion about the root cause of the failure which makes debugging difficult. In general,
program testing is accepted as an unsound and complete technique.

Testing is often combined with coverage analysis—a process of collecting, re-
viewing and analysing coverage metrics [94]. A coverage metric is based on iden-
tifying phenomena (such as reachability of a certain line, reachability of a situation
in which a certain variable has a certain value, etc.) whose occurrence in the be-
haviour of a tested program is considered to be of interest. More precisely, coverage
metrics are formed using a coverage domain that is a set of coverage tasks represent-
ing the phenomena of interest. One can then measure how many of the phenomena
corresponding to the coverage tasks have been seen in the execution(s) of the tested
program. Such a measurement can be used to asses how well the program has been
tested. Coverage metrics usable in concurrent software testing are discussed in more
detail in Chapter 3.

The biggest problem of testing multi-threaded programs is that multiple execu-
tions of a multi-threaded program MP with the same input I may produce different
results [93, 24] due to non-deterministic scheduling of program threads. Therefore,
a single execution of MP is insufficient to determine the correctness of MP for I.
Moreover, even if MP with I has been executed many times without spotting any
failure, it is possible that a future execution of MP with I will produce an incorrect
result. The non-determinism also complicates the debugging approach because there
is no guarantee that if MP failed for I it will fail again during the next execution of
MP with I.

This problem is targeted by various techniques of program replay that focus on
a reproducible execution of multi-threaded programs, e.g., [56], and deterministic
testing, e.g., [24], which attempts to force a selected scheduling scenario during a par-
ticular test execution. These techniques are in general quite demanding because they
need to handle scheduling scenarios of possibly very long runs and to ensure that
threads are scheduled according to particular scheduling scenarios. A lightweight al-
ternative is to use noise injection, c.f., e.g., [30]. This technique randomly or based on
some heuristics injects the so-called noise (a code that stops or delays the execution of
a selected thread) in hope of observing a different and still legal scheduling scenario.
Therefore, the approach cannot cause false positives apart from performance testing
or testing of real-time programs for which this technique is not suitable. This ap-
proach cannot prove correctness of MP for the given I. But, it is efficient in revealing
of program failures that are caused by real errors. Moreover, noise injection meth-
ods have a relatively low overhead in comparison with deterministic testing. Both
mentioned approaches are described in more details in Section 2.3.

3

Dynamic analysis. Dynamic analysis which is also often called runtime verifica-
tion [50] is based on program tracing—a process which gathers selected information
concerning the observed execution. The gathered information is analysed with an in-
tention to discover abnormal execution conditions. The information can be analysed
on-the-fly, during the execution, or post-mortem, after the end of the execution. De-
spite the analysis gathers information concerning a single execution path, it can often
discover errors that are not directly on the given execution path. An overview of
existing dynamic analyses for concurrent programs is presented in Chapter 2.

Since dynamic analysis also performs execution of a test case, it suffers from
the same problem of nondeterministic thread scheduling as testing does. An addi-
tional problem of multi-threaded program tracing is the so-called probe effect [24]—
tracing of concurrent program interferes with the normal execution of the program.
Therefore, designers and users of dynamic analyses must consider this effect during
reasoning about the given program.

Static analysis. Static analysis [88] represents a different approach than the two
introduced above. Static analysis is based on a compile-time analysis, and it often
does not need the code to be executable. There exist many different static analyses
ranging from rather simple which search the code for code patterns representing bad
practices to quite complex complete and sometimes also sound analyses. Among the
most well-known static analyses, the data-flow analyses, type and effect systems, and
constrain-based analyses can be mentioned. Abstract interpretation and model check-
ing introduced below are sometimes considered as static analyses too. We have, how-
ever, decided to list them separately because they represent rather specific techniques
for program verification.

Static analyses, unlike testing and dynamic analyses, are not restricted to judging
the behaviour of a program based on a few of its executions. They can, in theory,
cover all possible behaviours. Moreover, that implies a need to somehow cover expo-
nential many thread behaviours which makes precise analyses very costly. Therefore,
static approach has to fight with exponential number of possible thread scheduling
scenarios which makes analysis of multi-threaded programs quite hard. Therefore,
there exist various static analyses which approximate thread behaviour. The more
approximation they use, the bigger code they are able to analyse but for the price of
producing more false alarms.

Abstract interpretation. Abstract interpretation introduced in [29] provides a the-
ory of sound approximation of the semantics of computer programs. The semantics
are based on monotonic functions over ordered sets, typically lattices. When using
abstract interpretation, the code is symbolically executed under some abstract seman-
tics, and for each line, abstract contexts forming an ordered set are computed. The
semantics of a program is computed as the least fixpoint of the semantic function

4

over the ordered sets. The abstract interpretation framework is generic and can be
instantiated in a number of ways differing in their precision. The worst well-known
instantiations are probably those for analysing integer programs using abstract do-
mains such as polyhedra, octagons, difference bound matrices, etc. When used for
verification of concurrent software, the abstract interpretation approach faces similar
problems as static analysis.

Model checking. Model checking [12] is a fully automated technique for checking
whether a system satisfies a certain correctness specification. The system can be
a model prepared in some specialised modelling language (such as Promela), but
also a real system (either hardware system in some hardware definition language or
software system in some common programming language) possibly with abstracted
environment. Based on a systematic or heuristic exploration of the state space of the
examined system, the technique able to provide error traces explaining why a certain
property does not hold in a given system. The technique is highly automated up to
the possible creation of a model of the system and/or its environment.

The main problem of the technique is the so-called state space explosion prob-
lem, i.e., the number of states to which the system can get and that are to be explored
is enormously huge. To cope with this problem, many different heuristics have been
proposed. One of the sources of the problem is concurrency, and the number of pos-
sible scheduling scenarios leading to new states of the model. One of the heuristics
limiting the number of scenarios to analyse is called partial-order reduction [43]. The
heuristics exploits the commutativity of concurrently executed events which do not
exhibit significantly different behaviours. Despite the existence of such heuristics,
the state space of a concurrent program model can still be huge.

Theorem proving. Theorem proving which is sometimes called deductive verifi-
cation [18] is an approach that is usually only semi-automated. The technique takes
assumptions about the considered system and general theorems of various logical the-
ories and using mathematical reasoning (and in some cases also hints from the user)
proves that some facts are satisfied in the system. The process is usually compli-
cated. Therefore, it is mostly used for critical systems where proof of correctness is
really important. Recently, there has been a lot of progress in developing automated
satisfability solvers for different logical theories. These solvers are used as a build-
ing block within various advanced verification methods. Together with heuristics for
generation of loop invariants and function pre-/post- conditions, they can even allow
fully-automated verification to be performed in some cases.

Theorem proving is not commonly used for verification of concurrent programs.
This is mainly because applying this method to realistic sequential programs is al-
ready quite demanding. However, there exist recent pioneering works that apply
theorem proving to concurrent programs, c.f., e.g., [2].

5

Despite the intense research in the area, deterministic testing, advanced static
analyses, abstract interpretation, and model checking which are able to prove cor-
rectness of multi-threaded programs are still too demanding and do not scale well.
Instead, simple static analyses, non-deterministic testing, and dynamic analysis are
usually used by software developers and testers to search for errors in the code (this
approach is sometimes called bug hunting). The bug hunting approach is often com-
bined with the so-called code inspection. In this approach, skilled programmers read
the code and manually search for common bad practices and possible errors. In this
work, we primarily target and improve the bug hunting approach.

1.2 Metaheuristic Techniques

Stochastic optimisation techniques, also called metaheuristics or search-based opti-
misation [104, 76], employ a certain degree of randomness in the process of finding
as optimal as possible solutions to complex well-defined problems. Such problems
commonly have a large space of possible solutions (also known as search space) and
no known efficient and complete solution. Instead, heuristics are used to partially
explore the search space and favour promising parts of the space with good solutions.
In order to be able to distinguish suitability of each solution, metaheuristic techniques
define the so-called fitness function which is problem specific and express the quality
of each candidate solution with respect to the chosen goal. With a metaheuristics
approach, there is no guarantee to find globally optimal solutions. However, meta-
heuristics deliver satisfactory solutions for complex problems in a reasonable time.

The heuristic concept in solving optimisation problems was very popular in the
past decades. Therefore, there exist many various techniques, c.f., e.g., the tabu
search, simulated annealing, genetic algorithms, particle swarm optimization, etc.
All of them combine two contradictory criteria: exploration of the search space and
exploitation of the best solutions found.

The goal of exploration (also called diversification) is to try (very) different solu-
tions so that all regions of the search space are evenly explored and that the search is
not limited to a reduced number of regions. An example of an exploration algorithm
is the random search algorithm [76]. In the random search, a random solution is gen-
erated in each iteration and no solutions are kept in memory for further use. If a good
random generator is used, all regions of the search space are sooner or later explored.

The goal of exploitation of the best solution (also called intensification) is to
search for a better solution in the region containing the currently most promising
solution. An example of an exploitation algorithm is the hill climbing search algo-
rithm [76]. In this algorithm, one selects the best neighbouring solution that is better
than the current best solution in each iteration. This approach stores in memory the
newly discovered solution as the current best solution for the next iteration.

6

Metaheuristic methods can be classified according to many different criteria,
for instance, nature-inspired vs. non-nature-inspired, those which store solutions
in memory for further use vs. those which do not (often denoted as memoryless),
population-based vs. local, deterministic vs. stochastic, or iterative vs. greedy [104].

One of the popular techniques which is also used in our approach are the genetic
algorithms (GAs) [76]. GAs are inspired by the evolution processes in nature, handle
a set of solutions (called population) in memory, and during each iteration determine
the next population using a stochastic algorithm containing three major steps called
selection, crossover, and mutation. A solution in the genetic algorithm is encoded as
a vector of values (usually but not necessarily of boolean values) called a genome.
The selection operation decides which solutions (also called parents) will be used to
infer a new member of the next population. The crossover operation combines two
parents, and the mutation operation modifies (mutates) the result of the crossover.
GA appropriately combines exploration and exploitation and often can find a good
solution for the given problem.

It has been shown that metaheuristic techniques have many applications in most
areas of software engineering such as test data generation (generation of test inputs),
module clustering, cost/effort prediction, system integration, requirements schedul-
ing, and non-functional properties testing such as security or usability [27, 81, 3].
Applications of metaheuristics in testing and verification of concurrent programs is
discussed in Chapter 5.

1.3 Goals of the Thesis

As discussed above, at the present time, verification of multi-threaded code written in
common programming languages like Java requires a considerable effort and skilled
testers. The primary goal of the thesis is therefore to improve the testing process of
real-world multi-threaded programs.

To achieve this goal, we propose new concurrency coverage metrics which are
inspired by algorithms for dynamic detection of concurrency errors and appropri-
ately handle important aspects of multi-threaded computation. They are suitable to
measure quality of testing and to compare different testing approaches. Then, we
focus on noise injection heuristics. We propose a new heuristics which uses cov-
erage information that is collected during the testing process to further increase the
number of examined scheduling scenarios. Moreover, we provide a systematic com-
parison of different noise injection heuristics based on a number of experiments and
advise when and how to use them. Surprisingly, such information did not exist previ-
ously1. Finally, we propose a way how metaheuristic search algorithms can be used

1Personal and mail communication with Dr. Shmuel Ur (Shmuel Ur Inovations, Ltd., previously
IBM Haifa Research Laboratories) and Dr. Yarden Nir-Buchbinder (Google, previously IBM Haifa
Research Laboratories)—authors of the IBM Concurrency Testing Tool.

7

to improve the quality of testing of concurrency software by finding suitable com-
binations of the many parameters of test and noise techniques, which we formalise
as the so-called test and noise configuration search problem. Our novel combina-
tion of the mentioned techniques leads to an efficient automatic technique for testing
multi-threaded programs.

Besides the primary goal, this thesis also provides an original taxonomy of con-
currency errors and an overview of techniques for their run-time detection which we
studied before the main goal of the thesis has been tackled.

1.4 Structure of the Thesis

Chapter 2 provides an introduction to multi-threaded computation and then focuses
on concurrency-related errors and dynamic methods of their detection. In Chapter 3,
we present our new concurrency coverage metrics suitable mainly for search-based
and saturation-based testing. Chapter 4 studies various existing noise injection tech-
niques and introduces new noise injection techniques which are inspired by our work
on concurrency coverage metrics. Chapter 5 presents our proposal of using meta-
heuristics in testing of concurrent programs. As with the experiments with noise
heuristics, some more details of the experiments we did to set parameters of the ge-
netic algorithm are presented in Appendix A. In Chapter 6, we conclude the work
and provide directions of possible future work. Finally, in Appendix B, we describe
an infrastructure for search-based testing of concurrent programs called SearchBestie
that resulted from our work and that contains an implementation of the discussed
techniques.

8

Chapter 2

Verification of Concurrent
Programs

In this chapter, basic concepts and terminology used in the rest of this thesis are
introduced. Namely, in the first section of this chapter, we introduce the basic princi-
ples of multi-threading and concurrent computation on modern systems with shared
memory. Particular emphasis is put on the Java synchronisation mechanisms and on
memory model describing the semantics of Java byte-code instructions accessing the
memory. Programmers use these principles and mechanisms to design multi-threaded
programs that keep the shared memory in a consistent state. To achieve this goal, their
program has to follow certain rules in communication among threads. This high-level
design of synchronisation is often called a synchronisation policy [93].

A violation of this policy leads to inconsistent content of the shared memory and
to concurrency errors. Section 2.2 provides a taxonomy and uniform definitions of
concurrency errors. Definitions of these errors surprisingly often differ in the present
literature. Therefore, we try to identify the basic skeleton for each concurrency error
and discuss its parameters. Our motivation is to describe similar terms present in the
literature and connected with the same concurrency errors by appropriate setting of
particular parameters. The errors are classified as safety and liveness errors according
to the type of correctness criteria they violate.

Concurrency errors commonly manifest themselves only under certain interleav-
ing of events in multiple threads. Therefore, it is often very difficult to spot them
during an execution of a test. Section 2.3 presents two advanced approaches which
can be used during the testing process to significantly increase the number of differ-
ent examined interleavings without needing any further activity of the programmer.
The noise injection technique presented in this section injects into the test execution
instructions which influence decisions made by the scheduler. The second technique
called deterministic testing controls decisions of the scheduler during the test execu-
tion and systematically explores the interleaving space of the program under test.

9

Still, even with the noise injection, it is often difficult to see the occurrence of
an error. Therefore, the last Section 2.4 presents an overview of dynamic analysis
techniques for detection of concurrency errors. These techniques can be combined
with approaches described in Section 2.3 and they can further improve the testing
process. The techniques are categorised according to concurrency errors they are
able to detect.

2.1 Introduction to Multi-threaded Software

For each program that is executed, the operating system (OS) creates a process
containing information about the execution such as process state (e.g., ready, run-
ning, waiting, or stopped), program counter, saved processor (CPU) register values,
stack of activation records, memory management information, file descriptors, etc.
The volume of this information can make it expensive to create and manage pro-
cesses [24]. Therefore, in modern operating systems, each process contains one
or more units of work called threads each handling a thread state (similar to pro-
cess states), program counter, stack of activation records, and saved CPU registers.
Memory management information, file descriptors, etc. are shared among all threads
within a single process.

A sequential program is executed as a single process with a single thread of con-
trol. When it is executed with the same input, the sequential program goes through
the same sequence of instructions and provides the same output1. This mostly deter-
ministic behaviour makes analysis and verification of sequential programs simpler.
On the other hand, a concurrent program is executed within one or more processes
including multiple threads of control. For simplicity, only threads (potentially be-
longing to different processes) will be used there under.

In presence of multiple threads, the OS must decide how to allocate the CPU
among them. The scheduling policy enforced by the OS subsystem called scheduler
determines which of the threads in the ready state are selected for execution. Com-
mon operating systems use preemptive scheduling. In this approach, the selected
thread is given a time slice of the CPU called a quantum. When the quantum ex-
pires, an interruption occurs. The scheduler is commonly called at the end of each
interruption handler and can preempt the active thread to allow another thread to run.
The thread is also allowed to yield the CPU before the quantum elapses. Switching
the CPU from one thread to another is called a context switch. Modern schedulers
are based on heuristic algorithms which together with a rather unpredictable occur-
rence of interruptions (due to the activity of users and the connected devices) make
scheduling quite unpredictable and therefore non-deterministic.

1Assuming that the sequential program is not influenced by any source of non-determinism, e.g., it
does not dependent on timing of some external events or run-time errors such as lack of memory, disk
space, etc. Notice that pseudo-random generators provide deterministic output.

10

In an environment where multiple CPU cores exist, multiple threads can be ex-
ecuted at the same time. This is referred to as true concurrency. In most cases,
however, the number of available cores is lower than the number of threads ready for
execution. In such cases, the OS scheduler is switching ready threads and such execu-
tion is referred to as pseudo-concurrent execution or interleaving concurrency [77].
The interleaving concurrency is usually considered when reasoning about the be-
haviour of programs. This is based on an assumption that a true concurrent execution
of two instructions is guaranteed by the underlying hardware to correspond to one of
their interleaved executions.

Communication and Synchronisation. Non-deterministic scheduling explained
above causes that the multi-threaded program executed with the same input multi-
ple times may produce different outputs. For instance, imagine a program with two
threads t1 and t2 producing the following output. Thread t1 prints the string hello
and thread t2 prints the string world to the same output buffer. Assume that writing
a character to the buffer is an atomic operation (it seems to the rest of the program
to occur instantaneously), that threads have no exclusive access to the buffer, and the
context switch can occur at any time. Then, the program can produce as its output
all strings that preserve ordering of characters within these two words (due to the
sequential nature of execution within each thread) such as heworldlo, hweolrllod,
or hellworldo.

The example highlights how executed threads compete for a shared resource (the
output buffer in this case). To fix the problem, each thread is to access the resource
exclusively (or in mutual exclusion) [51]. When a thread is accessing a resource
exclusively, the resource is locked to all other threads. Any thread that wants to access
the resource must first lock the resource for other threads and unlock the resource
when it is done with using the resource. If the resource is locked by some other
thread, the thread has to wait until the resource is unlocked to proceed with locking
the resource. This situation is called a lock contention and can negatively influence
performance of multi-threaded programs. The code that is executed between the lock
and corresponding unlock operations is often denoted as a critical section2.

Utilisation of the described mutual exclusion technique can again be demon-
strated on a simple example. If the code is modified so that each thread locks the
output buffer before producing output and unlocks it when it is done, there is no pos-
sibility of interruption of the thread which is in the critical section by the thread which
is waiting to obtain the lock. Therefore, only two possible outputs of the program are
obtained: helloworld and worldhello.

The example shows a multi-threaded program where threads do not communi-
cate with each other. Such programs are rare. Usually, threads work together and
therefore need to communicate. In order to communicate, threads must synchronise

2The term critical section is more general [24].

11

their actions to share information. Processes and threads can communicate either
by message passing through a common channel or by exchanging data using shared
memory [13]. Message passing is often used for communication among multiple
processes possibly located on different interconnected machines. The shared mem-
ory approach is preferred for communication among threads within a single process
but can also be used for communication among processes that can access the same
piece of memory. Shared memory is provided by the OS in this case.

The OS provides low-level synchronisation mechanisms such as spin locks, mu-
texes, general semaphores, barriers, etc. [13] which can be used to achieve mutual
exclusion. Programming languages use these mechanisms to provide high-level syn-
chronisation constructs, e.g., monitors and blocking queues [93]. These mechanisms
can be used by programmers to easily achieve a specific synchronisation among
threads.

This thesis primarily focuses on multi-threaded programs written in Java. There-
fore, the rest of this section describes implementation of concurrency in Java, the
Java memory model, and finally, basic synchronisation mechanisms available to Java
programmers.

Multi-threading in Java

Java is a popular object-oriented programming language. Java code is compiled to in-
termediate code called byte-code. Bytecode is then executed within the Java run-time
environment called Java Virtual Machine (JVM) which provides a uniform interface
to the underlying platform [46]. Java inherently supports multi-threading. Each Java
program has a main thread executing the main() method and represented by an ob-
ject of type Thread. In addition, several system threads (e.g., a thread running the
garbage collector) are started automatically whenever a Java program is executed.
Therefore, every Java program is a concurrent program [24]. Java provides several
methods to manage the lifetime cycle of threads—the most important are: start()
(runs a thread), join(t) (waits for the thread t to end), sleep(time) (waits for a pre-
defined time), interrupt() (interrupts thread), and yield() (yields the processor
and lets the scheduler to act).

The Java memory model. The memory of JVM is divided into several run-time
data areas. Some of them are created during JVM initialisation and are shared among
all threads. Some are created for each thread and are exclusively accessed by these
threads. A part of the shared memory that is important for verification of Java pro-
grams is called heap. The heap is shared among all threads and used by the JVM to
store all class instances (objects) and arrays.

Each Java object can contain class and instance variables also called fields. The
JVM operates on two kinds of variable types: primitive types (byte, int, boolean,

12

etc.) and reference types [46]. Threads can therefore access either primitive or ref-
erence values stored in the heap. Access operations on these values are guaranteed
to be atomic except for the primitive types double and long for which the JVM
specification [46] allows each access to be treated as two atomic accesses.

The Java memory model guarantees the so-called sequential consistency for data
race free programs (data races are described in the next section) [79]. The sequential
consistency ensures that each read operation sees a value written by the last write
operation that happens before it. The happens-before order is given by the transitive
closure of the program order and the synchronisation-with order. The program order
is defined by the ordering of instructions executed within a single thread. The Java
compiler and JVM optimizers are allowed to reorder byte-code instructions as far as
they preserve control and data dependencies as we know them from the theory of
compilers, c.f., e.g. [5]. Therefore, the program order of the same code can slightly
differ in different run-time environments and/or when different compilers are used.

The synchronisation-with order sw−→ is a partial order over synchronisation ac-
tions. This partial order puts into relation two subsequent actions performed on the
same synchronisation element. The source x of a synchronisation-with edge x sw−→ y
is called a release, and the destination is called an acquire. There are six scenarios
defined in the specification [46] which induce the synchronised-with order:

i. An unlock action on a monitor m synchronises-with all subsequent lock actions
on m.

ii. A write to a volatile variable v (volatile variables are introduced below) synchro-
nises-with all subsequent reads of v by any thread.

iii. An action that starts a thread synchronises-with the first action in the thread that
it starts.

iv. The write of the default value (0, false, or null) to each variable v synchroni-
ses-with the first action on v in every thread.

v. The final action in a thread t1 synchronises-with any action in another thread t2
that detects that t1 has terminated (using the isAlive() or join() methods).
(vi) If a thread t1 interrupts thread t2, the interrupt by t1 synchronises-with any
point where any other thread (including t2) determines that t2 has been inter-
rupted (using the interrupted() or isInterrupted() methods).

The described memory model should be respected when designing analyses of multi-
threaded Java program correctness. To get the whole picture, Java synchronisation
mechanisms are introduced next.

Java synchronisation mechanisms. There are three basic synchronisation mech-
anisms in Java: Monitors, thread notification, and volatile variables. Some other
more sophisticated synchronisation mechanisms such as barrier synchronisation or

13

synchronised queues have been developed using these basic synchronisation mecha-
nisms and are available in the java.util.concurrent package since Java 5 [93, 65].
In the following text, only the basic synchronisation mechanisms which are important
for this thesis are described.

Each object in Java contains a monitor which allows one to implement locking
and to achieve mutual exclusion. There are two ways how to obtain a lock. One way
is to use the construct synchronized(o){} where a thread has to obtain the lock
given by the object o before execution of the critical section in the braces. Another
way is to declare a method as synchronized. Then the monitor of the instance
or class containing such a method is used for synchronisation. Each thread has to
acquire the monitor before the method execution. Monitor based mutual exclusion
is sometimes called implicit locking. An implicit locking requires that the guarded
block of code must be sequentially coded (a lock cannot be acquired in one method
and released in another). This limitation can be avoided using the locks provided
in the java.util.concurrent package. A use of such locks is sometimes called
explicit locking.

Java monitors also allow threads to be synchronised by passing a notification
message between them (sometimes called a wait-signal synchronisation). This can
be accomplished by the wait and notify construction in Java. A thread which invokes
method wait() on a selected monitor is suspended till some other thread invokes
method notify() on the same monitor. An invocation of both of these methods
must be guarded by the monitor that is used for waiting and notification. Therefore,
the notification mechanism itself does not induce any synchronised-with relation.
The relation is induced by locking operations on the monitor. The JVM specification
allows a possibility of a spurious escape of a thread from the waiting state (due to an
interruption or timeout). Because of this, a shared state variable should be used to
control whether the thread was correctly notified.

Each field can be declared as volatile. For such fields, the JVM internally disables
all caching functionality, and all accesses to volatile fields are atomic (even accesses
to fields of type long and double). Changes are therefore done directly in the heap.
This is often used for sharing a state among threads.

All concurrency mechanisms mentioned above can be used in a wrong way such
that the compiler will not issue any warning. The program containing a concurrency
error will hang or crash during the run time. The next section gives a general overview
of what and how can go wrong if a wrongly implemented synchronisation is used.

2.2 Taxonomy of Concurrency Errors

This section strives to provide a uniform taxonomy of concurrency errors common
in current programs that can help a better understanding of these errors and their
possible treatment. Plenty of research papers describing new tools and techniques for

14

detection of concurrency errors are presented each year. However, different authors
describe the same concurrency errors in different terms and, surprisingly often, they
even give the same concurrency error a different meaning. The inconsistencies in
definitions of concurrency errors are often related to the fact that authors of various
analyses adjust the definitions according to the method they propose. Sometimes
the definitions differ fundamentally [37]. However, often, the definitions have some
shared basic skeleton which is parameterised by different underlying notions (such as
the notion of behavioural equivalence of threads). This is highlighted in the following
taxonomy (originally published in [38]).

Of course, there have been several previous attempts to provide a taxonomy of
concurrency errors in the past decades, cf., e.g., [71, 74, 21]. In [21], the authors focus
on particular error patterns bound to particular synchronisation constructs in Java
like, e.g., the sleep() routine call. In [74], a kind of taxonomy of bug patterns can
also be found. The authors report results of analysis of concurrency errors in several
real-life programs. A detailed description of all possible concurrency errors that can
occur when the synchronized construct is used in Java is provided in [71] where
a Petri net model of this synchronisation construct is analysed. In comparison to
these works, our aim is to provide uniform definitions of common concurrency errors
that are not based on some specific set of programs or some specific synchronisation
means, and the stress is always laid on the generic skeleton of the definitions and
the notions parameterising it. There are not particular bug patterns relied on because
these are always incomplete, characterising only some specific ways how a certain
type of error can arise.

Errors including concurrency errors can be divided according to the type of cor-
rectness property they violate into two groups: (i) Safety errors violate safety prop-
erties of a program that must always be true, i.e., their violation cause something bad
to happen. They always have a finite witness leading to an error state. (ii) Liveness
errors are errors which violate liveness properties of a program that must eventually
become true, i.e., their violation prevent something good from happening. They have
infinite (or finite but complete—i.e., not further extendable) witnesses. In the rest of
this section, first define safety and then liveness errors are defined.

2.2.1 Safety Errors

Safety errors are easier to detect and debug due to their finite witnesses and therefore
are more studied in the papers. This subsection describes five concurrency errors,
namely: data races, atomicity violations, order violations, deadlocks, and missed
signals.

Data races Data races are one of the most common (mostly) undesirable phenom-
ena in concurrent programs. To be able to identify an occurrence of a data race in
an execution of a concurrent program, one needs to be able to say (i) which vari-

15

ables are shared by any two given threads and (ii) whether any given two accesses
to a given shared variable are synchronised in some way. A data race can then be
defined as follows.

Definition 1 A program execution contains a data race iff it contains two unsynchro-
nised accesses to a shared variable and at least one of them is a write access.

There exists work, c.f., e.g., [87], which claim that some data races are intentional
and can be tolerated. Such data races are referred to as benign data races while data
races which can cause a program failure are called harmful data races. Note, that
memory models of higher level programming languages like Java expects programs
to be data race free in order to reason about correctness. If a program is not data race
free, the program may suffer from unexpected behaviour because the memory model
does not dictate how the JVM should behave in such situation.

Atomicity Violations Atomicity is a non-interference property. It is rather generic
notion parametrised by (i) a specification of when two program executions may be
considered equivalent from the point of view of their overall impact and (ii) a speci-
fication of which code blocks are assumed to be atomic. Then an atomicity violation
can be defined as follows.

Definition 2 A program execution violates atomicity iff it is not equivalent to any
other execution in which all code blocks which are assumed to be atomic are executed
serially.

An execution that violates atomicity of some code blocks is often denoted as an
unserialisable execution. The precise meaning of unserialisability of course depends
on the employed notion of equivalence of program executions—an overview of var-
ious notions of such equivalences can be found in Section 2.4 within the discussion
of dynamic techniques used for detecting atomicity violations.

As for the blocks to be assumed to be executed atomically, some authors ex-
pect the programmers to annotate their code to delimit such code blocks [41]. Some
other works come with predefined patterns of code which should be typically exe-
cuted atomically [75, 109, 47]. Still other authors try to infer blocks to be executed
atomically, e.g., by analysing data and control dependencies between program state-
ments [115], where dependent program statements form a block which should be exe-
cuted atomically, or by finding out access correlations between shared variables [73],
where a set of accesses to correlated shared variables should be executed atomically
(together with all statements between them).

Order Violations Order violations form a much less studied class of concurrency
errors than data races and atomicity violations. An order violation is a problem of
a missing enforcement of some higher-level ordering requirements (e.g., a file must

16

be opened before use). For detecting order violations, one needs to be able to decide
for a given execution whether the instructions executed in it have been executed in
the right order. An order violation can be defined as follows.

Definition 3 A program execution exhibits an order violation if some instructions
executed in it are not executed in an expected order.

Deadlocks Deadlocks represent a class of safety errors which is quite often studied
in the literature. However, despite that, the understanding of deadlocks still varies
in different works. We stick here to the meaning common, e.g., in the classical lit-
erature on operating systems, c.f., e.g., [105]. To define deadlocks in a general way,
it is assumed that, given any state of a program, (i) one can identify threads that are
blocked and waiting for some event to happen, and (ii) for any waiting thread t, one
can identify threads that could generate an event that would unblock t.

Definition 4 A program state contains a set S of deadlocked threads iff each thread
in S is blocked and waiting for some event that could unblock it, but such an event
could only be generated by a thread from S.

Most works consider a special case of deadlocks—namely, the so-called Coffman
deadlock [28]. A Coffman deadlock happens in a state in which four conditions are
met: (i) Processes have an exclusive access to the resources granted to them, (ii) pro-
cesses hold some resources and are waiting for additional resources, (iii) resources
cannot be forcibly removed from the tasks holding them until the resources are used
to completion (no preemption on the resources), and (iv) a circular chain of tasks
exists in which each task holds one or more resources that are being requested by
the next task in the chain. Such a definition perfectly fits deadlocks caused by block-
ing lock operations but does not cover deadlocks caused by message passing (e.g., a
thread t1 can wait for a message that could only be sent by a thread t2, but t2 is waiting
for a message that could only be sent by t1).

Missed Signals Missed signals are another less studied class of concurrency errors.
The notion of missed signals assumes that it is known which signal is intended to be
delivered to which thread or threads. A missed signal error can be defined as follows.

Definition 5 A program execution contains a missed signal iff there is sent a signal
that is not delivered to the thread or threads to which it is intended to be delivered.

Since signals are often used to unblock waiting threads, a missed signal error
typically leads to a thread or threads being blocked forever.

17

2.2.2 Liveness and Mixed Errors

Dealing with liveness errors is much harder than with safety errors because algo-
rithms dealing with them have to find out that there is no way something could (or
could not) happen in the future, which often boils down to a necessity of detecting
loops. Mixed errors are then errors that have both finite witnesses as well as infinite
ones whose any finite prefix does not suffice as a witness.

Before discussing more concrete notions of liveness and mixed errors, lets first
introduce the very general notion of starvation [105].

Definition 6 A program execution exhibits starvation iff there exists a thread which
waits (blocked or continually performing some computation) for an event that needs
not to occur.

Starvation can be seen to cover as special cases various safety as well as live-
ness (or mixed) errors such as deadlocks, missed signals, and the below discussed
livelocks or blocked threads. In such cases, an event for which a thread is waiting
cannot happen, and such a situation is clearly to be avoided. On the other hand,
there are cases where the event for which a thread is waiting can always eventually
happen despite there is a possibility that it never happens. Such situations are not
welcome since they may cause performance degradation, but they are sometimes tol-
erated (one expects that if an event can always eventually happen, it will eventually
happen in practice).

Livelocks and Non-Progress Behaviour There are again various different defini-
tions of a livelock in the literature. Often, the works consider some kind of a progress
notion for expressing that a thread is making some useful work, i.e., doing something
what the programmer intended to be done. Then they see a livelock as a problem
when a thread is not blocked but is not making any progress. However, by analogy
with deadlocks, it seems more appropriate to restrict the notion of livelocks to the
case when threads are looping in a useless way while trying to synchronise (which
is a notion common, e.g., in various works on operating systems). That is why, first
a general notion of non-progress behaviour is defined and then it is specialised to
livelocks.

Definition 7 An infinite program execution exhibits a non-progress behaviour iff
there is a thread which is continually performing some computation, i.e., it is not
blocked, but it is not making any progress.

A non-progress behaviour is a special case of starvation within an infinite be-
haviour. On the other hand, starvation may exhibit even in finite behaviours and also
in infinite progress behaviours in which a thread is for a while waiting for an event
that is not guaranteed to happen.

18

In the literature there are used various different notions of progress. Some works,
e.g., [100], define progress by looking at the communication among two or more co-
operating threads. If a thread communicates, it is progressing. In [44], progress is
associated with operations on the so-called communication objects (such as shared
variables, semaphores, FIFO buffers, etc.). In [69, 103], progress is defined by reach-
ing a so-called progress action or progress statement, respectively (e.g., delivering
output, responding to the environment, etc.). In [52], progress is expressed by a so-
called liveness signature, a set of state predicates and temporal rules, specifying
which application states determine whether a program is making a progress when
they are repeatedly reached.

As has already been said above, livelocks may be seen as a special case of non-
progress behaviour [105].

Definition 8 Within an infinite execution, a set S of threads is in a livelock iff each of
the threads in S keeps running forever in some loop in which it is not intended to run
forever, but which it could leave only if some thread from S could leave the loop it is
running in.

There are many, often inconsistent, definitions of a livelock. Moreover, many
existing works do not distinguish between livelocks and a non-progress behaviour,
c.f., e.g., [19, 100]. Other papers [83, 78] take a livelock to be a situation where a task
has such a low priority that it does not run (it is not allowed to make any progress)
because there are many other, higher priority, tasks which run instead. Such situation
is not considered a livelock and not even a non-progress behaviour but a form of
starvation. There are even works [9] for which a thread is in a livelock whenever it
is executing an infinite loop, regardless of what the program does within the loop.
However, there are many reactive programs which run intentionally in an infinite
loop, e.g., controllers, operating systems and their components, etc., and it is not
appropriate to consider them to be in a livelock.

Blocked Threads A blocked thread appears within some execution when a thread
is blocked and waiting forever for some event which can unblock it. Like for a dead-
lock, one must be able to say what the blocking and unblocking operations are. The
problem can then be defined as follows.

Definition 9 A program execution contains a blocked thread iff there is a thread
which is waiting for some event to continue, and this event never occurs in the exe-
cution.

An absence of some unblocking event which leaves some thread blocked may
have various reasons. A common reason is that a thread, which should have un-
blocked some other thread, ended unexpectedly, leaving the other thread in a blocked

19

state. In such a case, one often speaks about the so-called orphaned threads [36].
Another reason may be that a thread is waiting for a livelocked or deadlocked thread.

All errors described in this section manifest usually only under certain interleav-
ing of actions executed in different threads. The next section describes techniques
that can be used to increase the number of interleavings which programmers can spot
during testing of their multi-threaded programs.

2.3 Advanced Techniques of Testing Concurrent Programs

A crucial issue when testing concurrent software is to test as many different (and
hopefully relevant) interleavings as possible. To achieve that, one can use, e.g., the
methodology proposed in [93] where the author advises to run tests on a multipro-
cessor system and design the test such that the number of active threads is higher
than the number of available processors so that at any given time only some threads
are running, thus reducing the predictability of interactions between threads. Such
testing scenario based on a high number of running threads is also often called stress
testing 3.

Advanced approaches to test concurrent software, which are described below,
achieve a higher diversity of interleavings even with a low effort required from the
programmer. The techniques are based on a repeated execution of the same test
with the same inputs and on detecting whether an error occurred during the execu-
tion. Such detection can be based on a failure detection, assertion checking, or some
dynamic detection technique described in the following Section 2.4. During each
execution, the advanced techniques try to affect the scheduler with an intention to
see interleavings which have not been spot during the previous executions of the test.
The number of different interleavings is increased either by injecting of the so-called
noise into test executions or by enforcing deterministic scheduling.

2.3.1 Noise Injection Techniques

Noise injection techniques, c.f., e.g., [31, 101, 16, 36, 34, 107], inject either randomly
or based on some heuristics a noise into the test execution. The noise causes a delay
in the execution of a selected thread, giving other threads an opportunity to make
a progress.

An advantage of the noise injection approach is that the method does not require
any modification of the execution environment nor a manual modification of the test.
Instead, the tested system is automatically instrumented. The instrumentation modi-
fies the target system with additional code [50]. A program can be instrumented on
different levels: Source code, intermediate code such as Java byte-code, or binary

3The stress testing is a more general term denoting the process of determining the ability of system
to maintain a certain level of effectiveness under unfavorable conditions.

20

level. The instrumentation can be performed either before the execution or on-the-fly
during the execution. In the case of noise injection techniques, the instrumentation
typically injects calls to a noise maker routine into the program code. Threads ex-
ecuting the modified code then enter the noise maker routine that decides—either
randomly or based on some heuristics—whether to cause a noise. Notice that already
the instrumentation itself introduce some noise into the execution because the thread
must execute the code injected by the instrumentation which transfer control to and
from the noise maker.

Interleavings obtained by the noise injection technique are all valid as is discussed
in [31] as far as the noise maker does not interfere with the synchronisation policy
of the tested program, e.g., by performing an operation on a lock used by the tested
program. The noise maker can, however, use synchronisation internally to achieve
additional communication among the executed threads.

The noise injection techniques must solve two problems: (i) When to cause a
noise (noise placement problem) and (ii) how to influence the scheduler (noise seed-
ing problem). The first problem includes selection of places where to put instrumen-
tation and decision whether to cause a noise. There is no reason to instrument a code
that does not influence synchronisation or communication among threads. Therefore,
the noise makers select only concurrency-related events such as execution of rou-
tines influencing synchronisation (e.g., locking operations) and accesses to the shared
memory [31, 101]. The decision whether to cause a noise at a selected place is done
either at random or based on an additional knowledge, e.g., previously detected code
pattern, coverage information, or information gathered at run-time [101, 36, 107].
The noise placement problem is discussed in more detail in Chapter 4 where a new
noise injection technique is proposed.

The way how the scheduler can be influenced depends on the possibilities avail-
able in the run-time environment although the basic principles remains the same. This
thesis focuses mainly on Java and therefore possibilities of affecting the Java schedul-
ing are discussed below. However, the described principles can be easily used in other
languages and run-time environments.

Noise generation techniques for Java. There exist several ways how a scheduler
decision can be affected in Java. In [31], three different noise seeding techniques are
introduced and evaluated on a single-core processor. The priority technique changes
priorities of threads. This technique did not provide good results [31]. The yield tech-
nique injects one or more calls of yield() which causes a context switch. The sleep
technique injects one call of sleep(). Experiments presented in [31] showed that
the sleep technique provided best results in all cases. However, when many threads
were running, the yield technique was also effective. Technique based on sleeps and
yields are implemented in the IBM Concurrency Testing Tool (ConTest) [30, 90] and
the rstest tool [101].

21

The current version of IBM ConTest which represents the state of the art in Java
noise injection comes with several more noise seeding techniques. The wait tech-
nique injects a call of wait(). The concerned threads must first obtain a special
shared monitor, then call wait() with a timeout on it, and finally release the monitor.
The synchYield technique combines the yield technique with obtaining the monitor as
in the wait technique. The busyWait technique does not obtain a monitor but instead
loops for some time. The haltOneThread technique described in [107] occasionally
stops one thread until any other thread cannot run. Finally, the timeoutTamper heuris-
tics randomly reduces the time-out used when calling sleep() in the tested program
to test that it is not used for synchronisation4. All the above mentioned seeding tech-
niques except the priority technique are parameterised by the so-called strength of
noise. In the case of techniques based on sleep and wait, the strength gives the time
to wait. In the case of yield and busyWait, the strength says how many times the yield
or the loop implementing busyWait, respectively, should be called.

The noise injection technique is relatively simple, cheap, and effective. The tech-
nique is mature enough to be used for testing of real-life software as is the case of
IBM ConTest and, for instance, the Microsoft Driver Verifier where the technique is
called Concurrency Stress Testing [1].

The noise injection technique can also be used for debugging and healing of pre-
viously detected errors. For instance, in [57], a noise is injected into code with in-
tention to achieve an interleaving leading to a situation where a previously detected
deadlock manifests. This way, the proposed algorithm checks whether a detected
error is real. In [89] and our previous works [58, 67, 61], the noise injection tech-
nique was successfully used to prevent previously detected deadlocks, data races, and
atomicity violations to manifest during the execution of the code that still contains
them.

Still, the noise injection techniques can only influence the scheduler but are not
able to effectively control its behaviour to achieve some concrete interleaving. For
this purpose, the technique based on deterministic scheduling described next can be
used.

2.3.2 Deterministic Testing

Deterministic testing [44, 66, 86, 111] controls thread scheduling decisions during
the test execution and systematically explores the interleaving space. Such tools are
inspired by the work on model checking introduced in Chapter 1 and can be seen
as light-weight model checking (or execution-based model checking). Indeed, the
first deterministic testing tools, e.g., [44], use a modified scheduler which handles
the global state of the test execution and systematically chooses among available

4Practical experiences show that the timeoutTamper technique often leads to false alarms when
programmers use the sleep() routine for other than synchronisation purposes. Therefore, the timeout-
Tamper technique was recently removed from IBM ConTest. (Shmuel Ur, personal communication).

22

state transitions inferred from the state of threads present in the program. The tools
explore alternative scheduling scenarios using re-initialisation of the tested program.
The state space explosion problem was suppressed by pruning techniques known as
partial-order reduction methods [43]. Despite this optimisation, the state space of
complex multi-threaded programs remained still huge.

To avoid undesirable modification of the execution environment, modern tools
for deterministic testing, e.g., [66, 86, 111], focus on application programming inter-
faces providing synchronisation functionality to the tested programs. The principle
is similar to the code instrumentation described above. The calls of synchronisa-
tion routines of the run-time environment or OS are intercepted and passed to the
deterministic scheduler. This scheduler is able to stop threads which should not pro-
ceed. The system scheduler therefore schedules only threads allowed to run by the
deterministic scheduler. The deterministic scheduler resumes stopped threads when
needed.

The common way these techniques work is as follows. First, the tested program is
executed without any interference with the deterministic scheduler, and the executed
synchronisation is recorded. Then, a search algorithm is used to infer a schedul-
ing scenario to be forced by the deterministic scheduler during the next execution
of the test. The search algorithm is the most complicated part of the determinis-
tic testing tools [86] because the selected scenario must be reachable in the tested
program and should lead to a synchronisation scenario that is not equivalent to any
already observed synchronisation scenarios. The search algorithm is also able to
detect completeness of the testing process—a situation when all reachable synchro-
nisation scenarios have already been tested. In such situation, the verification process
is finished.

When the next scheduling scenario is inferred by the search algorithm, the tested
program is executed again. Firstly, the deterministic scheduler is used to replay the
selected scenario. At some point, the deterministic scheduler performs a choice that
was not performed in any previous execution and drives the execution into a yet un-
explored synchronisation scenario. At this point, the deterministic scheduler allow
all threads to run. The rest of the execution is recorded and the representation of ex-
plored synchronisation scenarios is updated. Then, the search algorithm is executed
again.

None of the modern deterministic testing techniques computes the global state of
the system. Instead, they compute some representation of the happens-before relation
observed during test runs. Each technique uses a different representation suitable for
the search algorithm they propose. The search algorithm is used to infer scheduling
scenarios to examine during deterministic testing. In [66], the authors propose the
so-called SYN-sequences. SYN-sequences are totally or partially ordered sequences
of synchronisation events executed on synchronisation objects [24].

The CHESS tool [86] computes an annotated partially-ordered happens-before
graph inspired by the Lamport’s happens-before graph [64]. Nodes in this graph rep-

23

resent synchronisation events executed by threads. Edges in the graph form a partial
order of their execution. Each node is annotated with a triple (task, syncVar, oper)
where the task represents a thread (and other schedulable entities, e.g., a timer) that
executes the oper operation over the syncVar synchronisation object. Size of the
graph is reduced using the partial-order reduction [43]. Moreover, the tool uses a fur-
ther optimisation based on a limitation of possible context switches allowed to be
performed by the scheduler [85].

In the dBug tool [111], the search algorithm works over a structure called a deci-
sion tree where nodes correspond to the so-called decision points. Edges correspond
to intercepted calls. The decision point is defined as a situation where the executed
program can make no progress without the deterministic scheduler resuming execu-
tion of some of the suspended threads.

Despite the introduced techniques are able to handle large programs thanks to
various optimisations, they still suffer from certain limitations. First, they are sen-
sitive to other sources of non-determinism (e.g., input/output events) which make it
difficult to replay an already captured scenario. Second, during the replay phase, they
usually allow to run only one thread which has a large impact on the performance of
the tested program.

In comparison with the noise injection techniques, techniques based on determin-
istic scheduling are able to achieve a higher coverage of the synchronisation scenarios
in small and middle size programs thanks to carefully chosen test scheduling scenar-
ios. These techniques also make debugging much easier because they are able to
provide the interleaving scenario that leads to an error and allow programmer to re-
play this scenario. Therefore, from our point of view, modern deterministic testing
techniques are better for debugging and testing of isolated modules for which unit
tests exist while noise injection techniques still provide good results for testing of
complex systems.

Both the noise injection technique and the technique based on deterministic sche-
duling are often combined with various dynamic analyses in order to detect a potential
for concurrency errors in the examined executions even when an error is not really
witnessed. An overview of the detection techniques is provided in the next section.

2.4 Dynamic Analysis of Concurrent Programs

Dynamic analysis already mentioned in Chapter 1 is very popular in verification
of concurrent software because reasoning about only one examined execution path
is much easier than reasoning about all possible paths and all possible interactions
among threads. The enormous number of potential interleavings is in this case natu-
rally reduced by the examined test execution. Of course, dynamic analysis can also
be applied on multiple runs. The noise injection and deterministic testing techniques
can be then used to increase the number of different interleavings examined by the
dynamic analysis.

24

Dynamic analysis similarly to noise injection techniques can be based on instru-
mentation. In this case, calls to routines performing the dynamic analysis are injected
to chosen places in the code. Further information (e.g., the identification of a variable
which is the current thread about to access) can be passed to the detection algorithm
as a parameter of such a routine call. Execution of the routines takes resources.
Therefore, dynamic analysis influences performance of the application. In terms of
the noise injection, the dynamic analysis also represents a source of a certain noise
influencing the thread scheduling.

Plenty of research papers presenting a new approach, framework, or tool for dy-
namic analysis of concurrent programs are published every year. In this section,
an overview of available dynamic techniques is provided. A systematic review of
more techniques can be found, e.g., in our technical report [37]. In this section, a spe-
cial attention is put on analyses of data races, atomicity violations, and deadlocks
because some of these analyses inspired our work on coverage metrics described in
Chapter 3. The following subsections describe techniques for detection of safety and
liveness errors as they were defined in Section 2.2.

2.4.1 Detection of Safety Errors

Similarly to taxonomy in Section 2.2, techniques in this section are divided into five
groups according to concurrency errors they detect: (i) data races, (ii) atomicity
violations, (iii) order violation, (iv) deadlocks, and (v) missed signals. Moreover,
techniques of data race detection are divided into three subcategories according to
approach they use, and techniques for detection atomicity violations into two subcat-
egories according to the type of atomicity they consider.

Detection of Data Races

Data races are a well-studied concurrency problem. Therefore, there exist many dif-
ferent techniques for their detection. Dynamic techniques which analyse one partic-
ular execution of a program are usually based on computing the so-called locksets
and/or happens-before relations along the witnessed execution.

Techniques based on locksets [96] build on the idea that all accesses to a shared
variable should be guarded by a lock. The lockset is defined as a set of locks that
guard all accesses to a given variable. Detectors then use an observation that if the
lockset associated with a certain shared variable is non-empty, then there is at least
one lock such that every access to the shared variable from any thread is protected
by this lock, and hence there is no possibility of simultaneous accesses, and so a data
race is not possible. The happens-before-based techniques exploit the happens-before
relation [64] which is defined as the least strict partial order that includes every pair of
causally ordered events. Detectors build (or approximate) the happens-before relation
among accesses to shared variables and check that no two accesses (out of which at

25

least one is for writing) can happen simultaneously, i.e., without the happens-before
relation between them. In Section 2.1, we have already described how the happens-
before relation can be built for Java programs.

In the following paragraphs, some of the lockset-based techniques are mentioned
followed by selected happens-before-based detection techniques. Finally, some of
the techniques which combine both of these approaches are quoted.

Lockset-based algorithms. The first algorithm which used the idea of locksets
was Eraser [96]. The algorithm maintains for each shared variable v, a set C(v)
of candidate locks for v. When a new variable is initialised, its candidate set C(v)
contains all possible locks. Eraser updates C(v) by intersecting C(v) and the set L(t)
of locks held by the current thread whenever v is accessed. Eraser warns about a data
race if C(v) becomes empty for some shared variable v along the execution being
analysed. In order to reduce the number of false alarms, Eraser introduces an internal
state s(v) for each shared variable v used to identify whether v is used exclusively by
one thread, v is read by multiple threads, or multiple threads change the value of v.
The lockset C(v) is then modified only when the variable is shared. A data race is
reported only if C(v) becomes empty and v is in the state denoting that the variable
is shared among multiple threads and at least one of them access the variable for
writing.

The original Eraser algorithm designed for C programs was later modified for
programs written in object-oriented languages, c.f., e.g., [110, 26, 20, 118]. The
main modification (usually called as the ownership model) is inspired by the com-
mon idiom used in object-oriented programs where a creator of an object is actually
not the owner of the object. Then one should take into account that the creator always
accesses the object first, and no explicit synchronisation with the owner is needed be-
cause the synchronisation is implicitly arranged by the Java virtual machine. This
idea is reflected by inserting a new internal state of the shared variables. The modi-
fication introduces a small possibility of having false negatives [58, 110] but greatly
reduces the number of false alarms caused by this object-oriented programming id-
iom.

A problem of techniques based on locksets is that they do not support other syn-
chronisation than locks and therefore produce too many false alarms when applied to
common concurrent software.

Happens-before-based algorithms. Most of the happens-before-based algorithms
use the so-called vector clocks introduced in [80]. The idea of vector clocks for
a message passing system is as follows. Each thread has a vector of clocks Tvc indexed
by thread identifiers. One position in Tvc represents the own clock of t. The other
entries in Tvc hold logical timestamps indicating the last event in a remote thread
that is known to be in the happens-before relation with the current operation of t.

26

Vector clocks are partially-ordered in a point-wise manner (v) with an associated
join operation (t) which takes the highest value for each element in the particular
vectors and the minimal element (0). The vector clocks of threads are managed as
follows: (1) Initially, all clocks are set to 0. (2) Each time a thread t sends a message,
it sends also its Tvc, and then t increments its own logical clock in its Tvc by one.
(3) Each time a thread receives a message, it increments its own logical clock by one
and further updates its Tvc according to the received vector T ′vc to Tvc = TvctT ′vc.

Algorithms [95] detect data races in systems with locks via maintaining a vector
clock Ct for each thread t (corresponding to Tvc in the original terminology above),
a vector clock Lm for each lock m, and two vector clocks for write and read operations
for each shared variable x (denoted Wx and Rx, respectively). Wx and Rx simply main-
tain a copy of Ct of the last thread that accessed x for writing or reading, respectively.
A read from x by a thread is race-free if Wx v Ct (it happens after the last write of
each thread). A write to x by a thread is race-free if Wx vCt and Rx vCt (it happens
after all accesses to the variable).

Maintaining such a big number of vector clocks as described above generates
a considerable overhead. Therefore, in [40], the vector clocks of variables from above
were mostly replaced by the so-called epochs associated with each variable v that are
represented as tuples (t,c) where t identifies the thread that last accessed v for write
and c represents the value of its clock. The idea behind this optimisation is that, in
most cases, a data race occurs between two subsequent accesses to a variable. In
such cases, epochs are sufficient to detect unsynchronised write-write and write-read
accesses. However, in cases where a write operation needs to be synchronised with
multiple preceding read operations (read-write accesses), epochs are not sufficient,
and the algorithm has to build an analogy of vector clocks for sequences of read
operations.

Hybrid algorithms. An advantage of the vector clock-based algorithms is their
precision. However, the big cost of these algorithms inspired many researches to
come up with some combination of happens-before-based and lockset-based algo-
rithms. These combinations are often called hybrid algorithms, c.f., e.g., [92, 32,
118, 39].

In RaceTrack [118], a notion of a threadset was introduced. The threadset is
maintained for each shared variable and contains information concerning threads cur-
rently working with the variable. The method works as follows. Each time a thread
accesses a shared variable, it forms a label consisting of the thread identifier and its
current private clock value. The label is then added to the threadset of the variable.
The thread also uses its vector clock to identify and remove from the threadset la-
bels that correspond to accesses that are ordered before the current access. Hence the
threadset contains solely labels for accesses that are concurrent. At the same time,
locksets are used to track locking of variables, which is not tracked by the used ap-

27

proximation of the happens-before relation. Intersections on locksets are applied if
the approximated happens-before relation is not able to assure an ordered access to
shared variables. If an ordered access to a shared variable is assured by the approx-
imated happens-before relation, the lockset of the variable is reset to the lockset of
the thread that currently accesses it.

One of the most advanced lockset-based algorithms that also uses the happens-
before relation is Goldilocks presented in [32]. The main idea of this algorithm is that
locksets can contain not only locks but also volatile variables and, most importantly,
also threads. An appearance of a thread t in a lockset of a shared variable means that t
is properly synchronised for using the given variable. The information about threads
synchronised for using certain variables is then used to maintain the transitive closure
of the happens-before relation via the locksets. An advantage of Goldilocks is that
it allows locksets to grow during a computation when the happens-before relation is
established between operations over v.

The basic Goldilocks algorithm is relatively expensive but can be optimised by
short circuiting the lockset computation (three cheap checks, success of any of them
is sufficient for race freedom between the two last accesses on a variable) and using
a lazy computation of the locksets (the locksets are computed only if the previous
optimisation is not able to detect that some events are in the happens-before relation).
The optimised algorithm has a considerably lower overhead approaching in some
cases pure lockset-based algorithms.

While data race detection techniques focus on a conflict between two accesses
to the shared memory only, the techniques described below focus on detection of
conflicts among more accesses to the shared memory.

Detection of Atomicity Violation

Taking into account the generic notion of atomicity, methods of detecting atomicity
violation can be classified according to: (i) The way they obtain information about
which code blocks should, in fact, be expected to execute atomically. (ii) The notion
of equivalence of executions used (we will get to several commonly used equiva-
lences in the following). (iii) The number of considered shared variables.

Below, first there are discussed approaches of detecting atomicity violations when
considering accesses to a single shared variable only and then those which consider
accesses to several shared variables.

Atomicity over one variable. Most of the algorithms for detecting atomicity vio-
lations are only able to detect atomicity violations within accesses to a single shared
variable. They mostly try to detect a situation where two accesses to a shared variable
should be executed atomically, but are interleaved by an access from another thread.

28

In [115], blocks of instructions which are assumed to execute atomically are
approximated by the so-called computational units (CUs). CUs are inferred auto-
matically from a single program trace by analysing data and control dependencies
between instructions. First, a dependency graph is created which contains control
and read-after-write dependencies between all instructions. Then the algorithm tries
to partition this dependency graph to obtain a set of distinct subgraphs which are
the CUs. The partitioning works in such a way that each CU is the largest group
of instructions where all instructions are control or read-after-write dependent, but
no instructions which access shared variables are read-after-write dependent, i.e., no
read-after-write dependencies are allowed between shared variables in the same com-
putational unit. Since these conditions are not sufficient to partition the dependency
graph to distinct subgraphs, additional heuristics are used. Atomicity violations are
then detected by checking if the strict 2-phase locking (2PL) discipline [33] is vio-
lated in a program trace. Violating the strict 2PL discipline means that some CU has
written or read a shared variable which another CU is currently reading from or writ-
ing to, respectively (i.e., some CU accessed a shared variable and before its execution
is finished, another CU accesses this shared variables). If the strict 2PL discipline is
violated, the program trace is not identical to any serial execution, and so seen as
violating atomicity. Checking if the strict 2PL discipline is violated is done dynam-
ically during a program execution in case of the online version of the algorithm, or
a program trace is first recorded and then analysed using the off-line version of the
algorithm.

A simpler approach of discovering atomicity violations was presented in [75].
Here, any two consecutive accesses from one thread to the same shared variable are
considered an atomic section, i.e., a block which should be executed atomically. Such
blocks can be categorised into four classes according to the types of the two accesses
(read or write) to the shared variable. Serialisability is then defined based on an anal-
ysis of what can happen when a block b of each of the possible classes is interleaved
with some read or write access from another thread to the same shared variable as the
one accessed in b. Out of the eight total cases arising in this way, four (namely, r/w/r,
w/w/r, w/r/w, r/w/w) are considered to lead to an unserialisable execution. How-
ever, the detection algorithm does not consider all the unserialisable executions as
errors. Detection of atomicity violations is done dynamically in two steps. First, the
algorithm analyses a set of correct (training) runs in which it tries to detect atomic
sections which are never unserialisably interleaved. These atomic sections are called
access interleaving invariants (AI invariants). Then the algorithm checks if any of
the obtained AI invariants is violated in a monitored run, i.e., if there is an AI invari-
ant which is unserialisably interleaved by an access from another thread to a shared
variable which the AI invariant (atomic section) accesses. While the second step of
checking AI invariants violation is really simple and can be done in a quite efficient
way, the training step to get the AI invariants can lead to a considerable slow down
of the monitored application.

29

A more complicated approach was introduced in [39, 112] where atomicity viola-
tions are sought using the Lipton’s reduction theorem [70]. The approach is in partic-
ular based on checking whether a given run can be transformed (reduced) to a serial
one using commutativity of certain instructions (or, in other words, by moving cer-
tain instructions left or right in the execution). Both [39] and [112] use procedures as
atomic blocks by default, but users can annotate blocks of code which they assume
to execute atomically to provide a more precise specification of atomic sections for
the algorithm. For the reduction used to detect atomicity violations, all instructions
are classified, according to their commutativity properties, into 4 groups: (1) Right-
mover instructions R which can be swapped with immediately following instructions.
(2) Left-mover instructions L which can be swapped with immediately preceding in-
structions. (3) Both-mover instructions B which can be swapped with preceding or
following instructions. (4) Non-mover instructions N which are not known to be left
or right mover instructions. Classification of instructions to these classes is based on
their relation to synchronisation operations, e.g., lock acquire instructions are right-
movers, lock release instructions are left-movers, and race free accesses to variables
are both-movers (a lockset-based dynamic detection algorithm is used for checking
race freeness). An execution is then serialisable if it is deadlock-free and each atomic
section in this execution can be reduced to a form R∗N?L∗ by moving the instruc-
tions in the execution in the allowed directions. Here, N? represents a single or no
non-mover instruction. Both-mover instructions B can be taken as right-mover in-
structions R or left-mover instructions L.

Atomicity over multiple variables. The already described algorithms consider
atomicity of multiple accesses to the same variable only. However, there are situ-
ations where we need to check atomicity over multiple variables, e.g., when a pro-
gram modifies three different variables representing a point in a three-dimensional
space. Even if it is ensured that every consecutive pair of read and write accesses
to each of these variables is executed atomically, the program can still have an un-
serialisable execution. This is because the three atomic blocks guarding each pair
of accesses to each of these variables can be interleaved with other atomic blocks
operating with these variables. Some of these variables can then end up modified
by a different thread than the others which cannot happen in a serial execution. The
above discussed detectors would not detect any atomicity violation here.

In [11], the problem of violation of atomicity of operations over multiple vari-
ables is referred to as a high-level data race. In the work, all synchronised blocks
(i.e., blocks of code guarded by the synchronised statement) are considered to form
atomic sections. The proposed detection of atomicity violations is based on checking
the so-called view consistency. For each thread, a set of views is generated. A view is
a set of fields (variables) which are accessed by a thread within a single synchronised
block. From this set of views, a set of maximal views (maximal according to set in-

30

clusion) is computed for the thread. An execution is then serialisable if each thread is
only using views which are compatible, i.e., form a chain according to set inclusion,
with all maximal views of other threads. Since the algorithm has to operate with a big
number of sets (each view is a set), it suffers from a big overhead.

A different approach is associated with the Velodrome detector [41]. Here, atomic
sections (called transactions) are given as methods annotated by the user. Detection of
atomicity violations is based on constructing a graph of the transactional happens-
before relation (the happens-before relation among transactions). An execution is
serialisable if the graph does not contain a cycle. The detection algorithm uses a dy-
namic analysis to create the graph from a program trace and then checks if it contains
a cycle. If so, the program contains an atomicity violation. Since creating the graph
for an entire execution is inconvenient, nodes that cannot be involved in a cycle are
garbage collected or not created at all. Like the previous algorithm, Velodrom too
may suffer from a considerable overhead in some cases.

The simple idea of AI invariants described above has been generalised for check-
ing atomicity over pairs of variables [109, 47] too. In [109], an algorithm which
infers the so-called units of work (w.r.t. the set of accesses to the shared memory
that must be executed together) is proposed. This is done statically using a dataflow
analysis. An execution is then considered serialisable if it does not correspond to
any of the problematic interleavings of the detected units of work. An algorithm
capable of checking unserialisability of execution of units of work (called atomic-
set-serialisability violations) is described in [47], based on a dynamic analysis of
program traces. The algorithm introduces the so-called race automata which are
simple finite state automata used to detect the problematic interleaving scenarios.

Both data race and atomicity violation detection techniques focus primarily on
conflicts among accesses to the shared memory. The following detection techniques
focus on a problem when two (or more) accesses are not in conflict but their execution
in a wrong order leads to a failure.

Detection of Order Violations

Like in the case of atomicity violations, a prerequisite for detecting order violations
is to know which order restrictions are assumed. These can be specified manually,
generic order requirements may be used (e.g., an object must be first initialised and
only then used), or some restrictions may be automatically inferred. The order restric-
tions considered in current approaches are often quite simple, frequently considering
only pairs of instructions. Indeed, the current lack of works targeting high-level or-
der has been pinpointed, e.g., in [74]. The following works focus mainly on order
violation detection on the level of accesses to the shared memory—the same level as
previously mentioned techniques for detection of data races and atomicity violations.

In [117], authors introduce, for each memory operation o, a set of memory opera-
tions PSet(o) which o depends upon and which can safely occur before o. These sets

31

are extracted from a set of correct executions of the analysed program. Then, order
violations are sought in further runs by looking for a memory operation o such that
the previous memory operation dependent upon o is not in PSet(o).

The ConMem tool [119] detects several behavioural patterns corresponding to
order violations that can lead to a program crash. For each test input, ConMem mon-
itors one execution of the given program. It uses a dynamic analysis to first identify
parts of executions (denoted as ingredients) that may lead to a crash if ordered dif-
ferently than in the given execution (e.g., assignments of null to a shared pointer
and dereferences of this shared pointer from different treads). Then, ConMem anal-
yses synchronisation in the witnessed traces around these potentially problematic
constructions to see whether fatal interleavings exist to trigger an error (e.g., an in-
terleaving where a thread t1 assigns null to a shared variable v, and subsequently,
a thread t2 dereferences v). The paper describes four problematic patterns consisting
of ingredients and timing conditions that lead to an error and that ConMem is able to
detect. One example is the Con-NULL pattern with ingredients rp—a thread t1 reads
a pointer ptr, wp—a thread t2 writes null to ptr, and timing conditions requiring wp
to execute before rp with no write operation on ptr happening in between of wp
and rp. Another example is the Con-UnInit pattern with ingredients r—a thread t1
reads a variable v without previously writing to v, w—a thread t2 initialises v, and the
timing condition requiring r to execute before w.

All so-far described detection techniques look for possibly erroneous accesses to
shared memory. The following techniques focus on violations in use of synchronisa-
tion mechanisms that usually cause a program to hang instead of crash. We first focus
on problems with locks and then with the wait-signal synchronisation mechanism.

Detection of Deadlocks

Detection of deadlocks usually involves various graph algorithms as it is, for instance,
in the case of the algorithm introduced in [91] where a thread-wait-for graph is dy-
namically constructed and analysed for a presence of cycles. Here, a thread-wait-for
graph is an arc-labelled digraph G = (V,E) where vertices V are threads and locks,
and edges E represent waiting arcs which are classified (labelled) according to the
synchronisation mechanism used (join synchronisation, notification, finalisation, and
waiting on a monitor). A cycle in this graph involving at least two threads represents
a deadlock. A disadvantage of this algorithm is that it is able to detect only deadlocks
that actually happen. The following works can detect also potential deadlocks that
could happen but did not actually happen during the witnessed execution.

In [49], a different algorithm called GoodLock for detecting deadlocks was pre-
sented. The algorithm constructs the so-called runtime lock trees and uses a depth-
first search to detect cycles in it. Here, a runtime lock tree Tt = (V,E) for a thread t
is a tree where vertices V are locks acquired by t, and there is an edge from v1 ∈ V

32

to v2 ∈ V when v1 represents the most recently acquired lock that t holds when ac-
quiring v2. A path in such a tree represents a nested use of locks. When a program
terminates, the algorithm analyses lock trees for each pair of threads. The algorithm
issues a warning about a possible deadlock if the order of obtaining the same locks
(i.e., their nesting) in two analysed trees differs, and no “gate” lock guarding this
inconsistency has been detected.

The original GoodLock algorithm is able to detect deadlocks between two threads
only. Later works, e.g., [17, 4] improve the algorithm to detect deadlocks among
multiple threads. In [4], a support for semaphores and wait-notify synchronisation
was added. The recent work [57] modified the original algorithm so that runtime
lock trees are not constructed. Instead, the algorithm uses a stack to handle the so-
called lock dependency relation. The algorithm computes the transitive closure of the
lock dependency relation instead of performing a depth-first search in a graph. The
modified algorithm uses more memory but the computation is much faster.

Detection of Missed Signals

There are not many works focusing specially on missed signals. Usually, the problem
is studied as a part of detecting other concurrency problems. In [4], a lost notification
error is reported if there is a notify event e in a trace tr and there exists a trace that
is a feasible permutation of tr in which e wakes up fewer threads than it does in tr.
Such a situation is possible when the wait event of one of the threads woken in tr is
not constrained to happen before the event e.

2.4.2 Detection of Liveness Errors

As in the previous subsection, techniques for detection of liveness errors described
below are divided according to the type of errors they detect: (i) livelocks and non-
progress behaviour and (ii) blocked threads.

Detection of Livelocks and Non-progress Behaviour

We are not aware of any works specialising in detection of livelocks in the sense we
defined them in Section 2.2, which require not only detection of a looping behaviour
but also of the fact that this behaviour could be escaped only if some of the livelocked
threads could escape it. There are, however, works considering detection of non-
progress behaviour (sometimes under the name of livelock detection, but we stick
here to speaking about detection of non-progress behaviour).

To enable a non-progress detection, the general notions of progress discussed in
Section 2.2 have to be concretised for a particular program. This is mostly expected
to be done by the user, e.g., by specifying progress actions [69], labelling statements
as progress statements [53], annotating the code [52], etc.

33

There are only few approaches which use dynamic analysis for detection of non-
progress behaviour. In [52], a liveness signature, a set of state predicates and temporal
rules, is used to determine whether a program is making progress. In other words,
the liveness signature determines which program states are significant in determining
whether a program is making a progress. If a program does not reach any of these
program states for some time, the program is at a so-called standstill, i.e., it is not
making progress.

Detection of Blocked Threads

We are not aware of any works specialising in this kind of errors. Of course, the most
simple solution to deal with this error is to check that a thread is waiting for more
than some time to be unblocked. This is, however, a very crude approach. In fact,
a similar approach is used in MySQL to detect deadlocks. It was shown [74] that it
is quite inaccurate detection method which often leads to false alarms and, in case of
MySQL, to unnecessary restarts.

34

Chapter 3

Concurrency Coverage Metrics

In testing, testers need measures that can be used to asses how well a program has
been tested, how good a test is, or whether further testing is necessary. For this
purpose, the concept of coverage metrics introduced in Chapter 1 is used. Recall
that coverage metrics are based on coverage tasks representing different phenomena
whose occurrence in the behaviour of a tested program is considered to be of interest.

Probably the most popular measure is the code coverage [94] which measures
how much of the code (the number of lines, the number of executed statements, the
number of branch conditions covered both ways, etc.) has been executed during a test
execution. A high code coverage is a necessary condition for a good verification.
Moreover, the fact that every line of the code has been executed does not imply that
all the functionality and possible behaviour has been exercised. Therefore, besides
code coverage, testers often measure also other kinds of coverage like functional
coverage capturing the tested functionality scenarios, etc. The concurrency coverage
metrics discussed in this chapter measure how well the synchronisation mechanisms
and various other concurrency-related aspects of the behaviour has been exercised.

A common goal of the testing process is to reach a full coverage, i.e., to cover
all tasks of the coverage domain. However, obtaining a full coverage for a complex
software and nontrivial metrics is often difficult and expensive. Moreover, for many
nontrivial metrics, it is very difficult and in general undecidable to statically deter-
mine reachable coverage tasks and hence full coverage. For instance, in the case of
the relatively trivial code coverage, one has to identify dead code (the code that is
not reachable from the entry point of the tested program using any possible input
data) in order to be able to identify full coverage. Coverage metrics without a known
full coverage can, however, still be used in various ways. First, they can be used
for comparisons of testing techniques and tests. Second, they can be used to control
termination of the testing process within the so-called saturation-based testing [98]
where the so-called saturation effect, i.e., a situation when the obtained coverage
stops growing, can be used to determine whether the testing can be stopped. Finally,

35

they are also useful in search-based testing discussed in Chapter 5 where the coverage
metrics can be used within an objective function to compare candidate solutions.

For metrics used in saturation-based or search-based testing, one can identify
several specific properties that they should exhibit. First, within the testing process,
the obtained coverage should grow for a while as often as possible and then stabilise.
Hence, it should not immediately jump to some value and stabilise on it. On the other
hand, it should not take too much time for the coverage to stabilise. Also, to enable
a reliable detection of stabilisation, the coverage should grow as smoothly as possible,
i.e., without growing through a series of distinctive shoulders. Next, in case of testing
an erroneous program, the stabilisation should ideally not happen before an error is
detected. Finally, the increase in coverage should be linked with witnessing more and
more behaviours that differ in their potential of exhibiting a bug.

In this chapter, several new coverage metrics suitable for saturation-based or
search-based testing of concurrent programs are provided. These metrics are based on
coverage tasks derived from the information about program behaviour that is gathered
or computed by various dynamic analyses, namely, Eraser [96], GoldiLocks [32],
AVIO [75], and GoodLock [17] discussed in Section 2.4. In fact, the idea of inferring
new metrics from these analyses is rather generic and can be applied to other dynamic
as well as static analyses (even those that will appear in the future) too.

The proposal is motivated by the idea that within the development of such anal-
yses, behavioural aspects of concurrent programs that are highly relevant for the ex-
istence of synchronisation-related errors have been identified. Hence, it makes sense
to measure how well the aspects of the behaviour tracked by such analyses have been
covered during testing.

Further, coverage tasks of the newly proposed as well as some existing metrics
are combined with abstract identifiers of the threads involved in generating the phe-
nomena reflected in the concerned tasks. The identifiers abstract away the particular
numerical identifiers of the threads, but preserve information on their type, the history
of their creation, etc. This way, an increased number of coverage tasks is obtained,
forming a new, more precise variant of the original metric.

In the rest of this chapter, existing concurrency and synchronisation coverage
metrics are discussed. Next, a methodology how metrics satisfying the requirements
for saturation-based and search-based testing is provided. Then, several new particu-
lar metrics are proposed and some existing metrics mentioned below are described (in
one case also extended). Finally, a comparison of the proposed metrics with selected
existing metrics on a set of concurrent programs is provided.

3.1 Related Work

In the past decades, many different coverage metrics were proposed targeting proba-
bly all areas of testing. Testing of concurrent software is not an exception. The exist-

36

ing concurrency-related metrics can be divided into two groups: (i) The interleaving-
based metrics simply track the ordering in which a pair (or a set) of events occur,
i.e., they measure how many of such different interleavings have appeared. (ii) The
scheduling-based metrics in addition track which different synchronisation actions
have been used among the threads. Apart from that, there has also been proposed
a metric called synchronisation coverage [22] which does not fit to any of the two
groups. The metric focuses on usage scenarios of synchronisation constructs.

The interleaving-based metrics, c.f., e.g., [116, 72, 22] simply track occurrences
of certain important events in multiple threads. In [116], the well-known structural
path metric based on the all-definition-use pairs (du-pairs) [113] was extended to
support parallel programs. A definition-use pair is a pair of instructions (d,u) where
instruction d writes a value to a variable, and the u instruction subsequently reads the
value of the variable. All-du-pairs coverage therefore measures how many of such
pairs of write and subsequent read operations appeared in a testing run.

In [72], the interleaving of operations accessing shared memory is studied. The
authors discuss seven interleaving-based coverage metrics including the all-du-pairs
metric. These coverage metrics do not consider synchronisation operations and focus
only on the interleaving among accesses to shared memory. The authors start with
a metric measuring all interleavings of all accesses to shared memory. Then, they
limit this rather generic metric such that they measure only accesses performed by
a pair of threads, accesses to a single variable, any pair of accesses to single shared
variable, and finally, pair of accesses performed by different threads. A theoretical
comparison of the discussed metrics is provided in the paper.

The concurrent pairs of events metric described in [22] considers interleaving
scenarios among all pairs of concurrency related operations including accesses to
shared variables and operations over synchronisation primitives. Each coverage task
consists of a pair of operations that are assumed to be encountered consecutively in
a run and an additional boolean tag. It is f alse iff the two operations are executed by
the same thread, and true otherwise (indicating that a context switch occurred).

The scheduling-based metrics, e.g., [106, 84] often work with some graph rep-
resentation of possible scheduling scenarios. In [106], the authors define a coverage
metric over a concurrency state graph. Nodes of the graph represent the actual state
of program (as a composition of states of individual threads, denoted as cc-states),
and edges represent synchronisation events generated by the threads. The paper pro-
poses five coverage metrics. Three of them are state-transition-based, namely, all-
concurrency-paths, all-proper-cc-histories, and all-edges-between-cc-states. These
metrics measure how many of different paths in the concurrency state graph appeared
in a testing run. They precisely capture all sequences of synchronisation events but
are difficult to be efficiently computed. In the case of all-concurrency-paths, the
metrics considers even infinite paths. The two other metrics are state-based. The
all-cc-states metric measures the number of cc-states executed during a test, and the
all-possible-rendezvous metric counts only those cc-states that indicate that some

37

synchronisation occurred between the threads. With respect to a possibly very large
concurrency state graph, the use of these metrics is also impractical.

A different model was used in [84]. The paper models concurrent programs us-
ing high-level Petri-nets where each test execution is represented as a firing sequence
with particular input/output data. The coverage metrics measure how many of mark-
ings (no data are considered) or how many of transition firings (input/output data are
considered) appeared in a testing run.

A disadvantage of scheduling-based coverage metrics mentioned above is a high
computational cost and possibly large number of coverage tasks. Note, however,
that the approach of deterministic testing introduced in Chapter 2 is in fact in some
sense similar to maximising coverage under a scheduling-based metric. However,
instead of enumerating coverage tasks, these techniques compute some optimised
representation of possible synchronisation scenarios [66].

Our metrics proposed in this chapter can be considered as interleaving-based
coverage metrics or lightweight scheduling-based metrics. With the price similar
to interleaving-based metrics our metrics also capture recently performed synchro-
nisation via context information inspired by the internal state of the selected detec-
tion algorithm. The incorporation of algorithms for dynamic analysis of concurrent
programs is novel and leads to metrics which need fewer coverage tasks to capture
important aspects of concurrency-related behaviour of tested programs.

Furthermore, the extended versions of our metrics make thread and object identi-
fication explicit to the coverage tasks. The idea of extending coverage tasks of metrics
by thread identification has also been recently presented in [98]. In this work, the au-
thors propose two types of context information which can be used to refine existing
metrics. The group context makes explicit the type of thread that performed an event
and the thread context which explicitly identifies the thread which performed the
event. These contexts can be seen as special cases of our abstract thread identifica-
tion.

3.2 Methodology of Deriving New Coverage Metrics

In this section, our methodology for deriving new coverage metrics is provided. To
derive metrics satisfying the criteria set up above, we propose to get inspired by
various existing dynamic (and possibly even static) concurrency error detection tech-
niques. This is motivated by two observations: (i) These detection techniques focus
on those events occurring in runs of the analysed programs that appear relevant for
detection of various concurrency-related errors. (ii) The techniques build and main-
tain a representation of the context of such events that is important for detection of
possible bugs in the program. Hence, trying to measure how many of such events
have been seen, and possibly in how many different contexts, seems promising from
the point of view of relating the growth of a metrics to an increasing likelihood of
spotting an error.

38

The described idea is very generic, and one can speak about a new class of con-
currency coverage metrics that can be obtained in the described manner. A crucial
step in the creation of a new coverage metrics based on some error detection algo-
rithm is to choose suitable pieces of information available to or computed by the
detection algorithm, which are then used to construct the domain of the new cov-
erage metrics such that the other, above mentioned criteria are met. This leads to
a trade off among the precision of the metrics and the amount of information tracked,
the associated computational complexity, and speed of saturation. One extreme is
to build a coverage metrics directly on warnings about concurrency errors issued by
the detection algorithm. In this case, the detection algorithm entirely need to be im-
plemented. Another extreme is to build a coverage metric counting just the events
tracked by the detection algorithm, without their context. In such a case, very similar
metrics to already existing metrics are often obtained. Within this process—which
can hardly be made algorithmic and which requires certain ingenuity and also experi-
mental evidence, it can also of course turn out that some detection algorithms are not
suitable as a basis of a coverage metrics at all.

Let us demonstrate the described problem on an example of two kinds of dy-
namic data race detection algorithms. The vector-clock-based algorithms, e.g., [95]
described in Chapter 2, maintain for each thread an internal clock which is an inte-
ger value representing the number of synchronisation events that the thread executed
so far. Vectors of clocks are not suitable for our purposes because they encode the
history context using a too large number of values. In fact, a coverage metric based
on vector-clocks would be very similar to metrics based on the concurrency state
graph [106] described above because both of the approaches are based on the same
model of multi-threaded execution. Such metrics lead to a huge number of cover-
age tasks, a slow progress towards saturation, and also a high cost of measuring the
obtained coverage.

On the other hand, the Eraser algorithm [96] also described in Chapter 2, which
computes locksets, is more suitable for our purposes because the history context used
by it gives rise to a reasonable number of coverage tasks.

Finally, already mentioned above, according to our experimental evidence men-
tioned later on, the precision of the constructed metrics can further be suitably ad-
justed by combining their coverage tasks with some abstract identification of the
threads involved in generating the phenomena reflected in the concerned tasks. The
identification should of course not be based on the unique thread identifiers, but it
can preserve information on their type, the history of their creation, etc. A similar
identification can then also be used whenever the coverage tasks contain some dy-
namically instantiated objects (e.g., locks). Our approach for constructing thread and
object identifiers is described in Section 3.4.

39

Table 3.1: The considered coverage metrics

metrics coverage task note
Avio (pl1, pl2, pl3) N
Avio∗ (pl1, pl2, pl3,var, t1, t2) N
Eraser (pl1,state, lockset) N
Eraser∗ (pl1,var,state, lockset, t1) N
GoldiLock (pl1,goldiLockSetSC) N
GoldiLock∗ (pl1,var,goldiLockSetSC, t1) N
GoodLock (pl1, pl2, l1, l2) N
GoodLock∗ (pl1, pl2, l1, l2, t1) N
HBPair (pl1, pl2,syncOb j) N
HBPair∗ (pl1, pl2,syncOb j, t1, t2) N
ConcurPairs (pl1, pl2,switch) E
DUPairs (pl1, pl2,var) E
DUPairs∗ (pl1, pl2,var, t1, t2) M
Sync (pl1,mode) E

3.3 Novel Coverage Metrics

In this section, several new particular coverage metrics are going to be derived. As
mentioned above, they are all based on some dynamic analyses used for detecting
errors in synchronisation of concurrent programs. In order to allow for a quick com-
parison among the metrics, Table 3.1 presents an overview of all the proposed met-
rics, together with some other metrics that we will consider in our experiments. For
each metric, the second column shows tuple defining coverage tasks of the metric,
and the third column contains information whether the metric is new (N), already ex-
isting (E), or whether it is our modification of some already known metric (M). The
first item of each of the tuples representing a coverage task (denoted as pl1) gives
a primary program location which generates the given task when reached by some
thread. The rest of the tuples can then be viewed as a context under which the loca-
tion is reached. For most of the metrics, we provide two versions: a basic version and
a version with an extended context, denoted by ∗. In the following paragraphs, the
versions with the extended context are described only. The basic versions can easily
be derived from them by dropping some elements of the context.

In the text below, the following notation is used. V is a set of identifiers of in-
stances of non-volatile variables (i.e., non-volatile fields of objects) that may be used
in the tested program at hand, O is a set of identifiers of instances of volatile vari-
ables used in the program, L is a set of identifiers of locks used in the program, T is

40

a set of identifiers of all threads that may be created by the program, and P is a set
of all program locations in the program. One possible particular way how the needed
identifiers may be obtained is discussed in Section 3.4.

Coverage metrics based on Eraser. The coverage metric Eraser∗ is based on the
Eraser algorithm [96]. Its coverage tasks have the form of a tuple (pl1,var,state,
lockset, t1) where pl1 ∈ P identifies the program location of an instruction accessing
a shared variable var ∈ V , state ∈ {virgin,exclusive, exclusive′,shared,modi f ied,
race} gives the state in which the Eraser’s finite control automaton is when the given
location is reached (we consider the extended version of Eraser using the exclusive′

state as introduced in [110], which is more suitable for the Java memory model), and
lockset ⊆ L denotes a set of locks currently guarding the variable var. Finally, t1 ∈ T
represents the thread performing the access operation.

Coverage metrics based on GoldiLocks. GoldiLock∗ is based on the Goldilocks
algorithm [32]. Original algorithm is quite complex. Therefore, we focus on the
version with short circuit checks (SC) which are three cheap checks that are sufficient
for deciding race freedom. We choose this algorithm because it is able to handle
happens-before relation using relatively small set of elements in the lockset. Our
GoldiLock-based metric GoldiLock∗ is based on coverage tasks having the form of
tuples (pl1,var,goldiLockSet, t1) where pl1 ∈ P gives the location of an instruction
accessing a variable var ∈V within a thread t1 ∈ T , and goldiLockSetSC⊆O∪L∪T
represents the lockset computed by GoldiLocks. If the lockset is not necessary to
compute due to the SC, the element used by the SC is used instead. For instance,
goldiLockSetSC = t if the SC checking whether the current and the last accesses to
the variable are performed by the same thread t succeeded.

Coverage metrics based on Avio. The Avio algorithm that detects atomicity viola-
tion over one variable is presented in [75]. We choose this algorithm because it does
not require any additional information from the user about instructions that should be
executed atomically. The algorithm considers any two consecutive accesses a1 and a2
from one thread to a shared variable var to form an atomic block B. Serialisability
is then defined based on an analysis of what can happen when B is interleaved with
some read or write access a3 from another thread to the variable var. Tracking of
all accesses that occur concurrently to a block B can be very expensive. Therefore,
we define our criterion to consider only the last interleaving access to the concerned
variable from a different thread. Our Avio∗ metric uses coverage tasks in the form of
tuples (pl1, pl2, pl3,var, t1, t2) where var∈V , pl1, pl2, pl3 ∈P, and t1, t2 ∈ T . The con-
sidered atomic block B spans between pl1 and pl2, and it is executed by a thread t1.
Finally, pl3 gives a location of an instruction executed in a thread t2 that interferes
with the block B.

41

Coverage metrics based on GoodLock. GoodLock is a popular deadlock detec-
tion algorithm that exists in several modifications—we, in particular, build on its
modification published in [17]. The algorithm builds the so-called guarded lock
graph which is a labelled oriented graph where nodes represent locks, and edges
represent nested locking within which a thread that already has some lock asks for
another one. Labels over edges provide additional information about the thread that
creates the edge. The algorithm searches for cycles in the graph wrt. the edge labels
in order to detect deadlocks. Our metric focuses on occurrence of nested locking
that is considered interesting by GoodLock. We omit collection of the locksets of
the threads which the original algorithm uses as one element of the edge label be-
cause this information is used in the algorithm to suppress certain false alarms only.
Our GoodLock∗ metric is therefore based on coverage tasks in the form of tuples
(pl1, pl2, l1, l2, t1) where pl1, pl2 ∈ P, l1, l2 ∈ L, and t1 ∈ T . Such task is covered when
the thread t1 has obtained the lock l1 at pl1, and now the same thread is obtaining the
lock l2 at pl2.

Coverage metrics based on happens-before pairs. These coverage metrics are
motivated by observations we get from the GoldiLocks algorithm and the vector-
clock algorithms, both of them depending on a computation of the happens-before
relation. In order to get rid of a possibly huge number of coverage tasks produced
by the vector-clock algorithms and trying to decrease the computational complexity
needed when the full GoldiLocks algorithm is used, we focus on pieces of the infor-
mation the algorithms use to create their representations of the analysed program be-
haviours (without actually computing and using these representations). All of these
algorithms rely on synchronisation events constructing the happens-before relation
observed along the execution path. Inspired by this, we propose the HBPair∗ met-
ric that tracks successful synchronisation events based on locks, volatile variables,
wait-notify operations, and thread start and join operations used in Java. A coverage
task is defined as a tuple (pl1, pl2,syncOb j, t1, t2) where pl1 ∈ P is a program loca-
tion in a thread t1 ∈ T that was synchronised with the location pl2 ∈ P of the thread
t2 ∈ T using the synchronisation objects syncOb j ∈ L∪O∪{⊥}. Here, ⊥ represents
a thread start or a successful join synchronisation where no synchronisation object is
needed.

In order to compare our metrics with already existing metrics, we further consider
and in one case also extend the following metrics.

Coverage based on concurrently executing instructions (ConcurPairs). The in-
terleaving-based coverage of concurrent pairs of events proposed in [22] is a metric
in which each coverage task is composed of a pair of program locations that are as-
sumed to be encountered consecutively in a run and a third item that is true or f alse

42

as was described in Section 3.1. This metric provides statement coverage information
(using the f alse flag) and interleaving information (using the true flag) at once. In
our notation, each task of the metric is a tuple (pl1, pl2,switch) where pl1, pl2 ∈ P
represent the consecutive program locations (only concurrency primitives and vari-
able accesses are monitored), and switch∈ {true, f alse} denotes whether the context
switch occurs in between of them. Since this metric produces a large number of
coverage tasks even for small programs, we decided not to enrich it with any further
context information.

Definition-use coverage. This coverage metric is based on the all-du-path already
explained in Section 3.1. We consider the original all-du-pair coverage metric (de-
noted as DUPairs), and we also extend it to a metric which adds more context in-
formation to the coverage tasks. Our metric DUPairs∗ is based on coverage tasks in
the form of tuples (pl1, pl2,var, t1, t2) where pl1, pl2 ∈ P represent program locations
where the value of the variable var ∈V is defined and used, respectively, t1 ∈ T de-
notes the thread that performed the definition of var at pl1, and t2 ∈ T denotes the
thread that subsequently uses the value at pl2.

Synchronisation coverage (Sync). The synchronisation coverage [22] focuses on
the use of synchronisation primitives and does not directly consider thread inter-
leavings. Coverage tasks of the metric are defined based on various distinctive sit-
uations that can occur when using each specific type of synchronisation primitives.
For instance, in the case of a synchronised block (defined using the Java keyword
synchronised), the obtained tasks are: synchronisation visited, synchronisation
blocking, and synchronisation blocked. The synchronisation visited task is basically
just a code coverage task. The other two are reported when there is an actual con-
tention between synchronised blocks—when a thread t1 reaches a synchronised block
A and stops because another thread t2 is inside a block B synchronised on the same
lock. In this case, A is reported as blocked, and B as blocking (both, in addition, as
visited). In our notation, the metric is defined using tuples of the form (pl1,mode)
where pl1 ∈ P represents the program location of a synchronisation primitive, and
mode represents an element from the set of the distinctive situations relevant for the
given type of synchronisation.

3.4 Abstract Object and Thread Identification

Our coverage metrics introduced in the previous section are based on tasks that in-
clude identification of threads and instances of variables and locks. The Java virtual
machine (JVM) generates identifiers of objects and threads dynamically. Such iden-
tifiers are, however, not suitable for our purposes: (i) In long runs, too many of them
may be generated. (ii) We would like to be able to match semantically equivalent

43

tasks generated in different runs (may be not precisely, but at least with a reason-
able precision), and the identifiers generated by JVM for the same threads (from the
semantical point of view) in different runs will quite likely be different.

Previous works, such as [98], used Java types to identify threads. We consider
this type-based identification of elements as too rough. Our goal is to create iden-
tifiers which distinguish behaviour of objects and threads within the program more
accurately, but still keeping a reasonable level of abstraction so the set of such ab-
stract identifiers remains of a moderate size.

The abstract object identification that we consider in this work (to identify locks
as well as instances of variables1) is based on the observation that, usually, objects
created in the same place in the program are used in a similar way. For instance,
there are usually many instances of the class String in an average Java program, but
all strings that are created within invocations of the same method will probably be
manipulated similarly. Therefore, we define an object identifier as a tuple (type, loc)
where type refers to the type of the object, and loc refers to the top of the stack
(excluding calls to constructors) when the object is created. The record at top of the
stack contains a method, source file, and line of code.

Next, our abstract thread identification is based on an observation that the type
and place of creation are not sufficient to build a thread identifier. Several threads
created at the same program location (e.g., in a loop) can subsequently process dif-
ferent data and therefore behave differently. We need more information concerning
the thread execution trace to better capture the behaviour of threads. Therefore, we
use as the identifier a tuple (type,hash) where type denotes the type of the object
implementing the thread, and hash contains a hash value computed over a sequence
of n first method identifiers that the thread executed after its creation (if the thread
terminates sooner, then all methods it executed are taken into account). The value of
n influences precision of the abstraction. Of course, when a pool of threads (a set of
threads started once and used for several tasks) is used, the computation of the hash
value must be restarted immediately after picking the thread up from the pool.

3.5 A Comparison of Coverage Metrics

In this section, a comparison of our newly proposed coverage metrics with selected
existing metrics is presented. Our architecture for collecting concurrency-related
coverage is built upon the IBM Java Concurrency Testing Tool (ConTest) introduced
in Chapter 2. To recall, the tool provides a facility for byte-code instrumentation and
a listeners infrastructure allowing one to create plug-ins for collecting various pieces
of information about the multi-threaded Java programs being executed as well as to
easily implement various algorithms for dynamic analyses. The tool is itself able to

1Instances of variables are identified by an object identifier and the appropriate field of the object.

44

Table 3.2: Test cases

Classes kLOC Error Manifestation Error type
Ratio

Dining phil. 2 0.1 0.4151 deadlock
Airlines 8 0.3 0.0333 atomicity viol.
Crawler 19 1.2 0.0006 atomicity viol.
Rover 83 5.4 0.0005 deadlock
FtpServer 120 12.2 0.4032 data race
TIDOrbJ echo 1 399 84.3 0.0170 none / data race

collect structural coverage metrics (basic blocks, methods) and some concurrency-
related metrics (ConcurPairs, Sync) too. ConTest further provides a noise injection
facility which allows one to observe different legal interleavings if the test is exe-
cuted repeatedly. We use our platform called SearchBestie described in Appendix B
to set up and execute tests with ConTest, and to collect, maintain, and export results
produced by ConTest and its plug-ins from multiple executions of a test.

Test Cases

We have evaluated the metrics discussed in the previous section on five small test
cases (Dining philosophers, Airlines, Crawler, Rover, FtpServer) and one bigger test
case (TIDOrbJ). Table 3.2 shows for each test case its size expressed by the number of
instrumented classes and number of lines of code (LOC). The next column shows the
probability of spotting an error during a test execution when random noise injection
is used (computed as the number of executions where an error occurs divided by the
total number of executions). The last column shows the type of error present in the
test case.

The Dining philosophers test case is an implementation of the well-known syn-
chronisation problem of dining philosophers. Our implementation is taken from the
distribution of the Java PathFinder model checker. The program generates a set of
6 philosophers (each represented by a thread) and the same number of shared objects
representing forks. A deadlock can occur when executing the test case.

The Airlines test case is a simple artificial program simulating an air ticket reser-
vation system. It generates a database of air tickets and then allows 2 resellers (each
represented by a separate thread) to sell tickets to 4 sets of 10 customers (each set is
represented by a separate thread). Finally, a check whether the number of customers
with tickets is equal to the number of sold tickets is done. The program contains
a high-level atomicity violation whose occurrence makes the final check fail.

The four other considered programs are real-life case studies. Crawler is a part of
an older version of a major IBM production software. It demonstrates a tricky con-

45

currency bug detected in this software. The crawler creates a set of threads waiting
for a connection. If a connection simulated by a testing environment is established,
a worker thread serves it. There is an error in a method that is called when the
crawler shuts down. The error causes an exception sometimes leading to a deadlock.
The trickiness of the error can be seen from its very low error probability shown in
Table 3.2.

The second real-life case study is a Java version of the NASA Ames K9 Rover
Executive whose verification is presented in [42]. The Rover Executive is a platform
for controlling autonomous vehicles called rovers. The test case executes three high-
level plans—programs written in a language that specifies actions and constraints on
the movement, experimental apparatus, and other resources of the rover. The test
case contains a deadlock causing the execution of the test to hang. This error is also
very difficult to spot as can be seen from very low error manifestation probability.
Moreover, the test case also contains rarely manifested high level atomicity viola-
tion in the method responsible for changing the current plan of the rover. The old
plan is set to null while some other thread still access it. Such situation leads to
the NullPointerException. This error does not manifested during any performed
testing run on systems with two cores used in this chapter. We detect the error only
when executing the test case with specific noise setting (for more information see
Chapter 4).

Our third real-life case study is an early development version of an open-source
FtpServer produced by Apache. This case study has 120 classes. The server creates
a new worker thread for each new incoming connection to serve it. The version of the
server we used contains several data races that can cause exceptions during the shut
down process when there is still an active connection. The probability of spotting
an error when noise injection is enabled is quite high in this example because there
are multiple places in the test where an exception can be thrown.

Our biggest test case is TIDOrbJ which is a CORBA-compliant ORB (Object
Request Broker) software that is a part of the MORFEO Community Middleware
Platform [99]. The instrumented part of the middleware has 1399 classes. We have
used the Echo concurrent test which checks how the infrastructure handles multiple
concurrent simple requests. The test starts an instrumented server and then 10 clients,
each sending 5 requests to the server. There was originally no error in this test, and
therefore we introduced one by commenting one synchronised statement in the part
of code that is executed by the test. This way, we introduced a high-level atomicity
violation that leads to a NullPointerException.

Experimental Setup

We used our infrastructure introduced above to collect relevant data from 10,000 ex-
ecutions of the small test cases and 4,000 executions of TIDOrbJ. In order to see
as many different legal interleaving scenarios as possible, we set up ConTest to ran-

46

Table 3.3: Test cases and abstract identifiers

ObjectAbstraction ThreadAbstraction
Real Type Abs Real Type Abs10 Abs20

Dining phil. 130 3 3 7 2 2 2
Airlines 15 210 6 6 60 3 3 4
Crawler 1 828 13 14 180 4 9 12
Rover 6 150 48 53 80 8 10 16
FtpServer 26 110 27 29 1 641 5 5 6
TIDOrbJ echo 180 320 98 129 79 5 9 11

domly inject noise into the executions. We have implemented ConTest plug-ins to
collect coverage information and set up SearchBestie to detect occurrences of errors
(deadlocks were detected using a timeout, other errors by detection of unhandled
exceptions). All further studies of the metrics were done using the collection of ex-
ecutions obtained this way. For instance, we often needed to evaluate the behaviour
of the metrics on series of executions. To generate the needed series of executions,
we used SearchBestie to randomly select a needed number of executions out of the
recorded collection and to compute accumulated values of the chosen metric on such
series. All tests were executed on a computer with an Intel 6600 processor and 2 GB
of memory, running Sun Java version 1.6 under GNU Linux.

Object and Thread Abstract Identification

Table 3.3 summarises information on our test cases (both from the point of view
of the source code as well as the runtime behaviour) and—most importantly—it il-
lustrates the effect of our abstract object and thread identifiers. The table provides
information about the size of the case studies in terms of the numbers of threads and
objects created in them. The table also illustrate precision of our abstract identifiers
of objects and threads. The Real column contains the total number of distinct ob-
jects (or threads) we encountered in 10 performed executions of the tests. The Type
column shows the total number of distinct object (or thread) types we have spot, and
the Abs columns show the total number of distinct abstract objects (or threads) we
distinguish using our abstract identifiers introduced in Section 3.4. For the thread ab-
straction, two values are given showing the influence of the length n of the considered
sequence of methods called by the threads.

Typical Saturation Behaviour of the Metrics

To decide whether a coverage metric is suitable for saturation-based testing or not,
one needs to evaluate several aspects of its behaviour. The typical behaviour of the

47

(a) (b)

(c) (d)

Figure 3.1: Saturation of different metrics on the Crawler test case (the horizontal
axis gives the number of executions, the vertical axis gives the cumulative number of
covered tasks)

considered coverage metrics can be seen in Figure 3.1. All four sub-figures show the
cumulative number of coverage tasks of the metrics covered during one randomly
chosen series of the Crawler test case executions (with the thread abstraction vari-
able n set to 20).

Figure 3.1(a) shows the behaviour of the metrics that, according to our opinion,
do not capture the concurrent behaviour accurately enough. One coverage metrics
for non-concurrent code measuring the number of basic blocks covered during tests is
added to demonstrate the difference between classical and concurrency-related cover-
age metrics. The coverage obtained under the metric based on basic blocks is nearly
constant all the time because we are repeatedly executing the same code with the
same inputs. For the rest of the metrics shown in Figure 3.1(a), the cumulative num-
ber of tasks covered during test executions increases only within approximately the

48

200 first executions, and then a saturation is reached. The only metric which slightly
differ from the others in this group are Eraser and DUPairs. The Eraser metric has
a similar behaviour to the Avio metric (and the metrics close to it) but approximately
four times higher numbers of covered tasks. This is caused by the fact that the tracked
shared variables usually get to four Eraser states. The DUPairs metric has also higher
numbers of covered tasks but it is almost all the time stabilised.

The most interesting part of Figure 3.1(a) which is between 0 and 200 execu-
tions is zoomed in Figure 3.1(b). One can see that the saturation effect occurs earlier
(at about 100 executions) for the HBPair and Sync metric which both focus on syn-
chronisation events only. The Avio metric (and also the Eraser metric which is not
shown) that focus on accesses to shared variables saturate a bit later. The depicted
curves demonstrate one further disadvantage of the concerned metrics—a presence
of distinctive shoulders. A repeated execution of the test case does examine different
concurrent behaviours (which is indicated by the later discussed metrics) but the met-
rics concerned in the figure are not able to distinguish differences in these behaviours,
and therefore we can see clear shoulders in the curves (i.e., sequences of constant val-
ues). The presence of such shoulders makes automatic saturation detection harder.

Figure 3.1(c) demonstrates a positive effect of considering an extended context
of the tracked events as proposed in Section 3.3. The metrics concerned in this sub-
figure (i.e., Avio∗, Eraser∗, DUPairs∗, HBPair∗, GoodLock∗, and GoldiLock) are able
to distinguish differences in the behaviour of the executed tests more accurately, lead-
ing to shorter shoulders, bigger differences in the cumulated values, and a later oc-
currence of the saturation effect—indicating that the concerned metrics behave in
a way much better for saturation-based testing. As can be seen from a similar jump
in the obtained coverage of the HBPair∗, Eraser∗, and Avio∗ metrics at around 1300
executions, the extended context can sometimes have a dramatic influence. The jump
is caused by the abstract thread identifiers. At the given point, a thread with a new
abstract identifier appears, and all tasks involving this thread are different to those
already known. This leads to a much more significant increase in the cumulative cov-
erage. A special attention should be paid to the GoldiLock metric. This metric does
not suffer from shoulders nor sudden, dramatic increases of the obtained coverage,
and it reaches saturation near the saturation points of the other metrics. This is a very
positive behaviour, and the GoldiLock metric is clearly winning here.

Figure 3.1(d) shows problems of metrics that are too accurate, namely, Concur-
Pairs and GoldiLock∗. These metrics work fine for small test cases but when used on
a bigger test case they tend to saturate late and produce enormous numbers of covered
tasks.

Quantitative Properties of the Metrics

Quantitative properties of the considered metrics in all our test cases can be seen in
Table 3.4. In particular, Table 3.4 shows, for each metric and each test case, three

49

Table 3.4: A quantitative comparison of the metrics

Dining phil. Airlines Crawler

To
ta

l

A
ve

ra
ge

%

Sm
oo

th
%

To
ta

l

A
ve

ra
ge

%

Sm
oo

th
%

To
ta

l

A
ve

ra
ge

%

Sm
oo

th
%

Avio 6 47 0 17 60 1 40 22 1
Avio∗ 30 10 0 490 2 10 418 3 9
ConcurP. 4 059 6 38 16 730 6 85 20 866 3 83
DUPairs 18 76 0 43 97 0 105 81 1
DUPair∗ 72 19 0 1 401 3 9 921 11 8
Eraser 29 76 0 73 96 0 217 64 2
Eraser∗ 89 25 0 1 429 5 8 861 19 5
GoldiLock 26 73 0 102 64 2 384 20 12
GoldiLock∗ 119 16 0 4 217 1 20 3 335 3 26
GoodLock 9 56 0 0 - 0 57 52 1
GoodLock∗ 22 23 0 0 - 0 258 17 4
HBPair 6 62 0 25 79 0 61 39 1
HBPair∗ 29 13 0 1 013 2 13 984 4 12
Sync 8 56 0 27 78 0 49 46 1

Rover FtpServer TIDOrbJ echo

To
ta

l

A
ve

ra
ge

%

Sm
oo

th
%

To
ta

l

A
ve

ra
ge

%

Sm
oo

th
%

To
ta

l

A
ve

ra
ge

%

Sm
oo

th
%

Avio 178 71 1 529 45 10 822 50 8
Avio∗ 1 472 10 8 1 023 33 16 3 280 29 22
ConcurP. 120 623 2 100 526 280 6 100 4 908 100 2 100
DUPairs 478 97 0 330 92 2 1 933 98 2
DUPair∗ 2460 21 4 646 82 3 3 092 90 4
Eraser 840 94 1 684 88 4 2 978 90 4
Eraser∗ 3 352 29 4 1 086 79 4 4 886 83 6
GoldiLock 638 89 1 1 091 61 9 6 265 51 29
GoldiLock∗ 14 898 4 13 2 210 47 12 10 434 41 46
GoodLock 45 58 0 0 - 0 321 63 3
GoodLock∗ 137 24 2 0 - 0 915 34 6
HBPair 70 79 1 13 73 0 131 70 2
HBPair∗ 721 8 5 28 49 0 420 46 5
Sync 69 72 1 22 66 0 172 79 2

50

values computed from a set of 100 different random series consisting of 2,000 test
executions. The columns labelled as Total show the average total number of distinct
tasks produced by the metric. This number demonstrates a big disadvantage of the
ConcurPairs coverage metric, namely, its problem with scalability. The metric pro-
duced nearly 5 million of distinct tasks for 2,000 executions of the TIDOrbJ test case
which makes further analyses quite time demanding.

The columns of Table 3.4 labelled as Average percentage represent the ratio be-
tween the average number of tasks covered within one execution and Total. A high
number in this column means that most of the total number of covered tasks were
covered within one execution. The cumulative coverage under such metrics (for DU-
Pairs, Eraser, and Sync) usually stabilises early or grows very slowly. In both of these
cases, the detection of saturation is difficult. Contrary, if the average percentage is
too low (for ConcurPairs and GoldiLock∗), the cumulative coverage grows for a very
long time.

Finally, the columns of Table 3.4 labelled Smooth percentage give an insight in
how smooth the growth of the accumulated coverage is. The column contains the
ratio between the average number of the distinct cumulative coverage values reached
under a metric when going through the considered executions and the number of
test executions (2,000). High values (for ConcurPairs and GoldiLock∗) mean that
the cumulated coverage under the metric changed many times, and therefore there
was contiguously growing. Low values (for Avio, DUPairs, Eraser, GoodLock, and
Sync) mean that the cumulated coverage changed only a few times, and therefore
there either occurred a fast saturation or there appeared long shoulders. Both of these
phenomena are problematic for a good metric to be used in saturation-based testing.

The table also shows a disadvantage of the GoodLock∗ metric. The metric fo-
cuses on nested locking as was described in Section 3.3. If such a phenomenon does
not occur in the tested program, the metric provides no information as can be seen in
the Airlines and FtpServer test cases. On the other hand, the metric can provide ad-
ditional information which cannot be directly inferred by other metrics in programs
which contains this phenomenon. In total, the evaluation in Table 3.4 gives similar
champions for a good metrics to be used in saturation-based testing as what we saw
in Figure 3.1(c). Namely, this is the case of the Avio∗, Eraser∗, DUPairs∗, HBPair∗,
and GoldiLock metrics.

3.6 Summary

In this chapter, a methodology of deriving new coverage metrics to be used in testing
of concurrent software from dynamic (and possibly also static) analyses designed for
discovering bugs in concurrent programs has been proposed. Using this idea, several
new particular metrics have been derived. And, an empirical evaluation of these
metrics have been performed, which has shown that several of them are indeed better

51

for use in saturation-based and search-based testing than various previously known
metrics.

As an additional advantage of the metrics that we have proposed, their better ap-
plicability in debugging cab be mentioned. For debugging, understandability of each
coverage task is important. We believe that the tasks generated by our metrics pro-
vide more concurrency problem-related information to the tester than existing metrics
such as ConcurPairs or DUPairs. The tester can track the threads and objects that ap-
pear in the covered tasks to their place of creation or use some additional information
(e.g., a lockset) present in the tasks to better understand what happened during the
witnessed executions.

52

Chapter 4

Noise Injection Heuristics

In this chapter, a new heuristics for noise injection which uses coverage information
to select places in an execution of a given code where to put a noise is proposed.
Furthermore, a way to determine the strength of the noise needed to suitably affect the
behaviour of tested programs is also proposed. Next, in this chapter, the current lack
of experimental evaluation of the various existing noise seeding and noise placement
heuristics is addressed. Namely, the chapter provides a systematic comparison of
several noise injection techniques available in the IBM Concurrency Testing Tool
(ConTest), which represents the state of the art of noise injection, as well as the newly
proposed heuristics on a set of test cases of different size. The comparison is based on
the coverage obtained under two selected concurrency coverage metrics, the needed
execution time, and the rate of manifestation of concurrency errors in the testing
runs. The comparison shows that there is no silver bullet among the many existing
noise seeding and noise placement heuristics. Moreover, it identifies weak and strong
aspects of the different heuristics in different contexts and can thus serve as a guide
for a user which intend to apply the heuristics in the testing process. Apart form that,
the comparison also shows that the newly proposed heuristics may in certain cases
provide an improvement in the testing process.

The rest of the chapter is organised as follows. Existing noise injection heuristics
are discussed in Section 4.1. Section 4.2 introduces a new noise placement heuris-
tics. And, Section 4.3 provides a comparison of different noise seeding heuristics
available in IBM ConTest and a comparison of various noise placement heuristics
including the newly proposed heuristics. The maximal improvement achieved by the
noise-based testing approach in our test cases are presented at the end of this section.
Finally, Section 4.4 provides a summary the obtained results and based on them gives
suggestions on how to test programs using the noise injection technique.

53

4.1 Existing Noise Seeding and Placement Heuristics

Existing works discuss three main aspects of heuristic noise injection: (i) How to
make noise, i.e., which type of noise generating mechanism should be used, (ii) where
to inject noise during a test execution, i.e., at which program location and at which of
its executions (if it is executed multiple times), and (iii) how to minimise the amount
of noise needed for manifestation of an already detected error when debugging. This
chapter mainly targets the first two aspects. The debugging problem is discussed in
Chapter 5.

There exist several ways how a scheduler decision can be affected in Java as
was already described in Chapter 2. Recall that the noise maker can use calls of
yield() to cause a context switch or sleep() and wait() to cause a delay. The
current version of the IBM ConTest tool [31] comes with several more noise seeding
techniques also mentioned in Chapter 2. The synchYield technique combines the
yield technique with entering a monitor that is shared among all threads, the busyWait
technique loops for some time, the haltOneThread technique occasionally stops one
thread until any other thread cannot run, and finally, the timeoutTampering heuristics
randomly reduces the time-out used when calling sleep() in the tested program.

There also exist multiple noise placement techniques for determining where to
put a noise. The problem of noise placement can be divided into two subproblems:
(i) Which program locations are suitable for noise injection and (ii) which particular
occurrence of selected program locations in an execution of the program actually
affect by the noise.

IBM ConTest allows to inject a noise before and after any concurrency-related
event (including, accesses to class member variables, static variables, and arrays, and
the calls of wait, interrupt, notify, monitorenter, and monitorexit routines).
The rstest tool [101] considers as possibly interesting places before concurrency-
related events only. Moreover, rstest uses a simple escape analysis and a lockset-
based algorithm to statically identify the so-called unprotected accesses to shared
variables. An unprotected access reads or writes a variable which is visible to multi-
ple threads without holding an appropriate lock. This optimisation reduces the num-
ber of places where the noise can be put but suppresses ability to detect some concur-
rency errors, e.g., high-level data races or deadlocks where all accesses to problematic
variables are correctly guarded by a lock.

It is discussed in [31, 35, 101] that putting noise on every possible place is inef-
ficient. These works also claim that only a few relevant context switches are critical
for the concurrency error. Moreover, putting noise to a certain place in the execution
can either help to spot the concurrency error or mask it completely as we presented
in our previous works, e.g., [58]. Therefore, several heuristics for choosing places
where to put a noise were proposed, e.g., in [31, 101, 16, 36, 107].

The simplest heuristics which targets the problem of selecting a particular occur-
rence of the considered program locations is based on random noise [31, 101]. This

54

heuristics puts a noise before/after an executed program location ploc with a given
probability. The probability is the same for all plocs in the execution. It was shown
in [16] that focusing random noise only on a single variable over which a data race
exists increases the probability of spotting the error. The authors also propose a
heuristics which helps to choose a suitable variable without additional information
from a data race detector. In [36], several concurrency anti-patterns are discussed,
and for each of them, a suitable scheduling scenario that leads to a manifestation of
the corresponding concurrency error is presented, but the paper contains no practical
evaluation of the proposed heuristics.

Only a few heuristics based on concurrency coverage models have been pub-
lished. Coverage-directed generation of interleavings presented in [31] considers two
coverage models. The first model determines whether the execution of each method
was interrupted by a context switch. The second, a bit refined model determines
whether a method execution was interrupted by another instance of the same method
simultaneously executed by a different thread or by any other method simultane-
ously executed by a different thread. This model is motivated by the observation that
sometimes a concurrency-related error manifests if two threads are simultaneously
executing the same part of code containing the error.

In [107], a heuristics for increasing the synchronisation coverage introduced in
Chapter 3 is sketched. The synchronisation coverage metrics measure whether for
each program location ploc where a monitor is entered the thread was blocked and
thus cannot proceed, whether the thread after obtaining the monitor blocked some
other thread trying to obtain the same monitor (therefore act as blocking thread), or
no interference among threads occur and therefore the ploc was just visited. The
heuristics makes a thread sleep for a while before and/or after executing ploc. The
authors claim that this can increase the synchronisation coverage but no experimental
evaluation is provided in the paper. None of these two coverage-based heuristics
focuses on accesses to shared variables which can limit their ability to discover some
concurrency errors, e.g., data races.

Finally, note that modern deterministic testing tools like CHESS introduced in
Chapter 2 block all threads except one which is enabled for running. This could
also be considered as an invasive noise technique. The algorithms used in these
techniques choose threads to enable for running with intention to maximise coverage
of a considered model of the tested program. Therefore, in a sense, the techniques
implement coverage-based noise heuristics too.

4.2 A New Coverage-based Noise Placement Heuristics

We are now going to describe our proposal of a new coverage-based heuristics for
selection of places where to inject noise during a test run takes into account that the
noise can be caused by any of the noise seeding techniques and it considers only

55

program locations plocs that appear before concurrency-related events (considered
by IBM ConTest) as suitable for noise injection. The heuristics targets both accesses
to shared variables as well as the use of synchronisation primitives. The goal is to
be able to discover all kinds of concurrency errors. The heuristics monitors the fre-
quency of a ploc execution during a test and puts a noise at the given ploc with
a probability biased wrt. this frequency—the more often a ploc is executed the lower
probability is used. Furthermore, the heuristics also derives the strength of a noise
to be used from the timing of events observed in previous executions of the test (al-
though for determining the strength of noise, alternative approaches can be used too).

The main principle of the heuristics is sketched first and then we explain it in
more details. The heuristics is incorporated into the testing process as follows:
(i) A test is run with no noise, and a set of covered tasks of the coverage metric
described below together with information on relative timing of appearance of mon-
itored concurrency-related events are generated during the first execution of the test.
(ii) A set of the so-called noise tuples defined later is generated from the gathered
information. (iii) Random noise at the plocs included in the noise tuples is gener-
ated, and the average frequency of execution of these plocs within particular threads
is gathered during the next test execution. (iv) Biased random noise of strength com-
puted wrt. the collected statistics is (repeatedly) produced at the collected plocs.
Coverage information is updated during each execution, and new noise tuples are
constantly learnt. Likewise, all other collected statistics are updated during each test
run. Due to performance reasons, only one thread is influenced by noise at a time.

The coverage metric used by the heuristics considers coverage tasks of the form
(t1, ploc1, t2, ploc2). There are two situations when such task is covered. First, a task
is covered if a thread t1 accesses a shared variable v at ploc1, and subsequently
a thread t2 accesses v at ploc2, which is a typical scenario critical for occurrence
of concurrency-related errors. If t1 owns a monitor when accessing v at ploc1, an-
other task (t1, ploc3, t2, ploc2) where ploc3 refers to the location where t1 obtained
the last monitor is also covered. This is motivated by considering the relative position
of locking a critical section in one thread and using it in another thread as important.
Second, a new task is covered if a thread t1 releases a monitor obtained at ploc1, and
subsequently a thread t2 obtains the monitor at ploc2. Each covered task is annotated
by the number of milliseconds that elapsed between the events on which the task is
based. The threads are identified in an abstract way based on the history of their
creation in the same way as already described in Chapter 3.

The proposed coverage metric differs from metrics introduced in Chapter 3. The
metric does not consider internal state of any detection algorithm. The metric fo-
cuses on occurrence of events important for most of detection algorithms—that is
locking and accesses to shared memory. But, the stress is put on covering situations
where insertion of a noise could improve the testing process by observing different
interleavings.

56

Our heuristics injects noise before a location ploc1 executed by a thread t1 if
a task (t1, ploc1, t2, ploc2) has been covered within some previous execution. This
way, our heuristics tries to reverse the order in which the instructions at the considered
program locations are executed. The coverage information collected during previ-
ous runs is transformed into noise tuples of the form (t1, ploc1,min,max,orig,exec).
Here, t1 identifies a thread and ploc1 the program location where to put a noise.
The next two values give the minimal and maximal number of milliseconds that
elapsed between the events defining the given coverage task. The length of a de-
lay is randomly chosen within the interval (min,max). These values can be used for
determining the strength of noise to be used as a delay of length randomly chosen
from between the values. If there are multiple coverage tasks with the same couple
(t1, ploc1), i.e., with different couples t2, ploc2, min and max are computed from all
such tasks. The orig value contains an identification of the run where the couple
(t1, ploc1) was spot for the first time. In order to limit values of min and max, their
update is possible only within a limited number of test executions after the orig run.
Finally, the exec value contains the average number of times the couple (t1, ploc1) is
executed during a test execution. It is used to bias the probability of noise injection
at ploc1.

In repeated executions of a test, the so far computed noise tuples are loaded,
and the noise is generated at program locations given by them with the probability
computed from the number of times the locations have been executed (the exec value).
The base probability is computed using the following expression:

prob = max(0.001,
1

4∗ exec
)

The base probability is therefore obtained as maximal value from the minimal noise
probability accepted by ConTest which is 0.001 and an expression which sets the
probability for often executed program locations to a lower values. The probability
is in such case further divided by 4 to keep the noise injection frequency reasonably
low (25 % for a ploc which is executed once during each test). This is motivated
by our observation that a higher probability than 25 % degrades the test performance
and usually does not provide considerably better results as can be seen from the com-
parison presented in Section 4.3. If the exec value is not yet available, the probability
of 0.01 is used.

4.3 A Comparison of Noise Injection Techniques

This section presents an experimental comparison of selected noise seeding and noise
placement heuristics available in ConTest as well as of the above newly proposed
heuristics. The section is divided into four sub-parts: (i) First, a description of the
testing environment and the test cases used for the comparison is given. (ii) Then, the

57

comparison of different noise seeding heuristics is provided. The comparison first
compares the basic noise seeding heuristics according to their efficiency to improve
detection of concurrency errors, to improve concurrency-related coverage metrics
in the considered test cases, and to affect test execution time. Then, the improve-
ment which can be achieved by a combination of basic noise seeding techniques
with advanced seeding techniques haltOneThread and timeoutTampering is studied.
(iii) Next, a comparison of different noise placement heuristics is provided. The com-
parison first compares the noise placement heuristics according to ability to detect
concurrency errors and provide high concurrency-related coverage. Then, a compar-
ison of the heuristics using relative results where the total number of covered tasks
or detected errors is divided by the time the heuristics needed to achieve the results is
provided. In effect, therefore, this comparison of noise placement heuristics punishes
techniques that either put too much noise into test executions or provide poor results
only. (iv) Finally, the best improvement achieved by the noise-based testing in the
considered test cases is presented.

4.3.1 Testing Environment Used for Comparison

The comparison was done using 5 test cases. The Airlines, Crawler, FTPServer, and
TIDOrbJ test cases were already described in Chapter 3. This time, the TIDOrbJ
test case was not modified to contain any concurrency error. The Sunbank test case
was derived from a simple example of a concurrent program used in a tutorial pub-
lished by Sun Microsystems. The test case simulates bank accounts where multiple
accounting threads perform simple changes to the particular accounts and the total
balance of the bank without a proper synchronisation over the global balance. The
test case consists of 3 classes, has 0.1 kLOC, and contains a data race.

During each test run, coverage wrt. two chosen metrics were measured—namely,
Avio∗ which measures the number of different witnessed interleavings among sub-
sequent accesses to shared variables and HBPair∗ which measures the number of
successful synchronisations among program threads that establish a happens-before
relation among events in these threads. Both concurrency-related coverage metrics
were described in more details in Chapter 3. These metrics have been chosen due
to their very good ratio of providing good results from the point of view of suitabil-
ity for saturation-based or search-based testing and a low overhead of measuring the
achieved coverage (and hence their suitability for performing many tests with a min-
imal interference with the tested programs). Note that both of the metrics that are
used for evaluation of the testing are different than the specialised metrics that has
been proposed above as a means for driving the noise injection.

Besides the coverage information, execution times and occurrences of un-handled
exceptions which were thrown when a known concurrency error occurred were mon-
itored. Collection of this information of course affects thread scheduling of the mon-
itored test cases, but the influence is the same for all performed executions. The

58

Sunbank, Airlines, Crawler, and FTPServer test cases were run on Intel Core2 6600
machines. The TIDOrbJ test case was run on a machine with two Intel X5355 pro-
cessors. All machines run 64-bit Linux and Java version 1.6.

The SearchBestie infrastructure described in Appendix B which is able to collect
results produced by IBM ConTest was used to collect data for the comparison. To
recall from Chapter 2, IBM ConTest provides five basic techniques for noise seed-
ing: yield, sleep, wait, busyWait, and synchYield. In addition, the so-called mixed
technique simply randomly chooses one technique from the others. The mentioned
basic noise seeding techniques can be combined in ConTest with two advanced noise
seeding techniques—haltOneThread and timeoutTampering.

The default noise placement heuristics used by IBM ConTest is random which
selects places where to generate noise randomly. Moreover, ConTest also provides
4 different versions of heuristics which restrict the noise generation to events related
to (certain) shared variables (the sharedVar heuristics). The probability of causing
a noise at a selected ploc is driven by the noise frequency (nFreq) parameter ranging
from 0 (no noise) to 1000 (always). We limit this parameter to values 0, 50, 100, 150,
and 200. Higher values cause in some cases a significant performance degradation
and are therefore not considered. Finally, two versions of the newly proposed heuris-
tics were considered. The basic version of the heuristics selects places according
to collected coverage information and then uses the nFreq parameter to control the
probability of causing a noise. The second version additionally uses the inferred min
and max values to compute the strength of noise.

Data for the comparison were collected as follows: Each of our 5 test cases was
tested with 496 different noise injection configurations derived from the possible
combinations of parameters of the heuristics described above. Data from 60 execu-
tions for each configuration were collected. Then, SearchBestie was used to produce
for each of the 496 configurations 100 randomised sequences. Finally, from each
set of sequences, SearchBestie computed average accumulated values for sequences
of 10, 20, 30, 40, and 50 results (the length of the sequence is denoted as SeqLen
below). These average accumulated results used for the comparison therefore repre-
sent average values that one obtains when executing the given configuration SeqLen
times.

The comparison of noise seeding techniques compares the heuristics according
to their ability to improve the testing process. Therefore, each test case was executed
100 times without any noise injection heuristics enabled but with the collection of
data about the testing enabled, which also influences the scheduling. Then, average
values for particular sequence lengths computed from 100 randomised sequences of
the obtained results were computed. The values were used as a bottom-line values
for the comparison of noise seeding techniques.

59

Table 4.1: Average relative improvement of error detection when using different types
of noise (timeoutTamper and haltOneThread disabled, seqLen 50)

Noise Type
Test nFreq yield sYield sleep wait bWait mixed aver.
Sunbank 50 1.88 0.87 3.23 4.43 2.60 1.70 2.45

100 0.82 0.00 5.90 8.27 4.87 6.97 4.47
150 5.28 0.00 8.23 4.97 3.27 4.03 4.30
200 4.66 0.00 7.60 12.07 6.13 4.93 5.90

Airlines 50 3.02 0.34 1.27 1.30 2.25 0.82 1.50
100 3.33 1.77 1.88 1.68 0.89 2.70 2.04
150 2.81 2.66 0.41 0.84 1.79 0.95 1.58
200 3.19 1.86 1.80 1.16 0.46 1.30 1.63

FTPServer 50 0.94 0.93 0.35 0.58 0.34 0.48 0.60
100 1.02 0.92 0.24 0.32 0.49 0.37 0.56
150 1.02 1.02 0.34 0.31 0.27 0.30 0.54
200 0.92 0.99 0.25 0.31 0.61 0.34 0.57

4.3.2 A Comparison of Noise Seeding Heuristics

This comparison studies the influence of the different noise seeding techniques and
the noise frequency on how the testing results are improved in comparison to testing
without noise injection. Since ConTest does not allow one to use its advanced noise
seeding techniques timeoutTampering and haltOneThread without one of its basic
noise seeding techniques, the effect of the basic noise seeding techniques which are
activated via the noiseType parameter of ConTest is studied first. Then, the effect of
the timeoutTampering and haltOneThread seeding techniques is focused. This com-
parison shows which combinations of noise seeding heuristics and their parameters
provide the best improvement.

A Comparison of the Basic Noise Seeding Techniques

Our comparison of basic noise seeding techniques is presented in Tables 4.1, 4.2,
4.3, and 4.4. The tables study the basic noise seeding techniques available in IBM
ConTest and the influence of the nFreq parameter. The tables summarise results ob-
tained when both the haltOneThread and timeoutTampering seeding techniques were
disabled and the random noise placement heuristics was enabled. Each cell contains
an average value computed from 100 sequences of the considered length (50) with
a particular configuration. The comparison is done using the error manifestation ratio,
Avio∗ coverage, HBPair∗ coverage, and execution time. The results for seqLen=50

60

Table 4.2: Average relative improvement of the Avio∗ coverage when using different
types of noise (timeoutTamper and haltOneThread disabled, seqLen=50)

Noise Type
Test nFreq yield sYield sleep wait bWait mixed aver.
Sunbank 50 1.14 1.06 0.79 1.01 0.82 0.81 0.94

100 1.03 0.91 1.02 0.90 0.92 1.00 0.96
150 1.07 0.90 1.01 1.00 1.00 1.00 1.00
200 1.12 1.01 1.01 1.02 1.00 1.02 1.03

Airlines 50 1.25 0.90 0.51 0.75 0.84 0.75 0.83
100 1.14 0.51 0.51 0.51 0.51 0.51 0.61
150 1.41 0.95 0.51 0.51 0.50 0.84 0.79
200 1.04 0.96 0.51 0.48 0.51 0.51 0.67

Crawler 50 1.00 1.00 1.14 1.36 1.40 1.14 1.17
100 1.00 1.00 1.38 1.43 2.05 1.37 1.37
150 1.00 1.00 1.41 1.43 1.71 1.35 1.32
200 1.00 1.00 1.64 1.43 1.53 1.29 1.32

FTPServer 50 1.01 1.06 1.12 1.11 1.10 1.14 1.09
100 1.04 1.00 1.19 1.14 1.19 1.20 1.13
150 1.02 1.03 1.14 1.07 1.04 1.16 1.08
200 1.04 1.03 1.05 1.06 1.04 1.18 1.07

TIDOrbJ 50 0.94 1.00 0.92 0.91 0.95 0.95 0.94
100 0.99 0.98 0.90 0.91 0.97 0.94 0.95
150 0.98 1.02 0.89 0.89 0.85 0.93 0.93
200 0.99 1.02 0.87 0.86 0.82 0.93 0.91

are presented. The results for other values of this parameter provide similar tenden-
cies but the difference among values is highest for the seqLen set to 50. Therefore,
the results for this parameter are presented. The best improvement (or lowest degra-
dation respectively) for each test case and each nFreq parameter is highlighted in
bold.

The improvement presented in the following tables may seem to be low in some
cases. This is caused by use of the random noise placement heuristics which is in
some cases inefficient as is shown in the comparison of noise placement heuristics
below. We choose this heuristics for the comparison of noise seeding techniques
because it should not favour any of the considered heuristics. The potential bene-
fit obtained by the noise injection technique can be seen later in Table 4.18 which
presents maximal average improvement for each test case and each metric together
with a configuration of noise injection heuristics used to achieve the improvement.

61

Table 4.3: Average relative improvement of the HBPair∗ coverage when using differ-
ent types of noise (timeoutTamper and haltOneThread disabled, seqLen=50)

Noise Type
Test nFreq yield sYield sleep wait bWait mixed aver.
Airlines 50 1.20 0.89 0.51 0.74 0.81 0.74 0.82

100 1.15 0.52 0.47 0.49 0.51 0.51 0.61
150 1.40 0.97 0.52 0.48 0.47 0.82 0.77
200 1.03 0.95 0.49 0.52 0.46 0.48 0.65

Crawler 50 0.97 0.88 1.09 1.11 1.26 0.96 1.05
100 0.99 1.13 1.17 1.17 1.49 1.15 1.18
150 0.89 1.08 1.17 1.14 1.17 1.16 1.10
200 1.00 1.04 1.16 1.15 1.12 1.18 1.11

FTPServer 50 0.94 1.16 1.16 1.10 1.17 1.23 1.13
100 1.08 1.14 1.17 1.21 1.44 1.25 1.22
150 1.12 1.02 1.21 1.10 1.21 1.24 1.15
200 1.08 1.15 1.16 1.25 1.16 1.25 1.18

TIDOrbJ 50 0.92 0.97 0.96 0.98 0.98 0.98 0.96
100 0.97 0.98 0.95 0.97 1.00 0.97 0.97
150 0.95 0.93 0.90 0.90 0.92 0.98 0.93
200 0.98 1.03 0.90 0.90 0.95 0.96 0.95

Table 4.1 shows the average relative improvement of error detection that we ob-
served when using different basic noise seeding techniques available in ConTest1.
Additionally, we also consider the ConTest setting which randomly chooses among
basic noise seeding techniques before each program location (referred as mixed in
the table). The entries of the table therefore give the ratio of the number of error
manifestations observed when using noise injection of the respective type against the
number of error manifestations without any noise setting enabled. Moreover, average
values (denoted as aver. in the table) are provided for a better comparison. Values
lower than 1.00 mean that the appropriate configuration provided a worse result than
without noise. Higher values mean that noise of the appropriate type provides better
results. For instance, 1.25 means that the given type of noise on average detected
an error by 25 % more often. Results for the Crawler and TIDOrbJ test cases are
omitted because the error in the Crawler test case was not detected by random noise
placement heuristics and there is no error in the TIDOrbJ test case.

1The numbers in Table 4.1 slightly differ from numbers presented in paper [63] because we dis-
covered an error in our evaluation after the submission of the final version of the paper. In the wrong
version, we computed average values also from results obtained when different noise placement heuris-
tics than random-based were enabled.

62

Table 4.4: Average relative degradation of execution time when using different types
of noise (timeoutTamper and haltOneThread disabled, seqLen=50)

Noise Type
Test nFreq yield sYield sleep wait bWait mixed aver.
Sunbank 50 1.00 1.00 1.07 1.42 4.92 1.07 1.75

100 1.00 1.01 1.24 1.86 9.14 1.27 2.59
150 1.00 1.02 1.82 2.28 13.05 1.82 3.50
200 1.00 1.00 2.29 2.72 17.10 2.28 4.40

Airlines 50 0.99 0.98 2.76 3.27 17.11 2.55 4.61
100 0.99 1.00 4.83 5.73 31.47 4.48 8.08
150 1.00 0.99 6.48 7.67 46.73 5.91 11.46
200 0.99 1.00 8.74 11.01 62.65 7.57 15.33

Crawler 50 0.95 0.98 1.15 1.11 1.81 1.13 1.19
100 1.00 0.93 1.16 1.24 2.43 1.15 1.32
150 1.04 1.04 1.30 1.44 3.05 1.28 1.52
200 1.03 0.96 1.46 1.46 3.71 1.39 1.67

FTPServer 50 0.94 1.16 1.68 1.27 2.13 1.44 1.44
100 0.92 0.94 1.72 1.49 1.38 1.76 1.37
150 1.03 0.93 1.75 1.66 1.77 1.89 1.51
200 1.02 1.05 1.58 1.44 1.02 1.45 1.26

TIDOrbJ 50 0.99 1.00 1.56 1.41 5.02 1.40 1.90
100 0.99 1.00 2.11 2.00 9.18 1.82 2.85
150 1.00 1.01 2.67 2.68 9.63 2.27 3.21
200 1.00 1.02 3.22 3.38 9.63 2.73 3.49

The table illustrates that noise injection affects each of the considered test cases
differently—sometimes it helps, sometimes not. The use of noise almost always very
significantly helps in the cases of Sunbank and Airlines, but it does not help in the
case of FTPServer. Also, the different seeding techniques perform differently in the
different test cases, and one cannot claim a clear winner among them. The wait tech-
nique helps the most in the Sunbank test case while yield provides the best improve-
ment in the Airlines test case. In the case of FTPServer, no technique provides any
improvement. Moreover, the synchYield technique with nFreq set to higher values
than 50 totally suppressed manifestation of the error in the Sunbank test case. A sig-
nificant influence of nFreq is visible in the Sunbank test case, but in the FTPServer
case, it seems that nFreq has no influence. The effect of nFreq in Airlines has no
clear tendency. Nevertheless, overall, the table demonstrates that choosing a suitable
noise seeding technique can rapidly improve the probability of detecting an error at
least in some cases.

63

Table 4.2 shows the average relative improvement of the Avio∗ coverage metrics.
Again, the influence of the different noise seeding techniques varies for different
test cases. The average improvement is in general smaller than the improvement
in error manifestation presented above. Most of noise techniques on average help
in the Crawler and FTPServer test cases only. The yield technique was often the
only heuristics that helps in the Sunbank and Airlines test cases. Most of the noise
techniques provide considerably worse results for the Airlines (namely, sleep, wait,
busyWait, and mixed techniques). Finally, no technique helps to improve the Avio∗

coverage in the TIDOrbJ test case. The influence of the nFreq parameter can be
clearly seen only in the smallest test case—the Sunbank.

In Table 4.3, the same comparison using the HBPair∗ coverage metrics is pro-
vided. The Sunbank test case is omitted because even the configuration which dis-
ables noise achieved the full coverage, and therefore other configurations cannot pro-
vide any improvement. Again, noise techniques help in the Crawler and FTPServer
test cases, and one can see the same champions providing the best improvement in
the considered test cases and noise frequencies. Most of the noise techniques provide
considerably worse results in the Airlines test case, and the nFreq parameter has no
clear influence again.

Overall, Tables 4.2 and 4.3 show that choosing a suitable technique can improve
the Avio∗ and HBPair∗ coverage metrics. In the Sunbank and Airlines test cases, the
highest coverage improvement was achieved using the yield technique which pro-
vides a poor or no improvement in the Crawler and FTPServer test cases. In these
test cases, the busyWait and mixed techniques often provide the best coverage im-
provement. The low or none improvement in the TIDOrbJ test case indicates that
random noise placement heuristics is not able to improve the coverage in this test
case.

Finally, Table 4.4 provides a comparison of the noise techniques according to
their influence on the execution time of tests. The table shows the average relative
degradation of the execution time that we observed when using different basic noise
seeding techniques. The entries of the table therefore give the ratio of the execution
time observed when using noise injection of the respective type against the execution
time without any noise setting enabled. Lower values mean that noise of the appro-
priate type provides lower degradation of execution time. The value 1.00 means that
the given type of noise on average provides no time degradation at all.

In Table 4.4, one can see the average effect (in the aver. column) of the nFreq
parameter which controls the amount of noise injected into the execution in all test
cases but the FTPServer where the increasing tendency of execution time degradation
with the increasing value of the nFreq parameter can be seen only on fragments of
results. This is probably caused by the nature of the test case which uses a timer to
invoke the server shutdown sequence (and hence to begin to refuse new client con-
nections) after a predefined time. The active connections are served and therefore we
can see different time degradation values which are, however, influenced by the num-

64

Table 4.5: Influence of noise frequency (nFreq) and noise type on the best error
manifestation improvement (seqLen=50)

Noise Type
Test nFreq yield sYield sleep wait bWait mixed aver.
Sunbank 50 4.87 0.93 5.93 5.60 2.60 1.70 3.61

100 5.33 0.97 5.90 8.27 4.87 6.97 5.38
150 9.50 0.83 8.23 4.97 4.07 4.97 5.43
200 8.73 0.97 7.60 12.07 6.13 7.47 7.16

Airlines 50 3.45 2.71 2.38 2.79 2.25 3.27 2.81
100 5.57 3.96 3.18 2.25 2.95 2.70 3.43
150 4.41 4.27 1.45 2.21 2.27 2.23 2.81
200 5.09 2.70 1.80 2.82 1.71 2.29 2.74

FTPServer 50 0.97 0.93 0.54 0.59 0.62 0.62 0.71
100 1.02 0.94 0.37 0.40 0.58 0.48 0.63
150 1.02 1.02 0.42 0.40 0.71 0.46 0.67
200 0.97 0.99 0.34 0.33 0.61 0.53 0.63

ber of active client connections at the moment of invoking the shutdown sequence.
Surprisingly, the table shows that in a few cases, the yield and synchYield techniques
provide even a little improvement to the configuration with disabled noise. This is
probably caused by lucky scheduling scenarios in which the threads are not blocked
before entering a critical sections so often. Overall, one can see that some techniques
(namely, the yield and synchYield) degrade the execution time only a little while other
techniques generate a considerable execution time degradation (mainly the busyWait
technique) which is influenced by the nFreq parameter and can achieve quite high
values.

Influence of the Advanced Noise Seeding Techniques

This section presents results which show that a suitable combination of basic and
advanced noise seeding techniques can in some cases rapidly improve the testing
process. The goal of the comparison presented here is to study the positive effect of
advanced noise seeding techniques. The results can be used to infer a suitable setting
of the noise seeding parameters in order to maximise the considered metric. The
results are summarised in 7 tables.

Tables 4.5, 4.6, and 4.7 show the maximal improvement achieved when using the
different basic noise seeding techniques and different values of the nFreq parameter
combined with both considered advanced noise seeding techniques. Each cell in the
tables therefore contains the best improvement of the error detection ratio, Avio∗ cov-

65

Table 4.6: Influence of noise frequency (nFreq) and noise type on the best Avio∗

coverage improvement

Noise Type
Test nFreq yield sYield sleep wait bWait mixed aver.
Sunbank 50 1.21 1.26 1.16 1.16 1.09 1.28 1.19

100 1.21 1.15 1.02 0.97 0.92 1.29 1.09
150 1.21 1.42 1.01 1.02 1.00 1.22 1.15
200 1.22 1.29 1.02 1.02 1.00 1.02 1.09

Airlines 50 1.99 0.90 1.05 0.95 0.84 0.97 1.12
100 1.46 0.51 0.88 0.97 0.77 0.93 0.92
150 1.79 0.95 0.94 0.88 0.94 0.84 1.06
200 1.56 0.96 0.92 0.85 0.90 0.97 1.03

Crawler 50 6.65 7.87 6.42 6.37 5.53 6.99 6.64
100 6.58 6.74 7.20 6.00 5.73 6.71 6.49
150 6.87 6.49 6.84 6.71 3.75 7.05 6.28
200 7.26 7.42 6.44 5.88 4.12 6.33 6.24

FTPServer 50 1.17 1.11 1.24 1.22 1.20 1.21 1.19
100 1.15 1.11 1.22 1.22 1.19 1.20 1.18
150 1.18 1.10 1.23 1.21 1.13 1.19 1.17
200 1.13 1.15 1.21 1.22 1.11 1.20 1.17

TIDOrbJ 50 1.02 1.01 0.97 0.96 1.00 0.98 0.99
100 0.99 1.00 0.96 0.95 0.97 0.98 0.98
150 1.00 1.02 0.96 0.92 0.88 0.99 0.96
200 1.03 1.02 0.93 0.96 0.94 0.99 0.98

erage, and HBPair∗ coverage, respectively, taken from the 4 possible configurations
(random noise of the appropriate type and frequency, random noise with timeoutTam-
pering enabled, random noise with haltOneThread enabled, and random noise with
both timeoutTampering and haltOneThread enabled).

The next three tables, i.e. Tables 4.8, 4.9, and 4.10, further study the influence
of the timeoutTampering and haltOneThread noise seeding heuristics on the consid-
ered test cases and metrics. The tables contain the best relative improvement values
from the 4 possible configurations (random noise of appropriate type with the noise
frequency set to 50, 100, 150, and 200).

Finally, Table 4.11 shows the average influence of the advanced noise seeding
techniques on the execution time. All tables present results for SeqLen=50. We will
now discuss the results in more detail.

Table 4.5 shows the influence of the noise frequency (nFreq) and the noise type
on error detection. Moreover, average values (denoted as aver. in the table) are pro-

66

Table 4.7: Influence of noise frequency (nFreq) and noise type on the best HBPair∗

coverage improvement

Noise Type
Test nFreq yield sYield sleep wait bWait mixed aver.
Airlines 50 1.90 0.89 0.94 0.93 0.90 0.94 1.08

100 1.49 0.52 0.87 0.95 0.86 0.92 0.94
150 1.81 0.97 0.87 0.86 0.85 0.84 1.03
200 1.54 0.95 0.87 0.84 0.85 0.91 1.00

Crawler 50 3.18 3.31 3.38 3.29 3.26 3.51 3.32
100 3.28 3.17 3.42 3.19 2.93 3.41 3.23
150 3.29 3.13 3.27 3.27 2.38 3.34 3.11
200 3.32 3.34 3.33 3.07 2.43 3.17 3.11

FTPServer 50 1.23 1.23 1.30 1.25 1.40 1.25 1.28
100 1.25 1.22 1.51 1.40 1.44 1.25 1.34
150 1.25 1.23 1.45 1.30 1.48 1.25 1.33
200 1.30 1.24 1.41 1.40 1.47 1.32 1.36

TIDOrbJ 50 0.99 1.00 1.05 0.98 1.04 0.98 1.01
100 1.01 0.98 1.05 0.99 1.03 0.99 1.01
150 0.95 0.98 1.08 0.92 0.99 1.07 1.00
200 1.06 1.03 1.09 1.04 1.05 1.05 1.05

vided for a better comparison. It can be seen that different noise types and noise
frequencies influence the considered test cases differently. For instance, in the Air-
lines and Sunbank test cases, all noise techniques provide a striking improvement, but
in the FTPServer test case, the maximal improvement is rather small reaching one or
two percents. In the Sunbank test case, the synchYield (denoted as sYield) heuristics
provides poor results, and the wait heuristics with the noise frequency set to 200,
provides the best overall improvement. In the Airlines test case, the best results were
obtained when the yield noise seeding technique was used. The FTPServer test shows
that nearly all configurations achieved poor or none improvement. This indicates that
the random noise placement heuristics is able to improve the error manifestation ratio
only minimally with the considered noise seeding techniques .

The Crawler test case is not listed because the error was not detected without
noise. The error was detected only when the busyWait noise seeding technique was
enabled and the noise frequency set to 150 or 200. The TIDOrbJ test case is not listed
because it does not contain any error.

When comparing results presented in Table 4.5 with similar Table 4.1 which
presents the improvement obtained by basic noise seeding techniques only, one can
see that the combination of basic and advanced noise seeding techniques leads to

67

a considerable improvement in some cases. For instance, the improvement in the
Sunbank test case for the yield technique ranged from 0.82 to 5.28 when only basic
noise injection techniques were used and 4.87 to 9.50 when a suitable combination
with the advanced noise seeding techniques is considered. Also, we were not able to
detect the error in Crawler at all when using the basic noise seeding techniques while
we were able to detect it when using the timeoutTampering heuristics.

On the other hand, the combination with the advanced noise seeding techniques
does help only a little in some cases. For instance, in the Sunbank test case, and for
the busyWait technique, almost all the results remain the same. The only improve-
ment was achieved for nFreq=150 where the value increased from 3.27 in Table 4.1
to 4.07 in Table 4.5. In the FTPServer test case, the improvement is also none or
minimal.

Table 4.6 shows results for the maximal improvement of the Avio∗ coverage met-
ric. The results again vary for each test case. This time, the noise frequency seems
to have minimal influence on the result. The improvement in the Crawler test case
is, however, very high. The overall maximal improvement for the Crawler test case
when only the basic noise seeding techniques were used (presented in Table 4.2) was
2.05. The maximal improvement with the advanced noise seeding techniques reached
7.87. The values for other configurations are also much higher. This is caused by the
positive effect of the timeoutTamper heuristics on this test case as explained below.
A positive effect of the advanced noise seeding techniques can also be observed in
the Sunbank, Airlines, and FTPServer test cases. In the Airlines test case, the best
results were achieved using yield similarly as in Table 4.2. On the other hand, the
best results were achieved with different basic noise seeding techniques in the case of
Sunbank. Only minimal or none improvement can be seen in the TIDOrbJ test case.

Table 4.7 shows results for the maximal improvement of the HBPair∗ coverage
metric. The Sunbank test case is missing in the table. The synchronisation in the
test case is simple and therefore all configurations including the configuration which
disables noise reached the full coverage. For the Airlines test case, the table shows
a minimal improvement except the column showing results for the yield heuristics.
A minimal improvement was also achieved in the TIDOrbJ test case. The noise in-
jection helps to improve the HBPair∗ coverage in the Crawler and FTPServer test
cases. In comparison with Table 4.2, one can clearly see the positive effect of ad-
vanced noise seeding techniques on the Crawler test case where the improvement is
on average almost 3 times higher than when the advanced noise seeding techniques
are not used. A smaller improvement can be seen in all other considered test cases.

Tables 4.8, 4.9, and 4.10 study the influence of the timeoutTampering and hal-
tOneThread noise seeding heuristics on the considered test cases and metrics in more
detail. The tables contain the best relative improvement from the 4 possible configu-
rations (random noise of the given type with the noise frequency set to 50, 100, 150,
and 200).

68

Table 4.8: Influence of the timeoutTampering (tt) and haltOneThread (ht) on the
best error detection improvement

tt 0 tt 1
Test Noise type ht 0 ht 1 ht 0 ht 1
Sunbank yields 9.50 4.87 7.90 6.20

sYield 0.87 0.97 0.80 0.83
sleep 8.23 2.37 7.47 6.67
wait 12.07 2.37 8.17 3.33
bWait 6.13 3.97 3.30 4.07
mixed 6.97 2.57 7.47 2.50

Airlines yields 5.09 2.20 3.45 5.57
sYield 2.66 2.82 2.29 4.27
sleep 1.88 2.23 3.18 1.75
wait 1.68 2.82 2.79 1.91
bWait 2.25 2.18 1.93 2.95
mixed 2.70 2.75 2.23 3.27

FTPServer yields 1.02 0.99 0.79 0.84
sYield 1.02 0.99 0.79 0.74
sleep 1.01 0.54 0.28 0.37
wait 1.01 0.59 0.41 0.35
bWait 1.01 0.71 0.58 0.62
mixed 1.01 0.62 0.46 0.61

Table 4.8 shows the influence of the timeoutTampering (denoted as tt, tt 0 means
that the heuristics was disabled and tt 1 means that the heuristics was enabled) and
haltOneThread (denoted as ht) noise seeding heuristics and their combination with
the primitive noise seeding heuristics (denoted as Noise type in the table) on the error
detection improvement. The values in the tables correspond to values in Tables 4.1
and 4.5 and represent the last piece of the puzzle providing a complex view on the
comparison of noise seeding techniques and their combinations. In particular, the
column which shows the best results for the case when both advanced noise seeding
techniques were disabled (the column denoted as tt 0 and ht 0) presents the best val-
ues for the particular test case and noise type taken from Table 4.1. The best value
in each row (highlighted in bold) represents a value which provided the best im-
provement and therefore appeared in Table 4.5. Therefore, by combining these three
tables, one can determine for each test case the best combination of noise seeding
techniques and study the influence of all parameters on average improvement of the
error detection ratio as we discussed below.

69

Table 4.9: Influence of the timeoutTampering (tt) and haltOneThread (ht) on the
best Avio∗ improvement

tt 0 tt 1
Test Noise type ht 0 ht 1 ht 0 ht 1
Sunbank yields 1.22 1.12 1.22 1.21

sYield 1.06 1.01 1.29 1.42
sleep 1.02 1.16 1.01 1.02
wait 1.02 0.91 1.02 1.16
bWait 1.01 1.09 0.92 0.90
mixed 1.02 1.23 1.00 1.29

Airlines yields 1.03 0.88 0.94 1.00
sYield 1.03 0.51 0.89 0.82
sleep 1.03 0.94 1.05 0.88
wait 1.03 0.90 0.88 0.97
bWait 1.03 0.94 0.51 0.90
mixed 1.03 0.87 0.97 0.97

Crawler yields 1.00 1.27 7.21 7.26
sYield 1.00 1.00 7.42 7.87
sleep 1.64 1.54 6.37 7.20
wait 1.43 1.66 6.71 6.49
bWait 2.05 3.92 5.73 5.53
mixed 1.37 3.73 7.05 6.66

FTPServer yields 1.04 1.07 1.15 1.18
sYield 1.06 1.07 1.15 1.15
sleep 1.19 1.23 1.16 1.24
wait 1.14 1.22 1.22 1.21
bWait 1.19 1.19 1.20 1.19
mixed 1.20 1.20 1.20 1.21

TIDOrbJ yields 1.00 1.03 0.99 1.02
sYield 1.02 1.02 1.01 1.02
sleep 1.00 0.96 0.92 0.97
wait 1.00 0.96 0.94 0.96
bWait 1.00 1.00 0.97 1.00
mixed 1.00 0.98 0.94 0.99

For instance, the best improvement in the Sunbank test case is 12.07. The oc-
currence of this value in the row denoted tt 0 and ht 0 indicates that the value was
obtained when both advanced noise seeding techniques were disabled. Table 4.1
shows us that the value was achieved using the noise frequency 200 and the wait

70

Table 4.10: Influence of the timeoutTampering (tt) and haltOneThread (ht) on the
best HBPair∗ improvement

tt 0 tt 1
Test Noise type ht 0 ht 1 ht 0 ht 1
Airlines yields 1.02 0.89 0.93 0.97

sYield 1.02 0.52 0.87 0.86
sleep 1.02 0.88 0.94 0.86
wait 1.02 0.93 0.85 0.95
bWait 1.02 0.90 0.51 0.86
mixed 1.02 0.90 0.94 0.92

Crawler yields 1.03 1.07 3.26 3.32
sYield 1.13 1.04 3.34 3.31
sleep 1.17 1.25 3.33 3.42
wait 1.17 1.19 3.29 3.26
bWait 1.49 2.69 2.93 3.26
mixed 1.18 2.27 3.49 3.51

FTPServer yields 1.12 1.21 1.24 1.30
sYield 1.16 1.15 1.24 1.23
sleep 1.21 1.51 1.25 1.43
wait 1.25 1.40 1.25 1.40
bWait 1.44 1.44 1.30 1.48
mixed 1.25 1.25 1.25 1.32

TIDOrbJ yields 1.00 1.06 0.98 1.00
sYield 1.03 1.00 1.00 0.99
sleep 1.00 1.09 0.98 1.05
wait 1.00 1.04 0.95 1.00
bWait 1.00 1.03 0.99 1.05
mixed 1.00 0.99 0.97 1.07

seeding technique. The table also shows how much worse the other configurations
of basic noise seeding techniques were. Table 4.5, one can see how much the com-
bination of particular basic noise seeding techniques with the timeoutTampering and
haltOneThread techniques differ from the overall best value 12.07.

Table 4.8 shows that in the case of FTPServer, the best improvement was obtained
when both heuristics were disabled. Using either of the heuristics actually leads to
significantly worse results. As for the Sunbank and Airlines test cases, no clear ten-
dency can be identified. The results for Crawler and TIDOrbJ test cases are omitted.
In the Crawler test case, the error was detected when both heuristics were disabled
and also when timeoutTampering heuristics was enabled and haltOneThread heuris-

71

Table 4.11: Influence of the haltOneThread (ht) and timeoutTamper (tt) techniques
on time degradation (seqLen=50)

tt 0 tt 1
Test ht 0 ht 1 ht 0 ht 1
Sunbank 2.65 3.55 2.96 3.45
Airlines 8.10 12.61 9.82 12.50
Crawler 1.41 1.60 1.23 1.36
FTPServer 1.38 1.29 1.54 1.45
TIDOrbJ 2.79 3.54 2.86 3.54

tics disabled. Results for the TIDOrbJ test case are missing because the test case
contains no error.

Tables 4.9 and 4.10 show influence of the considered heuristics on the Avio∗ and
HBPair∗ coverage improvement. The tables refine values presented in Tables 4.6
and 4.7, respectively. In general, no clear improvement provided by the considered
heuristics can be seen with one exception. In the Crawler test case, the positive
effect of the timeoutTampering heuristics is evident. The test contains many timed
routines which model the environment. The timeoutTampering heuristics influences
these timeouts in a way leading to significantly better results in both the Avio∗ and
HBPair∗ coverage metrics as well as in the error manifestation ratio.

Finally, Table 4.11 shows influence of the advanced noise seeding techniques on
the execution time. The table shows the average relative degradation of the execu-
tion time that we observed when using different advanced noise seeding techniques.
Each cell therefore contains an average value computed from 24 values (6 basic noise
heuristics applied with 4 different noise frequencies). Lower values mean that noise
of the appropriate type provides lower degradation of execution time. Naturally, us-
ing additional noise seeding techniques increases the time degradation. There are two
exceptions in the FTPServer and Crawler test cases where the use of haltOneThread
in the FTPServer test case and timeoutTampering in the Crawler test case had a little
positive effect. The haltOneThread technique in the FTPServer test case probably
stops one of the threads that serve client requests and therefore other client threads
can proceed a bit faster. The timeoutTampering technique has a positive effect in
the Crawler test case because the technique sometimes makes the affected timeout
shorter than the original timeout used in the code. Overall, the time degradation
introduced by haltOneThread seems to be a bit higher than the execution time degra-
dation caused by timeoutTampering.

Overall, the results presented in this section indicate that there is no optimal con-
figuration, and for each test case and each testing goal, one needs to choose a different

72

testing configuration. In some cases, the random noise placement heuristics does not
provide any improvement. Moreover, some noise seeding configurations used with
the random noise placement heuristics actually provide considerably worse results
than the configuration with disabled noise seeding.

4.3.3 A Comparison of Noise Placement Heuristics

This section concentrates on the influence of the ConTest’s heuristics restricting
noise generation to events related to shared variables and on the influence of our
new heuristics proposed in Section 4.2. In addition, the scenario in which ConTest
randomly chooses its own parameters and the scenarios in which ConTest advanced
noise seeding techniques are enabled and disabled are also considered. The com-
parison is divided into two parts: (i) First, the comparison using total values is pro-
vided. In this comparison, the noise placement heuristics are compared according
to the error manifestation ratio and the cumulative coverage they achieved on aver-
age. Therefore, the comparison favours techniques which provide a high coverage.
(ii) Then, a comparison which compares noise placement heuristics according to total
values divided by the execution time is provided. Intuitively, this comparison favours
techniques that provide a high coverage with a low overhead, and therefore punishes
techniques that either put too much noise into test executions or achieve a poor cov-
erage only.

Each part of the comparison contains three tables comparing the noise placement
heuristics using the error manifestation ratio, the Avio∗ coverage, and the HBPair∗

coverage. The configuration column of all tables describes the considered noise
injection configuration. A configuration consists of five parts delimited by the “ ”
character. The meaning of these parts is as follows: (Part 1) The ConTest random
parameter: If set to 1, ConTest parameters considered in Parts 2–4 are set randomly
before each execution. (Part 2) If set to 1, the timeoutTamper heuristics is enabled.
(Part 3) If set to 1, the haltOneThread heuristics is enabled. (Part 4) This part is di-
vided into three sub-parts delimited by “-”. The first sub-part indicates whether the
ConTest’s heuristics limiting noise generation to events related to shared variables is
enabled. The second sub-part says whether the noise is also put to other plocs than
accesses to shared variables. Finally, the third sub-part says whether the noise is put
to all shared variables or one randomly chosen before each execution. (Part 5) This
last part encodes the setting of our noise injection heuristics. It consists of two sub-
parts delimited by “-”. The first sub-part says whether our noise injection heuristics
is enabled and the second one whether our noise strength computation is enabled too.

For each considered test case (i.e., Airlines, Crawler, etc.), the test configurations
were ranked according to the obtained results—rank 1 is the best, rank 23 is the
worst. More precisely, the entries of the tables under the particular test cases contain
average ranks obtained across the different basic noise types of ConTest. The average
rank over all the test cases is provided in the last column (denoted as aver.). The

73

test configurations are then sorted according to their average rank, giving their final
position in the evaluation of the 23 configurations. The final position (denoted as
Pos.) is used to identify the configurations in the following text. For a better overview,
the rank achieved by the best ranked configuration for each test case is highlighted in
bold.

A Comparison Using total Values

In this subsection, the noise placement heuristics are compared without consider-
ing the overhead they introduce. The results are summarised in Tables 4.12, 4.13,
and 4.14 showing ranking of the heuristics according to the error manifestation ratio,
Avio∗, and HBPair∗ coverage respectively.

Table 4.12 presents a comparison using the error manifestation ratio. The table
shows that the efficiency of different configurations of the heuristics vary for differ-
ent test cases. There is no configuration which wins in more than one test case. The
overall best configuration (at position 1) does even not provide the best result in any
of the test cases. Our noise heuristics with the newly proposed noise strength compu-
tation (at position 4) achieved much better results than the version of our heuristics
without this feature (at position 11) which was, however, able to detect the error in
the Crawler test case. There were only three configurations which were able to de-
tect the error in the Crawler test case. Surprisingly, good results were achieved using
the ConTest random setting (at position 5). The configuration even achieved the best
rank in the Airlines test case.

In general, one can see that the first 11 positions are occupied by various com-
binations of the heuristics which focus on a single variable (having one within the
configuration string), both of our newly proposed heuristics at positions 4 and 11,
and the random setting of ConTest at position 5. The configuration which uses only
random noise placement heuristics without any advanced noise seeding heuristics is
at position 14. This indicate that the improvement presented in Table 4.1 to compare
noise seeding techniques was not the most successful heuristics. Good results pro-
vided by the heuristics which focus on a single variable prove conclusions presented
in [16] that focusing noise on a single variable that is randomly chosen for each test
execution improves the efficiency of the testing process.

Table 4.13 shows results of a comparison using the Avio∗ coverage. In this
case, not all of the configurations which focus the noise on a single variable are
ranked high. However, some configurations with this noise placement heuristics
again achieved the overall best ranks. The best rank in the FTPServer was achieved
by the configuration which combines basic and both advanced noise seeding tech-
niques with a noise focused on all shared variables (at position 5).

Our heuristics with the newly proposed noise strength computation (at position 9)
achieved the best rank in the biggest test case which is the TIDOrbJ. The value 1.0
means that the heuristics provides the highest coverage regardless which of the noise

74

Table 4.12: A comparison of heuristics using total values of error manifestation re-
sults (value = average ordering (1=best), noiseFreq=150, noiseType=all, SeqLen=50)

Pos. Configuraiton Sunbank Airlines Crawler FTPServer aver.
1 0 0 1 1-0-one 0-0 4.8 7.2 11.2 3.0 6.6
2 0 0 0 1-0-one 0-0 8.7 9.5 11.2 2.7 8.0
3 0 0 1 1-1-one 0-0 4.7 9.2 11.2 8.0 8.3
4 0 0 0 0-0-all 1-1 9.7 8.3 11.3 3.7 8.3
5 1 0 0 0-0-all 0-0 14.0 1.7 11.2 7.8 8.7
6 0 1 0 1-0-one 0-0 6.2 8.0 11.2 10.8 9.1
7 0 1 1 1-0-one 0-0 7.0 10.5 11.2 9.5 9.6
8 0 1 1 1-1-one 0-0 3.2 10.8 11.2 13.3 9.6
9 0 1 0 1-1-one 0-0 6.5 11.7 11.2 11.8 10.3

10 0 0 0 1-1-one 0-0 7.7 18.0 11.2 5.8 10.7
11 0 0 0 0-0-all 0-1 9.8 15.6 9.3 8.0 10.7
12 0 0 1 1-0-all 0-0 13.5 11.3 9.5 13.5 12.0
13 0 0 1 0-0-all 0-0 20.0 9.7 11.2 9.7 12.7
14 0 0 0 0-0-all 0-0 18.7 14.8 11.2 7.3 13.0
15 0 0 0 1-1-all 0-0 12.5 15.3 11.2 13.3 13.1
16 0 1 1 0-0-all 0-0 15.3 8.3 11.2 18.0 13.2
17 0 1 1 1-0-all 0-0 17.7 11.8 9.3 15.7 13.6
18 0 0 0 1-0-all 0-0 13.0 15.3 11.2 15.2 13.7
19 0 1 1 1-1-all 0-0 15.3 12.5 11.2 16.0 13.8
20 0 1 0 1-1-all 0-0 9.7 16.5 11.2 18.5 14.0
21 0 1 0 1-0-all 0-0 13.8 12.2 11.2 20.2 14.4
22 0 0 1 1-1-all 0-0 19.2 14.5 11.2 13.3 14.6
23 0 1 0 0-0-all 0-0 14.3 11.8 11.2 21.2 14.6

seeding heuristics was used. The version of our heuristics without the noise strength
computation (at position 16) provides almost always the second best result in this test
case.

The table also shows that the configuration which uses random noise placement
heuristics only (at position 21) and configurations which focus all variables and which
do not use any advanced noise seeding heuristics (at positions 22 and 23) are not
able to achieve a high coverage. This can be considered as a demonstration that
inserting noise in too many places or at random does not necessarily improve the
testing process of concurrent programs.

Finally, Table 4.14 presents results for the HBPair∗ coverage. The Sunbank test
case is omitted because all configurations achieved the full coverage of this metric

75

Table 4.13: A comparison of heuristics using total values of Avio∗ coverage results
(value = average ordering (1=best), noiseFreq=150, noiseType=all, SeqLen=50)

Pos. Configuraiton Sunb. Airl. Craw. FTPS. TIDO. aver.
1 0 1 1 1-1-one 0-0 4.3 4.2 8.5 10.5 3.0 6.1
2 0 1 1 1-0-one 0-0 2.5 8.0 5.8 11.3 10.7 7.7
3 0 1 0 1-1-one 0-0 3.7 8.0 7.7 12.2 9.7 8.3
4 0 1 0 1-0-one 0-0 6.7 6.3 4.2 11.8 13.0 8.4
5 0 1 1 1-1-all 0-0 17.0 9.3 6.8 3.8 9.7 9.3
6 0 0 1 1-1-one 0-0 5.3 6.3 15.3 17.5 4.3 9.7
7 1 0 0 0-0-all 0-0 10.0 17.7 1.5 13.7 6.7 9.9
8 0 1 1 1-0-all 0-0 16.3 14.8 4.7 2.0 11.8 9.9
9 0 0 0 0-0-all 1-1 10.7 9.3 11.7 19.0 1.0 10.3

10 0 0 0 1-1-one 0-0 3.2 6.7 16.7 18.5 7.8 10.6
11 0 1 1 0-0-all 0-0 14.0 12.3 7.8 7.5 12.8 10.9
12 0 0 1 1-1-all 0-0 17.2 10.2 14.5 7.7 8.8 11.7
13 0 0 1 1-0-one 0-0 6.3 5.7 19.7 15.2 12.7 11.9
14 0 0 1 1-0-all 0-0 16.5 11.7 15.2 5.5 14.2 12.6
15 0 1 0 1-0-all 0-0 17.5 16.2 4.5 7.2 18.5 12.8
16 0 0 0 0-0-all 0-1 10.8 12.2 19.3 20.0 2.5 13.0
17 0 1 0 1-1-all 0-0 13.0 18.5 6.5 8.2 20.3 13.3
18 0 1 0 0-0-all 0-0 14.7 15.8 7.7 9.8 18.7 13.3
19 0 0 0 1-0-one 0-0 6.0 11.3 19.8 18.8 13.7 13.9
20 0 0 1 0-0-all 0-0 17.2 14.0 15.2 8.3 15.2 14.0
21 0 0 0 0-0-all 0-0 14.5 8.8 18.7 19.8 13.2 15.0
22 0 0 0 1-1-all 0-0 16.0 15.7 16.0 14.2 16.0 15.6
23 0 0 0 1-0-all 0-0 16.8 18.3 18.3 11.0 20.2 16.9

in this test case. Positions of the best ranked configurations for each test case (e.g.,
configuration at position 15 which provided the best rank for the Crawler test case)
indicate that the configuration suitable for one test case provided poor results in the
other test cases.

Our heuristics with the newly proposed noise strength computation achieved the
best rank for the TIDOrbJ test case again. Two out of four best ranks were achieved
by the configurations which focus noise on all shared variables (namely, configu-
rations at positions 4 and 15). However, the configurations which focus noise on
a single shared variable still achieve very good results in the overall ranking. The
ConTest random setting (at position 11) achieved worse results than in the previous
comparisons. Unsurprisingly, the configuration which uses only random noise (at po-
sition 22) provide poor results except the Airlines test case which uses a rather simple
synchronisation.

76

Table 4.14: A comparison of heuristics using total values of HBPair* results (value
= average ordering (1=best), noiseFreq=150, noiseType=all, SeqLen=50)

Pos. Configuraiton Airlines Crawler FTPServer TIDOrbJ aver.
1 0 1 1 1-1-one 0-0 5.0 5.8 8.0 3.3 5.5
2 0 1 1 1-0-one 0-0 6.7 5.3 7.2 8.7 7.0
3 0 1 0 1-1-one 0-0 8.0 6.7 7.3 8.8 7.7
4 0 1 1 1-1-all 0-0 9.2 7.3 2.7 12.2 7.9
5 0 1 0 1-0-one 0-0 6.2 3.8 13.3 11.5 8.7
6 0 0 1 1-1-one 0-0 5.8 15.8 10.8 3.8 9.1
7 0 1 1 1-0-all 0-0 15.2 4.8 5.8 11.2 9.3
8 0 0 1 1-1-all 0-0 10.8 14.3 6.5 7.7 9.8
9 0 1 1 0-0-all 0-0 13.7 7.7 5.5 14.3 10.3

10 0 0 0 0-0-all 1-1 9.0 11.7 17.7 3.0 10.4
11 1 0 0 0-0-all 0-0 17.0 7.2 10.2 10.2 11.2
12 0 0 1 1-0-all 0-0 12.3 14.8 8.7 9.7 11.4
13 0 0 1 1-0-one 0-0 4.0 20.3 12.5 10.5 11.8
14 0 0 0 1-1-one 0-0 7.3 17.3 13.2 10.8 12.2
15 0 1 0 1-0-all 0-0 15.7 2.7 15.2 17.3 12.7
16 0 0 1 0-0-all 0-0 15.7 16.0 9.3 12.7 13.4
17 0 1 0 1-1-all 0-0 19.2 7.8 11.7 16.7 13.9
18 0 1 0 0-0-all 0-0 16.7 7.0 15.0 18.2 14.2
19 0 0 0 1-0-one 0-0 11.7 19.7 16.0 11.8 14.8
20 0 0 0 1-1-all 0-0 14.5 16.5 13.5 16.3 15.2
21 0 0 0 0-0-all 0-1 10.8 19.5 19.8 9.5 14.9
22 0 0 0 0-0-all 0-0 9.0 18.5 21.0 15.8 16.1
23 0 0 0 1-0-all 0-0 20.2 19.0 14.7 16.2 17.5

A Comparison Using total/time Values

In this subsection, a comparison of the noise placement heuristics which considers
both the obtained coverage and the time degradation introduced by the noise is pre-
sented. The results are summarised in three tables. In particular, Tables 4.15, 4.16,
and 4.17 show results for the error manifestation ratio, the Avio∗ coverage, and the
HBPair∗ coverage, respectively.

In Table 4.15, a comparison using the error manifestation ratio is presented. The
TIDOorbJ test case is missing because it does not contain any error. The table shows
that the efficiency of different configurations of heuristics vary for different test cases
again. There is no configuration which wins in more than one test case, and the

77

Table 4.15: A comparison of heuristics using total/time and error manifestation
probability (value = average ordering (1=best), noiseFreq=150, noiseType=all, Se-
qLen=50)

Pos. Configuraiton Sunbank Airlines Crawler FTPServer aver.
1 0 0 1 1-0-one 0-0 4.8 7.7 11.2 2.3 6.5
2 0 0 0 0-0-all 0-1 5.4 8.8 9.3 4.7 7.1
3 0 0 0 1-0-one 0-0 8.3 7.7 11.2 2.0 7.3
4 1 0 0 0-0-all 0-0 9.7 1.5 11.2 7.7 7.5
5 0 0 0 0-0-all 1-1 6.0 5.0 11.3 9.3 7.9
6 0 0 1 1-1-one 0-0 6.2 7.8 11.2 8.5 8.4
7 0 1 0 1-0-one 0-0 5.3 7.8 11.2 10.7 8.8
8 0 1 1 1-0-one 0-0 6.0 8.3 11.2 10.2 8.9
9 0 1 0 1-1-one 0-0 4.8 10.3 11.2 12.2 9.6

10 0 1 1 1-1-one 0-0 3.3 9.5 11.2 14.7 9.7
11 0 0 0 1-1-one 0-0 8.0 13.7 11.2 7.2 10.0
12 0 0 0 0-0-all 0-0 18.3 9.8 11.2 6.0 11.3
13 0 0 1 1-0-all 0-0 15.3 13.3 9.5 11.8 12.5
14 0 0 0 1-1-all 0-0 14.5 16.2 11.2 13.3 13.8
15 0 0 0 1-0-all 0-0 15.3 14.8 11.2 14.7 14.0
16 0 0 1 0-0-all 0-0 20.7 14.8 11.2 10.0 14.2
17 0 1 0 1-0-all 0-0 14.5 13.3 11.2 19.8 14.7
18 0 0 1 1-1-all 0-0 19.8 16.7 11.2 12.5 15.1
19 0 1 1 0-0-all 0-0 15.5 14.0 11.2 18.5 14.8
20 0 1 1 1-0-all 0-0 17.7 15.7 9.5 16.5 14.9
21 0 1 0 1-1-all 0-0 12.0 18.2 11.2 18.7 15.0
22 0 1 0 0-0-all 0-0 15.3 14.2 11.2 20.2 15.2
23 0 1 1 1-1-all 0-0 16.7 15.7 11.2 17.8 15.4

overall best configuration (at position 1) does even not provide the best result in any
of the test cases. There were only three configurations which were able to detect the
error in the Crawler test case, and our heuristics (at position 2) was the best among
them.

Overall, the table shows similar winners as in the comparison using total values
presented in Table 4.12—the top positions are occupied by configurations which fo-
cus the noise on a single variable (having one within the configuration string), but our
newly proposed heuristics (at positions 2 and 5) and the IBM ConTest random (at po-
sition 4) are still very well ranked. Our heuristics without the newly proposed noise
strength computation achieved much better results than in the comparison using total

78

Table 4.16: A comparison of heuristics using total/time of Avio* results (value =
average ordering (1=best), noiseFreq=150, noiseType=all, SeqLen=50)

Pos. Configuraiton Sunb. Airl. Craw. FTPS. TIDO. aver.
1 0 1 1 1-0-one 0-0 4.8 7.0 2.7 9.2 7.7 6.3
2 0 1 0 1-0-one 0-0 4.5 5.0 2.7 11.5 8.8 6.5
3 0 0 0 0-0-all 1-0 7.6 2.6 17.7 2.5 2.3 6.5
4 1 0 0 0-0-all 0-0 5.3 10.3 3.2 10.3 5.0 6.8
5 0 1 0 1-1-one 0-0 4.0 11.8 5.0 11.8 8.7 8.3
6 0 1 1 1-1-one 0-0 3.5 9.5 7.5 15.7 7.2 8.7
7 0 0 1 1-0-one 0-0 9.7 5.2 18.0 3.0 9.3 9.0
8 0 0 0 1-0-one 0-0 10.0 6.3 17.8 2.8 8.7 9.1
9 0 0 0 1-1-one 0-0 7.8 8.7 15.8 10.8 7.0 10.0

10 0 0 1 1-1-one 0-0 10.5 10.8 14.5 9.5 7.5 10.6
11 0 0 0 0-0-all 0-0 12.0 5.0 19.2 11.0 10.5 11.5
12 0 0 0 0-0-all 1-1 6.7 3.7 23.0 19.0 13.0 13.1
13 0 1 0 1-0-all 0-0 15.3 14.7 5.5 19.0 14.7 13.8
14 0 1 0 0-0-all 0-0 12.3 17.2 7.5 17.0 16.0 14.0
15 0 1 0 1-1-all 0-0 11.0 17.3 6.8 18.2 17.2 14.1
16 0 1 1 1-0-all 0-0 17.3 17.8 6.5 13.7 15.5 14.2
17 0 1 1 1-1-all 0-0 16.8 14.3 9.3 16.0 14.7 14.2
18 0 0 1 1-0-all 0-0 19.8 13.0 14.3 9.5 16.7 14.7
19 0 0 0 1-1-all 0-0 16.0 14.0 16.8 14.3 13.7 15.0
20 0 1 1 0-0-all 0-0 14.8 16.2 10.3 17.8 16.5 15.1
21 0 0 1 1-1-all 0-0 19.8 15.3 16.0 9.7 15.2 15.2
22 0 0 0 1-0-all 0-0 16.3 18.2 17.3 11.8 17.3 16.2
23 0 0 1 0-0-all 0-0 19.3 19.2 18.5 9.8 18.0 17.0

values. This is mainly because the heuristics puts less noise into the execution still
providing a good coverage. The configuration which uses random noise placement
heuristics only is at position 11.

Table 4.16 shows results for the Avio∗ coverage. Our heuristics (at position 3)
achieved the best results in three out of five test cases (Airlines, FTPServer, and
TIDOrbJ). The heuristics was not evaluated as the overall winner due to the poor re-
sults that it achieved in the Crawler test case. Our heuristics with the newly proposed
noise strength computation ended at position 12. This is caused by the proposed noise
strength computation that sometimes puts a considerable amount of noise to places
where it might be interesting. This leads to poor results in comparisons where the
time plays an important role. On the other hand, the heuristics provided better results

79

Table 4.17: A comparison of heuristics using total/time of HBPair* results (value =
average ordering (1=best), noiseFreq=150, noiseType=all, SeqLen=50)

Pos. Configuration Sunb. Airl. Craw. FTPS. TIDO. aver.
1 0 1 1 1-0-one 0-0 5.8 7.3 2.3 8.0 4.8 5.6
2 0 1 0 1-0-one 0-0 4.3 4.8 2.3 12.2 6.3 6.0
3 0 0 0 0-0-all 0-1 4.8 1.6 16.2 4.2 7.0 6.8
4 1 0 0 0-0-all 0-0 4.5 10.0 5.2 9.5 5.0 6.8
5 0 1 0 1-1-one 0-0 4.8 11.7 4.7 11.0 7.0 7.8
6 0 0 0 1-0-one 0-0 11.3 6.2 15.8 2.8 5.0 8.2
7 0 1 1 1-1-one 0-0 4.5 9.5 6.5 14.8 7.0 8.5
8 0 0 1 1-0-one 0-0 11.0 5.3 16.0 3.7 7.3 8.7
9 0 0 0 0-0-all 0-0 1.0 4.8 17.3 13.5 12.8 9.9

10 0 0 1 1-1-one 0-0 13.2 11.8 15.3 9.3 5.5 11.0
11 0 0 0 1-1-one 0-0 12.0 9.3 16.5 10.3 8.7 11.4
12 0 0 0 0-0-all 1-1 6.0 3.0 23.0 19.7 13.0 12.9
13 0 1 0 1-1-all 0-0 11.2 17.0 7.8 17.3 15.8 13.8
14 0 1 0 1-0-all 0-0 13.3 14.3 6.2 20.7 14.8 13.9
15 0 1 1 1-0-all 0-0 16.2 17.3 6.0 13.2 17.5 14.0
16 0 1 0 0-0-all 0-0 10.8 17.2 8.2 18.0 16.7 14.2
17 0 1 1 1-1-all 0-0 15.0 14.3 9.8 14.7 18.5 14.5
18 0 0 0 1-1-all 0-0 15.7 13.3 18.0 13.3 13.5 14.8
19 0 0 1 1-0-all 0-0 18.8 13.5 14.8 11.0 15.7 14.8
20 0 0 1 1-1-all 0-0 20.7 15.0 16.7 8.3 15.8 15.3
21 0 1 1 0-0-all 0-0 14.2 16.7 10.2 15.7 20.2 15.4
22 0 0 0 1-0-all 0-0 13.8 18.7 18.0 14.0 13.8 15.7
23 0 0 1 0-0-all 0-0 20.8 19.8 19.2 9.2 19.2 17.6

than using our noise injection heuristics without the newly proposed noise strength
computation in the comparisons using total numbers because it was able to examine
more different interleavings.

The overall best results were obtained by the combination of the heuristics which
focuses on a selected shared variable and the timeoutTampering and haltOneThread
noise seeding heuristics (position 1). This is again mainly due to the effect of the
timeoutTampering heuristics in the Crawler test case. Quite good results were ob-
tained using the ConTest random setting (at position 4) again. The configuration
which disables noise ended at position 11.

Finally, Table 4.17 shows results for the HBPair∗ coverage. There is no heuristics
configuration providing the best result for more than two test cases in the table. Our

80

heuristics (at position 3) achieved the best result in the Airlines test case. Moreover,
our heuristics (at position 12) achieved the second best result in this test case. Our
heuristics at position 12 achieved the absolutely worst rank in the Crawler test case
mainly due to the high time degradation it introduced. This was mainly caused by a
few accesses to shared variables among which the timeouts simulating the environ-
ment take place. Therefore, our noise strength computation algorithm inferred a high
max value which led to a high amount of noise during the next executions of the test.

As in the previous tables, the overall good results are provided by the heuristics
which focus noise on a single variable and also the IBM ConTest random setting (at
position 4). The configuration which uses only random noise placement heuristics
(at position 9) achieved the best rank in the Sunbank test case. This test case is
rather primitive, and all configurations achieved the full coverage in it. Therefore, the
Sunbank column shows ranks according to the overhead the configuration introduced.
The configurations which focus noise only on a single variable introduced a smaller
amount of noise than those which put noise everywhere. Surprisingly, the ConTest
random option (at position 4) achieved a very good rank. This is probably because the
option also sets the noise frequency parameter which seems to be on average lower
than the value 150 which is used for other configurations. We are glad to see that
both versions of our newly proposed heuristics (at positions 3 and 12) achieved good
ranks in this column.

4.3.4 The Best Improvement Achieved by Noise-based Testing

The comparison of noise seeding techniques presented above indicates that using the
random noise placement heuristics provides poor improvement of the testing pro-
cess in some cases. Next, we presented a comparison of different noise placement
heuristics which show that indeed the random noise placement heuristics only rarely
achieve the best improvement. In this subsection, we focus on the best improvement
achieved by noise-based testing in our experiments.

Table 4.18 presents the best relative improvement (denoted as impr. in the ta-
ble) achieved in our experiments for all the considered metrics and test cases. The
improvement is computed as relative improvement comparing to the configuration
without noise injection. The next three columns (denoted as nFreq, nType, and Con-
figuration) presents the used noise frequency, noise type, and a configuration en-
coding enabled advanced noise seeding techniques and noise placement heuristics.
The meaning of the string used in the configuration column is the same as in the
previous subsection. The table shows results for SeqLen=50. The improvement for
the HBPair∗ metric and the Sunbank test case is not present because even the con-
figuration without noise achieved the full coverage. The improvement for the error
manifestation ratio (denoted as Error) and the TIDOorbJ test case is not present be-
cause the test case contains no error. The H symbol in the error manifestation ratio
and the Crawler test case means that the improvement cannot be computed because

81

Table 4.18: The best improvement achieved by noise injection techniques (Se-
qLen=50)

Test Metric Impr. nFreq. nType Configuration
Sunbank Error 14.30 200 sleep 0 1 0 1-0-one 0-0

Avio 1.62 200 bWait 0 1 1 1-0-one 0-0
HBPair –

Airlines Error 5.93 150 yield 0 1 0 1-0-one 0-0
Avio 1.99 50 yield 0 0 0 0-0-all 0-0
HBPair 1.90 50 yield 0 0 0 0-0-all 0-0

Crawler Error H – bWait 0 0 0 0-0-all 0-1
Avio 8.20 50 mixed 0 1 1 1-0-all 0-0
HBPair 3.55 200 mixed 0 1 1 1-0-all 0-0

FTPServer Error 1.09 50 sleep 0 0 0 1-0-one 0-0
Avio 1.26 50 wait 0 1 1 1-0-all 0-0
HBPair 1.55 150 bWait 0 0 1 1-0-all 0-0

TIDOrbJ Error –
Avio 1.12 200 bWait 0 1 1 1-1-one 0-0
HBPair 1.23 200 bWait 0 1 1 1-1-one 0-0

in our experiments the error does not manifest when the noise was disabled. The best
value achieved by our heuristics reached 2 % of error manifestation in this test case
(in average 1 error manifestation per 50 executions). If we compare this value with
the value 0.06 % presented in Table 3.2, the improvement can be considered as quite
high.

The improvement is high reaching several hundreds percents in some cases. The
lowest improvement was achieved in the error manifestation ratio and the FTPServer
test case. This is mainly because the error manifestation ratio is quite high even
without the noise injection and fact that any performance degradation in effect makes
the code containing the error execute less often. Overall, very good improvement
has been achieved in the smaller test cases and the Crawler test (mainly due to time-
outTampering seeding technique). The improvement around 55 % and 22 %, re-
spectively, in the HBPair∗ metric and the FTPServer and TIDOorbJ test cases also
demonstrates the positive effect of relatively cheap and easy to use noise injection
technique in the process of testing concurrent programs. Again, one cannot claim
a clear winner among the noise seeding and placement heuristics.

82

4.4 Suggestions for Noise-based Testing

The results presented above indicate that there is no optimal configuration, and for
each test case and each testing goal, a different setting of noise heuristics provide
the best result. Moreover, using a wrong noise injection technique can in some cases
degrade the quality of the testing process. Therefore, if no information concerning
the tested program is available, a good option is to start with the IBM ConTest default
configuration which has the IBM ConTest random parameter enabled. This parameter
makes IBM ConTest select noise heuristics and their parameters at random before
each execution. This setting does often not achieve the overall best results as shown
above but it provides reasonably good results with a minimal effort.

Otherwise, one has to set up the noise seeding and placement heuristics manu-
ally. As for noise seeding heuristics, good results were often provided by the yield,
synchYield, wait, and busyWait heuristics. The yield and synchYield heuristics have
a minimal impact on the performance of the test as can be seen in Table 4.4 while
still providing the best improvement in some cases. The wait and busyWait heuristics
cause a considerable performance degradation but they can help to test even rarely
executed synchronisation scenarios in complex programs as can be seen in Table 4.3.
The presented results indicate that in most cases higher noise frequency does not
mean a higher probability of spotting an error or higher coverage. On the other hand,
a high noise frequency used with a demanding heuristics (e.g., busyWait) has a nega-
tive impact on the performance of the test as can be seen in Table 4.4.

Both the considered advanced noise seeding heuristics provide in some cases
a considerable improvement of the testing process. Therefore, it is worth to enable
them and test whether they positively affect results of the considered test case. Our
results presented in Table 4.11 indicate that the performance degradation caused by
these techniques is not high. Further, the impact of the timeoutTampering heuristics
on tests which contain calls to timed sleep and wait methods is high. We therefore
suggest to perform a simple static analysis which detects calls of these methods in the
tested program and enables the timeoutTampering heuristics if such calls are present
in the code.

As for noise placement heuristics, the heuristics which focus the noise on a single
randomly chosen variable combined with the advanced noise seeding techniques and
our newly proposed heuristics often provide the best results. We therefore suggest to
prefer these heuristics which put noise only on carefully selected places to heuristics
which simply put noise randomly or to too many places. If the performance degra-
dation is not an issue, our heuristics with noise strength computation often provides
better results than the heuristics without this feature. And, if the performance is im-
portant, our heuristics without the noise strength computation often provide the best
results.

83

To sum up, although we provided same hints on using the noise techniques above,
these advises are not definite since different testing scenarios can quite significantly
vary as we proved by our experiments. Hence, if it is possible, we suggest to exper-
iment with more noise settings. Moreover, in the next chapter, we propose an auto-
mated approach, based on using search techniques, for finding suitable noise settings.

4.5 Summary

In this chapter, a comparison of multiple noise injection heuristics that was missing in
the current literature has been provided. We have also proposed a new, original noise
injection heuristics, winning over the existing ones in some cases. It was shown that
there is no silver bullet among the existing noise seeding or placement heuristics
although some of them are on average winning in certain testing scenarios. Finally,
several suggestions on how to test programs using noise injection technique has been
proposed.

84

Chapter 5

Search-based Testing of
Concurrent Programs

Search-based testing applies metaheuristic search techniques introduced in Chapter 1
to the problem of software testing. In order to apply metaheuristics to software en-
gineering problems like testing, one has to consider the following steps [27]: (i) De-
cide whether the problem is suitable for search-based techniques, (ii) formulate the
problem as a search/optimisation problem and define a representation for the possi-
ble solutions, (iii) define the fitness function, (iv) start with the simple Hill-climbing
algorithm—if the results are encouraging, i.e., better than random search, consider
other local search and genetic approaches, and (v) select an appropriate metaheuris-
tic technique, its parameters and operators if necessary.

Many existing works summarised in the recently published surveys [81, 48, 3]
show that various problems of software testing are indeed suitable for application of
metaheuristics. In this chapter, the steps introduced above are followed to demon-
strate that metaheuristic search techniques can be successfully used for testing of
concurrent programs using the noise injection techniques.

In Chapter 4, absence of silver bullet among the many existing noise injection
heuristics is shown. Results provided by them depend on the tested program and
testing goal as well as on the run-time environment (the type and number of proces-
sors and the actual workload are usually the most significant factors). Actually, some
configurations can decrease the probability of an error manifestation. This is helpful
for run-time healing of errors [58], but it is highly undesirable for detecting them.
Moreover, the number of possible settings of the noise injection (and also of the test
itself) together with the considerable time needed to run a test in order to evaluate the
efficiency of a certain noise configuration makes exhaustive searching for suitable
noise configurations impractical. This is exactly the case where metaheuristic search
techniques can help.

85

In this chapter, a new application of metaheuristic algorithms to search for suit-
able noise heuristics and their parameters is proposed. We formalise this task as
the test and noise configuration search problem (the TNCS problem). Then, it is
shown that even the simple hill-climbing algorithm can in some cases provide better
results than the random search algorithm. Motivated by this success, a way how to
represent instances of the TNCS problem for genetic algorithms is proposed. The
way how to set parameters of genetic algorithms when solving the TNCS problem
is also discussed. Next, the framework is instantiated by a concrete combined ob-
jective function suitable especially (but, as the experiments show, not only) for data
race detection. Finally, the proposed approach is evaluated on a set of benchmarks,
showing that it provides significantly better results than the so far preferred random
noise injection.

The rest of the chapter is organised as follows. First, related work and previous
attempts to apply metaheuristics to the problem of concurrent programs testing are
discussed. Then, the testing problem as an optimisation problem is formulated and
several suitable objective functions are discussed in Section 5.2. Next, results of
our initial experiments with several versions of the hill-climbing algorithm on a few
test cases is presented in Section 5.3. Then, in Section 5.4, the way how to utilise
genetic algorithms to solve the TNCS problem is proposed. The problem of finding
suitable values of parameters of genetic algorithm is discussed and experimentally
evaluated in Section 5.5 and Appendix A. Next, our approach of applying a genetic
algorithm to the testing of concurrent programs including a suitable incorporation of
a run-time verification algorithm is introduced in Section 5.6. Finally, experimental
evidence on how the proposed approach can improve the testing process is provided
in Section 5.7.

5.1 Related Work

Most existing works in the area of search-based testing of concurrent programs focus
on applying various metaheuristic techniques to control the state space exploration
within the guided model checking approach [45]. Here, the intention is to explore
areas of the state space that are more likely to contain concurrency errors even when
the entire state space will not be explored. Hence, the testing problem is translated
into the problem of searching for a walk in a directed graph [25]. The graph repre-
sents the state space generated by a model checker, and the walk starts in an initial
state and ends in an objective node (an error state).

Within the guided model checking approach, various metaheuristic algorithms
including simulated annealing [25], genetic algorithms [45, 8], the partial swarm op-
timisation (PSO) [25], and the ant colony optimisation (ACO) [6, 7] have successfully
been applied to find deadlocks and/or assertion violations in models of rather simple
concurrent programs and protocols. A candidate solution representing a path in the

86

graph is often encoded as a vector of values each representing a transition the model
checker should take in a particular step. This allows to search for solutions with
a minimal path length but also brings a considerable memory overhead when a large
model with very long paths is considered.

The fitness functions used in the above mentioned works are usually based on
characteristics of the graph encoding the state space. For instance, in [45], the au-
thors sum the number of enabled transitions from all states along a candidate solution
path. This is motivated by the assumption that the number of enabled transitions is de-
creasing along the path, finally reaching zero when a deadlock is detected. In [6, 25],
a fitness function prefering shorter paths (in terms of the number of transitions) with
a high number of blocked threads and rewarding paths leading to a deadlock is used.

In [7], the ACO algorithm [104] is used to find liveness property violations en-
coded using a Büchi automaton [12]. Similarly to approaches above, the goal is to
discover a path in the transition system from the initial state to a state where the
considered property is violated. This time, the process is iterative. The ants look
for a good path in the bounded neighbourhood of an initial state computed as the
ending point of the best path discovered in the previous iteration (or initial state of
the model). The fitness function is quite complicated but in general the ants look for
accepting states of the Büchi automaton and cycles containing such states.

All mentioned works and a comparison presented in [25] report better results ob-
tained by the newly proposed metaheuristic approaches in comparison to traditional
model checking search techniques (mainly the random, breadth first search (BFS),
and depth first search (DFS) algorithms [12]). Experimental evaluation is usually
done on complex models representing communication protocols or simple concur-
rent programs.

An advantage of the guided model checking approach is that the underlying
model checking offers a well-defined state space and a high degree of systematic-
ity. On the other hand, the approach shares limitations of model checking in terms
of scalability and cost of the environment modelling. In our approach, we focus on
testing which is able to handle much larger real programs but does not provide such
precision as the model checking approach.

In [34], an application of metaheuristics to the problem of debugging concurrent
programs using noise injection is presented. Within this approach, the debugging
problem is translated into the test data generation problem [81]. In this problem,
the goal is to automatically select inputs of the test such that a chosen testing goal is
achieved.

In particular, the work [34] uses a genetic algorithm to choose places in the code
to inject noise in order to make a known error show up during the execution. The ap-
proach searches in the set of possible noise configurations C defined as the powerset
of the disjoint union of sets SV , SA, and SL where SV defines the noise applied to se-
lected program variables, SA defines the noise applied to selected accesses to shared

87

memory, and SL defines the noise applied to selected concurrency related events (lock
operations, etc.). The noise is determined by the type of noise together with the
strength of the noise.

Each candidate solution is represented as a three level hash table. The first level
contains the type of noise, the second level program locations identified by the heuris-
tics, and the third level contains the noise strength for the particular noise type and
location. The paper defines genetic algorithm operators as follows. Recombination
is done by randomly choosing a pair of parent configurations each contributing by
a random subset of its heuristics. Mutation is preceded by removing a subset of vari-
ables and locations from selected configurations. This is motivated by the intention to
create smaller configurations that still manifest the concurrent bugs. The traditional
role of the mutation operator, i.e., to introduce a new genetic material, is achieved by
randomly creating a number of new configurations.

The paper also presents two objective functions (size and entropy) and a fitness
function computed as a weighted combination of the objective functions. The size
function maps each configuration c∈C to a positive number representing the amount
of noise produced by the configuration. The entropy function maps each configura-
tion c to a value in [0,1] representing the probability of an error manifestation when
the configuration is used. The fitness function therefore prefers configurations which
make the error manifest with a high probability using a minimal amount of noise.

The technique is evaluated on a set of small (hundreds of lines) Java programs that
contain known concurrency errors which manifest quite often when noise injection
is used. Author claim that their approach is able to minimise the number of locations
where to put noise and to increase the probability of an error manifestation. However,
statistical data supporting this claim are missing in the paper.

Compared to [34], we do not search for concrete locations which should be
noised with particular noise. Instead, we search for noise seeding and noise place-
ment heuristics (or combinations of these heuristics) and their parameters which can
provide good results for a particular test and environment. This allows us to use
a simpler representation of individuals and to support much larger test cases with
plenty of possible locations to be noised. Moreover, we propose new fitness func-
tions which allow us to focus not only on debugging but also on testing. Further, we
suggest a simple incorporation of various dynamic analyses into the approach. We
also consider and reflect the non-deterministic behaviour of concurrent software. In
particular, we evaluate each individual by a set of experiments and consider reevalu-
ation of already evaluated individuals. Finally, we present our results on a small set
of real concurrent programs of different size.

The same debugging problem of increasing the probability of a previously de-
tected error manifestation is targeted in [14, 108] too, which, however, do not con-
sider metaheuristic search algorithms. In [14], program locations are first statically
classified according to their suitability for noise injection. Then, a probabilistic alo-
gorithm is used to find a subset of program locations that increase the error manifesta-

88

tion ratio. In [108], a machine learning feature selection algorithm is used to identify
a subset of program locations where to inject noise. In this case, the test is executed
many times, and program locations where the noise was injected in each execution
are collected together with information whether the error has manifested. The algo-
rithm then correlates program locations from executions where the error manifests.

5.2 Concurrent Programs Testing as a Search Problem

In this section, our proposal of how search techniques can be combined with noise-
based testing of concurrent programs by identifying suitable combinations of noise
injection heuristics as well as their parameters is presented. In particular, the pro-
posed use of search techniques via the so-called test and noise configuration search
(TNCS) problem is formulated. Subsequently, several objective functions that can
be useful when dealing with various instances of the TNCS problem are discussed.
These functions can typically act as building blocks of more complex combined ob-
jective functions as it is illustrated in Section 5.7.

5.2.1 The Test and Noise Configuration Search Problem

As already mentioned in the introduction, there are two main issues that must be
solved when using noise injection. First, one needs to determine program locations
where to insert noise. Heuristics which target this problem are called noise placement
heuristics. Second, one needs to determine which noise seeding heuristics, i.e., which
way of disturbing thread scheduling, should be used. Moreover, most types of the
heuristics are adjustable by one or more parameters influencing their behaviour and
efficiency (e.g., noise seeding heuristics are often parameterized by their strength).
Further, one can combine several noise placement and seeding techniques within one
execution. Indeed, our results presented in Chapter 4 show that such a combination
provides in many cases better results than using a single heuristics. Finally, it is
usually the case that there exist multiple test cases for a given program that can also
be parametric.

With respect to the above, we formulate the test and noise configuration search
problem (the TNCS problem) as the problem of selecting test cases and their pa-
rameters together with types and parameters of noise placement and noise seeding
heuristics that are suitable for a certain test objective.

Formally, let TypeP be a set of available types of noise placement heuristics each
of which we assume to be parameterized by a vector of parameters. Let ParamP be
a set of all possible vectors of parameters. Further, let P⊆ TypeP×ParamP be a set of
all allowed combinations of types of noise placement heuristics and their parameters.
Similarly, we can introduce sets TypeS, ParamS, and S for noise seeding heuristics.
Next, let C⊆ 2P×S contain all the sets of noise placement and noise seeding heuristics

89

that have the property that they can be used together within a single test run. We
denote elements of C as noise configurations. Further, like for the noise placement
and noise seeding heuristics, let TypeT be a set of test cases, ParamT a set of vectors
of their parameters, and T ⊆ TypeT ×ParamT a set of all allowed combinations of
test cases and their parameters. We let TC = T ×C be the set of test configurations.

Now, the TNCS problem can be expressed as searching for a test configuration
from TC suitable wrt. some given objective function. One can also consider the nat-
ural generalisation of the TNCS problem to searching for a set of test configurations,
i.e., a member of 2TC, suitable wrt. some given objective function.

5.2.2 Objective Functions for the Context of the TNCS Problem

Next, several possible objective functions that can be useful in various instances of
the TNCS problem are presented. They are typically combined into more complex
objective functions as it is illustrated in Section 5.7.

First, an objective function that can often be found useful is to minimise the im-
pact of noise injection on the time of execution of a test case. The more noise is
injected into the execution the slower the execution typically is. The slowdown can
be unwelcome especially when the time for testing is limited. Then, due to the slow-
down, less executions of a test case and/or less test cases will be considered which
may in turn negate the aim of using noise injection to improve the quality of testing.
The time aspect is also important when a program under test needs to meet certain
throughput or response time requirements that could be broken by an excessive use
of noise.

Next, since the primary goal of testing is to find errors, a natural objective func-
tion is to maximise the number of errors that occur (and are detected by the test
harness) when executing tests with a certain configuration. Once some test configu-
ration is found suitable wrt. the number of errors it allows one to observe, one could
think that this configuration is not useful any more since the errors were already de-
tected. However, this test configuration can be used for further testing in hope that it
will allow one to discover even more errors (recall that due to the non-determinism of
scheduling, not all errors will show up in a single run or a set of runs). Moreover, one
can also think of using this test configuration in regression testing or when testing
similar applications.

Another sensible objective function, tightly related to the above, is to monitor
test executions under particular test configurations by some dynamic analyser and to
maximise the number of warnings about dangerous behaviour of the program under
test that get reported. Test configurations delivering good results in this case can
subsequently be used for more extensive testing in hope of finding a real error even
though an actual error was not seen during evaluation of the test configuration. The
reliability of this approach of course depends on the precision of the chosen anal-
yser. A high ratio of false positives and/or negatives makes this objective function
unreliable.

90

A further possibility is to use a suitable coverage metric allowing one to judge
how much of the possible behaviour of the program under test has been covered (and
hence how likely it is that some undesired behaviour was omitted) and to look for
test configurations maximising the obtained coverage. Concurrency-related metrics
based on dynamic analyses which we presented in Chapter 3 can be especially useful
here. These metrics are not based on simply counting the number of produced warn-
ings, but on much finer measures. Some of them are based on monitoring events that
make the internal state of a dynamic analyser change, e.g., the HBPair metric based
on the happens-before relations, and some express how many internal states a cer-
tain dynamic analyser reached, e.g., the GolidLockSC metric based on monitoring
the internal states of the GoldiLock analyser [32]. Of course, there are many other
existing coverage metrics which can be considered as mentioned in Chapter 3. For
instance, the synchronisation coverage [22] (Synchro) which measures how well the
various synchronisation mechanisms used in the program under test are tested (by
measuring how many different scenarios of the use of the synchronisation mecha-
nisms were witnessed). A drawback of many concurrency coverage metrics is that it
is often impossible to compute what the full coverage is; this is, however, not a prob-
lem here since we are interested in relative comparisons of the coverage achieved
through different test configurations.

Fitness of a test configuration tc ∈ TC wrt. the above objective functions has
typically to be evaluated by a repeated execution of the test case encoded in tc with
the test parameters and noise configuration that are also a part of tc. Recall that the
noise configuration can contain multiple types of noise heuristics. We assume all of
them to be used in each testing run, which is consistent with our definition of noise
configurations that allows for only those combinations of noise heuristics that can
indeed be used together. Further note that the repeated execution makes sense due to
the non-determinism of thread scheduling. The evaluation of individual test runs must
of course be combined, which can be done, e.g., by computing the average evaluation
or by computing a cumulative evaluation across all the performed executions.

In addition, it is also possible to define some simple objective functions directly
on the test configurations. For instance, one can minimise/maximise the number of
enabled heuristics, volume or frequency of noise to be injected, etc. Such objective
functions are typically not sensible alone, but can make sense when combined with
other objective functions. Fitness of a given test configuration wrt. such objective
functions can be evaluated statically, i.e., without any test execution.

5.3 Initial Experiments with the Hill-Climbing Algorithm

In this section, our initial experiments done with the basic local search algorithm—
the Hill-climbing algorithm [104] are presented. In the experiment, the Hill-climbing
algorithm is compared with the random search approach for solving the simple TNCS

91

problem. The search space is built using parameters of the IBM ConTest tool and one
parameter which controls the number of threads (or clients) used within the test. In
particular, two noise placement heuristics implemented in ConTest are considered:
the random heuristics which picks program locations randomly and the sharedVar
heuristics which focuses on accesses to shared variables. Both heuristics are de-
scribed in Chapter 4. Default values of parameters of the sharedVar heuristics are
considered only. Recall that both of the considered noise placement heuristics inject
noise at places they select with a given probability. The probability is set globally
by a noiseFreq setting from the range 0 (never) to 1000 (always). The values of the
noiseFreq parameter are limited to 11 values (0, 100, . . . , 900, 1000).

Further, 5 basic and 2 advanced noise seeding techniques which are described in
Chapter 4 are considered. In particular, the following basic heuristics are used: yield,
sleep, wait, synchYield, and mixed. The basic techniques cannot be combined, but any
basic technique can be combined with one or both considered advanced techniques—
the haltOneThread and the timeoutTamper techniques.

For the experiments, three concurrent programs containing concurrency errors
are used, namely, Airlines, Crawler, and FTPServer which are described in Chapter 3.
Each test case is adjusted by the NumThreads parameter which specifies how many
competing threads should be executed (or how many client processes may connect
to the FTPServer concurrently). The considered values of this parameter were 2, 4,
8, 16, 32 for the Airlines and Crawler test cases and 2, 4, 8, 16 for the FTPServer,
respectively.

The search space of possible noise and test configurations for the experiments
can be expressed using a set of vectors of numbers in the range (0,0,0,0,0,0)–
(11,1,4,1,1,4− 5). Here, the first entry controls the noiseFreq setting, the next
entry controls the sharedVar noise placement heuristics. The next three entries con-
trol the setting of the basic and advanced noise seeding heuristics. Finally, the last
entry controls the NumThreads test parameter. The search space therefore contains
only 2200 states in cases of the Airlines and Crawler or 1760 states in the case of the
FTPServer test case only.

The Hill-climbing algorithm needs neighbourhood to be defined. We define the
neighbourhood of each state as the set of states which differ from the particular state
in one element of the vector only. The noiseFreq and NumThreads are considered to
be ordinal. Therefore, only difference by one is considered to be neighbouring in the
particular elements of the vector.

Our infrastructure for search-based testing SearchBestie which is described in
Appendix B was used to evaluate each state of the state space 100 times collecting
two concurrency-related coverage metrics: (i) Synchro which tracks whether each
synchronisation mechanism does something useful and (ii) ConcurPairs which tracks
context switches among concurrency related locations. Both metrics are described
in Chapter 3. This way, a database of 220,000 (176,000) results for each test case
was obtained. The SearchBestie than used these results (provided for each state in

92

Table 5.1: Results of searching for the best configuration

ConcurP. comparison Synchro comparison
Test case States Hill Rand States Hill Rand
Airlines 344 25 % 17 % 326 100 % 100 %
WebCrawler 366 36 % 16 % 371 14 % 16 %
FTPServer 277 11 % 22 % 301 29 % 21 %

the state space in the same ordering) during each evaluation of the search algorithm
instead of evaluating each noise configuration by executing the test. This allows us
to compare the search algorithms using the same results without any influence of
the non-determinism of scheduling, i.e., the SearchBestie provided the same fitness
values for the same states in the state space. Experiments with the first two programs
were performed on Intel Core 2 Duo E8400 with 2 GB RAM and experiments with
the FTPServer on 2xIntel Xeon X5355 with 64 GB RAM. All machines ran 64-bit
Linux and Java 6.

The goal was to search for a suitable configuration of ConTest that provides the
best coverage. To achieve this goal, the fitness function was set to represent the accu-
mulated number of tasks of the considered coverage metric covered in the particular
state of the state space. The testing scenario was as follows: First, the maximal
value that can be reached was identified (the best state in the state space). Then, the
Hill-climbing algorithm was run 100 times and got the average number of steps that
Hill-climbing needed to reach the optimum (global or local). After each exploration,
it was checked whether the algorithm reached the global optimum. Finally, the ran-
dom search algorithm was run 100 times too, and the number of times the algorithm
found the global optimum was counted.

Table 5.1 summarises our results. Column Test case contains the name of the
test. The rest of the table is divided into two parts. The first part denoted as Con-
curP. comparison gives a comparison of the Hill-climbing and the random search
algorithms when trying to maximise the ConcurPairs coverage metric. Similarly, the
second part denoted as Synchro comparison compares the search algorithms when
trying to maximise the Synchro coverage metric. Each comparison contains three
columns. Column States shows how many states were explored on average by our
Hill-climbing algorithm until the optimum was reached, and the two other columns
show the percentage in which the algorithms found the global optimum. Results for
both considered coverage measures are provided.

It can be seen that in 3 cases, the Hill-climbing algorithm beats the random ap-
proach, and in 2 cases, it does not. In the case of the Airlines example and the Synchro
coverage metric, many states represent the global optimum and therefore both algo-
rithms reached 100 %. The number of explored states in the case of FTPServer is
lower because the state space itself is smaller (1760 states). Our results indicate that

93

(a) tt 0 and ht 0 (b) tt 1 and ht 0

(c) tt 0 and ht 1 (d) tt 1 and ht 1

Figure 5.1: Fragments of landscape for the FTPServer test case, 8 client processes,
and the ConcurPairs metric (the horizontal axis gives the value of noiseFreq parame-
ter, the vertical axis gives the cumulative number of covered tasks)

the metaheuristic algorithms can be used to solve the TNCS problem because even
the simple Hill-climbing algorithm is in some cases able to overcome the random
approach. But, the low success of the Hill-climbing algorithm in reaching the global
optimum indicates that the method does not work well and often get stuck in a local
optimum.

Therefore, we analysed the produced landscapes. Figure 5.1 illustrates our find-
ings. The figure shows fragments of landscape generated for the FTPServer test case
and the ConcurPairs coverage metric when NumThreads was set to 8 and shared-
Var heuristics was disabled. The four subfigures captures landscape fragments for
different configurations of the timeoutTamper (tt) and haltOneThread (ht) parame-
ters which neighbour in our setting. The figures indicate that the landscape contains
many local optima which are hard to overcome for the simple Hill-climbing algo-
rithm. Similar situation was also observed for the other considered test cases and

94

parameters. This observation corresponds to the results obtained when comparing
different noise techniques which are presented in Chapter 41.

The analysis of landscapes produced by the Synchro coverage metric shows that
these landscapes contain plateaus, i.e., areas with the same value of the fitness func-
tion, which prevent the Hill-climbing algorithm from reaching the global maximum.
This was caused by the very limited number of different values provided by this met-
ric. This observation corresponds to the results presented in Chapter 3.

5.4 A Genetic Approach to the TNCS Problem

In this section, we present our proposal of using a genetic approach to solve the
TNCS problem. We again start by presenting the particular set of ConTest noise con-
figurations considered. Test parameters are omitted in this section but are considered
within experimental evaluation later on. Subsequently, we present how one can apply
the genetic approach in this setting.

ConTest-based Noise Configurations

We consider noise injection heuristics implemented in ConTest extended by our plug-
in implementing a coverage-based noise placement heuristics introduced in Chap-
ter 4. Hence, we consider three noise placement heuristics: the random heuristics
which picks program locations randomly, the sharedVar heuristics which focuses on
accesses to shared variables, and our coverage-based heuristics which focuses on ac-
cesses near a previously detected thread context switch. The sharedVar heuristics has
two parameters modifying its behaviour with 5 valid combinations of its values. The
coverage-based heuristics is controlled by 2 parameters with 3 valid combinations of
values. Recall that the random heuristics is enabled by default when noiseFreq > 0.
But, in the considered setting, the random heuristics can be suppressed by one param-
eter of the sharedVar heuristics which explicitly disables the combination of these
two heuristics. We consider the following 6 basic noise seeding techniques: yield,
sleep, wait, busyWait, synchYield, and mixed. And both advanced noise seeding tech-
niques: haltOneThread and timeoutTamper.

Individuals, Their Encoding, and Genetic Operations on Them

In order to utilise a genetic algorithm to solve the TNCS problem with the considered
set of noise configurations, we let the particular test configurations play the role of
individuals. We encode the test configurations as vectors of integers. The test con-
figuration is either reduced to solely a noise configuration (when a single test case

1Results presented in this section were actually obtained before our work on concurrency coverage
metrics presented in Chapter 3 and on noise techniques presented in Chapter 4. Therefore, these results
partially motivate our further research presented in these chapters.

95

without parameters is considered), or it consists of the noise configuration extended
by one or more specific entries controlling the test case settings. We, however, con-
centrate here on the noise configurations only, which form vectors of numbers in
the range (0,0,0,0,0,0)–(1000,5,3,6,2,2). Here, the first entry controls the noise-
Freq setting, the next two control the sharedVar and coverage-based noise placement
heuristics. The last three entries control the setting of the basic and advanced noise
seeding heuristics. Each entry in the vector is annotated by a flag saying whether
there exists an ordering on the values of the entry. We call entries whose values are
ordered as ordinal entries.

We consider the standard one-point, two-point, and uniform element-wise
(any-point) crossover operators [104] in the form they are implemented in the ECJ
library [114]. Mutation is also done on an element-wise basis, and it handles ordinal
and non-ordinal entries differently. Non-ordinal entries are set to a randomly chosen
value from the particular range (including the current value). Ordinal entries (e.g.,
entries encoding the strength of noise or the parameter controlling the number of
threads the test should use) are handled using the standard Gaussian mutation [104]
(with the standard deviation set to 10 % of the possible range or minimal value 2).
Finally, we consider standard proportional and tournament-based fitness selection
operators [104] as they are implemented in the ECJ library.

5.5 Parameters of Genetic Algorithms and the TNCS Prob-
lem

Genetic algorithms are adjustable through a number of parameters influencing the
efficiency of the search process. The way these parameters should be set to obtain
a high efficiency usually depends on the considered problem. In this section, we
provide our findings on how to set the parameters of genetic algorithms when solving
the TNCS problem. We focus mainly on the following questions: How to set up the
breeding infrastructure, i.e., which standard selection and crossover operators should
be used, how to set up their parameters, which value of mutation probability provides
good results, and whether elitism or random generation of individuals can help. We
also target the question whether it is better to run a few big generations or instead
more small generations in case the time for testing is limited.

Experiments for Finding Suitable Parameters of Genetic Algorithms

We conducted all our experiments aimed at finding a suitable setting of the parameters
of genetic algorithms on one selected case study only. This is mostly due to the
high time consumption of evaluating each test configuration through multiple test
executions. In particular, we used the Crawler test case described in Chapter 3. We
conducted our experiments on multiple machines, all having Intel i5 661 processors,

96

running 64-bit Linux and Java 6. We used our infrastructure SearchBestie and IBM
ConTest to evaluate test configurations and the ECJ library [114] to implement the
genetic algorithms. We narrowed the search space down by sampling the noiseFreq
parameter by ten, i.e., by reducing its possible values to 0, 10, . . . , 1000.

With the aim of observing as many behaviours differing in their various important
concurrency-related aspects as possible, we considered an objective function max-
imising the obtained coverage under three different concurrency coverage metrics
introduced in Chapter 3, namely, Synchro, Avio∗ and HBPair∗. This objective func-
tion covers three different aspects of concurrency behaviour: interleaving of accesses
from different threads to shared memory locations via Avio∗, successful synchroni-
sation of program threads inducing a happens-before relation via HBPair∗, and in-
formation about whether the implemented synchronisation does something helpful
via Synchro. We used results of approximately 1 million randomly noised executions
to estimate the 100 % achievable coverage (denoted as max below) for each of the
metrics and set up the following fitness function:

1
3
∗
(

Avio∗

Avio∗max
+

HBPair∗

HBPair∗max
+

Synchro
Synchromax

)
The evaluation of each test configuration consisted of 5 executions of the test

case with the noise parameters encoded in the test configuration. The value of the
fitness function was then computed using the accumulated coverage of all the five
executions.

We fixed the number of evaluated individuals to 2000 in each experiment. Ac-
cording to our experiments, this value is sufficient to reach saturation of the selected
coverage metrics in the Crawler case study. We set the size of the considered pop-
ulations and number of generations as follows (population/generation size): 200/10,
80/25, 40/50, 20/100, and 10/200. We considered the breeding infrastructure to con-
sist of two selection operators which select individuals for the crossover operator.
The output of the crossover operator was mutated using the mutation operator de-
scribed in Section 5.4. We also let the best individual (one elite) to be added to the
next generation without breeding.

We performed three sets of experiments. In the first one, we considered the stan-
dard fitness proportional selection operators, four different standard crossover op-
erators (one-point, two-point, and any-point with the probability of mutating each
element of the vector set to 0.1 and 0.25), and four different probabilities of applying
the mutation operator (0.01, 0.1, 0.25, and 0.5). In the next two sets of experiments,
we fixed the considered size of the population to 40, the crossover operator to any-
point with probability 0.1, and the mutation probability to 0.01. We then studied the
influence of elitism which puts into the next generation a number of individuals (0, 2,
4) without breeding, and a random creation of a few individuals (0, 2, 4) that are put
into the following generation within the second set of experiments. In the third set

97

of experiments, we focus on the influence of different selection operators on the ob-
tained results. Within this set of experiments, we considered the fitness proportional
and tournament selection operators (with the size of the tournament being 2 or 4) and
some of their combinations.

From each experiment, we collected various data concerning the generated pop-
ulations including, in particular, the following three statistics: (i) The average fitness
value in each generation aver and (ii) the best individual fitness in each generation
best, and (iii) the cumulative value of fitness from all already evaluated individuals
gcumul. Our goal was then to identify parameters of the genetic algorithms under
which the best test configuration out of all discovered test configurations is found,
and it is found as quickly as possible. For that, we used the best and aver statistics.
Moreover, we used the gcumul statistics to monitor cumulative value of the fitness
along the breading process. The results of the experiments are summarised below
with some more commented graphs available in Appendix A.

Results of Experiments with the Parameters of Genetic Algorithms

The values of the best and aver statistics that we obtained from the first set of ex-
periments presented above show that small populations combined with the any-point
crossover and mutation set to 0.01 are able to find the best individual (i.e., the best test
configuration) out of all the encountered ones quite fast (within a few generations).
Very small populations (10 and rarely also 20) are, however, sometimes not able to
find the best individual and get stuck in a local optimum. On the other hand, in larger
populations, it takes much longer to arrive to the best individual. The any-point
crossover operator outperformed the other two operators, but one has to be careful
about the probability used: the operator sometimes does not change the individuals
when a low probability (0.1 or less) is used.

The best individuals obtained by the genetic algorithm in our experiments had
fitness higher than 0.5, and they therefore covered more than 50 % of the concurrent
behaviour as defined by our fitness function. The overall best individuals achieved
fitness 0.64. The average fitness of the final population was in the worst case 0.35
only, which is quite similar to fitness 0.33 that we achieved by randomly generating
individuals to evaluate. The highest average fitness was close to the maximum fitness
of 0.64, which represents a situation when nearly all individuals in the generation
were the same.

In the second set of experiments from the above, we clearly saw the positive effect
of elitism (set to 10 % of the population). The selection operators seem to affect the
results only a little. The best results seem to be provided by a combination of the
tournament selection operator (with the size of the tournament set to a high value)
and the fitness proportional selection operator.

Based on the results summarised above and presented in Appendix A, we found
as suitable the following setting of the parameters of genetic algorithms for the con-

98

sidered concretisation of the TNCS problem: Size of population 20, two different se-
lection operators (tournament among 4 individuals and fitness proportional), the any-
point crossover with a higher probability (0.25), a low mutation probability (0.01),
and two elites (that is 10 % of the population). We choose the low mutation probabil-
ity 0.01 despite our results indicate that the individuals with highest fitness are most
often found using the higher probability (0.25). This decision is motivated by our
intention to prefer exploitation over exploration as explained below. This parameter
setting is used in the experiments presented in the next section.

5.6 A Concrete Application of the Proposed Approach

In this section, we first propose a complex objective function for the TNCS problem
that carefully combines the above discussed basic objective functions, finally leading
to a concrete application of genetic algorithms for improving the process of testing of
concurrent programs. In particular, the stress is on looking for data races, but as our
experiments show, the approach helps in finding other kinds of concurrency-related
errors too. Next, we present a collection of benchmarks and results of experiments
with them which illustrate the efficiency of our approach.

A GoldiLocks-based Objective Function

Based on our experience with different concurrency coverage metrics and dynamic
error detectors, we have decided to build our concrete objective function on maximis-
ing the coverage obtained under the concurrency coverage metric GoldiLockSC pre-
sented in Chapter 3 which is based on the GoldiLocks algorithm [32], together with
maximising the number of actual warnings produced by this algorithm. We have cho-
sen the GoldiLocks algorithm for our objective function because it has a low ratio of
false positives, and it is able to continue in the analysis even after an error is detected.
Moreover, our results indicate that the concurrency coverage metric GoldiLockSC
has multiple positive properties. In particular, the coverage under this metric usually
grows smoothly (i.e., with a minimum of shoulders) and does not stabilise too early
(i.e., before most behaviours relevant from the point of view of data race detection
are examined). Further, based on the discussion presented in Section 5.2.2, we also
reflect in our objective function an intention to minimise the execution time and to
maximise the number of detected errors.

In summary, we thus aim at (1) maximising coverage under the concurrency cov-
erage metric GoldiLockSC, (2) maximising the number of warnings produced by the
GoldiLocks algorithm, (3) maximising the number of detected real errors due to data
races, and (4) minimising the execution time. The different basic objectives are com-
bined using a system of weights assigned to them.

To be more precise, the GoldiLockSC metric counts the encountered internal
states of the GoldiLocks algorithm (here, SC stands for the optimised version of

99

the algorithm with the so-called short circuits, i.e., cheap checks done before the
full algorithm is used). We weight the different coverage tasks of this metric as
well as the error manifestation according to their severity. In particular, the cov-
erage tasks of the GoldiLockSC metric are tuples (ploc,state) where ploc identi-
fies the program location at which some shared memory location is accessed, and
state ∈ {SCT,SCL,LS,E} denotes the internal state of the GoldiLocks algorithm.
We divide the tasks into three categories according to severity of their state. The
SCT state represents a situation where the first short circuit check of GoldiLocks
(checking whether a variable is accessed by a single thread only) proves correctness
of the given access. This situation is common for sequentially executed code, and
so we assign it weight 1. The SCL and LS states mean that the first check does not
succeed, but it is possible to use further heuristic short circuit checks (SCL) or use
the full algorithm (LS) to infer a lock (or locks) whose locking proves correctness
of the access. We assign such tasks with weight 5. Finally, the E state means that
the algorithm detected a data race and produced a warning message. We weight such
tasks with 10. We denote the weighted coverage as WGoldiLockSC.

A GoldiLocks warning has the form of a tuple (var, ploc1, ploc2) where var iden-
tifies a shared variable, and ploc1, ploc2 represent two program locations between
which a data race was detected. Sometimes, a single coverage task with state = E
produced at ploc1 leads to several warnings differing in the ploc2 or var values. We
denote by GLwarn the number of different warnings issued during the test execution,
and we give them the weight of 1000.

Finally, as we have already mentioned, we also aim at maximising the number
of detected error manifestations (error) and minimising the execution time (time).
Error manifestations are detected by looking for unhandled exceptions. They are
given a very high weight of 10000. With respect to all the described objectives,
we then define the fitness function as follows (expecting the time to be measured in
milliseconds):

WGoldiLockSC+1000∗GLwarn+10000∗ error
time

Case Studies

We concentrate primarily on data race detection, but we also try to apply our genetic
approach to case studies containing other kinds of concurrency errors (and, as we will
show, we obtain quite positive results even in such cases). In particular, we evaluate
our approach on 5 test cases containing concurrency-related errors. The test cases
are listed in Table 5.2. In the table, the Param column indicates the number of the
test case parameters and the number of possible values of each parameter (e.g., 2,3
means that the test takes two parameters, the first with two possible values and the
second with three possible values).

100

The Airlines, Crawler, Rover, and FTPServer test cases were introduced in Chap-
ter 3. The Animator test case which was also used as a benchmark in [15] is based
on a simple graphic application for algorithm animation called XtangoAnimator. The
program creates a window and draws a picture according to a given batch file. The
test case contains data races which rarely lead to an unhandled exception. The test
case consists of 31 classes and has 1.5 kLOC.

The Animator, Crawler, and FTPServer test cases contain a data race which leads
to unhandled exceptions. The Airlines case study contains a high level atomicity vio-
lation that is detected by a final check at the end of the execution which throws an un-
handled exception. Finally, the Rover test case contains a deadlock and an atomicity
violation which leads to an unhandled exception.

We admit that the described case studies are not very large, and one could surely
found much bigger ones. Let us, however, stress that the reason why we did not
consider truly large benchmarks is not a bad scalability of our approach, but rather the
large number of experiments that we did with the various parameter settings which
in summary take a lot of time even on smaller benchmarks.

The Airlines and Animator test cases were run on Intel Core2 6600 machines,
the Rover test case on a machine with an Intel i5-2500 processor, and the FTPServer
test case on a machine with two Intel X5355 processors. In case of the Crawler
test case, two different hardware environments were used. The first (denoted sim-
ply as Crawler in Table 5.2) used a machine with an Intel i5-661 processor, while
the second (denoted Crawler∗) was executed on a machine with four AMD Opteron
8389 processors. These two options were used on purpose in order to study how our
approach works in different hardware environments. All mentioned computers ran
64-bit Linux and Java version 6.

5.7 Experimental Results

To evaluate the efficiency of our approach when using the GoldiLocks-based objec-
tive function, we again used the infrastructure described in Section 5.4. We use the
setting of parameters of genetic algorithms inferred in Section 5.5. Although this
setting was inferred for a different objective function and using sampled values of
the noiseFreq parameter only, we believe that it represents a good option even for
other experiments with our genetic algorithm. Indeed, the objective function used in
Section 5.5 was designed to be rather general in order to cover a lot of different con-
current behaviours. Moreover, we analysed the correlation between the values of the
fitness function of Section 5.5 and the GoldiLocksSC metric used in the GoldiLocks-
based objective function on the performed experiments and realized that the correla-
tion is high. After all, the combination of HBPair∗ and Avio∗ focuses on the same
events as the GoldiLocks algorithm.

101

Table 5.2: An experimental comparison of the proposed genetic approach with the
random approach to setting test and noise parameters

Test case Best configuration Search process
Name Params Gen. Error Time Error Error∗ Time
Airlines 5,5,10 15 3.0 / 1.7 3.8 / 2.5 3.2 8.8 3.0
Animator – 25 21.8 / 10.9 1.1 / 1.3 4.3 5.4 1.3
Crawler – 22 – / – 1.3 / 1.5 0.3 1.1 3.3
Crawler∗ – 25 – / – 1.1 / 1.1 0.4 1.0 2.8
FTPServer 10 14 1.2 / 1.0 3.8 / 4.7 0.9 1.7 1.9
Rover 7 3 H 33.7 / 19.4 3.2 8.8 3.0

In the experiments, we allowed the elite individuals to be re-evaluated in the
following generations. This is motivated by the fact that a few executions of an indi-
vidual (5 in our case) are often not sufficient to prove whether the configuration can
make a concurrency error manifest. Indeed, tricky concurrency-related errors mani-
fest very rarely even if a suitable noise heuristics is used as shown in Chapter 4. The
reevaluation of elites therefore gives the most promising individuals another chance
to spot an error. This setting is a compromise between a high number of executions
needed to evaluate every individual more times and the available time we have.

We compare our genetic approach with the random approach to the choice of
noise heuristics and their parameters. In the random approach, we randomly select
2000 test and noise configurations and let our infrastructure evaluate them in the
same way we evaluate individuals in the genetic approach. Table 5.2 summarises
our results. The table is based on average results obtained from 10 executions of the
genetic and random approach. It is divided into three parts. In the left part (Test case),
the test cases are identified, and their size and information about their parameters are
provided.

5.7.1 An Evaluation of the Best Individuals

The middle part of Table 5.2 (Best configuration) contains three columns which com-
pare the best individual obtained by our genetic approach and found by the random
approach. The Gen. column contains the average number of generations (denoted as
gen below) within which we discovered the best individual according to the consid-
ered fitness function. The numbers indicate that we are able to find the best individual
according to the considered fitness function within the first quarter of the considered
generations. This motivates our future work to design a suitable termination condi-
tion for our specific testing process.

102

The Error column of the Best configuration section of Table 5.2 compares the
ability of the best individual to detect an error. The column contains two values
(x1/y1). The first value x1 is computed as the fraction of the average number of er-
rors found by the best individual computed by the genetic algorithm and the average
number of errors discovered by the best individual found by the random generation
provided that an equivalent number of executions is provided to the random approach
(this number is computed as gen times the size of the population which is 20). The
second number y1 is computed as the fraction of the average number of errors found
by the best individual computed by the genetic algorithm and the average number of
errors discovered by the best individual found randomly in 2000 evaluations. The
–/– value represents a situation where none of the best individuals was able to detect
the error within the allowed 5 executions. The H symbol means that the genetically
obtained best individual did not spot any error while the best individual found by the
random generation did (we discuss this situation in more detail below).

Similarly, the Time column of the Best individual section of Table 5.2 compares
average times needed to evaluate the best individual obtained by our approach and
the best individual found by the random approach. Again, two values are presented
(x2/y2). The first value x2 is computed as the average time needed by the best in-
dividual found by the random approach if only gen ∗ 20 evaluations are considered,
divided by the average time the genetically found best individual needed. The second
value y2 shows the average time needed by the best individual found by the random
generation when it was provided with 2000 evaluations, divided by the average time
needed by the genetically found best individual.

The values that are higher than 1 in the Error and Time columns of the Best in-
dividual section of Table 5.2 represent how many times our approach outperforms
the random approach. In general, one can see that the best individual found by our
genetic approach has a higher probability to spot a concurrency error, and it also need
less time to do so. Even if we let the random approach to perform 2000 evaluations,
our best individual is still better. Exceptions to this are the Rover and Crawler test
cases. In the Crawler test case, the error manifests with a very low probability. The
best individuals in both cases were not successful in spotting the error (note, how-
ever, that the error was discovered during the search process as discussed below). In
the Rover test case, the best individual found by the genetic algorithm was not able
to detect an error and some of the best individuals found by the random approach
did detect the error (as again discussed below, the error was discovered during the
search process too). This results from the fact that the genetic approach converged
to an individual that allows a very fast evaluation (over 30 times faster than the best
configuration found by the random generation). This, however, lowered the quality
of the found configuration from the point of view of error detection, indicating that
as a part of our future research, we may think of further adjusting the fitness function
such that this phenomenon is suppressed.

103

5.7.2 An Evaluation of the Search Process

The right part of Table 5.2 (Search process) provides a different point of view on
our results. In this case, we are not interested in just one best individual learned
genetically or by random generation that is assumed to be subsequently used in de-
bugging or regression testing. Instead, we focus on the results obtained during the
search process itself. The genetic algorithm is hence considered here to play a role
of heuristics that directly controls which test and noise configurations should be used
during a testing process with a limited number of evaluations that can be done (2000
in our case).

This part of the table contains three columns which compare the genetic and
random approaches wrt. their successes in finding errors and wrt. the time needed
to perform the 2000 evaluations. The first column (Error) compares the average
number of errors spot during the search process and the average number of errors spot
during the evaluation of 2000 randomly chosen configurations of the test and noise
heuristics. The Error∗ column compares the average number of errors detected by
our genetic approach with the average number of errors spot by the random approach
when the random approach is provided with the same amount of time as the genetic
approach. Finally, the Time column compares the average total time needed by the
random approach in 2000 evaluations and the average time needed by our genetic
approach. Again, the values higher than 1 in all the columns represents how many
times our approach outperforms the random approach.

The cumulative results presented in the Error and Error∗ columns show that our
approach mostly outperforms the random approach. The exceptions in the Error
column reflect the already above mentioned preference of the execution time in our
fitness function, which is further highlighted by the Time column. For instance, in the
worst case (the Crawler test case), our genetic approach is more than 3 times faster
but in total discovers three times less errors. On the other hand, in the best cases
(the Airlines and Rover), we found three times more errors in three times shorter
time. To give some idea about the needed time in total numbers, the average time
needed to evaluate 2000 random individuals took on average 32 hours (whereas the
genetic approach needed just 10.5 hours), and the average time needed to evaluate
2000 random individuals of our biggest test case FTPServer took 101 hours (whereas
the genetic approach needed on average just 53 hours).

Overall, our results show that our approach outperforms the random approach.
They also indicate that we should probably partially reconsider our fitness function
that puts sometimes too much stress on the execution time, which can in some cases
(demonstrated in the Crawler test case) be counter-productive.

Another positive fact is that our objective function helps to improve the testing
process even for test cases that do not contain a data race. This can be attributed to
that our fitness favours configurations within which the synchronisation occurs more
often and therefore is tested more. The results obtained from our experiment with the
Crawler test case evaluated using two different hardware configurations indicate that

104

the genetic approach is able to reflect the environment and focus on the noise heuris-
tics and their parameters which provide better results for the considered environment.

5.8 Summary

In this chapter, we have introduced and formulated the test and noise configura-
tion search (TNCS) problem. We have conducted experiments with the simple Hill-
climbing algorithm which was able to overcome the random approach in some cases.
However, the experiments also showed that a local search technique does not need
to be suitable for solving the TNCS problem. Based on the obtained experience, we
have proposed way how to use genetic algorithms to solve the TNCS problem. We
have performed experiments aimed at choosing suitable parameters of genetic algo-
rithms to be used when solving the problem. We have instantiated the framework
for the case of noise injection techniques implemented in the ConTest tool and its
extensions and proposed a complex objective function suitable when aiming at data
race detection (but successful even when looking for other kinds of bugs). We have
performed experiments on a set of benchmark programs showing that our approach
significantly outperforms the commonly used approach of randomly selecting noise
configurations.

105

Chapter 6

Conclusions and Future Directions

In this thesis, we have concentrated on concurrency-related errors and noise injection
techniques that help to examine different thread interleavings during testing and dy-
namic analysis of concurrent programs and to detect even rarely manifesting errors.
Apart from the presented taxonomy of concurrency-related errors, our main contribu-
tion can be divided into three parts concerning concurrency coverage metrics, noise
injection heuristics, and a use of metaheuristics in noise-based testing. Each of these
parts has been presented in a separate chapter and has its own summary. Let us now
just shortly summarise all the results of the thesis once again followed by a discussion
of future research directions.

6.1 Summary

The first part of our contribution is a methodology of deriving new coverage metrics
from dynamic (and possibly also static) analyses designed for discovering bugs in
concurrent programs. Using this idea, we have derived several new concrete metrics.
These metrics capture important features of the behaviour of concurrently execut-
ing threads. Therefore, they are suitable for debugging and testing of concurrent
programs. We have performed an empirical evaluation of these metrics, which has
shown that several of them are indeed better for use in saturation-based and search-
based testing than various previously known metrics.

In the next part of the thesis, we have proposed a new original noise injection
heuristics which uses concurrency coverage information to decide where to put noise.
We have used selected metrics (namely, the Avio∗ and HBPair∗ coverage metrics and
the error manifestation ratio) to compare multiple noise seeding and noise placement
heuristics including the two versions of our newly proposed heuristics. We have
shown that our newly proposed heuristics wins over the existing ones in some cases.
Moreover, we have also presented a systematic comparison of the previously known
heuristics (which has missing in the literature) and shown that often a combination of
several heuristics provide better results than any single heuristics.

106

As the last part of our main contribution, we have proposed a way of using search
techniques to improve quality of noise-based testing and dynamic analysis through
finding suitable combinations of parameters of tests and noise heuristics. We have
formalised this problem as the test and noise configuration search (TNCS) problem.
We have conducted experiments with the simple Hill-climbing algorithm. Based on
the obtained experiences, we have proposed a way how to use genetic algorithms to
solve the TNCS problem. We have performed experiments aimed at choosing suitable
parameters of genetic algorithms to be used when solving the problem. We have pro-
posed a complex objective function suitable for data race detection which is based on
a dynamic analysis algorithm (namely, the GoldiLocks algorithm). Our experiments
has shown that the objective function has been also successful at looking for other
kinds of concurrency bugs. We have shown on a set of benchmark programs that
our approach significantly outperforms the commonly used approach of randomly
selecting noise configurations.

Besides the described three contributions, we have presented a uniform classifica-
tion of common concurrency errors and provided a brief overview of various run-time
verification and advanced testing techniques.

6.2 Future Research Directions

Future research in the area related to the thesis may be divided to the four categories
discussed below.

Noise injection techniques. Current noise placement heuristics are rather simple
and depend on simple code patterns and in most cases on a random generator. It was
shown that even these primitive heuristics can improve the testing process. However,
works on deterministic testing demonstrate that testing can efficiently use principles
known in model checking and other formal approaches. Likewise, our results with
coverage-based noise placement heuristics indicate that it is possible to efficiently
use relatively complex heuristics which can beat random-based heuristics even in the
question of performance. Hence, there is definitely a space for proposing new and
better problem-specific noise injection techniques.

Search-based testing techniques. Our formulation of the TNCS problem allows
one to use various metaheuristic optimisation algorithms in testing of concurrent pro-
grams. In this thesis, we applied only basic Hill-climbing and genetic algorithms to
the problem. There are, however, advanced metaheuristic approaches which should
provide even better results than the basic algorithms we used. Morover, even the
use of genetic algorithms could be further improved by designing better objective
functions which eliminate the negative effect we saw in the Rover test case in Chap-
ter 5, which focus on different kinds of concurrency errors (e.g., deadlocks), or which
are able to focus on corner cases of the tests. The TNCS problem is rather multi-

107

objective because one would like to minimise the execution time and maximise the
error detection probability. Therefore, we suggest to focus on approaches suitable for
multi-objective problems.

Incorporation of static analyses. In the thesis, we used static analysis during in-
strumentation of the test cases to discover concurrency-related events considered by
the IBM Concurrency Testing tool only. Most of those events actually represent ac-
cesses to heap objects which are not shared among threads. Putting noise before/after
such events is therefore ineffective. Various static analyses could be used to decrease
the number of events to be targeted by the noise and rapidly improve the performance
of our approach. Static analysis can also be used to pinpoint variables, code patterns,
and events which should be focused by the noise.

Data mining. We have created a database of test results including various con-
currency coverage data. So far, we used the data mining approach only to discover
outliers, i.e., values that are distant from the rest of obtained results, which might
indicate a problem in our infrastructure. However, various data mining techniques
can be used to further study the captured behaviour and the effects of various noise
injection techniques. For instance, one can focus on the relation among the captured
coverage tasks and error manifestation in hope of discovering an evidence which can
be used for further debugging.

6.3 Publications Related to This Work

The taxonomy of concurrency errors presented in Chapter 2 appeared in [38]. The
full version of the paper was published as the technical report [37]. The concurrency
coverage metrics presented in Chapter 3 were published in [62], and the comparison
of noise injection techniques included in Chapter 4 in [63].

The search-based testing of concurrent programs approach discussed in Chpater 5
was first proposed in [68]. The experiments with the Hill-climbing algorithm were
published together with description of the SearchBestie infrastructure in [60]. The
experiments with the genetic algorithms were accepted to appear in [55] and the full
version of the paper was published as the technical report [54].

Results presented in this thesis build on the experience and technology that we in
our previous works utilising the noise injection techniques [58, 67, 59, 61]. In [58,
59, 67], published within the MSc studies of the author, we studied how the noise
techniques can be used to prevent concurrency errors from manifestation and showed
that the noise techniques affects execution of the test on different architectures dif-
ferently. In the work [61] published in the first year of the authors’ PhD studies,
we presented the IBM Concurrency Testing Tool and our plug-ins for this tool. We
used the same infrastructure to implement concurrency coverage generators and other
dynamic detection algorithms exploited in this thesis.

108

Bibliography

[1] Concurrency Stress Test. Online at: http://msdn.microsoft.com/en-us/library
/windows/hardware/hh454184(v=vs.85).aspx, August 2011.

[2] R. Affeldt and N. Kobayashi. A Coq Library for Verification of Concurrent
Programs. Electronic Notes in Theoretical Computer Science, volume 199,
pages 17–32, February 2008.

[3] W. Afzal, R. Torkar, and R. Feldt. A Systematic Review of Search-based Test-
ing for Non-functional System Properties. Information Software Technology,
volume 51, pages 957–976, June 2009.

[4] R. Agarwal and S. D. Stoller. Run-time Detection of Potential Deadlocks
for Programs with Locks, Semaphores, and Condition Variables. In Proc.
of Parallel and Distributed Systems: Testing and Debugging—PADTAD’06,
pages 51–60, New York, NY, USA, 2006. ACM Press.

[5] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison Wesley, second edition, 2006.

[6] E. Alba and F. Chicano. Finding Safety Errors with ACO. In Proc. of Genetic
and Evolutionary Computation—GECCO’07, pages 1066–1073, New York,
NY, USA, 2007. ACM Press.

[7] E. Alba and F. Chicano. Searching for Liveness Property Violations in Concur-
rent Systems with ACO. In Proc. of Genetic and Evolutionary Computation—
GECCO’08, pages 1727–1734, New York, NY, USA, 2008. ACM Press.

[8] E. Alba, F. Chicano, M. Ferreira, and J. Gomez-Pulido. Finding Deadlocks
in Large Concurrent Java Programs Using Genetic Algorithms. In Proc. of
Genetic and Evolutionary Computation—GECCO’08, pages 1735–1742, New
York, NY, USA, 2008. ACM Press.

[9] G. R. Andrews. Concurrent Programming: Principles and Practice. Benja-
min-Cummings Publishing Corporation, 1991.

109

[10] H. Arndt, M. Bundschus, and A. Naegele. Towards a Next-generation Ma-
trix Library for Java. In Proc. of Computer Software and Applications
Conference—COMPSAC’09, pages 460–467, Washington, DC, USA, 2009.
IEEE Computer Society.

[11] C. Artho, K. Havelund, and A. Biere. High-level Data Races. In Proc of Veri-
fication and Validation of Enterprise Information Systems—VVEIS’03, pages
82-93, Angers, France, 2003. ICEIS Press.

[12] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press,
2008.

[13] M. Ben. Principles of Concurrent and Distributed Programming. Addison-
Wesley, second edition, 2006.

[14] Y. Ben-Asher, Y. Eytani, E. Farchi, and S. Ur. Noise Makers Need To Know
Where To Be Silent – Producing Schedules That Find Bugs. In Proc. of In-
ternational Symposium on Leveraging Applications of Formal Methods, Veri-
fication and Validation—ISOLA’06, pages 458–465, Washington, DC, USA,
2006. IEEE Computer Society.

[15] Y. Ben-Asher, Y. Eytani, E. Farchi, and S. Ur. Producing Scheduling That
Causes Concurrent Programs To Fail. In Proc. of Parallel and Distributed
Systems: Testing and Debugging—PADTAD’06, pages 37–40, New York, NY,
USA, 2006. ACM Press.

[16] Y. Ben-Asher, E. Farchi, and Y. Eytani. Heuristics for Finding Concur-
rent Bugs. In Proc. of International Symposium on Parallel and Distributed
Processing—IPDPS’03, pages 288–304, Washington, DC, USA, 2003. IEEE
Computer Society.

[17] S. Bensalem and K. Havelund. Dynamic Deadlock Analysis of Multi-
threaded Programs. In Proc. of Parallel and Distributed Systems: Testing
and Debugging—PADTAD’05, Haifa, Israel, volume 3875 of LNCS, pages
208–223, 2005. Springer-Verlag.

[18] Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Devel-
opment. Springer-Verlag, 2004.

[19] J. Blieberger, B. Burgstaller, and R. Mittermayr. Static Detection of Livelocks
in Ada Multitasking Programs. In Proc. Reliable Software Technologies—
Ada-Europe’07, Geneva, Switzerland, volume 4498 of LNCS, pages 69–83,
2007. Springer-Verlag.

110

[20] E. Bodden and K. Havelund. Racer: Effective Race Detection Using As-
pectJ. In Proc of International Symposium on Software Testing and Analysis–
ISSTA’08, pages 155–166, New York, NY, USA, 2008. ACM Press.

[21] J. S. Bradbury and K. Jalbert. Defining a Catalog of Programming Anti-
patterns for Concurrent Java. In Proc. of Software Patterns and Quality—
SPAQu’09, pages 6–11, 2009. GRACE Center.

[22] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications of Synchroniza-
tion Coverage. In Proc of Principles and Practice of Parallel Programming—
PPoPP’05, pages 206–212, New York, NY, USA, 2005. ACM Press.

[23] F. Cabe. Let’s Go!. Lulu.com, 2007.

[24] R. H. Carver and K.-C. Tai. Modern Multithreading: Implementing, Test-
ing, and Debugging Multithreaded Java and C++/Pthreads/Win32 Programs.
Wiley-Interscience, 2005.

[25] F. Chicano, M. Ferreira, and E. Alba. Comparing Metaheuristic Algorithms
for Error Detection in Java Programs. In Proc. of Search-based Software
Engineering—SSBSE’11, Szeged, Hungary, volume 6956 of LNCS, pages
82–96, 2011. Springer-Verlag.

[26] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran. Efficient and Precise Datarace Detection for Multithreaded Object-
oriented Programs. In Proc of the Programming Language Design and
Implementation—PLDI’02, pages 258–269, New York, NY, USA, 2002. ACM
Press.

[27] J. Clarke, J. Dolado, M. Harman, R. Hierons, B. Jones, et al. Reformulat-
ing Software Engineering as a Search Problem. IEE Proceedings – Software,
volume 150, pages 161–175, June 2003.

[28] E. G. Coffman, M. Elphick, and A. Shoshani. System Deadlocks. ACM Com-
puter Surveys, volume 3, pages 67–78, June 1971.

[29] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Proc. of Principles of Programming Languages–POPL’77, pages 238–252,
Los Angeles, California, 1977. ACM Press.

[30] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur. Framework
for Testing Multi-threaded Java Programs. Concurrency and Computation:
Practice and Experience, volume 15, pages 485–499, January 2003.

111

[31] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multithreaded Java
Program Test Generation. IBM Systems Journal, volume 41, pages 111–125,
January 2002.

[32] T. Elmas, S. Qadeer, and S. Tasiran. GoldiLocks: A Race and Transaction-
aware Java Runtime. In Proc. of Programming Language Design and
Implementation—PLDI’07, pages 245–255, New York, NY, USA, 2007. ACM
Press.

[33] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions of Con-
sistency and Predicate Locks in a Database System. Communications ACM,
volume 19, pages 624–633, November 1976.

[34] Y. Eytani. Concurrent Java Test Generation as a Search Problem. Electronic
Notes of Theoretical Computer Science, volume 144, pages 57–72, May 2006.

[35] Y. Eytani and T. Latvala. Explaining Intermittent Concurrent Bugs by Min-
imizing Scheduling Noise. In Proc. of Haifa Verification Conference—
HVC’06, Haifa, Israel, volume 4383 of LNCS, pages 183–197, 2007.
Springer-Verlag.

[36] E. Farchi, Y. Nir, and S. Ur. Concurrent Bug Patterns and How to Test Them.
In Proc. of International Symposium on Parallel and Distributed Processing—
IPDPS’03, pages 286–293, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[37] J. Fiedor, B. Křena, Z. Letko, and T. Vojnar. A Uniform Classification of Com-
mon Concurrency Errors. Technical report FIT-TR-2010-03, Brno University
of Technology, Czech Republic, 2010.

[38] J. Fiedor, B. Křena, Z. Letko, and T. Vojnar. A uniform classification of
common concurrency errors. In Proc. of Computer Aided Systems Theory—
EUROCAST’11, Las Palmas, Spain, volume 6927 of LNCS, pages 519–526,
2012. Springer-Verlag.

[39] C. Flanagan and S. N. Freund. Atomizer: A Dynamic Atomicity Checker for
Multithreaded Programs. In Proc. of Principles of Programming Languages—
POPL’08, pages 256–267, New York, NY, USA, 2004. ACM Press.

[40] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise Dynamic Race
Detection. In Proc. of Programming Language Design and Implementation—
PLDI’09, pages 121–133, New York, NY, USA, 2009. ACM Press.

[41] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A Sound and Complete
Dynamic Atomicity Checker for Multithreaded Programs. In Proc. of Pro-

112

gramming Language Design and Implementation—PLDI’08, pages 121–133,
New York, NY, USA, 2008. ACM Press.

[42] D. Giannakopoulou, C. S. Pasareanu, M. Lowry, and R. Washington. Life-
cycle Verification of the Nasa Ames K9 Rover Executive. In Proc. of Veri-
fication and Validation of Model-Based Planning and Scheduling Systems—
ICAPS’05:, pages 11, 2005. AAAI Press.

[43] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Sys-
tems: An Approach to the State-Explosion Problem. Springer-Verlag New
York, 1996.

[44] P. Godefroid. Software Model Checking: The Verisoft Approach. Formal
Methods in System Design, volume 26, pages 77–101, March 2005.

[45] P. Godefroid and S. Khurshid. Exploring Very Large State Spaces Using Ge-
netic Algorithms. International Journal on Software Tools for Technology
Transfer (STTT), volume 6, pages 117–127, August 2004.

[46] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specification.
Addison-Wesley Professional, third edition, 2005.

[47] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic Detection of Atomic-
set-serializability Violations. In Proc. of International Conference on Software
Engineering—ICSE’08, pages 231–240, New York, NY, USA, 2008. ACM
Press.

[48] M. Harman and P. McMinn. A Theoretical and Empirical Study of Search-
based Testing: Local, Global, and Hybrid Search. IEEE Transactions on Soft-
ware Engineering, volume 99, pages 226–247, March 2009.

[49] K. Havelund. Using Runtime Analysis to Guide Model Checking of Java Pro-
grams. In Proc. of Model Checking and Software Verification—SPIN’00, Lon-
don, UK, volume 1885 of LNCS, pages 245–264, 2000. Springer-Verlag.

[50] K. Havelund and A. Goldberg. Verify Your Runs. In Proc. of Verified Software:
Theories, Tools, Experiments—VSTTE’05, Zürich, Switzerland, volume 4171
of LNCS, pages 374–383, 2005. Springer-Verlag.

[51] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008.

[52] A. Ho, S. Smith, and S. Hand. On Deadlock, Livelock, and Forward Progress.
Technical report UCAM-CL-TR-633, University of Cambridge, 2005.

[53] G. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2003.

113

[54] V. Hrubá, B. Křena, Z. Letko, and T. Vojnar. Testing of Concurrent Programs
Using Genetic Algorithms. Technical report FIT-TR-2012-01, Brno University
of Technology, 2010.

[55] V. Hrubá, B. Křena, Z. Letko, and T. Vojnar. Testing of Concurrent Programs
Using Genetic Algorithms. Accepted for publication at the 4th Symposium on
Search Based Software Engineering—SSBSE’12, Trento, Italy, 2012.

[56] J. Huang, P. Liu, and C. Zhang. Leap: Lightweight Deterministic Multi-
processor Replay of Concurrent Java Programs. In Proc. of Foundations of
Software Engineering—FSE’10, pages 207–216, New York, NY, USA, 2010.
ACM Press.

[57] P. Joshi, C.-S. Park, K. Sen, and M. Naik. A Randomized Dynamic Program
Analysis Technique for Detecting Real Deadlocks. In Proc. of Programming
Language Design and Implementation—PLDI’09, pages 110–120, New York,
NY, USA, 2009. ACM Press.

[58] B. Křena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar. Healing Data Races On-
the-fly. In Proc. of Parallel and Distributed Systems: Testing and Debugging—
PADTAD’07, pages 54–64, New York, NY, USA, 2007. ACM Press.

[59] B. Křena, Z. Letko, and T. Vojnar. AtomRace: Data Race and Atomicity Viola-
tion Detector and Healer. In Proc. of Parallel and Distributed Systems: Testing
and Debugging—PADTAD’08, pages 1–10, New York, NY, USA, 2008. ACM
Press.

[60] B. Křena, Z. Letko, T. Vojnar, and S. Ur. A Platform for Search-based Testing
of Concurrent Software. In Proc. of Parallel and Distributed Systems: Test-
ing and Debugging—PADTAD’10, pages 48–58, New York, NY, USA, 2010.
ACM Press.

[61] B. Křena, Z. Letko, Y. Nir-Buchbinder, R. Tzoref-Brill, S. Ur, and T. Vojnar.
A Concurrency Testing Tool and Its Plug-ins for Dynamic Analysis and Run-
time Healing. In Proc. of Runtime Verification—RV’09, Grenoble, France,
volume 5779 of LNCS, pages 101–114, 2009. Springer-Verlag.

[62] B. Křena, Z. Letko, and T. Vojnar. Coverage Metrics for Saturation-based
and Search-based Testing of Concurrent Software. In Proc. of Runtime
Verification—RV’11, San Francisco, CA, USA, volume 7186 of LNCS, pages
177–192, 2012. Springer-Verlag.

[63] B. Křena, Z. Letko, and T. Vojnar. Influence of Noise Injection Heuristics on
Concurrency Coverage. In Proc. of Mathematical and Engineering Methods
in Computer Science—MEMICS’11, Lednice, Czech Republic, volume 7119
of LNCS, pages 123–131, 2012. Springer-Verlag.

114

[64] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications ACM, volume 21, pages 558–565, January 1978.

[65] D. Lea. Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley. 2000.

[66] Y. Lei and R. H. Carver. Reachability Testing of Concurrent Programs. IEEE
Transactions on Software Engineering, volume 32, pages 382–403, June 2006.

[67] Z. Letko. Dynamic Detection and Healing of Data Races in Java. Master’s
thesis, FIT, Brno University of Technology, 2008.

[68] Z. Letko. Sophisticated Testing of Concurrent Software. In Proc. of Sympo-
sium on Search-based Software Engineering—SSBSE’10, pages 36–40, Ben-
evento, Italy, 2010. IEEE Computer Society.

[69] S. Leue, A. Ştefănescu, and W. Wei. A Livelock Freedom Analysis for Infinite
State Asynchronous Reactive Systems. In Proc. of Concurrency Theory—
CONCUR’06, Bonn, Germany, volume 4137 of LNCS, pages 79–94, 2006.
Springer-Verlag.

[70] R. J. Lipton. Reduction: A Method of Proving Properties of Parallel Programs.
Communications ACM, volume 18, pages 717–721, January 1975.

[71] B. Long and P. Strooper. A Classification of Concurrency Failures in Java
Components. In Proc. of International Symposium on Parallel and Distributed
Processing—IPDPS’03, pages 287–295, Washington, DC, USA, 2003. IEEE
Computer Society.

[72] S. Lu, W. Jiang, and Y. Zhou. A Study of Interleaving Coverage Criteria. In
Proc. of European Software Engineering Conference—ESEC-FSE’07, pages
533–536, New York, NY, USA, 2007. ACM Press.

[73] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou. MUVI:
Automatically Inferring Multi-Variable Access Correlations and Detecting Re-
lated Semantic and Concurrency Bugs. In Proc. of Symposium on Operating
Systems Principles—SOSP’07, pages 103-116,New York, NY, USA, 2007.
ACM Press.

[74] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning From Mistakes: A Compre-
hensive Study on Real World Concurrency Bug Characteristics. In Proc. of
Architectural Support for Programming Languages and Operating Systems—
ASPLOS’08, pages 329–339, New York, NY, USA, 2008. ACM Press.

115

[75] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity Violations
Via Access Interleaving Invariants. In Proc. of Architectural Support for Pro-
gramming Languages and Operating Systems—ASPLOS’ 06, pages 37–48,
New York, NY, USA, 2006. ACM Press.

[76] S. Luke. Essentials of Metaheuristics. Lulu, 2009. Available at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[77] J. Magee and J. Kramer. Concurrency – State Models and Java Programs.
Wiley, second edition, 2006.

[78] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag New York, 1992.

[79] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In Proc.
of Principles of Programming Languages—POPL’05, pages 378–391, New
York, NY, USA, 2005. ACM Press.

[80] F. Mattern. Virtual Time and Global States of Distributed Systems. In Proc. of
International Workshop on Parallel and Distributed Algorithms—PDAA’ 88,
pages 215–226, 1988. North-Holland.

[81] P. McMinn. Search-based Software Test Data Generation: A Survey: Research
Articles. Software Testing Verification and Reliability, volume 14, pages 105–
156, December 2004.

[82] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. YALE: Rapid
Prototyping for Complex Data Mining Tasks. In Proc. of Knowledge Discov-
ery and Data Mining—KDD’06, pages 935–940, New York, NY, USA, 2006.
ACM Press.

[83] J. C. Mogul and K. K. Ramakrishnan. Eliminating Receive Livelock In
an Interrupt-driven Kernel. ACM Transactions on Computer Systems, volume
15, pages 217–252, August 1997.

[84] S. Morasca and M. Pezze. Using High-level Petri Nets for Testing Concurrent
and Real-time Systems. In Proc. of Real-Time Systems: Theory and Applica-
tions, pages 119–131, Amsterodam, Netherlands, 1990. North-Holland.

[85] M. Musuvathi and S. Qadeer. Iterative Context Bounding for Dystematic Test-
ing of Multithreaded Programs. In Proc. of Programming Language Design
and Implementation—PLDI’07, pages 446–455, New York, NY, USA, 2007.
ACM Press.

[86] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu.
Finding and Reproducing Heisenbugs in Concurrent Programs. In Proc. of

116

Symposium on Operating Systems Design and Implementation—OSDI’08,
pages 267–280, Berkeley, CA, USA, 2008. USENIX Association.

[87] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder. Automat-
ically Classifying Benign and Harmful Data Races Using Replay Analysis.
In Proc. of Programming Language Design and Implementation—PLDI’07,
pages 22–31, New York, NY, USA, 2007. ACM Press.

[88] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag New York, 1999.

[89] Y. Nir-Buchbinder, R. Tzoref, and S. Ur. Deadlocks: From Exhibiting to Heal-
ing. In Proc. of Runtime Verification—RV’08, Budapest, Hungary, volume
5289 of LNCS, pages 104–118, 2008. Springer-Verlag.

[90] Y. Nir-Buchbinder and S. Ur. ConTest Listeners: A Concurrency-oriented
Infrastructure for Java Test and Heal Tools. In Proc. of Software Quality
Assurance—SOQUA’07, pages 9–16, New York, NY, USA, 2007. ACM Press.

[91] Y. Nonaka, K. Ushijima, H. Serizawa, S. Murata, and J. Cheng. A Run-time
Deadlock Detector for Concurrent Java Programs. In Proc. of Asia-Pacific
on Software Engineering Conference—APSEC’01, pages 45–52, Washington,
DC, USA, 2001. IEEE Computer Society.

[92] R. O’Callahan and J.-D. Choi. Hybrid Dynamic Data Race Detection. In
Proc. of Principles and Practice of Parallel Programming—PPoPP’03, pages
167–178, New York, NY, USA, 2003. ACM Press.

[93] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes. Java
Concurrency in Practice. Addison-Wesley Professional, 2005.

[94] A. Piziali. Functional Verification Coverage Measurement and Analysis.
Springer-Verlag, 2007.

[95] E. Pozniansky and A. Schuster. Efficient On-the-fly Data Race Detection in
Multithreaded C++ Programs. In Proc. of Principles and Practice of Parallel
Programming—PPoPP’03, pages 179–190, New York, NY, USA, 2003. ACM
Press.

[96] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser:
A Dynamic Data Race Detector for Multi-threaded Programs. In Proc. of
Operating Systems Principles—SOSP’97, pages 27–37, New York, NY, USA,
1997. ACM Press.

[97] N. Shavit and D. Touitou. Software Transactional Memory. In Proc. of Prin-
ciples of Distributed Computing—PODC’95, pages 204–213, New York, NY,
USA, 1995. ACM Press.

117

[98] E. Sherman, M. B. Dwyer, and S. Elbaum. Saturation-based Testing of Con-
current Programs. In Proc. of European Software Engineering Conference—
ESEC-FSE’09, pages 53–62, New York, NY, USA, 2009. ACM Press.

[99] J. Soriano, M. Jimenez, J. M. Cantera, and J. J. Hierro. Delivering Mobile En-
terprise Services on Morfeo’s MC Open Source Platform. In Proc. of Mobile
Data Management—MDM’06, page 139–147, Washington, DC, USA, 2006.
IEEE Computer Society.

[100] W. Stallings. Operating Systems: Internals and Design Principles. Prentice
Hall, sixth edition, 2008.

[101] S. D. Stoller. Testing Concurrent Java Programs Using Randomized Schedul-
ing. In Proc. of Runtime Verification—RV’09, Electronic Notes in Theoretical
Computer Science, volume 70(4), pages 142–157, Elsevier. July 2002.

[102] V. Subramaniam and S. Venkat. Programming Scala: Tackle Multi-core Com-
plexity on the Java Virtual Machine. Pragmatic Bookshelf, 2009.

[103] K.-C. Tai. Definitions and Detection of Deadlock, Livelock, and Starvation
in Concurrent Programs. In Proc. of International Conference on Paral-
lel Processing—ICPP’94, pages 69–72, Washington, DC, USA, 1994. IEEE
Computer Society.

[104] E.-G. Talbi. Metaheuristics: From Design to Implementation. Wiley Publish-
ing, 2009.

[105] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, 2007.

[106] R. N. Taylor, D. L. Levine, and C. D. Kelly. Structural Testing of Concurrent
Programs. IEEE Transactions on Software Engineering, volume 18, pages
206–215, March 1992.

[107] E. Trainin, Y. Nir-Buchbinder, R. Tzoref-Brill, A. Zlotnick, S. Ur, and
E. Farchi. Forcing Small Models of Conditions on Program Interleaving for
Detection of Concurrent Bugs. In Proc. of Parallel and Distributed Sys-
tems: Testing and Debugging—PADTAD’09, pages 1–6, New York, NY,
USA, 2009. ACM Press.

[108] R. Tzoref, S. Ur, and E. Yom-Tov. Instrumenting Where It Hurts: An Auto-
matic Concurrent Debugging Technique. In Proc. of International Symposium
on Software Testing and Analysis—ISSTA’07, pages 27–38, New York, NY,
USA, 2007. ACM Press.

[109] M. Vaziri, F. Tip, and J. Dolby. Associating Synchronization Constraints with
Data in an Object-oriented Language. In Proc. of Principles of Programming

118

Languages—POPL’06, pages 334–345, New York, NY, USA, 2006. ACM
Press.

[110] C. von Praun and T. R. Gross. Object Race Detection. In Proc. of Object Ori-
ented Programming, Systems, Languages, and Applications—OOPSLA’01,
pages 70–82, New York, NY, USA, 2001. ACM Press.

[111] J. Šimša, R. Bryant, and G. Gibson. dbug: Systematic Testing of Unmodified
Distributed and Multi-threaded Systems. In Proc. of Model Checking and
Software Verification—SPIN’00, London, UK, volume 1885 of LNCS, pages
188–193, 2000. Springer-Verlag.

[112] L. Wang and S. D. Stoller. Runtime Analysis of Atomicity for Multithreaded
Programs. IEEE Transactions on Software Engineering, volume 32(2), pages
93–110, February 2006.

[113] E. J. Weyuker. The Evaluation of Program-based Software Test Data Ade-
quacy Criteria. Communications ACM, volume 31, pages 668–675, June 1988.

[114] D. White. Software Review: The ECJ Toolkit. Genetic Programming and
Evolvable Machines, volume 13, pages 65–67, March 2012.

[115] M. Xu, R. Bodı́k, and M. D. Hill. A Serializability Violation Detector for
Shared-memory Server Programs. SIGPLAN Notices, volume 40(6), pages
1–14, June 2005.

[116] C.-S. D. Yang, A. L. Souter, and L. L. Pollock. All-du-path Coverage for
Parallel Programs. In Proc. of International Symposium on Software Testing
and Analysis—ISSTA’98, pages 153–162, New York, NY, USA, 1998. ACM
Press.

[117] J. Yu and S. Narayanasamy. A Case for an Interleaving Constrained Shared-
memory Multi-processor. Computer Architecture News, volume 37(3), pages
325–336, June 2009.

[118] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient Detection of Data
Race Conditions via Adaptive Tracking. Operating Systems Review, volume
39(5), pages 221–234, December 2005.

[119] W. Zhang, C. Sun, and S. Lu. ConMem: Detecting Severe Concurrency Bugs
Through an Effect-oriented Approach. In Proc. of Architectural Support for
Programming Languages and Operating Systems—ASPLOS’10, pages 179–
192, New York, NY, USA, 2010. ACM Press.

119

Appendix A

Experiments with Parameters of
Genetic Algorithms

This appendix presents selected results we obtained when experimenting with dif-
ferent values of parameters of the genetic algorithms presented in Chapter 5. Our
motivation for these experiments was to discover how the different values of these
parameters influence the performance of the genetic algorithm when solving the test
and noise configuration setting (TNCS) problem formalised in Chapter 5. In par-
ticular, we studied the performance of the breeding process on the Crawler test case
(introduced in Chapter 3) using a fitness function which combines three concurrency-
related coverage metrics introduced in Chapter 3, namely, Synchro, Avio∗ and HB-
Pair∗. From each experiment, we collected various data concerning the generated
populations including, in particular, the following three statistics: (i) The average fit-
ness value in each generation denoted as aver, (ii) the best individual fitness in each
generation denoted as best, and (iii) the cumulative value of fitness from all already
evaluated individuals denoted as gcumul. Further details concerning our testing en-
vironment can be found in Section 5.5.

Results of three analyses are presented here. First, in Section A.1, we focus on
settings of the population size (200, 80, 40, 20, and 10), the crossover operator(one-
point, two-point, and any-point with the probability of mutating each element of the
vector set to 0.1 or 0.25), and the probability of applying the mutation operator (0.01,
0.1, 0.25, and 0.5). Then, in Section A.2, we study the influence of elitism which
puts into the next generation a number of individuals (0, 2, 4) without breeding,
and a random creation of a few individuals (0, 2, 4) that are put into the following
generation. In the third set of experiments presented in Section A.3, we focus on
the influence of different selection operators (fitness proportional and tournament
selection operators—with the size of the tournament being 2 or 4). A summary of
all the results is provided in Section 5.5. The considered constants (e.g., sizes of
population and various probabilities) were chosen with respect to values suggested in
the literature, e.g., [104].

120

Figure A.1: Influence of the population size on the average fitness value within gen-
erations

A.1 Population Size, Mutation, and Crossover Parameters

Our findings are illustrated using a set of graphs showing influence of the consid-
ered parameters on the aver, best, and gcumul statistics computed from our fitness
function introduced above. Graphs in Figures A.1 and A.2 show the influence of
the considered parameters on the value of the aver statistics. Graphs in Figures A.3
and A.5 demonstrate the influence of the parameters on the value of the best statistics.
Finally, Figure A.6 presents a graph showing the influence of different crossover and
mutation settings on the gcumul statistics in the two selected sizes of population.

In Figure A.1, we can see a graph showing average values of the aver statistics
for different size of populations when a certain number of individuals was evaluated.
The average value is computed from all experiments with a particular population size
using different crossover and mutation parameters. We can see that the average fit-
ness value computed from the small populations increases faster, saturates earlier,
and almost always is higher than the average fitness value computed from bigger
populations if the total number of evaluated individuals given by the x-axis is con-
sidered. This is natural because small populations have usually a lower diversity and
one can perform the breeding process more often than with the big populations. But,
if the values of the aver statistics are compared by generations (each symbol in the
graph represent the value computed after each generation—therefore there are only 3
values computed for the population of size 200), one can see that values obtained by
the first, second, etc. generations are similar. A difference can be found in the satu-
ration point. For instance, the population with 10 individuals stops rapidly growing
after 5 generations while the population with 20 individuals reaches similar values
after 7 generations. In general, the saturation point is harder to detect for the bigger
generations.

The graph in Figure A.2 shows average values of the aver statistics for the pop-
ulation of size 40 when different mutation and crossover parameters are used. The
graph is divided into four parts each showing results for the particular setting of the

121

Figure A.2: Influence of the crossover and mutation parameters on the average fitness
value within generations (population size 40)

mutation parameter. One can clearly see that lower mutation (i.e., the left parts of the
graph) leads to higher values of the aver statistics. Again, this is natural hence higher
values of the mutation probability introduce more diversity to the bread generation.
The overall best results are obtained when the mutation probability is set to 0.01 and
the any-point crossover operator is used. This crossover operator produces individu-
als which differ from their parents only a little if a low probability parameter is used.
Overall, the smaller influence of the mutation and crossover parameters is, the higher
value of the aver statistics is reached because the operators disturb the effect of the
considered selection operators only a little.

The graph in Figure A.3 presents average values of the best statistics for different
sizes of population with respect to the number of performed evaluations denoted as
global count. Only the first 600 evaluations are zoomed for clearer overview. The
average values for each population size are computed from all considered settings of
the crossover and mutation parameters. At first, the values seem to be very similar
for all the considered sizes of population. This is mainly due to considered average
values we present here. Nevertheless, one can spot that the values achieved by the
first generations of bigger populations are very similar (and in the case of population
of size 20 and 200 even better) to values obtained by the configurations with lower
sizes of population if the values of the same total number of evaluations is used. This
means that even the random search algorithm provide comparative results for the
given comparison.

The graph in Figure A.4 presents the same results as the previous graph presented
in Figure A.3 but values from 1,000 to 2,000 evaluations are zoomed this time. The
graph shows that within several generations, the biggest and smallest populations are
overtaken by the middle sized populations. In the case of population of size 10, this
is probably caused by reaching a local optimum in some experiments. In the case of
population of size 200, the worse values are probably caused by the low number of
generations which are not enough to reach the optimum as often as in the cases of
populations with size 20, 40, and 80.

122

Figure A.3: Influence of the population size on the fitness value of the best individual
showing only the first 600 evaluations

Figure A.4: Influence of the population size on the fitness value of the best individual
showing only fragment between 1,000 and 2,000 evaluations

In Figure A.5, one can see a graph that shows the influence of the crossover
(represented by colours) and mutation (represented by the four different parts of the
graph) settings on the best statistics. The presented values are computed from results
collected when the size of population was set to 20, but a very similar tendency can be
seen for the other sizes of population as well. The results show that there is no clear
winner among the configurations, and the differences among the settings are quite
small, ranging from 0.62 to 0.63. The best individual was found with the highest
probability when the mutation was set to 0.25 and the crossover was set to any-point.
The setting which uses mutation with probability 0.25 seems to provide relatively
good average values of the best individual within the first 15 generations regardless
which crossover operator is used.

Finally, Figure A.6 presents a graph that shows the influence of the different set-
tings of mutation and crossover parameters on the gcumul statistics. The graph shows
the gcumul values after the first 240 evaluations of individuals (1200 executions of

123

Figure A.5: Influence of the crossover and mutation parameters on the fitness value
of the best individual (population size 20)

the test) for two sizes of populations (namely, 20 and 40). Therefore, we consider
the values after 12 generations in the case of population size 20 and 6 generations
in the case of population size 40. The differences among the considered settings are
below 10 % of our fitness function. The graph indicates that the highest cumulative
coverage during the beginning of the breeding process is on average achieved when
the crossover operator is set to any-point and the mutation probability is set to 0.1. It
can be also seen that in the case of the any-point crossover operator which changes
the individuals only a little, the value of the mutation probability influences results
more than in the case of the two-point crossover operator.

If we look at the progress of the gcumul statistics with different parameter set-
tings, one can see that there is no silver bullet among the considered configurations.
In nearly each generation, the highest value of the gcumul statistics is obtained us-
ing different sizes of the population and different settings of the other considered
parameters. The situation changes after the saturation point which occurs after evalu-
ating different numbers of generations for different parameter settings (often between
1000 and 1500 evaluations of individuals). After saturation, the results are very simi-
lar ranging from 0.88 to 0.92. In general, higher values after saturation were obtained
using medium-sized populations (20, 40, and 80) with mutation probability 0.25 and
the one-point or two-point crossover operators.

A.2 Elitism and Random Individuals

Next, we focus on the influence of the commonly used modification of genetic al-
gorithms. In particular, on the influence of elitism (i.e., number of elite individuals
that are added to the next generation without breeding) and random generation of
individuals (i.e., number of randomly generated individuals that are added to the next

124

Figure A.6: Influence of the crossover and mutation parameters on the cumulative
coverage (after 240 evaluations, population size 20 and 40)

Figure A.7: Influence of elitism and random individuals on the average fitness value
within generations

generation without breeding). The results presented here were achieved using the
size of the population set to 40, the crossover operator set to any-point with prob-
ability 0.1, and the mutation probability set to 0.01. We considered three different
numbers of elite and random individuals (namely, 0, 1, and 4) representing 0, 2.5 %,
and 10 % of the population. Our results are summarised in three graphs depicted in
Figures A.7, A.8, and A.9. The graphs show results for the first 40 generations only
which capture the most interesting part of the breeding process.

The graph in Figure A.7 shows the influence of elitism represented by the 3 dif-
ferent parts of the graph and random generation of individuals represented by colours
on the average fitness value within generations (the aver statistics). The values in the

125

Figure A.8: Influence of elitism and random individuals on the best individuals

Figure A.9: Influence of elitism and random individuals on the cumulative coverage

graph were computed as average values obtained from 2 executions of each configu-
ration. The influence of both parameters is evident. The presence of elite individuals
has positive effect on the results with minimal difference between 1 and 4 elite indi-
viduals. And, the more randomness is present in the generations the lower average
values are obtained.

The graph in Figure A.8 shows similar results as above for the value of the best
individual (the best statistics). The leftmost part of the graph shows the situation
when no elite individual is passed to the next generation without breeding. This has
a negative effect on the best statistics which does not increase nicely. Instead, the
values are jumping because in each generation, the best individual can achieve lower
fitness than the best individual of the previous generation. However, in general, one
can clearly see that the best individuals in the later generations achieve on average
higher fitness than the best individuals in the first generations. All three parts of the
graph demonstrate that the highest values of the fitness can be achieved when a high
number of random individuals is present in each generation. One can also see small

126

Figure A.10: Influence of the selection methods on the average fitness value

Figure A.11: Influence of the selection methods on the average fitness value – inter-
polated

but positive effect of the elitism. The overall best result is achieved by the setting
with highest number of random and elite individuals.

In Figure A.9, a graph presenting the influence of the elite and random individuals
on the cumulative coverage (the gcumul statistics) within the first 300 evaluations (40
generations) is shown. Again, the number of random individuals is represented by
colours and the number of elite individuals divides the graph into three parts. One
can clearly see that the more random individuals are present in each generation the
higher cumulative coverage is reached. Two different tendencies concerning elite
individuals can be seen here. If no or small random individuals are present, the elite
individuals have a slightly negative impact on the cumulative coverage. Nevertheless,
the overall best value was reached when both parameters were set to 10 % of the
generation.

127

Figure A.12: Influence of the selection methods on the best individuals

Figure A.13: Influence of the selection methods on the cumulative coverage

A.3 Selection Operators

Finally, we have focused on a comparison of different selection operators. In our
breeding infrastructure, we use two selection operators which select two individuals
that are then crossed over. We considered only two kinds of selection operators in our
experiments. The fitness proportional operator (denoted as prop in the graphs) rep-
resents a roulette wheel selection operator [104]. The tournament operator (denoted
as tour in the graphs) picks the individual with the highest value of the fitness out of
a group of randomly selected individuals. We consider two sizes of the group (the
tournament size)—2 and 4 individuals. Our findings are illustrated by the four graphs
depicted in Figures A.10, A.11, A.12, and A.13. These results were obtained using
a similar configuration as above. We set the size of population to 40, the crossover
operator to any-point with probability 0.1, and the mutation probability to 0.01. We
consider only one elite and no random individual in each generation.

128

The results for the aver statistics are not presented because the values are jumping
among generations a lot as can be seen in Figure A.10. But, if we interpolate them as
shown in Figure A.11, we clearly see that within the first 7 generations the value of the
aver statistic rise (over approximately 10 %) and then stagnate. Overall, good results
were obtained using combination two tournament operators and combination of the
tournament and fitness proportional selection operators. However, the differences
among various combinations were very low usually below 5 %.

The graph depicted in Figure A.12 shows the influence of the considered selec-
tion operators on the best individual. The graph is divided into two parts. The left
part of the graph shows results for tournament size 2 and the right part of the graph
shows results for the tournament size 4. Both cases are compared with the configu-
ration based on two fitness proportional selection operators. The impact of different
selection operators is minimal (around 1 %) as can be seen from the graph. This
is probably caused by the similarity of the considered operators where all of them
choose individuals having a promising fitness value with higher probability. But, it
seems that the best results were obtained by the combination of the tournament (with
tournament size 4) and fitness proportional selection operators. This combination
provides the best results after a few first generations and at the end achieves very
similar results to the best result achieved by the configuration where two tournament
operators were used.

Finally, the graph presented in Figure A.13 illustrates the influence of the selec-
tion operators on the cumulative coverage. The graph is again divided into two parts
as in the previous case. Results for the first 220 evaluations (1100 executions of the
test) are presented. Again, a minimal influence of the selection operators can be seen.
The best results were again achieved by the combination of fitness proportional and
tournament selection (tournament size 2) operators.

129

Appendix B

An Infrastructure for
Search-based Testing of
Concurrent Programs

This appendix presents an infrastructure for search-based testing of concurrent pro-
grams which we developed and used in this thesis for an experimental evaluation of
our ideas. The infrastructure is called SearchBestie. The name is an abbreviation
for Search-Based Testing Environment. The infrastructure allows one to implement
and experiment with various metaheuristic algorithms, and so it can be viewed as yet
another tool for search-based optimisation. Indeed, the infrastructure can be used as
a platform for various applications of metaheuristic optimisation algorithms to dif-
ferent problems including (but not limited to) program testing.

What makes the infrastructure different from its competitors is a support for test-
ing of concurrent programs. This includes evaluation of candidate solutions using
a test execution where the program under test is first instrumented, then executed
together with a run-time analyse and a noise maker, and finally the results of the ex-
ecution are gathered so that the fitness function can be evaluated. The second major
difference is that a special attention is paid to specifics of concurrent programs testing
introduced in Chapter 2 such as scheduling non-determinism. We reflect them mainly
by various iterators which enable multiple execution of the same test together with
checking a termination condition after each iteration and by providing combination
operators which allow to aggregate results from multiple executions.

In fact, the goal was not to create a new general purpose tool for search-based
testing but to create a glue which allows for cooperation among specialised tools
for concurrency testing such as IBM Concurrency testing tool (ConTest) [61] de-
scribed in Chapter 2 and tools or libraries which focus on metaheuristic optimisation
algorithms such as the ECJ toolkit [114]. Therefore, a special attention is paid to

130

an extensible design of our infrastructure. Moreover, SearchBestie can either be used
as a tool for search-based testing or as a fitness evaluation procedure within another
tool.

The secondary aim of the infrastructure is to create a database of obtained re-
sults which can be further studied. This includes collection and organisation of data
produced by many executions of tests. The data can be of various forms including
string identifiers, numbers, binary data, and coverage information describing both
the configuration of the tests and the obtained results. SearchBestie allows to upload
these results into a relational database. Then, further tools and techniques including
data-mining techniques can be used to analyse the data.

The rest of the appendix is organised as follows. First, the extensible architecture
of SearchBestie is presented in Section B.1. Then, the cooperation with other tools
and libraries is described in Section B.2.

B.1 The Architecture of SearchBestie

The SearchBestie infrastructure is divided into four cooperating modules called the
Manager, State space storage, Search, and Executor. The roles and interactions of
all these modules are briefly introduced in the following paragraph. Each module is
then described in more detail together with some design and implementation notes in
the following four subsections.

A general overview of the structure and functioning of the SearchBestie architec-
ture is provided in Figure B.1. The manager reads a configuration file and initialises
other modules. Then, the manager enters a loop common for all search techniques.
The manager asks the search engine to identify a state in the searched state space,
which may be viewed as a test and its parameters, to be explored in the next step.
The chosen state is then passed to the execution module that executes the appropri-
ate test. Results of the test are collected, and an object encapsulating the results is
passed back to the search engine as a feedback and stored in the state space storage.
Subsequently, a test whether pre-defined termination conditions have been fulfilled is
performed. If not, the next iteration starts, and the manager asks the search engine to
provide a next state of the search space to be explored. When the searching is over,
the manager can analyse the obtained results or export them.

The architecture is meant to be very generic and therefore all modules consist of
two parts: an interface that communicates with the rest of the infrastructure and plug-
ins that actually provide the functionality. Plug-ins can implement the functionality
on their own or can implement an interface to an external library or tools. Since plug-
ins for the same module share a common interface, they can be easily interchanged.
This allows users to easily experiment with several different testing approaches. The
generality of our architecture is also supported by the idea of building blocks that
allow for combining several plug-ins into more complicated entities.

131

Figure B.1: High-level architecture of SearchBestie

The State Space Storage Module

The state space storage module encapsulates a model of the search space and stores
and organises results obtained from the already explored states. The interface pro-
vided by this module allows other modules to get information concerning the search
space and the results obtained so far.

The search space can have any number of dimensions, which may be of several
different kinds. In particular, SearchBestie currently supports four types of dimen-
sions: (i) boolean dimensions, (ii) integer dimensions with given minimal and max-
imal values, (iii) enumeration dimensions consisting of some number of values that
can be strings, integers, and booleans, and, finally, (iv) test dimensions, which are
special dimensions containing an enumeration of tests that are used to explore partic-
ular states.1 Each dimension contains information whether values in the dimension
are considered to be ordinal or not. Each state space must contain exactly one test
dimension. So, if the test dimension contains only one test, the whole search space is
explored using this test. However, for complex programs, we expect dozens of tests.
We will describe tests in more detail in the following subsection.

A state in a search space is then a vector of values from all dimensions (one
value per dimension), having the semantics of a test and its parameters. Of course,
there can be states that are not allowed or are not interesting from the testing point of
view (e.g., some parameter does not influence the particular test or some combination

1We use the name “test dimensions” as testing is the main application of SearchBestie for us. How-
ever, this does not restrict the use SearchBestie to testing only: The special “test” dimension can contain,
in general, any functions to be run over particular states, leading to some evaluation of them, without
any restriction of what is the real meaning of these functions.

132

of parameters needs not be valid for a particular test). Such combinations can be
specified by a user-defined predicate. The search engine is notified when it tries to
explore an illegal state.

When a state is explored, the executor engine produces a result that is stored
in the state space storage module. The storage of results has the form of a map
that maps already explored states to the corresponding results. The module can be
configured to store only one result for each state or to store a set of results. When
a particular state is explored multiple times, the user can define whether all results are
stored or only one value obtained by applying a combination operator on the old and
new result value. The storage module currently supports five combination operators,
returning the better or worse (w.r.t. the result of a user defined fitness function), and
accumulated, differentiated, or intersected results.

The result of a state exploration is a vector of values of various kinds and mean-
ings. Each result contains at least two items in the vector that are introduced by
SearchBestie. The first describes whether the test passed, failed, or was interrupted,
and the second contains information on how long the exploration of the state took.
Other values in the vector are considered to be problem-specific and left to the user to
be defined. For instance, in our experiments, we often use results containing coverage
information and the number of errors detected during the test execution.

When dealing with search-based algorithms, a computation of the fitness function
is important. Since there could be several different fitness functions to be used over
a vector of values in a result, we decouple the evaluation of fitness functions from
the computation of results. Therefore, the user can experiment with different fitness
functions without a need to change anything within the results.

The state space storage module can automatically provide various statistical data
such as the number of so far explored states, the number of obtained results or the
number of results with some specific value, coordinates of notable states (e.g., pro-
viding the highest value of the fitness function), cumulative results accumulated over
the whole search space or over a selected subset of states, etc. The data can be ex-
ported as views, i.e., two dimensional tables which can be further analysed outside
SearchBestie. The module can also export obtained results either to files on disk or
to the SQL database. Exported data can be again imported or further analysed by
external tools as described in Section B.2.

The Executor Module

The Executor module controls exploration of a chosen state from the state space either
by executing an external program (e.g., a test) or by evaluating a function encoded
into a Java class. Again, the module can be divided into an interface communicating
with the rest of the infrastructure and a plug-in that actually performs the computa-
tion. As was mentioned in the previous subsection, the engine is determined by the
value of the test dimension of the particular state being explored.

133

To allow users to easily create more complicated engines, a few adjustable build-
ing blocks are available. The building blocks are based on three kinds of engines:
(i) A task performs some given work. Currently, tasks that execute processes or Java
processes are available. (ii) A test engine is very similar to a task engine with the ex-
ception that when a test is performed, it generates a result. Therefore, the test engine
actually implements exploration of a given state. (iii) An iteration checker engine
takes as its parameter a generated result and decides whether a further exploration is
needed or not.

Based on these basic engines, several more complex engines are available too:
(i) A timed test encapsulates a given test engine and if an execution of the encapsu-
lated test exceeds a given time bound, the execution is interrupted. (ii) A repeated
test adds an iteration checker engine to a test. The test is then executed in a loop until
a termination condition is fulfilled. One can also choose whether results generated
by the encapsulated test are stored in the state space storage module or whether the
resulting (best, worst, accumulated, etc.) result is stored there only. (iii) A composed
test allows for adding additional tasks into the encapsulated test. The first task is op-
tionally executed before performing the test and the second one is optionally executed
after the test.

Since executing hundreds of tests is time demanding, we also implemented a sim-
ple plug-in that imports data from a previously explored state space. Afterwards,
when the plug-in is asked to perform a test, a result obtained within the imported
exploration or in the database is immediately returned. This way, the experiments
can be performed quite fast, and the user can analyse results instantaneously as far as
the configuration of the state space is the same and the plug-in is not asked to return
more results than are available. In that case, the test is executed and results provided.
This way, the infrastructure can be used to evaluate not yet evaluated states only and
to share results among multiple instances of SearchBestie.

The Search Module

The search module consists of an interface which is used to cooperate with the rest
of the infrastructure and a search algorithm implemented as a plug-in which actually
does the search. The search module is called to provide the next state that should be
explored. The search engine can access the state space storage module via an appro-
priate interface in order to get information concerning the search space (dimensions,
results, statistics, etc.).

To prove the concept, we implemented several search algorithms: a sequential
search that explores the whole search space in a sequential manner, a random search
that explores randomly chosen (not yet explored) states, and the Hill-climbing search
algorithm. We do not invest energy into creation of further and more complicated
search algorithms because our goal was to allow SearchBestie to use external tools
as described in Section B.2.

134

The Manager Module

The manager module is a service module that takes care of the initialisation and
finalisation of SearchBestie, provides supporting tools for other modules (e.g., the
logging subsystem), and during the exploration loop controls the flow of data among
modules. The manager module also provides a simple interface for a communication
with the user.

SearchBestie takes as input a few basic parameters (specifying, e.g., whether to
import previous results or not, etc.) and an XML configuration file. The file contains
a configuration for all modules and is divided into 3 parts (a configuration of the
search module, the executor module, and the state space storage module). The main
part of the configuration file is devoted to a definition of the dimensions of the search
space to explore.

The algorithm of the search space exploration in SearchBestie was already men-
tioned in the beginning of this appendix. Let us, however, describe it in more detail
now:

1. Optionally, an initialisation task is performed before the actual exploration be-
gins. This task can be used to prepare tests, e.g., compile and/or instrument the
code.

2. The search module is asked to identify a state to be explored. Each state has
the test dimension that identifies the test engine to be used for an exploration
of the state.

3. The chosen test engine is initialised and executed, taking as a parameter the
state. The test generates a result.

4. The result generated by the test engine is passed to the search module as a feed-
back for the search engine and to the state space storage module to be stored.

5. Finally, the result is passed to the iteration checker engine that decides whether
the termination condition is satisfied. If not, the execution continues by Step
2. If the termination condition is satisfied, the execution continues by the next
step.

6. Optionally, a finalisation task is performed after the exploration. This task can
be used to finalise tests, e.g., do some post-processing of the results, remove
temporary files, etc.

There are multiple ways how the exploration loop may end. The exploration may
be finished if a global timeout expires, the user makes the manager stop the explo-
ration, the search engine does not provide any state to be explored, or the iteration
checker executed at the end of each iteration detects that some pre-defined termina-
tion condition has been fulfilled. When the exploration loop is finished, the explored

135

state space is exported to a file for further analysis. During the exploration, another
output file is being produced. This file contains a report concerning the sequence of
explored states and the corresponding achieved results (which may itself be interest-
ing when exploring, e.g., how the accumulated coverage was increasing during the
exploration).

When experimenting with different heuristics, one sometimes needs to perform
multiple search space explorations and to compute average values of the obtained
results in order to decrease influence of the non-determinism present in the used
approach. Therefore, our manager module allows to define the number of times the
process of exploration is performed and to collect important statistical data from such
executions. Of course, it is also possible to subsequently analyse each exploration
separately using logs and exported data.

B.2 A Tool Chain for Search-based Testing and Analysis

The extensible design of SearchBestie allows us to use the tool as a standalone pro-
gram which performs a metaheuristic optimisation or as a glue interconnecting spe-
cialised tools and libraries which implement metaheuristic algorithms, dynamic anal-
yses, a noise maker, etc. Moreover, the export functionality implemented in the state
space storage module allows us to further transform, analyse, and visualise obtained
results. This section describes in more details the way how SearchBestie communi-
cates with tools which we used to obtain results presented in this thesis.

Figure B.2 presents the particular tool chain we used. The diagram on the figure
shows interconnection of SearchBestie with other tools. Three major extensions of
SearchBestie are captured in the figure:

i. The IBM Concurrency Testing Tool (ConTest) introduced in Chapter 2 is used by
SearchBestie to perform test executions, inject noise, and collect results which
are then used by SearchBestie to compute the corresponding fitness value. The
communication with ConTest is realised within the executor module plug-in.

ii. The ECJ toolkit [114] provides evolutionary algorithms producing individuals to
be evaluated by SearchBestie. In case of cooperation with ECJ, ECJ is executed
first and SearchBestie is used to evaluate candidate solutions generated by ECJ.

iii. The state space storage module allows us to store the collected results into disk
files, upload them into an SQL database, or produce various two dimensional
views of the data which can be further processed by the Universal Java Matrix
Package (UJMP) [10], any spreadsheet program, or further analysed by a data
mining tool such as the RapidMiner (formerly called YALE) [82].

All three mentioned extensions are described in more details below.

136

Figure B.2: A tool chain for concurrent program testing and analysis

Cooperation with the IBM ConTest

Typical use scenario of IBM ConTest is as follows: (i) First, Java byte-code of the
test is instrumented before its execution. ConTest also provides dynamic instrumen-
tation which instruments each class during its loading into memory. Moreover, since
we often execute the same test many times, we prefer static instrumentation which is
performed only once. (ii) When the instrumented code is executed, ConTest is ini-
tialised before executing the code of the test. During initialisation, ConTest reads its
configuration files which contain parameter settings of ConTest, a list of enabled Con-
Test plug-ins, and parameters used by the plug-ins. ConTest also generates a unique
identifier for the current execution. Then, the instrumented byte-code is executed.
ConTest and its plug-ins produce outputs (e.g., the coverage) into the ConTest out-
put directory. (iii) Next, the generated data from the execution are available in sub-
directories of the output directory after execution. Each generated file contains the
ConTest unique execution identifier in its name. (iv) Finally, unnecessary data pro-
duced by ConTest or already processed can be deleted.

The cooperation of SearchBestie with ConTest is implemented within the execu-
tor module plug-in and consists of two tasks implementing steps (i) and (iv) intro-
duced above and one test engine which encapsulate steps (ii) and (iii). The only ac-
tivity required by the user of SearchBestie is to enable this kind of test and properly

137

set the parameters controlling its behaviour, the code to be executed, and parame-
ters of ConTest and its plug-ins. The tasks can be activated by the test if enabled
by corresponding parameters. One task is responsible for static instrumentation per-
formed once before the search process within the SearchBestie begins. The their task
is responsible for cleaning of the ConTest output directory after each evaluation of
an individual.

The main functionality is implemented in the test engine which is responsible
for generation of configuration files of ConTest and its plug-ins, execution of the
test within a separate process, and importing generated data from the ConTest out-
put directory into the vector of results used by SearchBestie to compute the fitness
value. The configuration of the test engine can contain variables whose values are
determined by SearchBestie according to the state of the state space currently being
evaluated. The engine also allows to detect occurrence of exceptions by observing
outputs of the executed test. Processing the executed test outputs also allows us to
detect situations when the running test produces no output for a predefined time. This
helps to detect deadlocks and some other progress problems. In such case, the ex-
ecution can be terminated by the test engine. Currently, SearchBestie supports all
functionality implemented in the latest version of IBM ConTest.

Cooperation with the ECJ Toolkit

ECJ is a Java-based evolutionary computation research system being developed for
more than ten years. It supports a wide range of metaheuristic algorithms and ap-
proaches including genetic programming, genetic algorithms, evolutionary strategies,
particle swarm optimisation, and differential evolution [114]. The toolkit have been
chosen among many other existing tools and libraries mainly due to very well writ-
ten documentation, well-arranged system of configuration files, and internal design
which allows us to easily interconnect SearchBestie with ECJ.

The maturity of ECJ convinced us to redesign SearchBestie such that it allows
external tools like ECJ to use SearchBestie as a procedure for evaluation of candidate
solutions. The cooperation works as follows. ECJ is executed by the user and within
the initialisation phase of ECJ, SearchBestie is also initialised. ECJ then generates
individuals for evaluation and performs search. Each time ECJ requires an individ-
ual to be evaluated, SearchBestie is called. The evaluation consists of three steps:
(i) First, the individual is transformed into the corresponding state in the state space
used by SearchBestie. (ii) Then, the manager module evaluates the state as if it comes
from the search module. (iii) Finally, the result is stored in the state space storage
module and the computed fitness is passed back to ECJ. The search process can be
stopped either by ECJ, e.g., when predefined number of generations is evaluated or
by SearchBestie.

This design of SearchBestie allows us to use all features present in ECJ including
rich set of implemented metaheuristic algorithms, logging and statistics facilities,

138

and distributed evaluation. The support of distributed evaluation is important for the
search-based testing because evaluation of an individual takes a considerable time
due to the need of multiple executions of the test. This way, we can easily distribute
the evaluation among several computers and save time.

Export and Analysis of Results

The secondary aim of our infrastructure is to build a database of results which can
be used to further study concurrency behaviour and effectiveness of noise injection
techniques. The state space storage module allows to store results on a disk or in
a database such that the results can be imported if needed. Each exported record
contains a state identification and the obtained results including the execution time,
error manifestation, and coverage metrics. This allows us to handle large sets of
results which do not fit into memory. We also implemented an executor module plug-
in which uses the stored results when asked to evaluate already evaluated state. This
allows us to compare different search algorithms on the same sample of data and
so mask the influence of scheduling non-determinism, and to accelerate evaluation
because retrieving data from the disk or database is faster than the test execution.

The state space storage module also allows us to produce two dimensional tables
containing various statistical data concerning the evaluated states of the state space.
These data are suitable for further analysis and reasoning about the evaluation pro-
cess. The data can be directly uploaded to the Universal Java Matrix Package library
which allows us to visualise the results (e.g., to study the saturation effect), perform
linear algebra operations, and to export the table into various formats including the
Comma-separated values (CSV), Excel spreadsheet (XLS), and SQL database.

SearchBestie is able to produce a huge amount of statistical data in a form of
views. Data mining techniques are ideal to deal with such data. Therefore, we used
the RapidMiner tool to further analyse our data. So far, we only used the tool only
to detect outliers which in most cases indicate an error in our infrastructure and to
build complex database queries. Moreover, there is no problem to apply advanced
data mining techniques to the collected data produced by our infrastructure. This is
part of our future work.

139

