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ABSTRACT
Stable proteins are utilized in a vast number of medical and biotechnological applications.
However, the native proteins have mostly evolved to function under mild conditions inside
the living cells. As a result, there is a great interest in increasing protein stability to
enhance their utility in the harsh industrial conditions. In recent years, the field of protein
engineering has matured to the point that enables tailoring of native proteins for specific
practical applications. However, the identification of stable mutations is still burdened
by costly and laborious experimental work. Computational methods offer attractive
alternatives that allow a rapid search of the pool of potentially stabilizing mutations
to prioritize them for further experimental validation. A plethora of the computational
strategies was developed: i) force-field-based energy calculations, ii) evolution-based
techniques, iii) machine learning, or iv) the combination of several approaches. Those
strategies are usually limited in their predictions to less impactful single-point mutations,
while some more sophisticated methods for prediction of multiple-point mutations require
more complex inputs from the side of the user. The main aim of this Thesis is to provide
users with a fully automated workflow that would allow for the prediction of the highly
stable multiple-point mutants without the requirement of the extensive knowledge of the
bioinformatics tools and the protein of interest.
FireProt is a fully automated workflow for the design of the highly stable multiple-
point mutants. It is a hybrid method that combines both energy- and evolution-based
approaches in its calculation core, utilizing sequence information as a filter for robust
force-field calculations. FireProt workflow not only detects a pool of potentially sta-
bilizing mutations but also tries to combine them together while reducing the risk of
antagonistic effects.
FireProtASR is a fully automated workflow for ancestral sequence reconstruction, allow-
ing users to utilize this protein engineering strategy without the need for the laborious
manual work and the knowledge of the system of interest. It resolves all the steps required
during the process of ancestral sequence reconstruction, including the collection of the
biologically relevant homologs, construction of the rooted tree, and the reconstruction
of the ancestral sequences and ancestral gaps.
HotSpotWizard is a workflow for the automated design of mutations and smart libraries
for the engineering of protein function and stability. It allows for a wider analysis of the
protein of interest by utilizing four different protein engineering strategies: i) identifi-
cation of the highly mutable residues located in the catalytic pockets and tunnels, ii)
identification of the flexible regions, iii) calculation of the sequence consensus, and iv)
identification of the correlated residues.
FireProtDB is a database of the known experimental data quantifying a protein stability.
The main aim of this database is to standardize protein stability data, provide users with
well-manageable storage, and allow them to construct protein stability datasets to use
them as training sets for various machine learning applications.
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tral sequence reconstruction



ABSTRAKT
Stabilní proteiny nacházejí široké uplatnění v řadě medicínských a biotechnologických
aplikacích. Přírodní proteiny se vyvinuly tak, aby fungovaly převážně v mírných pod-
mínkách uvnitř buněk. V důsledku toho vzniká zájem o stabilizaci proteinů za účelem
jejich širšího uplatnění také v průmyslovém prostředí. Obor proteinového inženýrství se v
posledních letech rozvinul do úrovně umožňující modifikovat proteiny pro různá využití,
ačkoliv identifikace stabilních mutací je stále zatížená drahou a časově náročnou expe-
rimentální prací. Výpočetní metody se proto uplatňují jako atraktivní alternativa, která
dovoluje prioritizovat potenciálně stabilizující mutace pro laboratorní práci. Během po-
sledních let bylo vyvinuto velké množství výpočetních strategií: i) výpočty energie pomocí
silových polí, ii) evoluční metody, iii) strojové učení a iv) kombinace více přístupů. Spo-
lehlivost a využití nástrojů jsou často limitovány predikcí pouze jednobodových mutací,
které mají malý dopad na stabilitu proteinů, zatímco sofistikovanější metody pro pre-
dikci multibodových mutací vyžadují větší množství práce na straně uživatele. Hlavním
záměrem této práce je poskytnout uživatelům plně automatizované metody, umožňující
návrh vysoce stabilních vícebodových mutantů bez potřeby pokročilých znalostí bioinfor-
matických nástrojů a zkoumaného proteinu. V této práci jsou prezentovány následující
nástroje a databáze:
FireProt je plně automatizovaná metoda pro návrh stabilních vícebodových mutantů z
kategorie tzv. hybridních přístupů. Ve svém výpočetním jádře spojuje jak energetické tak i
evoluční metody, přičemž evoluční informace jsou užívány především jako filtry pro časově
náročné výpočty energií. Kromě detekce potenciálně stabilizujících mutací se FireProt
rovněž snaží spojit tyto mutace do jednoho vícebodového mutanta s minimalizací rizika
vzniku antagonistických efektů.
FireProtASR je plně automatizovaná platforma pro rekonstrukci ancestrálních sekvencí,
která dovoluje uživatelům využít tuto strategii bez nutnosti velkého objemu manuální
práce a hluboké znalosti zkoumaného proteinu. FireProtASR řeší všechny kroky ancestrální
rekonstrukce, včetně sběru biologicky relevantních sekvencí, konstrukce zakořeněného
fylogenetického stromu a rekonstrukce ancestrálních sekvencí.
HotSpotWizard je nástroj pro návrh mutací a mutačních knihoven za účelem zlepšení
stability a aktivity zkoumaných proteinů. Nástroj dovoluje provést i širší analýzu za využití
čtyř různých strategií běžně používaných v oboru proteinového inženýrství: i) identifi-
kace evolučně variabilních pozic v blízkosti katalytických kapes a tunelů, ii) identifikace
pohyblivých regionů, iii) výpočet sekvenčního konsensu a iv) identifikace korelovaných
pozic.
FireProtDB je databáze dostupných experimentálních dat popisujících stabilitu proteinů.
Hlavním účelem této databáze je standardizovat data v oblasti proteinové stability, po-
skytnout uživatelům platformu k jejich snadnému ukládání a umožnit intuitivní vyhledá-
vání, které by mohly být využité k trénování nových nástrojů s využitím technik strojového
učení.
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rekonstrukce sekvencí
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1 Introduction
Proteins are the building blocks of every living organism, where they perform a wide
variety of functions, including DNA replication, catalysis of metabolic reactions,
responding to the stimuli, and transporting molecules between different parts of
the living structures [1]. They consist of one or more long chains of amino acid
residues connected by peptide bonds. The sequence of the amino acids in the protein
determines its structure and function. Therefore, mutations leading to amino acid
alteration are the driving force of evolution at the molecular level.

Over time, Nature has developed a remarkable diversity of biochemical reactions
vital to the continuing evolution of living organisms and the preservation of life.
These biochemical reactions scale from the simple one-step degradation processes to
more complex pathways employing several different proteins. The recent advances
of the next-generation sequencing, together with the steady growth of the computa-
tional resources and advances in bioinformatics have allowed wider access to these
naturally evolved processes and their utilization in various medical, industrial and
biotechnological applications. Furthermore, protein engineering has matured to the
point that enables tailoring of native proteins for specific practical applications, thus
overcoming the limitations of the native variants that have evolved to function in
mild conditions [38].

As a result, the ability to understand what drives the protein folding, its func-
tion, and other characteristics is crucial for further advances in the field of protein
engineering as the mutations introduced into a modified protein can affect it in many
different ways. Only a small portion of the mutations will have a beneficial impact
on the protein characteristics, considering its intended purpose in the specific medi-
cal or industrial applications. Some of the mutations can influence protein stability,
while others will affect its solubility, activity, expression yields, or ability to fold into
the 3D structure and create more complex quaternary structures by interacting with
other molecules. Both positive and harmful effects can be observed by introducing
mutations into the sequence of the protein of interest, and in many cases, there is an
apparent trade-off between some of the characteristics of the proteins [2, 3, 4]. As
a result, mutation improving protein stability can harm its function and vice versa.
Thus, it is necessary to analyze a large number of mutations to obtain the variant
most suitable for its intended use.

This Thesis focuses mainly on the aspect of protein stability as one of the main
characteristics that determine the usability of the natural biochemical reactions in
the harsh environment of the medical and industrial applications. Stable proteins
are able to withstand extreme temperatures, acidic or basic pH, or an unfavorable
effect of organic solvents and proteases [6]. Furthermore, stable proteins are often
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distinguished by higher half-life, making them easier to transport and store for later
use [8]. As a result, there is a high interest in increasing protein stability, and many
different methods were designed over the years to accomplish such a task.

In the ideal case, the saturation mutagenesis would be applied to evaluate ev-
ery possible mutation on every position of the engineered protein. However, such
search space would be enormous, and the experimental evaluation laborious and
costly. Therefore, there rises a need for effective and precise computational methods
to predict protein stability. To satisfy this goal, a number of in silico tools have
been developed recently. Unfortunately, due to the limited reliability and poten-
tial antagonistic effect between individual mutations, only single-point mutations
with an almost negligible effect on protein stability are usually predicted in the ex-
isting tools. Such mutations typically enhance the stability of the target proteins
only mildly, while higher stabilization can be achieved by engineering multiple-point
mutants [17].

1.1 Objectives of the Thesis

The main aim of this Thesis is to develop new methods that would allow for the
design of highly stable multiple-point mutants, and it presents several possible so-
lutions. FireProt is a hybrid method that combines several different computational
approaches into a single workflow, allowing for a more robust and reliable con-
struction of the stable multiple-point mutants. The second solution, FireProtASR,
is based on natural evolution and the observation that the ancestral proteins were
significantly more stable than their extant counterparts. Finally, HotSpotWizard is
presented as a tool that can be utilized to highlight potentially interesting residues
in the protein, where mutations could have a positive impact not only on the sta-
bility but also on other protein characteristics. The new database FireProtDB is
introduced as a possible solution for a current troubling situation surrounding the
storage and management of the existing data obtained from the laboratory measure-
ments of the protein stability. Such a compilation of manually curated data is very
much needed for future development of reliable predictive tools based on machine
learning.

The main goals of this Thesis are:
• to analyze the physico-chemical forces that participate in the increase of pro-

tein stability
• to construct a reliable protein stability dataset that could be used for the

validation of the existing tools and force-fields and for the training of the
methods based on machine learning
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• to develop, integrate and thoroughly validate a hybrid workflow for an auto-
mated design of the stable multiple-point mutants

• to resolve the algorithmic and technical problems connected with the autom-
atization of the ancestral sequence reconstruction with the primary focus on
improvement of the proteins’ thermal stability

• to develop, integrate and validate a fully automated workflow for ancestral
sequence reconstruction

1.2 Organization of the Thesis
This Thesis is organized as follows. With regards to the interdisciplinary nature of
the work described in Chapter 1, Chapter 2 is devoted to the introduction into
the biological background of the problematics of the protein stability engineering.
The main aim of Chapter 3 is to acquaint the reader with the different methods
and strategies that are viable for protein stabilization. Chapter 4 then focuses
on the available experimental data, and Chapter 5 describes the current state-of-
the-art. Lastly, Chapter 6 provides a deeper understanding of the problematics of
the ancestral sequence reconstruction as the means for protein stabilization. These
six chapters try to establish the theoretical basis of protein stability prediction but
also critically discuss practical applications of the described methods together with
their advantages and their most common pitfalls. The practical part of this Thesis
presents a limited selection of the achieved results. Chapter 7 summarizes the
conducted research and published manuscripts dealing with the problematics of the
protein stability. Four published manuscripts corresponding to three developed tools
and one database are attached at the end of this thesis. Appendix A describes
FireProt, the hybrid workflow for the design of the stable multiple-point mutants.
Appendix B is focused on FireProtASR, an automatized workflow for the ances-
tral sequence reconstruction. Appendix C is devoted to the FireProtDB, a novel
database for the storage and maintenance of the protein stability data. Protein en-
gineering software HotSpotWizard is lastly described in the Appendix D. Finally,
the results are concluded in Chapter 8.
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2 Protein stability
Protein stability is one of the key properties determining protein’s applicability un-
der harsh conditions. The stable protein is able to withstand extreme temperatures
[5], acidic or basic pH, or unfavourable effects of organic solvents and proteases [6].
Furthermore, stable proteins are usually positively correlated with expression yields
[7] and their half-life [8]. As a result, there is a great interest in increasing protein
stability to enhance its utility in various medical, biotechnological, and industrial
applications.

Stability is strongly connected with proteins’ conformation and can be qualified
as the net balance of various intramolecular interactions and conformational entropy
[9]. Those forces determine whether a protein will stay in its native folded confor-
mation. They can be strengthened or disrupted by introducing mutations into the
protein of interest. In this chapter, various physical and biochemical forces will
be described together with the mechanisms of protein folding and well-established
metrics for the protein stability quantification.

2.1 Stability of the folded protein

In 1969, Cyrus Levinthal stated that, because of the high number of degrees of
freedom in an unfolded polypeptide chain, folding of the protein from its primary
to the tertiary structure cannot occur randomly [26]. Based on his estimation, if
we consider a relatively small protein of 100 amino acids with only three allowed
conformations per residue and a sampling time of only 0.1 ps per conformation,
folding of such a protein could demand as long as 5 * 1034 seconds. Therefore, if
the protein were to find its stable folded conformation by a simple random trial,
this process would take longer than is the age of our universe, while in reality, the
protein folding usually occurs in the matter of microseconds up to several minutes
in the case of complex proteins.

While Levinthal’s paradox contradicts the possibility of random folding, Afin-
sen’s thermodynamic hypothesis further supports this theory by proving that for a
globular protein in their standard physiological environment, the native structure is
determined only by the protein’s amino acid sequence [27]. This hypothesis shows
that the process of protein folding not only cannot be random, but it is also deter-
ministic, meaning that at the same environmental conditions, the native structure
of the protein is defined only by sequence of amino acids in the polypeptide chain.

Both Levinthal’s and Afinsen’s claims have acknowledged the existence of pow-
ers governing protein folding. Those powers can be distinguished on covalent and
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non-covalent interactions, together with the factor of conformational entropy. Co-
valent bonds are very strong and stable under standard environmental conditions.
Covalent interactions are mostly created by sharing the valence electrons between
atoms in the polypeptide chain. Covalent interactions are, therefore, the main forces
governing the creation of the protein’s primary structure. Non-covalent interactions
are significantly weaker, and they play a fundamental role in the construction of
proteins secondary, tertiary, and quaternary structures. Non-covalent interactions
are electrostatic, polar, and non-polar [9].

Electrostatic interactions are long-range charge-charge interactions between
charged residues (Arginine, Lysine, Glutamine, Asparagine and also Histidine in low
pH). The strength of those interactions decreases with 𝑟2 according to Coulomb’s
law. Furthermore, electrostatic interactions are strongly dependant on the environ-
ment as they are influenced by the pH of solvent, salt concentration, and permit-
tivity. Solvents with higher permittivity, such as water, shields the charged residues
from each other in the exposed, solvent-accessible regions of the protein.

Polar interactions can be divided into hydrogen bonds and aromatic inter-
actions. Polar residues (Serine, Threonine, Aspartic acid, Cysteine, Tryptophan,
Tyrosine, and Histidine) can share hydrogen attached to an electronegative atom
with hydrogen acceptor. This usually occurs at a distance of about 3 Ångström
(Å). Hydrogen bonds are also the main driving forces for the formation of secondary
structures. Aromatic interactions are attractive forces between aromatic rings of the
aromatic residues (Phenylalanine, Tryptophan, Tyrosine, and Histidine) governed
by their 𝜋 electrons. With aromatic interactions, the distance of the center of mass
is about 5 Å. Polar interactions are crucial in the governing of the formation of the
secondary structures.

Non-polar interactions are responsible for the creation of tertiary structures.
Van der Waals interactions are weaker, short-ranged attractive and repulsive forces
between all the atoms in the protein molecule. However, their effect decreases fast
with distance and they are negligible beyond 5 Å. Tertiary structure is also influ-
enced by hydrophobic effect due to the unfavourable entropy of the water molecules
ordered around hydrophobic residues (Phenylalanine, Proline, Methionine, Leucine,
Isoleucine, Valine, and Alanine). These residues have a tendency to aggregate, form-
ing a hydrophobic core of the protein, and exclude water molecules. Hydrophobic
effect leads to favourable increase of hydrogen bonding between water molecules and
minimizes the area between water and non-polar residues.

Conformational entropy is associated with a number of conformations of the
proteins structure. It is a major contributor to the energetic stabilization of the
denatured state and therefore acts as a countering force to the sum of electrostatic,
polar and non-polar interactions (Figure 2.1). The conformational entropy yielded
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by the random coils is significantly higher than the entropy gain given by the sec-
ondary structures such as 𝛼-helixes and 𝛽-sheets. Due to this reason, proteins with
higher number of secondary elements are usually more stable than the ones with the
high concentration of the random coils.

Fig. 2.1: Major forces influencing protein stability. Protein stability is given as a
difference of the conformational entropy and the sum of the electrostatic, polar and
non-polar interactions. (adapted from [10])

2.2 Mechanisms of protein folding

Several different mechanisms of protein folding were designed to explain the process
in which non-covalent interactions transform the polypeptide chain into a complex
tertiary structure [12]. First, the nucleation-growth model presumed the continu-
ous growth of the tertiary structure from the initial nucleus of the local secondary
structure. However, this model was dismissed as it did not account for folding
intermediates. In response, several other models were designed (Figure 2.2):

Framework model: the secondary structure is folded first and is followed by the
coalescence of the secondary structural units to the structure of the native protein.

Hydrophobic collapse model: the polypeptide initially forms secondary struc-
tures representing localized regions of predominantly hydrophobic residues. Due to
the polypeptide’s contact with the molecules of water, thus creating intense ther-
modynamic pressure, those regions are then aggregated into a tertiary conformation
with a hydrophobic core.

Nucleation-condensation model: secondary and tertiary structure is formed
in parallel as the formation of the tertiary structure is catalyzed by the folding of the
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initial nucleus – a small segment of the protein with correctly folded secondary struc-
ture. However, this initial nucleus is stable only in the presence of approximately
correct tertiary structure interactions.

Fig. 2.2: The visualization of the various suggested mechanisms of protein folding.
(adapted from [12])

2.3 Protein stability quantification

In the field of protein engineering, there are several ways how to quantify the protein
stability. The two most common are melting temperature and Gibbs free energy [9].

2.3.1 Gibbs free energy

Gibbs free energy (𝐺) is a thermodynamic potential that can be used to calculate the
maximum of reversible work performed by a thermodynamic system at a constant
temperature and pressure. It is defined as
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𝐺 = 𝐻 − 𝑇𝑆,

where H is the enthalpy, 𝑇 is the temperature, and 𝑆 stands for the entropy.
The official SI unit is Joule, however, in biology, Calories are often used instead.
The stability of the protein is generally represented by the change in the Gibbs free
energy upon folding (Δ𝐺), which means the difference between free energies of the
folded and unfolded state of the protein.

Δ𝐺 = 𝐺𝑓𝑜𝑙𝑑𝑒𝑑 − 𝐺𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑,

Finally, if we are interested in the effect that the given amino acid mutation
has on protein stability, we measure the so-called change of Gibbs free energy upon
mutation (ΔΔ𝐺), which is the difference between Δ𝐺 of the mutated and wild-type
protein.

ΔΔ𝐺 = Δ𝐺𝑚𝑢𝑡𝑎𝑛𝑡 − Δ𝐺𝑤𝑖𝑙𝑑−𝑡𝑦𝑝𝑒

The most commonly used unit is kcal/mol, and in this scenario, the negative
value of ΔΔ𝐺 indicates a stabilizing mutation. However, the format of ΔΔ𝐺 is not
standardized, and therefore in some studies, mutant and wild-type can be switched,
meaning that the improvement of the protein stability will be noted by the positive
sign. The computation of ΔΔ𝐺 is based on the thermodynamic cycle captured in
Figure 2.3.

2.3.2 Melting temperature

A second way, how to quantify protein stability is the melting temperature (𝑇𝑚).
The definition of melting temperature is

Δ𝐺𝑓𝑜𝑙𝑑𝑖𝑛𝑔(𝑇𝑚) = 0

In other words, the temperature at which free energy of the unfolded and folded
states is equal, and half of the population is unfolded, and the other half is folded.
Similarly to the Gibbs free energy, Δ𝑇𝑚 indicates the change of melting temperature
upon mutation. While there is a strong correlation between Gibbs free energy and
melting temperature (Pearson correlation coefficient is approximately 0.71 [109]),
the transformation between the two is not exactly linear, and therefore there is no
simple equation allowing for the estimation of ΔΔ𝐺 based on the values of Δ𝑇𝑚

and vice versa.
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Fig. 2.3: Thermodynamic cycle commonly utilized for the computation of ΔΔ𝐺.
The change of the Gibbs free energy upon mutation is estimated as a difference of
the Gibbs free energy upon folding of the wild-type and mutant protein, respectively.
In the figure, the respective mutation sites have been coloured in black for wild-type
and red for the mutant protein. [11]

2.4 Laboratory measurements

Considering the laboratory techniques, there are several ways how to measure pro-
tein stability [9]. The results provided by the individual methods will differ not only
based on the used experimental conditions (salinity, pH of the buffer, temperature
ramp) but in a smaller scale also on the selected method itself. Therefore, only the
measurements obtained with the same method and experimental conditions should
be utilized for the comparison of the experimental results [11].

Differential scanning calorimetry: is thermoanalytical technique, where the
difference in the amount of heat required to increase the temperature of a sample
and reference is measured as a function of temperature. It is one of the most widely
used methods for studying the thermodynamics of protein unfolding (Figure 2.4a).

Circular dichroism: is based on the circularly polarized light. There is a
differential absorption of left- and right-handed light and therefore left-hand and
right-hand circular polarized light represents two possible spin angular momentum
states of a photon. This phenomenon is exhibited in the absorption bands of op-
tically active chiral molecules. Circular dichroism is commonly used to investigate
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the stability of secondary structure of proteins (Figure 2.4b).
Absorption spectroscopy: is based on the measure of the absorption of radi-

ation as a function of frequency or wavelength, due to its interaction with a sample.
The sample absorbs energy and the intensity of the absorption varies as a function
of frequency. It finds its use in the analytical chemistry.

Fig. 2.4: Representative experimental methods to quantify protein stability. Curves
for hypothetical wild-type protein are shown in black, while improved variant ex-
hibiting higher stability is visualized in red. (a) Differential scanning calorimetry
curve. 𝑇𝑚 is the midpoint of the transition, Δ𝐶𝑝 is the difference between the pre-
and post-transition baselines, and Δ𝐻 is the area under the curve between the pre-
and post-transition baselines. (b) Circular dichroism curve. Following the change of
molar ellipticity at a specific wavelength over a wider temperature range monitors
the change in secondary structure of and unfolding protein. The midpoint of the
sigmoid curve is related to 𝑇𝑚 of the protein. [11]

In recent years, new experimental techniques allowed for faster and cheaper mea-
surements of the proteins’ characteristics. However, for large-scale analyses such as
saturation mutagenesis of each possible mutation in the protein of interest, the lab-
oratory experiments still represent an unattainable solution. Therefore, there is a
need for less expensive in silico approaches.

2.5 Force-field calculations
With the widespread of information technology and the constant growth of the
available computational resources, it is now possible to evaluate protein stability
without the need for the use of highly laborious experimental methods. This is
viable by calculating the free energy using the existing force-fields, which simulates
the physico-chemical effects occurring in the protein structure. A simple example of
force-field is such as bellow [13, 14]:
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In our example force-field, the folded state free energy is calculated as a sum of
individual atomic forces in the proteins tertiary structure as

𝐺𝐹 = 𝐺ℎ𝑦 + 𝐺𝑒𝑙 + 𝐺ℎ𝑏 + 𝐺𝑣𝑤 + 𝐺𝑠𝑠,

where 𝐺ℎ𝑦, 𝐺𝑒𝑙, 𝐺ℎ𝑏, 𝐺𝑣𝑤 and 𝐺𝑠𝑠 are hydrophobic, electrostatic, hydrogen bond-
ing, van der Waals and disulphide bonding free energies. Hydrophobic free energy
can be estimated from solvent accessibility. It is calculated as

𝐺ℎ𝑦 =
∑︁

Δ𝜎𝑖[𝐴𝑖(𝑓𝑜𝑙𝑑𝑒𝑑) − 𝐴𝑖(𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑)],

where 𝑖 stands for different atom types, and 𝐴𝑖(𝑓𝑜𝑙𝑑𝑒𝑑) and 𝐴𝑖(𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑) rep-
resent the accessible surface area (ASA) of each atom type in the folded and the
unfolded state of the protein structure, respectively. Finally, Δ𝜎𝑖 are the atomic sol-
vation parameters. The significant contributors to electrostatic interactions are the
charged side chains of the residues Lysine, Histidine, Arginine, and Glutamic and
Aspartic acid. It has been observed that the electrostatic interactions are strongly
context-dependent, where electrostatic interactions on the protein surface are gen-
erally contributing less than 1 kcal/mol, and buried ones are contributing around
3 kcal/mol to protein stability [18]. Hydrogen bonds are one of the main partic-
ipants in the creation of secondary structures. Their contributions are calculated
mostly based on their geometric information. One of the approaches was described
with a program HBPLUS [19]. Van der Waals energies can be computed utilizing
Lennard-Jones potential [20] as

𝐺𝑣𝑤 = 𝐴𝑖𝑗

𝑟12
𝑖𝑗

− 𝐵𝑖𝑗

𝑟6
𝑖𝑗

,

where 𝐴𝑖𝑗 = 𝜖*
𝑖𝑗(𝑅*

𝑖𝑗)12, 𝐵𝑖𝑗 = 2𝜖*
𝑖𝑗(𝑅*

𝑖𝑗)6, 𝑅*
𝑖𝑗 = (𝑅*

𝑖 +𝑅*
𝑗 ), 𝜖*

𝑖𝑗 = 𝜖*
𝑖 𝜖

*
𝑗 . The indexes

𝑖 and 𝑗 are the indexes of the individual atoms and 𝑅* and 𝜖* are the van der Waals
radius and well depth, respectively.

Finally, the site-directed mutagenesis experiments established that one disul-
phide bond to protein stability is approximately 2.3 kcal/mol [21]. The unfolded
state free energy is calculated from entropic and non-entropic free energies as

𝐺𝑈 = 𝐺𝑒𝑛 + 𝐺𝑛𝑒,

where 𝐺𝑒𝑛 represents entropic and 𝐺𝑛𝑒 nonentropic free energies. The free energy
of the unfolded protein is strongly connected with the size of the protein, and it was
estimated that one residue adds approximately 1.2 kcal/mol [22].
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3 Computational approaches for prediction
of protein stability

In the ideal case, saturation mutagenesis of each possible mutation would be carried
by the rigorous experimental validation. However, in most projects, such validation
is close to impossible due to the costly and laborious nature of those experiments.
Considering a standard protein consisting of approximately 300 amino acids, this
leaves us with over 5,000 single-point mutations. Furthermore, single-point muta-
tions often provide an almost negligible effect on protein stability (< 2𝑘𝑐𝑎𝑙/𝑚𝑜𝑙)
[15, 16], and therefore combining several stabilizing mutations is typically required
to procure a significant improvement of protein stability [17]. Unfortunately, the
additive effect of stabilizing mutations is not guaranteed as synergistic or antag-
onistic effects can occur between any subset of stabilizing single-point mutations.
Mutations are considered synergistic if their combined effect on protein stability is
notably higher than the sum of the individual mutations, while the antagonistic
effect means the exact opposite. The synergistic effect usually appears due to the
creation of a new physico-chemical interaction such as a salt bridge between anionic
carboxylate and cationic ammonium or a disulphide bridge between two cysteine
residues. On the other hand, the antagonistic effect disturbs some of the newly
introduced interactions or creates clashes between the side chains of the mutated or
original residues. This, for example, can be easily observed when several mutations
are designed to fill the same space in the structure of the protein, filling the void
each by itself, however being unable to fit in if combined. This could either damage
protein stability or even completely prevent it from a successful folding.

In most cases, antagonistic effects are not easily detectable, and therefore further
experimental validation is needed. With only 100 potentially stabilizing mutations,
close to 5,000 experiments would have to be performed to evaluate all possible
double-point mutants, and this number is exponentially increasing with each added
mutation. As a result, there is an ever-growing need for fast and accurate computa-
tional methods that would allow for rapid evaluation of the potentially stabilizing
mutations, and serve as a reliable tool for the prioritization of mutations for the
rigorous laboratory experiments. In general, the computational methods for the
prediction of the effect of mutations on protein stability can be divided into four
categories [11]:

Force-field methods relying on the calculation of the ΔΔ𝐺 based on the mod-
els of molecular mechanics.

Phylogenetic analysis utilizing the evolutionary information contained in the
set of homolog sequences.
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Machine learning methods constructing a computational model based on the
stability data provided by previous experimental validation.

Hybrid methods and meta-predictors combining several of the previous
approaches or several different methods of a single approach together to obtain
more robust and reliable results.

3.1 Principles of methods based on force-field calcu-
lations

In silico design of the stable proteins based on the calculation of the energy force-
fields is deeply rooted in our current state of knowledge of the physico-chemical
properties of the individual amino acids and their description by molecular mechanic
force-fields. Therefore, these calculations do not rely on the availability of the di-
verse, high-quality experimental data. In general terms, a force-field is a description
of all bonded and non-bonded interactions in the protein of interest [38, 39]. These
interactions are captured in the energy-field equation used to estimate the potential
energy of a molecular system [40]. The most accurate methods in this category
are the free energy methods, relying on molecular dynamics (MD), or Metropo-
lis Monte Carlo simulations. Unfortunately, those methods require a tremendous
amount of computational power and are viable only for a limited number of mu-
tations or smaller, less expensive systems of interest [41]. A number of heuristic
approaches were created over the last decades to overcome this bottleneck, however
huge analysis is still viable only with the use of simulation-independent stability
predictors that can be divided into three categories [42, 43]:

Physical effective energy functions (PEEFs) are closely related to classi-
cal molecular mechanic force-fields, which allow for a fundamental analysis of the
molecular interactions [40]. The individual terms of the energy-field equations are
calculated via the simplification of the known physical laws and are still burdened
by high computational demands reaching from hours up to several days for a single
mutation. However, similarly to the molecular dynamics methods, they are versa-
tile, accurate, and capable of predicting the behaviour of the enzymes under non-
standard conditions such as non-physiological pH, non-standard salinity, or elevated
temperature [54].

Statistical effective energy functions (SEEFs) are viable for rapid analysis
as they can predict changes in stability over the entire sequence space of an average-
sized enzyme in a matter of minutes [44, 45]. Compared to PEEFS, terms used in the
SEEFs energy-field equations are derived from curated data sets of available exper-
imental protein structures projected into several stability descriptors. An effective
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potential can be then extrapolated for every descriptor distribution and utilized as a
part of the overall energy function [44, 46]. SEEFs do not explicitly model physical
molecular interactions and are strongly dependent on the folded protein structures’
availability and diversity [43].

Empirical effective energy functions (EEEFs) represent a bridge between
PEEFs and SEEFs as they include both physical and statistical terms in their energy-
field equations, which are weighted and parametrized to match experimental data
[42, 43]. The thermodynamic data used in the derivation of terms typically originate
from mutational experiments conducted under standard conditions. As a result,
EEEFs provide a reasonable compromise between computational demands and the
accuracy of the free energy function [49]. A major drawback of EEEFs is that
their applicability is restricted to the environmental conditions under which the
experimental data used for the parametrization were acquired [50, 51].

Even though force-field-based calculations are currently considered the most
powerful tool for predicting the effect of mutations on protein stability, the ac-
curacy of the energy functions is still suboptimal due to insufficient conformational
sampling, imbalances in force-fields, and the problems connected with the existing
data sets [50, 55, 56, 57, 58, 59]. The computation of ΔΔ𝐺 is based on the thermo-
dynamic cycle, and therefore it requires modelling the folded and unfolded states of
both wild-type and mutant protein [32, 41]. The value of ΔΔ𝐺 is then established
as the difference between both folded states with several issues reported for various
energy functions. All energy functions are known to overestimate hydrophobicity
and tend to favour nonpolar mutations as the stabilizing ones [28, 29, 23]. PEEFs
often underestimate the stabilization provided by the buried polar residues as they
overestimate the energetic cost of unsatisfied salt bridges and hydrogen bonds in
the protein core [37, 60, 61]. The estimation of the conformational and solvent-
related entropy is also imprecise. The inability of force-field methods to account
for entropy-driven contributions can be partially resolved by utilizing evolutionary-
based approaches inside the more robust hybrid workflows [35, 36, 62, 63]. Another
shortcoming comes with the prediction of the multiple-point mutants as most sta-
bility predictors have been parametrized using only a single-point mutant datasets.
As a result, the predictive power for the multiple-point mutants is limited for most
of the existing force-fields [64, 65]. This shortcoming can also be attributed to
the insufficient conformational sampling of the folded state, especially in the case
of mutations introducing large-scale backbone movements into the mutant protein
structure [66]. In PEEFs and EEEFs, such movements are simulated by the utiliza-
tion of the rotamer libraries to the fixed protein backbones, thereby reducing com-
putational demands while providing comparable precision for the predictions of the
single-point mutations [59]. However, this approach does not stand in the case of the
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multiple-point mutants and multistate designs. Therefore, flexible backbone sam-
pling techniques [55, 67, 68, 69], generating conformational ensembles and utilizing
energetically more favourable conformations, are required. Finally, the accuracy of
the force-field methods is strongly dependent on the quality of the available tertiary
structure. Their applicability for the proteins without resolved tertiary structure
is given by the reliability of the structure modelling tools and the similarity of the
closest sequence homology with a known tertiary structure. Furthermore, structures
obtained by X-ray crystallography (> 90% proteins in PDB database [25]) do not
necessarily reflect the global energy minimum of the native state of the protein in
its natural environment [70] and may, in some cases, be misleading starting point
for a comprehensive prediction of protein stability [51, 71].

3.2 Principles of methods based on phylogenetic anal-
ysis

A phylogenetic or evolutionary analysis are methods that take advantage of the
information hidden in the set of homolog sequences. The evolutionary approach’s
main advantage is that those methods do not require tertiary structure and are
therefore viable for the majority of known protein sequences (about 200 million of
sequences in UniProt [24] compared to 100 thousand structures in the PDB database
[25]). The only limitation in its applicability occurs in the families with the low
representation of sequences in the database. However, with the rise of the next-
generation sequencing methods, this limitation slowly mitigates as the number of
sequences in the databases almost doubles every three years. The two most widely
used phylogeny-based methods are consensus design and ancestral sequence recon-
struction, both built on top of the reasonably-sized set of homolog sequences.

Consensus design (CD) starts by building a compact multiple-sequence align-
ment (MSA) using a small number of homolog sequences ranging between a dozen
and a few hundred. This MSA allows for a computation of every amino acid’s
frequency distribution in each position in the sequence alignment [83]. Positions,
where one or just a few amino acids are significantly more prevalent than others,
are conserved as those residues changed only sparsely during evolution. CD’s core
assumption is that conserved positions are somehow crucial for the function of the
protein (stability, activity, protein folding, etc.), and the most frequent amino acid
at the given position is more likely to be stabilizing [83, 84, 85, 86, 87, 88]. CD can be
utilized when amino acid in the designed sequence differs from the most dominant
ones in those conserved regions. This residue’s mutation to the dominant amino
acid suggested by evolution often leads to a non-negligible improvement of protein’s
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thermal stability. It has been observed that high levels of sequence diversity in the
MSA can interfere with the preservation of catalytic activity in the designed pro-
teins, particularly if the MSA contains both prokaryotic and eukaryotic sequences
[84, 89]. On the other hand, including only closely related homologs might introduce
an evolutionary bias that prohibits CD from discovering more thermostable variants
[88]. In recent studies, the proportions of neutral and destabilizing CD mutations
have been estimated to be 10 and 40%, respectively [83, 87]. In 2012, Sullivan was
able to increase the proportion of correctly identified stabilizing mutations to 90%
by discarding mutations of the residues with high statistical correlations to other
positions in the MSA [84]. This would suggest an inability of the CD analysis to
account for any synergic or antagonistic effects. The second possible weakness comes
from an apparent phylogenetic bias when the MSA is dominated by a small number
of highly similar subfamilies [85, 94]. If tertiary structure for the protein of interest
is available, the CD can be further refined by utilizing information about an active
site, secondary structures, and intramolecular contacts or by analyzing molecular
fluctuations based on crystallographic B-factors or MD simulations [90, 91].

Ancestral sequence reconstruction (ASR) is a probabilistic method that
explores the deep evolutionary history of homolog sequences to reassemble pro-
tein’s evolutionary trajectory [93, 96]. The method was initially developed to study
molecular evolution. ASR is able to unearth sequences of the long-extinct genes and
organisms from which the current ones evolved and is, therefore, an invaluable tool
in the field of evolutionary biology. ASR has also been shown to be a very effec-
tive strategy for thermostability engineering [33, 34, 5, 95] and for improving other
protein’s characteristics such as specificity, activity, or expression rates. Similarly
to CD, ASR starts with the MSA’s construction from the set of relevant homolog
sequences. However, while CD relies on the simple analysis of the conservation of
amino acids on the individual positions in the sequence alignment, ASR goes much
further by considering evolutionary information depicted by the phylogenetic tree.
Two main algorithms, maximum-likelihood [97, 98] (ML) and Bayesian inference [99]
(BI) were designed to interfere with ancestral sequences from MSA and phylogenetic
tree. Over the years, many tools were built to make those algorithms accessible to
the broad scientific community. However, several crucial steps in the calculation of
ASR were not yet resolved in a satisfactory way that would allow for a fully autom-
atized inference of the ancestral proteins, i.e., selection of the biologically relevant
subset of homolog sequences, rooting of the phylogenetic tree and the reconstruction
of the ancestral gaps. This limits the ASR’s applicability as the method requires
an in-depth knowledge of the biological system of interest and necessary bioinfor-
matics tools together with the abysmal amount of manual work. ASR approach,
its methods, advantages, and shortcomings will be further discussed in the chapter
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6. Furthermore, appendix B describes a novel solution for a fully automatized
calculation of the ancestral sequences. FireProtASR utilizes several filters to obtain
homolog sequences with the same or similar protein function and more than ten
bioinformatics tools and databases to proceed with the ancestral reconstruction us-
ing a single protein sequence as a sole input of the calculation. This allows ASR to
be utilized by a wide scientific community without prior knowledge of the method
and required bioinformatics tools.

3.3 Principles of the methods based on machine learn-
ing

In recent years, machine learning has become one of the most dominant approaches
in predicting protein stability [72, 73, 74] and many other fields reaching far above
the limited scope of protein engineering applications. The popularity of machine
learning methods comes mostly from their ability to construct computational sys-
tems without being explicitly programmed. Statistical techniques are used to ana-
lyze training data sets and recognize patterns that might be difficult to detect, given
the limitations of human knowledge and cognitive abilities. The system based on
the machine learning approach can be trained either with or without supervision.
Both find their utilization in the field of protein engineering. In the supervised
approaches, the system is given a set of training inputs and the expected outputs
in the form of labels indicating each input’s correct classification. Those methods
are well-suitable for training predictive systems. On the other hand, unsupervised
approaches are mostly implemented for tasks involving data clustering.

As the machine learning systems are constructed during the learning process,
they do not require a full understanding of the mechanistic principles underpinning
the target function. This advantage shines, especially in situations where there
is a severe gap in human knowledge-base, and therefore expert construction of the
predictive systems is not entirely possible. Machine learning can also expand existing
systems by discovering previously unrecognized features, patterns, and relationships
hidden in the training dataset. Furthermore, machine learning methods are very
flexible because any characteristic extracted from the data can be used as a feature
if it improves the prediction accuracy, i.e., minimizes the prediction error. Moreover,
machine learning is also much less time demanding than other methods because once
the model has been constructed using the training data, predictions can be obtained
at an almost instant rate.

However, the reliability of the machine learning approaches strongly depends on
the quality and size of the training data set. The weights representing the relative
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importance of the individual features and the relationships between them are based
on the provided experimental observations. Consequently, it is crucial to use high-
quality experimental data with high consistency of experimental measurements and
wide diversity when training and testing machine learning methods. The size and
balance of the training dataset must also be considered. A modest dataset with only
a few hundreds of cases might be too small to establish useful descriptors during
learning. Additionally, lower diversity of the training data usually leads to a higher
risk of overtraining and, therefore, losing its ability to generalize on a new, previously
unknown data. In such cases, the weights assigned to the individual descriptors tend
to be influenced by over-representing some of the descriptors in the training data,
while other features with high informational value are under-estimated or omitted
entirely. Unbalanced training datasets with substantial differences in the individual
prediction categories’ size could also lead to erroneous predictions. For example,
a training dataset in which more than two-thirds of the mutations are stated as
deleterious would mislead the predictor to classify most mutations as deleterious
because of the prevalence of such mutations during the learning. Some methods,
namely support vector machines and random forests, are known to be more resistant
to overfitting caused by unbalanced datasets [75, 76, 77], while decision trees and
standard neural networks are particularly sensitive. If the dataset is not sufficiently
sized for the manual balancing by cutting part of the mutations out of the training
set, this problem can be partially addressed using cost-sensitive matrices [78], which
penalize the system more strictly for misclassifying mutations that are sparsely
represented in the training set. Some oversampling techniques such as SMOTE
[137] or ADASYN [138] can be also utilized.

In parallel to the issue of the construction of the high-quality training data set,
there arises the problem of model validation. In the ideal scenario, the validation
data should also be balanced and utterly independent of the data used for training.
However, due to the limited amount of experimental data, this scenario is often hard
to reach. In bioinformatics, especially in the prediction of the effect of mutations
on protein stability, it has become a common practise to use k-fold cross-validation
as a standard method to validate the performance of the newly developed tools.
This method entails randomly partitioning the original dataset into k subsets, using
k - 1 subsets for the system’s training, and the last random subset is left for the
following validation. This process is then performed for each of the k subsets. The
main argument of the utilization of cross-validation instead of splitting the data
into independent training and testing datasets is that the available set of experi-
mental data is often too small to support such a division without compromising the
model’s ability to identify the essential patterns and relationships. However, com-
bining unbalanced datasets with the random aspect of k-fold cross-validation further
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increases the risk of overestimating the system’s accuracy on the general data [79].
Therefore, cross-validation is often no longer accepted as a means of validation of
the bioinformatics tools. This is particularly problematic in protein stability, where
the construction of the sizeable, high-quality training dataset is impossible due to
the lack of experimental data.

In summary, machine learning is a powerful approach that allows for detecting
the previously unknown dependencies and interactions in the protein molecules.
However, the utilization of the machine learning approaches in the predictions of
the protein stability currently suffers from the overestimation of the accuracy of the
existing machine learning-based tools due to the usage of the k-fold cross-validation
as the method for their validation. This disadvantage is partially mitigated by using
less vulnerable methods, such as random forests, and the cost-sensitive matrices.
However, the issue of the availability of high-quality experimental data still stands,
as described in chapter 4. Finally, a possible solution for this issue is presented in
the appendix C, describing the novel protein stability database FireProtDB.

3.4 Meta-predictors and principles of the methods
based on hybrid approach

Methods based on the hybrid approaches cannot be considered a singular tool but
more as a combination of several different methods, tools, and computational strate-
gies. Those methods are usually more robust and provide users with mostly reliable
results as the hybrid methods usually incorporate both energy- and evolution-based
approaches into their workflows, utilizing their strengths and mitigating their short-
comings.

The analysis of the highly conserved regions and the residues that show a high
correlation with one or more other residues in the MSA (correlated residues are
usually changing together during evolution) is a starting point for most of the hy-
brid methods [36, 23, 63]. This comes from the presumption that the conserved
or highly correlated residues are somehow crucial for the correct function of the
target protein, and therefore mutations designed on those positions would be at
high risk of damaging some of the characteristics of the proteins. Conserved regions
are often clustered around active sites, while the evolutionary correlation of two or
more residues suggests an important intramolecular interaction. For this reason,
hybrid approaches often exclude those positions from further calculation, making
the mutational space safer and, at the same time, reducing the computational de-
mands. Furthermore, it was previously proven that evolution-based and force-field
methods are complementary in many proteins as there is only a partial overlap of
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the stabilizing mutations designed by force-fields and evolution [62]. This comple-
mentarity might be in part caused by the inability of the energy-based methods to
correctly classify the charge changing mutations due to their weak implementation
in the current force-fields and by the inability to estimate the effect of mutation on
the unfolded state of the protein. As a result, hybrid methods are able to identify
potentially stabilizing mutations that would be omitted by using only energy- or
evolution-based approaches.

Due to the higher complexity and robustness of the hybrid methods, these meth-
ods are often viable not only for predicting the effect of single-point mutations but
also for significantly more stable multiple-point mutants. In general, multiple-point
mutants are unattainable by the tools based on a singular approach, as there is a
high risk of undesired antagonistic effects. However, this issue is tackled in hybrid
methods such as PROSS [36] and our novel FireProt strategy [23].

Finally, meta-predictors are the special subset of the hybrid methods that com-
bine the results of several different tools into one consensual prediction using the
simple majority voting or utilizing some form of weights. Those predictors are usu-
ally more accurate than their components. However, they lack the complexity and
robustness of the real hybrid workflows. The problematics of the hybrid methods
and the current state-of-the-art will be further discussed in the chapter 5.
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4 Data sets for protein stability
The accuracy and reliability of the computational methods, especially those utilizing
one of the machine learning techniques, depends strongly on the size, structure, and
quality of the chosen training and validation datasets. Up to this date, the primary
source of validation data for protein stability engineering is the ProTherm database
[47]. ProTherm is the most extensive freely available database of thermodynamic
parameters such as ΔΔ𝐺, Δ𝑇𝑚, and Δ𝐶𝑝. It currently contains about 26,000 en-
tries representing both single- and multiple-point mutants of 740 unique proteins.
Although ProTherm is the most common stability data source, it suffers from high
redundancy, missing data, and serious inconsistencies. Particularly troubling are dif-
ferences in the pH values at which the thermodynamic parameters were determined,
redundant entries with non-agreeing data, and strikingly even disagreements about
the signs of ΔΔ𝐺 values. ProTherm also neglects intermediate states’ existence,
and therefore some data might be considering only one part of the folding pathway
[72]. To overcome those problems, the data must be filtered and manually corrected
to construct reliable training and validation datasets. More detailed statistics of the
ProTherm database are noted in Table 4.1.

Tab. 4.1: Statistics of the ProTherm database.
Number of entries 25,820
Number of proteins 1,045
Unique proteins 740
Proteins with mutants 311
Single-point mutations 12,561
Double-point mutations 1,744
Multiple-point mutations 1,132
Wild-type 10,383

Several subsets of the ProTherm database have been derived and utilized to
train and validate a vast scale of prediction tools. One of the most popular is the
freely available PopMuSiC dataset [101], which contains 2,648 mutations extracted
directly from the ProTherm database. However, this dataset is unbalanced as only
568 of its mutations are classified as stabilizing, while 2,080 are classified as destabi-
lizing. Furthermore, 755 of its 2,648 mutations have observed ΔΔ𝐺 values ranging
in the interval from -0.5 to 0.5. Mutations with such inconclusive ΔΔ𝐺 cannot be
considered either stabilizing or destabilizing because the average experimental error
in ΔΔ𝐺 measurements was established to be 0.48 kcal/mol [102]. Additionally, the
data extracted from ProTherm are insufficiently diverse: around 20% of the Pop-
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MuSiC dataset comes from a single protein, and ten proteins (out of 131 represented
in the dataset) account for half of the available data. Further inspection of the data
reveals that mutations to more hydrophobic residues located on the protein surface
tend to be stabilizing, whereas mutations that increase the hydrophilicity in the
protein core are usually destabilizing. Consequently, most computational tools are
likely to identify mutations that increase surface hydrophobicity as stabilizing even
though such designs often fail to fold properly because of poor protein solubility
[37].

Some predictive tools use alternative data sets derived from ProTherm or Pop-
MuSiC for training and validation. The most common benchmarking data set uti-
lized for independent validation is S350 [101], which contains 90 stabilizing and 260
destabilizing mutations in 67 unique proteins. However, this data set is still un-
balanced and relatively small for comprehensive evaluation. The recently published
PopMuSiCsym dataset [103] tries to address the issue of unbalanced data by including
342 mutations inserted into the mutant proteins. A comparative study conducted
using this dataset showed a bias of the existing tools toward destabilizing mutations,
as they performed significantly worse on the set of inverse mutations. Because of the
overlaps of the mutations in training and validation datasets, the individual tools’
results can be overestimated. Even the new derivatives of the ProTherm database
do not solve the problems arising from the available data size and structure. There-
fore, there is an urgent need for new experimental data, particularly on the side of
stabilizing mutations. Moreover, it would be of immense help for the future devel-
opment of predictive tools to proceed with the standardization of the stability data,
e.g., a unified definition of ΔΔ𝐺 as a subtraction of the Δ𝐺 values for the mutant
and the wild-type as mentioned in chapter 2.

Until the new unbiased datasets arise, measuring the predictive tools’ accuracy
based only on the amount of correctly classified mutations is deemed insufficient.
Instead, the Matthews correlation coefficient (MCC) can be utilized for binary clas-
sification, as it was designed as a balanced measure that is usable even for datasets
with a significant difference in the sizes of individual classes [77]. Similarly, when
binary predictions are utilized as a filtration step in the hybrid approaches, metrics
like sensitivity, specificity, and precision might be useful. When numerical measures
are considered, the linear correlation between the predicted and experimental values
can be estimated using the Pearson correlation coefficient (PCC) and the average
error established as the root-mean-square error (RMSE). Finally, the bias of the
computational tools can be estimated as the sum of ΔΔ𝐺 for the direct and inverse
mutations, according to Thiltgen and Goldstein [65]. Critical evaluation of the ex-
isting tools using the S350 dataset revealed that the PCC ranges from 0.29 to 0.81,
with an average RMSE of about 1.3 kcal/mol.
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One of the main aims of this Thesis is to suggest a standardized method for stor-
ing and further managing the protein stability data. FireProtDB is a novel database
providing users with free access to available experimentally validated data while re-
solving the issues accompanying the original ProTherm database. All the included
data are checked for their correctness, and the database is completed with an inter-
active search engine and annotations obtained from Uniprot and other databases.
FireProtDB also contains structural information obtained from the HotSpotWizard
calculations (appendix D). The main goal of the database is to provide commu-
nity with the clean reliable set of experimental data that would allow for a better
validation of the existing tools same as for the continuous development of the pre-
dictive tools utilizing the machine learning techniques. Further information about
FireProtDB is provided in the appendix C.
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5 Available computational tools
In recent years, a plethora of tools for predicting the effect of mutations on protein
stability has been developed. Most of those tools belong to one of the four categories:
i) tools based on the free energy calculations, ii) tools utilizing information obtained
from proteins evolution, iii) tools employing mathematical statistics and machine
learning techniques, and iv) meta-predictors and hybrid methods, combining several
different tools or strategies into one robust workflow. The general concept of those
approaches was previously described in chapter 3. This chapter will compare
some of the well-known computational tools, their strengths and weaknesses, and
recommended applications. Tables 5.1, 5.2, 5.3, 5.4, included at the end of each of
the sections, provide a list of the selected software tools for each approach.

5.1 Software tools based on the energy calculations

Software tools utilizing force-fields as the means for the prediction of the effect
of mutations are based on either molecular modelling of the physical interactions
between the atoms in the tertiary structure of the protein of interest (PEEFs), using
methods of mathematical statistics (SEEFs), or the combination of both (EEEFs).
The border between the three is not exactly sharp as even tools that are considered
to be PEEFs are utilizing some statistical approximations, while some SEEFs can
also use a small number of physical descriptors. Therefore, the division of the
force-field methods into the three categories is very obscure, with many overlaps
and inconsistencies. Furthermore, EEEF is not always recognized in the published
literature. As a result, the division of the tools suggested in this Thesis should be
taken with the grain of salt.

In most of the published works, the Rosetta suite [59] is considered to be a state-
of-the-art for predicting the effect of mutations on protein stability. It is one of the
most versatile software packages for macromolecular modelling and related tasks. It
consists of several modules, including stability predictions, molecular simulations,
and ab-initio modelling. Two of the modules are applicable for in silico design of
the stable proteins. Rosetta Design is a more general module for protein design
engineering that is able to reflect their predicted stability in physically detached
Rosetta energy units. Those are automatically converted into well-interpretable
ΔΔ𝐺 values in the newest versions of the Rosetta suite. Secondly, ddg_monomer
is a stand-alone module built on top of the Rosetta Design that was parametrized
specifically for predicting ΔΔ𝐺 values and protein stability [54]. Finally, the Rosetta
suite is also supplemented with a wide range of force-fields and protocols, allowing
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users to adjust their calculations based on the protein of interest and available
computational resources.

Several other computational tools can be assigned to the PEEFs category. The
ERIS software [104] utilizes its own Medusa force-field that incorporates a side-chain
packing algorithm and backbone relaxation method. Similarly, the Concoord/Poisson-
Boltzmann surface area method [105] (CC/PBSA) employs the Concoord program
[107] to rapidly generate alternative protein conformations to sample available con-
formation space and the energy function calculated by GROMACS force-field [106]
is then averaged over the generated structural ensemble.

Some tools simply fit the force-field equations using the values derived from the
available experimental data instead of estimating individual terms’ values in the
equation by performing calculations based on the Newtonian physics. One of the
most popular representatives of the SEEFs category is the PopMuSiC method. In
PopMuSiC [45], the force-field equation is constructed using thirteen physical and
biochemical terms with approximate values derived from databases of known protein
structures. A similar approach can be found in other statistical tools such as DMu-
tant [108] or HotMuSiC [109]. HotMuSiC differs from its predecessor (PopMuSiC)
mainly because it was parametrized, especially for estimating Δ𝑇𝑚 instead of ΔΔ𝐺

as the correlation between the two is only -0.71 [109]. In HotMuSiC, the previ-
ous force-field equation was expanded using five temperature-dependent potentials
based exclusively on the data extracted from mezostable and thermostable proteins.

Finally, some of the tools balance their prediction accuracy with the time de-
mands by using both physically calculated and statistically derived terms in their
force-field equations. CUPSAT [134] is employing the atom and torsion angles po-
tentials derived from the tertiary structures obtained from PISCES [135]. How-
ever, Boltzmann’s energy values are then predicted from the radial pair distribution
of amino acid atoms, and the Gaussian apodization function is applied to assign
favourable energy values for the neighbouring orientations of the observed torsion
angles combinations. FoldX suite [49] can also be included in the EEEFs category.

While PEEFs provide more reliable results in general, in the majority of cases,
SEEFs still perform reasonably well compared with most machine learning methods
and are orders of magnitude faster than PEEFs. Therefore, SEEFs and EEEFs seem
to be an acceptable trade-off between predictive power and computational demands,
primarily when utilized as filters to prioritize the mutations in hybrid workflows.

5.2 Software tools based on the phylogenetics
The main advantage of phylogeny-based methods is that they do not require high-
resolution protein structure and, therefore, can be applied to any protein with
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Tab. 5.1: Software tools for the prediction of the effect of mutations on protein
stability utilizing force-field based approach.

Method Model Input Output Mutations
PoPMuSiC [45] SEEF Structure ΔΔ𝐺 Sigle
FoldX [49] EEEF Structure ΔΔ𝐺 Sigle
CUPSAT [134] Atom potentials

Torsion angles
Structure ΔΔ𝐺 Sigle

Rosetta [59] PEEF Structure ΔΔ𝐺 Sigle/multiple
ERIS [104] PEEF Structure ΔΔ𝐺 Sigle
CC/PBSA [105] PEEF Structure ΔΔ𝐺 Sigle
DMutant [108] Amino acid poten-

tials
Torsion angles

Structure ΔΔ𝐺 Sigle

SDM [142] SEEF Structure ΔΔ𝐺 Sigle
HotMuSiC [109] SEEF Structure Δ𝑇𝑚 Sigle
STRUM [144] SEEF Structure ΔΔ𝐺 Sigle
AUTO-MUTE [143] SEEF/ML Structure Binary/ΔΔ𝐺 Sigle

known amino acid sequence and the sufficient amount of sequence homologs in the
databases. Although phylogeny-based methods are well-established in protein ther-
mostability engineering, the influence of individual mutations suggested by the evo-
lution is hard to quantify, and not all mutations will move the protein characteristics
in a desirable way. Only about 50% of mutations identified by evolution-based ap-
proaches are truly stabilizing, but many of them will rather positively affect protein
solubility or activity [86]. Phylogeny-based methods, especially consensus design,
are therefore mainly utilized as filters during core calculations of hybrid workflows
or as components of predictive tools for hotspot identification. Consensus design
is available in several bioinformatics packages such as 3DM [30], VectorNTI [124],
EMBOSS [123], and HotSpotWizard [125]. No stand-alone tools are available as the
implementation of consensus design as it is extremely simple. On the other hand,
there are many tools dealing with the problematics of ASR using either maximum-
likelihood (FastML [127], RAxML [126], and Ancestors [128]) or Bayesian inference
(HandAlign [129] and MrBayes [130]) methods. Both of those groups of methods
are well-established in the scientific community.

A significant limitation of those methods is that most of the tools require users
to upload their own MSA and phylogenetic tree. Constructing these input data is
the most crucial and demanding step of the entire process as the ASR is strongly
dependent on the initial set of homolog sequences, their alignment, and the topology
of the resulting phylogenetic tree. To obtain reliable predictions, the initial set of
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homolog sequences must be manually curated to identify a reasonably-sized subset of
biologically relevant sequences. The initial set of sequences if usually obtained using
word search approaches such as BLAST [80], profile-based search methods such as
position-specific iterative BLAST [81], or hidden Markov models utilized in HMMER
[82, 131]. Simple sequence identity is not the best measure of the homologs’ relevance
as the sequences selected for the ASR analysis should be sufficiently diverse, while
maintaining the same or at least similar biological function. Furthermore, the MSA
and the tree’s topology requires to be manually inspected, and the rooting of the
tree is usually done by selecting the appropriate outgroup (sequence or a group
of sequences that are the most distant from the other sequences in the set). This
is uneasy to do in the automatized manner in eukaryotic organisms and close to
impossible in the prokaryotic proteins due to the high occurrence of the horizontal
gene transfers. Lastly, the reconstruction of the ancestral gaps is completely omitted
in most of the available tools. For all those reasons, the most laborious part of the
ASR analysis is left in users’ hands and requires them to attain a deep understanding
of the bioinformatics tools and the biological knowledge of the system of interest.
This Thesis attempts to address these issues, providing users with a fully automated
workflow. FireProtASR handles all parts of the ancestral reconstruction, including
the search for the homolog sequences, dataset reduction, construction of the rooted
phylogenetic tree, and the reconstruction of the ancestral sequences together with
the identification of the ancestral gaps. The problematic parts of the calculation
were resolved by utilizing some novel techniques: the homolog search was improved
by using filters checking for the similarity in the protein function, the rooting of
the phylogenetic tree is done via the recent minimal ancestral deviation algorithm
[161] and the novel algorithm for the ancestral gaps reconstruction was designed to
replace the most commonly used Fitch’s algorithm [162]. Further information about
FireProtASR workflow is provided in the appendix B.

5.3 Software tools based on the machine learning
Predictive tools based on machine learning techniques are very common as the ma-
chine learning approach does not require comprehensive knowledge of the physical
and biochemical forces acting within proteins’ tertiary structure. Predictions are
therefore based exclusively on the available experimental data. The most popular
machine learning tools are utilizing support vector machines (e.g., I-Mutant [110],
EASE-MM [72], MuStab [73], and MuPro [111]) or random forests (e.g., PROTS-
RF [113] and ProMaya [112]), which are known to be comparatively more resistant
to overtraining when using unbalanced training datasets. Due to the nature of the
available protein thermostability data (see chapter 4), neural networks are very
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Tab. 5.2: Software tools for the prediction of the effect of mutations on protein
stability utilizing evolutionary information.

Method Model Input Output Mutations
HotSpotWizard [125] CA Seq/struct hotspots Single/multiple
FastML [127] ML MSA+tree Sequences Single
RAxML [98] ML MSA Phylogeny Single
MLGO [145] ML MSA+tree Seq+phylogeny Single
Ancestors [128] ML MSA+tree Seq+PP Single
HandAlign [129] BA MSA+tree Seq+PP+phylogeny Single
TreeTime [146] BA MSA+tree Seq+PP+phylogeny Single
PAML [97] ML MSA+tree Seq+PP+phylogeny Single
PhyloBot [147] ML MSA Seq+PP+phylogeny Single
MaxAlike [148] ML MSA+tree Seq+PP+seq. logo Single

sparsely employed for engineering protein stability as they are highly sensitive to
the quality and size of the training data.

In the past years, some of the more recent approaches, such as deep learning,
have been applied to the diverse problems in genome and protein engineering. Deep
learning was successfully utilized to predict the effect of mutations on human health
(e.g., DANN [114]) and predict protein secondary structures (e.g., SSREDNs [115]).
However, the applicability of deep learning for protein stability prediction is still
very limited as it suffers from the shortcomings of the standard neural networks.
Deep learning is prone to overfitting because of the added layers of abstraction that
increase the network ability to model rare dependencies, thus resulting in a loss of
generality. This issue can be partially addressed by using regularization methods
such as Ivakhnenko’s unit prunning [116, 117]. However, this does not entirely negate
problems arising from the insufficient size of training datasets as deep learning has
very stringent requirements on the training data. As a result, deep learning is still
very sparsely applied to predict protein stability (e.g., TopologyNet [118]).

The reliability and robustness of the computational tools based on machine learn-
ing can be improved by combining several different models into a single multi-agent
system. This approach was utilized in tools such as ELASPIC [136] and MAESTRO
[119]. In MAESTRO, traditional neural networks are combined with support vector
machines, multiple linear regression, and limited statistical potentials. The outputs
of the individual methods are then averaged into a single consensual prediction. Fur-
thermore, in such tools, machine learning can also be applied to train the arbiter to
decide how to combine the outputs of the individual methods and take their weights,
balance, and the relative strengths of each method under consideration based on the
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type of the predicted mutation.

It is difficult to compare individual computational tools based on the results
presented in the primary sources as most of them were evaluated by authors using
different validation datasets. Thus, the tool’s performance is usually biased toward
particular proteins and mutation types, causing its reported accuracy to be overesti-
mated. Therefore, there is a need for independent comparative studies. The critical
evaluations reported by Potapov et al. [48], Kellog et al. [59], and Khan and Vihinen
[120] revealed that methods based on PEEF calculations systematically outperform
tools utilizing solely the machine learning techniques or statistical potentials when
tested on the independent dataset. Furthermore, it was shown by Pucci et al. [103]
and Usmanova et al. [121] that the tools based on the machine learning methods
tend to be more biased, and their reported accuracies are significantly overestimated.
Finally, Montanucci et al. [122] estimated that the upper bound of the Pearson’s
correlation coefficient is about 0.8, and the lower bound of the RMSE is 1 kcal/mol
for the most commonly used protein stability datasets. Those findings are not in
agreement with many of the results reported by the original publications. The up-
per bound is also deemed to change in the future with the increase in the available
experimental data’s size and diversity.

Tab. 5.3: Software tools for the prediction of the effect of mutations on protein
stability utilizing machine learning.

Method Model Input Output Mutations
EASE-MM [72] SVM Sequence ΔΔ𝐺 Single
MuStab [73] SVM Sequence Binary Single
ProMaya [112] RF Sequence ΔΔ𝐺 Single
mCSM [149] Graph based Sequence ΔΔ𝐺 Single
ELASPIC [136] SVM+HMM Structure ΔΔ𝐺 Single/multiple
MuPro [111] SVM Seq./Struct. ΔΔ𝐺 Single
I-Mutant2.0 [110] SVM Seq./Struct. ΔΔ𝐺 Single
TopologyNet [118] Deep learning Structure ΔΔ𝐺 Single
PROTS-RF [113] RF Structure ΔΔ𝐺 Single
MAESTRO [119] Multi-agent system Structure ΔΔ𝐺 Single/multiple
IPTREE-STAB [74] Decision tree Sequence Binary Single
INPS-MD [150] Sup. vec. regression Sequence ΔΔ𝐺 Single
iStable [151] SVM Structure ΔΔ𝐺 Single
Prethermut [152] SVM+RF Structure ΔΔ𝐺 Single/multiple
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5.4 Software tools based on hybrid approaches

Hybrid methods make predictions by combining information obtained from several
fundamentally different approaches. As a result, they offer improved robustness and
reliability compared to individual computational tools. This allows for the multiple-
point mutants to be designed with the minimal risk of combining mutations with
potentially antagonistic effects. Consequently, the hybrid approaches are of interest
for many research groups; however, only three tools are currently available to the
scientific community.

The Framework for Rapid Enzyme Stabilization by Computational Libraries [63]
(FRESCO) was the first of the hybrid methods available to the users as a set of in-
dividual tools and scripts. Therefore, its usage requires advanced knowledge of the
bioinformatics tools. FRESCO initially selects a pool of potentially stabilizing mu-
tations based on the predictions obtained from FoldX and Rosetta and filters out
all residues located in close proximity to the active sites. Disulfide bridges are de-
signed by dynamic disulfide discovery using snapshots from MD simulations and
subsequently evaluated utilizing the set of geometric criteria. Furthermore, short
MD simulations predict changes in backbone flexibility upon mutation to remove
faulty designs with unreasonable features that are expected to destabilize the pro-
tein. FRESCO approach is not fully automated as it suggests only a pool of the
potentially stabilizing single-point mutations that have to be subjected to further
experimental validation. This experimental validation greatly reduces the risk of
false positives but requires a substantial effort from the users.

Protein Repair One-Stop-Shop [36] (PROSS) is an automated web-based pro-
tein stabilization platform. Similarly to FRESCO, PROSS workflow starts with a
Rosetta design calculation in which the residues positioned closely to the protein’s
active and binding sites are excluded from the further analysis. A position-specific
substitution matrix is analysed to govern the design process away from the amino
acids that are rarely observed in the sequence homologs [132]. Rosetta’s computa-
tional mutation scanning tool [133] is used to search the remaining pool of potential
amino acid mutations. Finally, Rosetta’s combinatorial sequence design tool is uti-
lized to find an optimal combination of stabilizing mutations, and an energy function
is applied that favours amino acid identities based on their frequency in the MSA.
This hybrid approach allows for the mutants’ design containing some neutral or even
slightly destabilizing mutations, while taking into account potential epistatic effects
[31].

FireProt [23, 35] is another fully automated web-based protein stabilization plat-
form that combines both energy- and evolution-based approaches to design ther-
mostable multiple-point mutants. FireProt workflow includes 16 computational
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tools and databases and utilizes both sequence and structure information in the
process. The utilization of the evolutionary information in the process of the cal-
culation prohibits the mutations of the potentially important residues, while also
reducing its time demands. Two force-field based methods, FoldX and Rosetta are
employed to increase the reliability of the predicted potentially stabilizing muta-
tions. Finally, pair-wise calculation of the potentially stabilizing mutations using a
simple graph based algorithm is utilized to reduce the risk of introducing the antag-
onistic effects into the designed mutant protein. Detailed description of the FireProt
method can be found in the appendix A.

In summary, hybrid methods represent the next step in predicting protein sta-
bility as their robustness and complexity allow for the construction of significantly
more stable multiple-point mutants, while maintaining reasonable computational
demands. Those methods often utilize evolutionary information as filters for re-
moving potentially deleterious mutations in the conserved and correlated regions of
the proteins of interest, thus lowering the risks of antagonistic effects and further
increasing the required speed. Finally, hybrid methods can be further expanded by
the predictions of protein solubility or catalytic activity.

Tab. 5.4: Software tools for the prediction of the effect of mutations on protein
stability based on the hybrid or other non-standard methodology.

Method Model Input Output Mutations
Hybrid methods

FireProt [23, 35] Evolution+energy Structure Mutations+ΔΔ𝐺 Multiple
PROSS [36] Evolution+energy Structure Mutations Multiple
FRESCO [63] Evolution+energy Structure Mutations Multiple

Other methods
pStab [139] Equilibrium thermodynamics Structure Unfolding curves Charges
Encom [140] Normal mode analysis Structure ΔΔ𝐺 Single
Neemo [141] Residue interaction networks Structure ΔΔ𝐺 Single
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6 Ancestral sequence reconstruction
ASR was already established as one of the two main phylogeny-based methods that
are often utilized for the task of protein thermostability engineering in the chapter
3. Furthermore, it will be tackled again in the results part of this Thesis as one
of the included original papers, FireProtASR, describing a computational tool built
on top of the ASR strategy. However, this article does not include any information
about practices utilized in the process of ancestral reconstruction as they are well-
known to the scientific community interested in evolutionary biology and the related
fields. This chapter aims to provide the basic theoretical knowledge required for
the correct usage of ASR and interpretation of the results. More specifically, the
algorithms used for constructing the phylogenetic tree will be described together
with the means for finding the root of the newly constructed tree and the ancestral
sequence reconstruction itself. Possible solutions for the selection of the biologically
relevant subset of homolog sequences will not be described as they overstep the main
scope of this Thesis and up to this date, the biologically relevant subsets of sequences
are mostly produced by laborious manual work requiring in-depth knowledge of
evolutionary biology and the biological systems of interest.

6.1 Construction of the phylogenetic tree

The construction of the phylogenetic tree starts with the sequence alignment of
the known homolog sequences. From the MSA, it is possible to identify conserved
regions the same as the evolutionary patterns that occurred during the course of
protein development (correlated mutations, the similarity of the conserved regions,
and speciation). In general, there are three basic approaches on how to construct a
phylogenetic tree: i) methods based on distances, ii) methods based on characters,
and iii) methods based on probabilities.

6.1.1 Methods based on the distances

These methods are built on top of the idea that the distance of the homolog sequences
in the evolution is equal to the number of mutations that have to be included to
transform from one homolog to another. The primary representative of this method
is Neighbour-joining (NJ) [153] that is based on the additive distance matrix. This
square matrix captures the number of differences between individual sequences and
can be easily constructed from the MSA.

The algorithm starts with constructing the phylogenetic tree with the star-like
topology, where all homolog sequences are connected into one central node. In the
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second step, the search algorithm identifies two terminal nodes with the closest
distance to each other that are also the most distant from the other sequences in
the initial tree. This selection is represented by the function:

𝑚𝑖𝑛[𝐷(𝑎, 𝑏) − 𝑢(𝑎) − 𝑢(𝑏)],

where 𝐷(𝑎, 𝑏) is the distance of the nodes 𝐴 and 𝐵; 𝑢(𝑎) and 𝑢(𝑏) represent the
average distance of the nodes 𝐴 and 𝐵 to the remaining nodes, respectively. In the
following step, nodes 𝐴 and 𝐵 are connected into a newly formed node 𝑈 and the
evolutionary distances between the nodes 𝐴, 𝐵 and 𝑈 are estimated as:

𝐿(𝐴, 𝑈) = [𝐷(𝑎, 𝑏) + 𝑢(𝑎) − 𝑢(𝑏)]
2 ; 𝐿(𝐵, 𝑈) = [𝐷(𝑎, 𝑏) + 𝑢(𝑏) − 𝑢(𝑎)]

2

Finally, the new distance matrix is established by replacing nodes 𝐴 and 𝐵 with
delegated node 𝑈 and the distance between all remaining nodes and newly formed
node 𝑈 is calculated as:

𝐷(𝑐, 𝑢) = [𝐷(𝑎, 𝑐) + 𝐷(𝑏, 𝑐) − 𝐷(𝑎, 𝑏)]/2

The whole process is then repeated until the whole tree is constructed. NJ
method is swift and provides reliable results for all the trees with the additive
distance matrices. However, it can be successfully utilized even without satisfying
this condition. The alternative for the NJ is Unweighted Paired Group Method
with Arithmetic mean (UPGMA) [154]. The distance methods, more specifically
NJ approach is currently utilized in the FastTree algorithm [155].

6.1.2 Methods based on characters

Methods based on characters try to omit the need to derive the distance matrix
by constructing the phylogenetic tree directly from the MSA, thus preserving all
the information contained in the sequence alignment. The method is split into two
parts – big and small parsimony problem. Small parsimony problem evaluates the
constructed tree with its parsimony score, while big parsimony problem searches for
the best possible topology.

The most basic solution for the small parsimony problem is the Sankoff algorithm
[156], which requires the scoring matrix to assign values for all possible character
substitutions. Each terminal and non-terminal node is represented by the vector of
the length corresponding to the number of characters in the approved alphabet (four
for the nucleotides, twenty for the set of standard amino acids). In this vector, the
character corresponding to the real character on the given position of the terminal
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sequence is tagged with zero, and the scores of the remaining characters are set to
infinite. The algorithm then moves from the terminals to the root of the tree, and
the score for each field St of the non-terminal vector is calculated as:

𝑆𝑡(𝑝𝑎𝑟𝑒𝑛𝑡) = 𝑚𝑖𝑛𝑖{𝑆𝑖(𝑙𝑒𝑓𝑡) + 𝛿𝑖𝑡} + 𝑚𝑖𝑛𝑗{𝑆𝑗(𝑟𝑖𝑔ℎ𝑡) + 𝛿𝑗𝑡},

where 𝑆𝑖 and 𝑆𝑗 represent the current value of the given character in the vector
of the child node and 𝛿𝑖𝑡, and 𝛿𝑗𝑡 shows the price of the substitution between the
child and parental node. This represents the minimal score of the parsimony of the
field 𝑆𝑡, considering the values in the vector of its child nodes. Once the algorithm
reaches the root of the tree, it moves back from the root to the terminal nodes,
assigning the characters to the internal nodes based on the parsimony score of their
parent.

Big parsimony problem tries to find the best topology of the phylogenetic tree
that would provide the lowest parsimony score in the vector of its root. In general,
this is an NP-hard problem, and therefore some heuristics such as Nearest Neighbour
interchange and tree cutting and re-grafting are required [157]. Furthermore, the
character-based methods do not consider the different lengths of the branches and
the molecular clock. For this reasons, no actively used tools are currently utilizing
character-based methods.

6.1.3 Methods based on probability

Probabilistic methods try to establish a model that would be the most likely repre-
sentation of the provided data. This approach’s main representative is a maximum-
likelihood method, which can be further divided into tiny, small, and big likelihood
problem. Tiny likelihood problem evaluates the tree’s internal nodes and estimates
a total likelihood for a given tree. The topology of the tree and the distances of the
branches have to be already assigned. If those conditions are met, the Felsenstein
algorithm can be applied.

Felsenstein algorithm [158] is based on dynamic programming. It starts by as-
signing a vector to all terminal and non-terminal nodes. In the terminal node, the
individual fields’ value is set to zero, if the character in the field does not correspond
to the character in the sequence alignment and one if otherwise. The values of the
internal nodes are calculated as:

𝐿𝑆𝑘
(𝑘) = [

∑︁
𝑆𝑖

𝑃𝑆𝑘𝑆𝑖
(𝑡𝑖) * 𝐿𝑆𝑖

(𝑖)] * [
∑︁
𝑆𝑗

𝑃𝑆𝑘𝑆𝑗
(𝑡𝑗) * 𝐿𝑆𝑗

(𝑗)]

where 𝑃𝑆𝑘𝑆𝑖
represents the probability of the given substitution between nodes

𝑆𝑘 and 𝑆𝑖, with the evolutionary distance between those two nodes being 𝑡𝑖 and
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𝐿𝑆𝑖
(𝑖) contains a current probability for a given character in the node 𝑆𝑖. The value

of the root of the phylogenetic tree is then calculated as:

𝐿 =
∑︁
𝑆0

𝑃𝑆0 * 𝐿𝑆0(0)

In the second step, the algorithm proceeds from the tree’s root to its terminal
nodes and assigns the internal nodes’ values based on its maximum-likelihood. The
tiny likelihood problem serves only for the evaluation of the already existing trees.
The small likelihood problem estimates the branch lengths of the tree with the
maximum likelihood of 𝐿.

A small likelihood problem utilizes the hill-climbing algorithm to increase the
maximum likelihood 𝐿 of the given tree. In the beginning, the initial branch lengths
are assigned at random, and in the following steps, those values are adjusted itera-
tively until the algorithm climbs to its maximum.

The big likelihood problem represents the last step in this probabilistic approach
as it tries to identify the topology of the tree itself. This is done by gradually
adding new branches into the phylogenetic tree, and the small likelihood problem
is repeatedly calculated after each iteration. After several new branches are added
into the tree, the tree is cut and re-grafted. For the tree with n terminal nodes, the
total amount of 2𝑛2 −9𝑛+8 different tree topologies is evaluated. Unlike maximum
parsimony, maximum likelihood approach considers different lengths of the branches
for a cost of very high computational demands. Probabilistic methods are the most
common and are utilized in most of the existing tools, such as RAxML [98], PAML
[97], or MaxAlike [148].

6.2 Rooting of the phylogenetic trees

Except for the UPGMA algorithm, majority of the previously described algorithms
produce the phylogenetic tree in its unrooted form. This contradicts the general idea
of the phylogenetics and the ancestral sequence reconstruction as they presume the
existence of the common ancestor of all the homolog sequences in the phylogenetic
tree. Therefore, it is required to root the phylogenetic tree before using it for the
ancestral sequence reconstruction. In this section, three different methods of rooting
will be described.

6.2.1 Outgroup rooting

The outgroup rooting [159] is the most instinctive approach in evolutionary biology
and is utilized in most phylogeny-based applications. Unlike the other two methods,
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outgroup rooting requires existing knowledge of the system of interest to place the
root in the tree’s correct position. This is done by manual selection of a so-called
outgroup – a sequence or a small group of sequences known to be more distantly
related than all the other sequences in the phylogenetic tree. The root of the tree
is then placed between the outgroup and the rest of the tree. This method is
more resistant in the cases where there are different evolutionary rates between
individual species in the tree (i.e., rodent lineage is evolving faster than humans).
However, automation of this approach is close to impossible as it relies on the expert
knowledge introduced into the calculation. Furthermore, the outgroup selection
is more straightforward in the trees containing only eukaryotic organisms as the
topology of the tree well-reflects the natural pace of the evolution. However, in the
prokaryotes, the situation is much less conclusive due to the frequent occurrence of
the horizontal gene transfers in bacterial life.

6.2.2 Midpoint rooting

Unlike outgroup rooting, midpoint does not require any expert knowledge as it
attempts to root the tree in its middle point [160]. This is done by calculating the
distances between all terminal nodes’ pairs and selecting the longest one. The root
is then placed exactly half-way between these two terminal nodes. The midpoint
rooting is a viable strategy for the trees with a constant evolutionary rate. However,
it can easily misbehave if the evolutionary rates in the tree are not reasonably
balanced. Therefore, the usage of the outgroup rooting is preferable to the midpoint,
but it can still be a viable option for more closely related trees or if the outgroup
cannot be established.

6.2.3 Minimal ancestor deviation

The midpoint algorithm stands strong only under the assumption of a strict molec-
ular clock. However, this assumption is false for most of the evolutionary trees. In
practical applications, midpoint deviates from the actual position of the ancestral
root node. Minimal ancestor deviation algorithm [161] tries to evaluate the mid-
point criterion’s deviations for all possible root positions and all pairs of terminal
nodes in the unrooted tree. The algorithm considers each branch as a possible root
position. The pairwise relative deviation is defined as:

𝑟𝑏𝑐,𝑎 = [2𝑑𝑎𝑏

𝑑𝑏𝑐

− 1] = [2𝑑𝑎𝑐

𝑑𝑏𝑐

− 1],

where 𝑑𝑎𝑏 is a distance between nodes 𝑎 and 𝑏. For two terminal nodes 𝑏 and 𝑐

and ancestral node 𝑎, the distances to the ancestor are 𝑑𝑎𝑏 and 𝑑𝑎𝑐. Based on the
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midpoint criterion, both should be equal to 𝑑𝑏𝑐

2 . Branch ancestor deviation for a
putative root in a branch 𝑎, 𝑏 connecting adjacent nodes 𝑎 and 𝑏 of the unrooted
tree is then defined as the root-mean-square of the pairwise relative deviations. In
general terms, a minimal ancestor deviation algorithm tries to place the ancestral
root into the position where there is the lowest deviation of the ancestral root from
the midpoint of the given branch for all the branches in the unrooted tree.

As in the case of the midpoint rooting, minimal ancestor deviation is a math-
ematical approach and therefore does not require any knowledge of the system of
interest. However, unlike midpoint, it can also be utilized for the trees without a
strict molecular clock. Finally, it was proven that the accuracy of minimal ancestor
deviation is comparable to the outgroup rooting in eukaryotic systems and is supe-
rior for prokaryotic organisms where outgroup rooting is hard to establish due to
the occurrence of horizontal gene transfers [161].

6.3 Inference of the sequence ancestors

In general, there are three main algorithms usable for the ancestral sequence re-
construction: i) maximum parsimony, ii) maximum-likelihood, and iii) Bayesian
inference. The ancestral inference process with the use of the maximum parsimony
and maximum-likelihood approaches was previously described in the section 6.1 as
the inference of the ancestral characters is a part of the small parsimony and tiny
likelihood problems, respectively. Bayesian inference is a probabilistic approach,
similar to maximum-likelihood, that combines the tree’s prior probability with the
likelihood data to produce posterior probability distribution on the given trees.
Bayesian inference utilizes the Markov Chain Monte Carlo method [163], which can
be described in three steps. At first, the stochastic algorithm proposes a new state
for the Markov chain. Next, the probability of this state to be correct is calculated.
Finally, a new random variable from the interval (0, 1) is proposed. If this new value
is lower than the acceptance probability, the new state is accepted, and the Markov
chain updated accordingly. The whole process is then repeated.

Each method of ancestral sequence reconstruction has its advantages and short-
comings. Maximum parsimony is a straightforward approach that provides a simple
interpretation for a given set of homolog sequences as the ancestral states are re-
constructed to include as few changes across the sequences as possible. This is
exhibited by the smallest number of the evolutionary steps that have to be carried
out to explain the data. The simplicity of this method allowed its usage with limited
computational resources in the past; however, it has been overshadowed by statisti-
cally more consistent probabilistic approaches in recent years. Its obsolescence was
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also pushed forward by its inability to consider the branches’ lengths in the phylo-
genetic tree, which yields erroneous observations accumulated with the addition of
more sequences into the tree [164].

Maximum-likelihood is currently the most dominant approach in evolutionary
biology as it is able to calculate the length of the branches in the phylogenetic tree.
Furthermore, it also considers the probability of each tree explaining the given ho-
molog sequences based on the suggested model of evolution. This means that the
substitution rates for amino acids and nucleotides are taken into account, leading
to more realistic evolutionary relationships. However, maximum-likelihood is com-
putationally very expensive, and to explore all the possible trees comprehensively
is out of reach for bigger sets of homolog sequences. Finally, same as the maxi-
mum parsimony, the maximum-likelihood is unable to account for the phylogenetic
uncertainty in the prediction of the ancestral gaps.

Compared to the previous approaches, Bayesian inference is able to incorporate
complex models of evolution, and it quantifies the uncertainties in the data. It has
also been recommended as a possible solution for the bias of probabilities in more
distant ancestors as they have been systematically overestimated by the maximum-
likelihood methods [95, 165]. However, Bayesian inference tends to compute an-
cestral sequences with considerably lower posterior probabilities, which sometimes
leads to the loss of the ancestors’ biological relevance [100]. On the other hand, it
is more computationally effective than MP and ML methods.

In conclusion, there is no optimal method of ancestral reconstruction as each of
them comes with their shortcomings. However, the maximum parsimony method is
losing its relevance with the continuous growth of the computational resources.

6.4 Reconstruction of ancestral gaps
Reconstruction of gaps in ancestral sequences is one of the most crucial issues in the
process of ancestral sequence reconstruction as the insertions and deletions cannot
be treated in the same way as the standard characters during the inference of the
ancestral states. This problem was not yet resolved in a robust way, and the ancestral
gaps are usually included in the ancestral sequences by laborious manual curation.
So far, only a few algorithms were suggested to deal with this issue in an automated
manner. The most common is the algorithm based on Fitch’s parsimony [162]. This
approach is composed of two steps. In the beginning, the algorithm assigns vectors
of the length of the sequences in the MSA to all the terminal and internal nodes.
Fields in the vector of the terminal nodes are then filled with either 0 or 1, which
signifies the gap in the given position in the MSA of the sequence corresponding to
the terminal node. The algorithm then moves from the terminals to the root of the
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tree, and the fields in the vectors of the internal nodes get their values assigned by
the following rules:

• If the value of the field on the corresponding position is 0 for both its left and
right children, the result is 0.

• If the value of the field on the corresponding position is 1 for both its left and
right children, the result is 1.

• If the value of the field on the corresponding position is 0 for left child and 1
for right child or otherwise, the result is X.

• If the value of the field on the corresponding position is X for one of its children,
but not for the other, this second value is adapted.

• If the value of the field on the corresponding position is X for both children,
X is assigned also to the parent.

Once the algorithm reaches the root of the tree, the values in the root vector are
updated in the way that there is no uncertainty in any position. All the fields with
the value X are compared with their posterior probabilities. If some of the characters
on this position have higher posterior probability than the specified threshold, this
field is set to 0, signifying character in this position. In other cases, the field is
tagged as a position with the gap. In the second step, the algorithm moves from the
root to the terminal nodes, and any uncertainties are removed by replacing them
with the value from the vector of their parental node.

There are several issues connected with the ternary nature and its negligence
of the evolutionary distances. As a result, lonely branches and smaller subtrees
have a similar impact on the final decision as the well-resolved branches. This is
especially notable when the decision is influenced by one short branch connected to
the vast levelled subtree. A possible solution for this issue is provided in the form of
the algorithm described in the appendix B, describing FireProtASR method. This
method not only considers the length of the branches but also tracks the evolutionary
distances during the course of the evolution.
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7 Research summary
This chapter summarizes the research that was conducted in connection with the
main topic of this thesis, i.e. the development of the in silico tools that can be
employed to design stable protein structures. Four original publications describing
three tools and one database: FireProt, FireProtASR, FireProtDB, and HotSpotWiz-
ard 2.0 are included. In this chapter, abstracts and contributions for each of the
individual publications are presented, while the full versions of the forementioned
publications can be found in the appendix. A brief list of the research published by
the author that is not mentioned in this thesis is attached at the end of this chapter.

7.1 FireProt

MUSIL M, STOURAC J, BENDL J, BREZOVSKY J, PROKOP Z, ZENDULKA
J, MARTINEK T, BEDNAR D, DAMBORSKY J. FireProt: Web Server for Au-
tomated Design of Thermostable Proteins. Nucleic Acids Research. 2017, 45(W1),
W393-W399.

Author participation: 60%
Journal impact factor: 11.501 (Q1)

Author contribution

Designing and performing most of the computational experiments, analysing the
data, writing the manuscript, implementing most of the software code.

Abstract

There is a continuous interest in increasing proteins stability to enhance their us-
ability in numerous biomedical and biotechnological applications. A number of in
silico tools for the prediction of the effect of mutations on protein stability have
been developed recently. However, only single-point mutations with a small effect
on protein stability are typically predicted with the existing tools and have to be
followed by laborious protein expression, purification, and characterization. Here,
we present FireProt, a web server for the automated design of multiple-point ther-
mostable mutant proteins that combines structural and evolutionary information
in its calculation core. FireProt utilizes sixteen tools and three protein engineer-
ing strategies for making reliable protein designs. The server is complemented
with interactive, easy-to-use interface that allows users to directly analyze and
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optionally modify designed thermostable mutants. FireProt is freely available at
http://loschmidt.chemi.muni.cz/fireprot.

7.2 FireProtASR

MUSIL M, KHAN RT, BEIER A, STOURAC J, KONEGGER H, DAMBORSKY
J, BEDNAR D. FireProt-ASR: Web Server for Fully Automated Ancestral Sequence
Reconstruction. Briefings in bioinformatics. 2020, 0, 1-11. (available in early ac-
cess)

Author participation: 60%
Journal impact factor: 8.990 (Q1)

Author contribution

Designing and conducting most of the experiments, analysing the data, writing the
manuscript, designing and developing a novel algorithm for ancestral gaps recon-
struction, implementing most of the software code.

Abstract

There is a great interest in increasing proteins’ stability to widen their usability
in numerous biomedical and biotechnological applications. However, native pro-
teins cannot usually withstand the harsh industrial environment, since they are
evolved to function under mild conditions. Ancestral sequence reconstruction is
a well-established method for deducing the evolutionary history of genes. Be-
sides its applicability to discover the most probable evolutionary ancestors of the
modern proteins, ancestral sequence reconstruction has proven to be a useful ap-
proach for the design of highly stable proteins. Recently, several computational
tools were developed, that make the ancestral reconstruction algorithms accessible
to the community, while leaving the most crucial steps of the preparation of the
input data on users’ side. FireProtASR aims to overcome this obstacle by construct-
ing a fully automated workflow, allowing even the unexperienced users to obtain
ancestral sequences based on a sequence query as the only input. FireProtASR is
complemented with an interactive, easy-to-use web interface and is freely available
at https://loschmidt.chemi.muni.cz/fireprotasr/.
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7.3 FireProtDB

STOURAC J, DUBRAVA J, MUSIL M, HORACKOVA J, DAMBORSKY J, MAZURENKO
S, BEDNAR D. FireProt-DB: Database of Manually Curated Protein Stability Data.
Nucleic Acids Research. 2021, 49, D319-D324.

Author participation: 20%
Journal impact factor: 11.501 (Q1)

Author contribution

Defining the requirements for the project, defining data standardization, designing
structure of the database, collecting and cleaning the initial data, contributing to
the writing of the manuscript.

Abstract

The majority of naturally occurring proteins have evolved to function under mild
conditions inside the living organisms. One of the critical obstacles for the use
of proteins in biotechnological applications is their insufficient stability at elevated
temperatures or in the presence of salts. Since experimental screening for stabi-
lizing mutations is typically laborious and expensive, in silico predictors are often
used for narrowing down the mutational landscape. The recent advances in ma-
chine learning and artificial intelligence further facilitate the development of such
computational tools. However, the accuracy of these predictors strongly depends
on the quality and amount of data used for training and testing, which have often
been reported as the current bottleneck of the approach. To address this prob-
lem, we present a novel database of experimental thermostability data for single-
point mutants FireProtDB. The database combines the published datasets, data
extracted manually from the recent literature, and the data collected in our labo-
ratory. Its user interface is designed to facilitate both types of the expected use:
(i) the interactive explorations of individual entries on the level of a protein or mu-
tation and (ii) the construction of highly customized and machine learning-friendly
datasets using advanced searching and filtering. The database is freely available at
https://loschmidt.chemi.muni.cz/fireprotdb.

7.4 HotSpotWizard 2.0
BENDL J, STOURAC J, SEBESTOVA E, VAVRA O, MUSIL M, BREZOVSKY J,
DAMBORSKY J. HotSpotWizard 2.0: Automated Design of Site-specific Mutations
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and Smart Libraries in Protein Engineering. Nucleic Acids Research. 2016, 44(W1),
W479-W487.

Author participation: 15%
Journal impact factor: 11.501 (Q1)

Author contribution

Designing and developing one of the computational modules, performing its valida-
tion, analysingthe data, contribution on the writing of the paper.

Abstract

HotSpot Wizard 2.0 is a web server for automated identification of hot spots and de-
sign of smart libraries for engineering proteins’ stability, catalytic activity, substrate
specificity and enantioselectivity. The server integrates sequence, structural and evo-
lutionary information obtained from 3 databases and 20 computational tools. Users
are guided through the processes of selecting hot spots using four different protein
engineering strategies and optimizing the resulting library’s size by narrowing down
a set of substitutions at individual randomized positions. The only required input
is a query protein structure. The results of the calculations are mapped onto the
protein’s structure and visualized with a JSmol applet. HotSpot Wizard lists an-
notated residues suitable for mutagenesis and can automatically design appropriate
codons for each implemented strategy. Overall, HotSpot Wizard provides com-
prehensive annotations of protein structures and assists protein engineers with the
rational design of site-specific mutations and focused libraries. It is freely available
at http://loschmidt.chemi.muni.cz/hotspotwizard.

7.5 Other original publications
• BENDL J, MUSIL M, ZENDULKA J, DAMBORSKY J, BREZOVSKY J.

PredictSNP2: a Unified Platform for Accurately Evaluating SNP Effects by
Exploiting the Different Characteristics of Variants in Distinct Genomic Re-
gions. PLoS Computational Biology. 2016, 12, e1004962.

Author participation: 35%
Journal impact factor: 4.428 (Q1)

• MUSIL M, KONEGGER H, HON J, BEDNAR D, DAMBORSKY J. Compu-
tational Design of Stable and Soluble Biocatalysts. ACS Catalysis. 2018, 9,
1033-1054.

62



Author participation: 35%
Journal impact factor: 12.350 (Q1)

• BEERENS K, MAZURENKO S, KUNKA A, MARQUES S, HANSEN N,
MUSIL M, CHALOUPKOVA R, WATERMAN J, BREZOVSKY J, BED-
NAR D, PROKOP Z, DAMBORSKY J. Evolutionary Analysis as a Powerful
Complement to Energy Calculations for Protein Stabilization. ACS Catalysis.
2018, 8, 9420-9428.

Author participation: 15%
Journal impact factor: 12.350 (Q1)

• KHAN RT, MUSIL M, STOURAC J, DAMBORSKY J, BEDNAR D. Fully
Automated Ancestral Sequence Reconstruction using FireProt-ASR. Current
protocols in bioinformatics. 2021. (accepted for publication)

Author participation: 40%
Journal impact factor: 9.630 (Q1)

• PLANAS-IGLESIAS J, MARQUES S, PINTO G, MUSIL M, STOURAC
J, BEDNAR D, DAMBORSKY J. Computational Design of Enzymes for
Biotechnological Applications. Biotechnology advances. 2021. (accepted for
publication)

Author participation: 20%
Journal impact factor: 10.744 (Q1)
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8 Concluding remarks
Stable proteins are utilized in various medical and biotechnological applications.
However, native proteins have evolved to function in very mild conditions. Therefore,
there is an increasing interest in improving protein stability by introducing mutations
into the sequences of modern proteins. However, the saturation mutagenesis of all
possible mutations is still far out of reach for many academic laboratories, creating
the need for fast and reliable computational approaches. In the recent years, a
plethora of computational tools was designed to deal with such a task, falling into
one of the three main categories: i) tools based on force-field calculations, ii) tools
utilizing the evolutionary information extracted from the set of homolog sequences,
and iii) models built on top of the existing experimental data with the use of the
modern machine learning methods.

The steady growth of the computational resources allowed for a comprehensive
analysis of the mutational space, while the accuracy of stability-predicting methods
is currently well-sufficient for the prioritization of experimentally validated muta-
tions. Thus, in silico approaches are reducing the need for expensive and laborious
laboratory experiments. However, most of the existing methods are viable only for
predicting the single-point mutations with only a negligible effect on protein stabil-
ity, while the construction of the multiple-point mutants is more complicated due
to the possible occurrence of the antagonistic effects.

In this Thesis, several computational tools were presented to deal with designing
stable multiple-point mutants. FireProt is a fully automated hybrid workflow that
combines both energy- and evolution-based approaches in its calculation core. The
tool utilizes sequence information, such as conservation and correlation of the amino
acids in the MSA, as an initial filter to exclude those risky regions from the further
calculation. Force-field approaches are then employed to select a pool of the po-
tentially stable single-point mutations, which are then combined while eliminating
most of the antagonistic effects by evaluating all the mutations’ pairs. The second
approach, FireProtASR, is based on the idea that the ancestral proteins were signifi-
cantly more stable than their extant counterparts. It is a fully automated workflow
that allows users to utilize ancestral sequence reconstruction for their proteins with-
out the deep knowledge of the essential bioinformatics tools and the biological sys-
tem. FireProtASR deals with all steps of the ancestral reconstruction, including the
search for the biologically relevant homolog sequences, construction of the MSA and
phylogenetic tree, rooting of the tree without the need to specify its outgroup and
finally the reconstruction of the ancestral sequences together with the identification
of the ancestral gaps.

As the introduction of the stabilizing mutations into the protein structure of-
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ten causes deterioration of other protein properties, the protein engineering tool
HotSpotWizard was designed to add another level of abstraction. HotSpotWizard
allows observing the protein by many different criteria, including its conservation
and flexibility. Moreover, it provides the visualization of the sites and tunnels that
are crucial for the function of the protein of interest. Stabilizing mutations designed
by other methods can be analyzed in the HotSpotWizard tool to consider their po-
sition within a tertiary structure and the distance of those mutations from the sites
essential for protein function. Such an analysis can unearth mutations that could
(while stabilizing) compromise proteins activity and other properties, and therefore
removing such a mutation could lead to the safer design of the engineered variant.

Finally, the work presented in this Thesis takes a stance on the current unsatis-
factory situation surrounding the storage and management of the experimental data
that are crucial for the training and validation of the computational tools based on
the machine learning approaches. FireProtDB is a comprehensive database of a pro-
tein stability data, supplemented with a sophisticated search engine and expanded
by various annotations from the sequence and structural databases.

In conclusion, this Thesis presents a set of methods that aim to ease the engi-
neering of highly stable multiple-point mutants, while providing users with a further
analysis of the designed protein by considering other factors such as protein flexi-
bility and location of the functional sites. Furthermore, it aims to simulate further
improvement of the protein stability predictors by providing the research community
with easy access to reliable experimental data.

In the future, the plan is to utilize the new high-quality dataset that was compiled
for FireProtDB to train a novel machine learning-based predictor of the effect of
mutations on protein stability. This novel predictor would not be just a simple
implementation of some of the standard machine learning techniques (e.g., SVM,
RF), but rather a more complex multi-agent system that would focus more deeply
on the mutations that are hard to predict by the existing predictors such as charge
changing mutations located on the protein surface.

66



Bibliography
[1] Whitford D. Proteins: Structure and function. Wiley. 2005, ISBN 978-0-471-

49894-0.

[2] Kurahashi R, Tanaka SI, Takano K. Activity-stability trade-off in random mu-
tant proteins. J. Biosci. Bioeng. 2019, 128, 405-409.

[3] Siddiqui KS. Defying the activity–stability trade-off in enzymes: taking advan-
tage of entropy to enhance activity and thermostability. Crit. Rev. Biotech. 2015,
37, 309-322.

[4] Yu H, Dalby PA. Exploiting correlated molecular-dynamics networks to coun-
teract enzyme activity–stability trade-off. PNAS. 2018, 15, E12192-E12200.

[5] Babkova P, Sebestova E, Brezovsky J, Chaloupkova R, Damborsky J. Ancestral
Haloalkane Dehalogenases Show Robustness and Unique Substrate Specificity.
ChemBioChem 2017, 18, 1448-1456.

[6] Polizzi KM, Bommarius AS, Broering JM, Chaparro-Riggers JF. Stability of
biocatalysts. Curr. Opin. Biotechnol. 2007, 11, 220-225.

[7] Ferdjani S, Ionita M, Roy B, Dion M, Djeghaba Z, Rabiller C, et al. Correlation
between thermostability and stability of glycosidases in ionic liquid. Biotechnol.
Lett. 2011, 33, 1215-1219.

[8] Gao D, Narasimhan DL, Macdonald J, Brim R, Ko M-C, Landry DW, et al.
Thermostable variants of cocaine esterase for long-time protection against co-
caine toxicity. Mol. Pharmacol. 2009, 75, 318-323.

[9] Gromiha MM. Protein bioinformatics. Elsevier. 2010, ISBN 978-81-312-2297-3.

[10] Bhu V. THERMODYNAMICS AND IMFs IN PROTEIN STABILITY [online].
cit. 14. 10. 2020, http://biochem-vivek.tripod.com/id23.html

[11] Musil M, Konegger H, Hon J, Bednar D, Damborsky J. omputational design of
stable and soluble biocatalysts. ACS Catalysis. 2018, 9, 1033-1054.

[12] Nickson AA, Clarke J. What lessons can be learned from studying the folding
of homologous proteins?. Methods. 2010, 52, 38-50.

[13] Eisenberg D, McLachlan AD. Solvation energy in protein folding and binding.
Nature. 1986, 319, 199-203.

67

http://biochem-vivek.tripod.com/id23.html


[14] Ponnuswamy PK, Gromiha MM. On the conformational stability of folded pro-
teins. J. Theor. Biol. 1994, 1, 63-74.

[15] Wijma HJ, Floor RJ, Janssen DB. Structure- and sequence-analysis inspired
engineering of proteins for enhanced thermostability. Curr. Opin. Struct. Biol.
2013, 23, 588-594.

[16] Gumulya Y, Reetz MT. Enhancing the thermal robustness of an enzyme by
directed evolution: least favorable starting points and inferior mutants can map
superior evolutionary pathways. ChemBioChem. 2011, 12, 2502–2510.

[17] Bommarius AS, Paye MF. Stabilizing biocatalysts. Chem. Soc. Rev. 2013, 42,
6534–6565.

[18] Barlow DJ, Thornton JM. Ion-pairs in proteins. J. Mol. Biol. 1983, 168, 867-
885.

[19] McDonald IK, Thornton JM. Satisfying Hydrogen Bonding Potential in Pro-
teins. J. Mol. Biol. 1994, 238, 777-793.

[20] Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, et al. A
second generation force field for the simulation of proteins, nucleic acids, and
organic molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197.

[21] Thornton JM. Disulphide bridges in globular proteins. J. Mol. Biol. 1981, 151,
261-287.

[22] Kauzmann W. Sulfur in proteins. Elsevier. 1959, ISBN 978-0-12-395705-4.

[23] Musil M, Stourac J, Bendl J, Brezovsky J, Prokop Z, Zendulka J, Martinek
T, Bednar D, Damborsky J. FireProt: Web Server for Automated Design of
Thermostable Proteins. Nucleic Acids Res. 2017, 45, W393-399.

[24] Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger
E, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2004,
32, D115-D119.

[25] Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, RItter O, Abola EE. Pro-
tein Data Bank (PDB): Database of Three-Dimensional Structural Information
of Biological Macromolecules. Acta Cryst. 1998, D54, 1078-1084.

[26] Levinthal C. How to Fold Graciously. Spect. in Biol. Sys. 1969, 22-24.

[27] Anfinsen CB. Principles that Govern the Folding of Protein Chains. Science
1973, 181, 223-230.

68



[28] Tokuriki N, Stricher F, Serrano L, Tawfik DS. How Protein Stability and New
Functions Trade Off. PLoS Comput. Biol. 2008, 4, e1000002.

[29] Arabnejad H, Dal Lago M, Jekel PA, Floor RJ, Thunnissen AMWH, Terwisscha
van Scheltinga AC, Wijma HJ, Janssen DB. A Robust Cosolvent-Compatible
Halohydrin Dehalogenase by Computational Library Design. Protein Eng, Des.
Sel. 2017, 30, 175-189.

[30] Kuipers RK, Joosten HJ, Berkel WJH, Leferink NGH, Rooijen E, Ittmann E,
Zimmeren F, Joschens H, et. al. 3DM: Systematic Analysis of Heterogeneous
Superfamily Data to Discover Protein Fuctionalities. Proteins: Struct., Funct.,
Bioinf. 2010, 78, 2101-2113.

[31] Goldenzweig A, Fleishman SJ. Principles of Protein Stability and Their Appli-
cation in Computational Design. Annu. Rev. Biochem. 2018, 87, 105-129.

[32] Hansen N, Gunsteren WF. Practical Aspects of Free-Energy Calculations: A
Review. J. Chem. Theory Comput. 2014, 10, 2632-2647.

[33] Nguyen V, Wilson C, Hoemberger M, Stiller JR, Agafonov RV, Kutter S, En-
glish J, Theobald DL, Kern D. Evoluionary Drivers of Thermoadaptation in
Enzyme Catalysis. Science 2017, 355, 289-294.

[34] Risso Va, Gavira JA, Gaucher EA, Sanchez-Ruiz JM. Phenotypic Comparisons
of Consensus Variants versus Laboratory Resurrections of Precambrian Pro-
teins. Proteins: Struct., Funct., Genet. 2014, 82, 887-896.

[35] Bednar D, Beerens K, Sebestova E, Bendl J, Khare S, Chaloupkova R, Prokop
Z, Brezovsky J, Baker D, Damborsky J. FireProt: Energy- and Evolution-Based
Computational Design of Thermostable Multiple-Point Mutants. PLoS Comput.
Biol. 2015, 11, e1004556.

[36] Goldenzweig A, Goldsmith M, Hill SE, Gertman O, Laurino P, Ashani Y, Dym
O, Unger T, Albeck S, Prilusky J, Lieberman RL, et. al. Automated Structure-
and Sequence-Based Design of Proteins for High Bacterial Expression and Sta-
bility. Mol. Cell 2016, 63, 337-346.

[37] Broom A, Jacobi Z, Trainor K, Meiering EM. Computational Tools Help Im-
prove Protein Stability but with a Solubility Tradeoff. J. Biol. Chem. 2017, 292,
14349-14361.

[38] Modarres HP, Mofrad MR, Sanati-Nezhad A. Protein Thermostability Engi-
neering. RSC Adv. 2016, 6, 115252-115270.

69



[39] Pace CN, Scholtz JM, Grimsley GR. Forces Stabilizing Proteins. FEBS Lett.
2014, 588, 2177-2184.

[40] Lazaridis T, Karplus M. Effective Energy Function for Protein Structure Pre-
diction. Curr. Opin. Struct. Biol. 2000, 10, 139-145.

[41] Seeliger D, Groot BL. Protein Thermostability Calculations Using Alchemical
Free Energy Simulations. Biophys. J. 2010, 98, 2309-2316.

[42] Guerois R, Nielsen JE, Serrano L. Predicting Changes in the Stability of Proteins
and Protein Complexes: A Study of More than 1000 Mutations. J. Mol. Biol.
2002, 320, 369-387.

[43] Mendes J, Guerois R, Serrano L. Energy Estimation in Protein Design. Curr.
Opin. Struct. Biol. 2002, 12, 441-446.

[44] Dehouck Y, Gilis D, Rooman M. A New Generation of Statistical Potentials
for Proteins. Biophys. J. 2006, 90, 4010-4017.

[45] Dehouck Y, Kwasigroch JM, Gilis D, Rooman M. PoPMuSiC 2.1: A Web Server
for the Estimation of Protein Stability Changes upon Mutation and Sequence
Optimality. BMC Bioinf. 2011, 12, 151.

[46] Liu H. On Statistical Energy Functions for Biomolecular Modeling and Design.
Quant. Biol. 2015, 3, 157-167.

[47] Kumar MDS, Bava KA, Gromiha MM, Prabakaran P, Kitajima K, Uedaira H,
Sarai A. ProTherm and ProNIT: Thermodynamic Databases for Proteins and
Protein-Nucleic Acid Interactions. Nucleic Acids Res. 2006, 34, D204-206.

[48] Potapov V, Cohen M, Schreiber G. Assessing Computational Methods for Pre-
dicting Protein Stability upon Mutation: Good on Average but Not in the De-
tails. Protein Eng., Des. Sel. 2009, 22, 553-560.

[49] Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FOldX
Web Server: An Online Force Field. Nucleic Acids Res. 2005, 33, W382-388.

[50] Kepp KP. Towards a Golden Standard for Computing Globin Stability: Stabil-
ity and Structure Sensitivity of Myoglobin Mutants. Biochim. Biophys. Acta,
Proteins Proteomics 2015, 1854, 1239-1248.

[51] Christensen NJ, Kepp KP. Accurate Stabilities of Laccase Mutants Predicted
with a Modified FoldX Protocol. Protocol. J. Chem. Inf. Model. 2012, 52, 3028-
3042.

70



[52] MacKerell AD, BashFord D, Bellott M, Dunbrack RL, Evanseck JD, et. al.
All-Atom Empirical Potentials for Molecular Modeling and Dynamics Studies
of Proteins. J. Phys. Chem. B. 1998, 102, 3586-3616.

[53] Oosternbrink C, Villa A, Mark AE, Gunsteren WF. A Biomolecular Force Field
Based on the Free Enthalpy of Hydration and Solvation: The GROMOS FOrce-
Field Parameter Sets 53A5 and 53A6. J. COmput. Chem. 2004, 25, 1656-1676.

[54] Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park H,
Shapovalov MV, Renfrew PD, et. al. THe Rosetta All-Atom Energy Function
for Macromolecular Modeling and Design. J. Chem. Theory Comput. 2017, 13,
3031-3048.

[55] Davey JA, Damry AM, Euler CK, Goto NK, Chica RA. Prediction of Stable
Globular Proteins Using Negative Design with Non-Native Bakcbone Ensembles.
Structure 2015, 23, 2011-2021.

[56] Conchúir S, Barlow KA, Pache RA, Ollikainen N, Kundert K, O’Meara
MJ, Smith CA, Kortemme T. A Web Resource for Standardized Benchmark
Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling adn De-
sign. PLoS One 2015, 10, e0130433.

[57] Trainor K, Broom A, Meiering EM. Exploring the Relationships between Protein
Sequence, Structure and Solubility. Curr. Opin. Struct. Biol. 2017, 42, 136-146.

[58] Das R. Four Small Puzzles that Rosetta Doesn’t Solve. PLoS One 2011, 6,
e20044.

[59] Kellog EH, Leaver-Fay A, Baker D. Role of Conformational Sampling in Com-
puting Mutation-Induced Changes in Protein Structure and Stability. Proteins:
Struct., Funct., Genet. 2011, 79, 830-838.

[60] Bush J, Makhatadze GI. Statistical Analysis of Protein Structures Suggests
That Buried Ionizable Residues in Proteins Are Hydrogen Bonded or Form Salt
Bridges. Proteins: Struct., Funct., Genet. 2011, 79, 2027-2032.

[61] Stranges PB, Kuhlman BA. Comparison of Successful and Failed Protein In-
terface Designs Highlights the Challenges of Designing Buried Hydrogen Bonds.
Protein Sci. 2013, 22, 74-82.

[62] Beerens K, Mazurenko S, Kunka A, Marques SM, Hansen N, Musil M, Chaloup-
kova R, Waterman J, Brezovsky J, Bednar D, Prokop Z, Damborsky J. Evolu-
tionary Analysis Is a Powerful Complement to Energy Calculations for Protein
Stabilization. ACS Catal. 2018, 8, 9420-9428.

71



[63] Wijma HJ, Floor RJ, Jekel PA, Baker D, Marrink SJ, Janssen DB. Computa-
tionally Designed Libraries for Rapid Enzyme Stabilization. Protein Eng., Des.
Sel. 2014, 27, 49-58.

[64] Wickstrom L, Gallicchio E, Levy RM. The Linear Interaction Energy Method
for the Prediction of Protein Stability Changes Upon Mutation. Proteins:
Struct., Funct., Genet. 2012, 80, 111-125.

[65] Thiltgen G, Goldstein RA. Assessing Predictors of Changes in Protein Stability
upon Mutation Using Self-Consistency. PLoS One 2012, 7, e46084.

[66] Bub O, Rudat J, Ochsenreither K. FoldX as Protein Engineering Tool: Better
Than Rnadom Based Approaches?. Comput. Struct. Biotechnol. J. 2018, 16,
26-33.

[67] Barlow KA, Conchúir ÓS, Thompson S, Suresh P, Lucas JE, Heinonen M,
Kortemme T. Flex DdG: Rosetta Ensemble-Based Estimation of Changes in
Protein-Protein Binding Affinity upon Mutation. J. Phys. Chem. B. 2018, 122,
5389-5399.

[68] Ludwiczak J, Jarmula A, Dunin-Horkawicz S. Combining Rosetta with Molecu-
lar Dynamics (MD): A Benchmark of the MD-Based Ensemble Protein Design.
J. Struct. Biol. 2018, 203, 54-61.

[69] Davis IW, Arendall WB, Richardson DC, RIchardson JS. The Backrub Motion:
How Protein Backbone Shrugs when a Sidechain Dances. Structure 2006, 14,
265-274.

[70] Fan H, Mark AE. Relative Stability of Protein Structures Determined by X-
Ray Crystallography or NMR Spectroscopy: A Molecular Dynamics Simulation
Study. Proteins: Struct., Funct., Genet. 2003, 53, 111-120.

[71] Kuzmanic A, Pannu NS, Zagrovic B. X-Ray Refinement Significantly Underes-
timates the Level of Microscopic Heterogeneity in Biomolecular Crystals. Nat.
Commun. 2014, 5, 3220.

[72] Folkman L, Stantic B, Sattar A, Zhou Y. EASE-MM: Sequence-Based Predic-
tion of Mutation-Induced Stability Changes with Feature-Based Multiple Models.
J. Mol. Biol. 2016, 428, 1394-1405.

[73] Teng S, Srivastava AK, Wang L. Sequence Feature-Based Prediction of Protein
Stability Changes upon Amino Acid Substitutions. BMC Genomics 2010, 11, S5.

72



[74] Huang LT, Gromiha MM, Ho SY. IPTREE-STAB: Interpretable Decision Tree
Based Method for Predicting Protein Stability Changes upon Mutations. bioin-
formatics 2007, 23, 1292-1293.

[75] Liaw A, Wiener M. Classification and Regression by RandomForest. R. News
2002, 2, 18-22.

[76] Breiman L. Random Forests. Mach. Learn. 2001, 45, 5-32.

[77] Boughorbel S, Jarray F, El-Anbari M. Optimal Classifier for Imbalanced Data
Using Matthews Correlation Coefficient Metric. PLoS One 2017, 12, e0177678.

[78] Ling CX, Sheng VS. Cost-Sensitive Learning and the Class Imbalance Problem.
In Encyclopedia of Machine Learning. Sammut, C., Springer. New York, 2007.

[79] Rao R, Fung G, Rosales R. On the Dangers of Cross-Validation. An Experi-
mental Evaluation. In Proceedings of the 2008 SIAM International Conference
on Data Mining. Society for Industrial and Applied Mathematics: Philadelphia.
2008, 588-596.

[80] Altschul SF, Gish W, Miller W, Mayers EW, LIpman DJ. Basic Local Alignment
Search Tool. J. Mol. Biol. 1990, 215, 403-410.

[81] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman
DJ. Gapped BLAST and PSI-BLAST: A new Generation of Protein Database
Search Programs. Nucleic Acids Res. 1997, 25, 3389-3402.

[82] Remmert M, Biegert A, Hauser A, Soding J. HHblits: Lightning-Fast Iterative
Protein Sequence Searching by HMM-HMM Alignment. Nat. Methods 2012, 9,
173-175.

[83] Steipe B, Schiller B, Pluckthun A, Steinbacher S. Sequence Statistics Reliably
Predict Stabilizing Mutations in Protein Domain. J. Mol. Biol. 1994, 240, 188-
192.

[84] Sullivan BJ, Nguyen T, Durani V, Mathur D, Rojas S, THomas M, Syu T,
Magliery TJ. Stabilizing Proteins from Sequence Statistics: The Interplay of
Conservation and Correlation in Triosephosphate Isomerase Stability. J. Mol.
Biol. 2012, 420, 384-399.

[85] Lehmann M, Kostrewa D, Wyss M, Brugger R, D[’Arcy A, Pasamontes L, Loon
AP. From DNA Sequence to Improved Functionality: Using Protein Sequence
Comparisons to Rapidly Design a Thermostable Consensus Phytase. Protein
Eng., Des. Sel. 2000, 13, 49-57.

73



[86] Magliery TJ. Protein Stability: Computation, Sequence Statistics, and New
Experimental Methods. Curr. Opin. Struct. Biol. 2015, 33, 161-168.

[87] Porebski BT, Buckle AM. Consensus Protein Design. Protein Eng., Des. Sel.
2016, 29, 245-251.

[88] Jackel C, Bloom JD, Kast P, Arnold FH, Hilvert D. Consensus Protein Design
without Phylogenetic Bias. J. Mol. Biol. 2010, 399, 541-546.

[89] Goyal VD, Magliery TJ. Phylogenetic Spread of Sequences Data Affects Fitness
of SOD1 Consensus Enzymes: Insights from Sequence Statistics and Structural
Analyses. Proteins: Struct., Funct., Genet. 2018, 86, 609-620.

[90] Vazquez-Figueroa E, Chaparro-Riggers J, Bommarius AS. Development of a
Thermostable Glucose Dehydrogenase by a Structure-Guided Consensus Con-
cept. ChemBioChem 2007, 8, 2295-2301.

[91] Parthasarathy S, Murthy MR. Protein Thermal Stability: Insights from Atomic
Displacement Parameters (B Values). Protein Eng., Des. Sel. 2000, 13, 9-13.

[92] Cole MF, Gaucher EA. Exploiting Models of Molecular Evolution to Efficiently
Direct Protein Engineering. J. Mol. Evol. 2011, 72, 193-203.

[93] Hochberg GKA, Thornton JW. Reconstructing Ancient Proteins to Understand
the Causes of Structure and Function. Annu. Rev. Biophys. 2017, 46, 247-269.

[94] Aerts D, Verhaeghe T, Joosten HJ, Vriend G, Soetaert W, Desmet T. Consen-
sus Engineering of Sucrose Phosphorylase: The Outcome Reflects the Sequence
Input. Biotechnol. Bioeng. 2013, 110, 2563-2572.

[95] Trudeau DL, Kaltenbach M, Tawfik DS. On the Potential Origins of the High
Stability of Reconstructed Ancestral Proteins. Mol. Biol. Evol. 2016, 33, 2633-
2641.

[96] Wheeler LC, Lim SA, Marqusee S, Harms MJ. The Thermostability and Speci-
ficity of Ancient Proteins. Curr. Opin. Struct. Biol. 2016, 38, 37-43.

[97] Yang Z. PAML: A Program Package for Phylogenetic Analysis by Maximum
Likelihood. Bioinformatics 1997, 13, 555-556.

[98] Stamatakis A. RAxML-VI-HPC: Maximum Likelihood-Based Phylogenetic
Analyses with Thousands of Taxa and Mixed Models. Bioinformatics 2006, 22,
2688-2690.

74



[99] Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. Bayesian Inference of
Phylogeny and Its Impact on Evolutionary Biology. Science 2001, 294, 2310-
2314.

[100] Eick GN, Bridgham JT, Anderson DP, Harms MJ, Thornton JW. Robustness
of Reconstructed Ancestral Protein Functions to Statistical Uncertainty. Mol.
Biol. Evol. 2016, 34, 247-261.

[101] Dehouck Y, Grosfils A, Folch B, Gilis D, Bogaerts P, Rooman M. Fast and
Accurate Predictions of Protein Stability Changes upon Mutations Using Sta-
tistical Potentials and Neural Networks: PoPMuSiC-2.0. Bioinformatics 2009,
25, 2537-2543.

[102] Khatun J, Khare SD, Dokholzan NV. Can Contact Potentials Reliably Predict
Stability of Proteins?. J. Mol. Biol. 2004, 336, 1223-1238.

[103] Pucci F, Bernaerts KV, Kwasigroch JM, Rooman M. Quantification of Bi-
ases in Predictions of Protein Stability Changes upon Mutations. Bioinformatics
2018, 34, 3659-3665.

[104] Yin S, Ding F, Dokholyan NV. ERIS: An Automated Estimator of Protein
Stability. Nat. Methods 2007, 4, 466-467.

[105] Benedix A, Becker CM, Groot BL, Caflisch A, Bockmann RA. Predicting Free
Energy Changes Using Structural Ensembles. Nat. Methods 2009, 6, 3-4.

[106] Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR,
Smith JC, Kasson PM, Spoel D, Hess B, Lindahl E. GROMACS 4.5: A High-
Throughput and Highly Parallel Open Source Molecular Simulation Toolkit.
Bioinformatics 2013, 29, 845-854.

[107] Groot BL, Aalten DM, Scheek RM, Amadei A, Vriend G, Berendsen HJC.
Prediction of Protein Conformational Freedom from Distance Constraints. Pro-
teins: Struct., Funct., Genet. 1997, 29, 240-251.

[108] Hoppe C, Schomburg D. Prediction of Protein Thermostability with a
Direction- and Distance-Dependent Knowledge-Based Potential. Protein Sci.
2005, 14, 2682-2692.

[109] Pucci F, Bourgeas R, Rooman M. Predicting Protein Thermal Stability
Changes upon Point Mutations Using Statistical Potentials: Introducing HoT-
MuSiC. Sci. Rep. 2016, 6, 23257.

75



[110] Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: Predicting Stability Changes
upon Mutation from the Protein Sequence or Structure. Nucleic Acids Res. 2005,
33, W306-310.

[111] Cheng J, Randall A, Baldi P. Prediction of Protein Stability Changes for
Single-Site Mutations Using Support Vector Machines. Proteins: Struct.,
Funct., Genet. 2006, 62m 1125-1132.

[112] Wainreb G, Wolf L, Ashkenazy H, Dehouck Y, Ben-Tal N. Protein Stability:
A single Recorded Mutation Aids in Predicting the Effects of Other Mutations
in the Same Amino Acid Site. Bioinformatics 2011, 27, 3286-3292.

[113] Li Y, Fang J. PROTS-RF: A Robust Model for Predicting Mutation-Induced
Protein Stability Changes. PLoS One 2012, 7, e47247.

[114] Quang D, Chen Y, Xie X. DANN: A Deep Learning Approach for Annotating
the Pathogenicity of Genetic Variants. Bioinformatics 2015, 31, 761-763.

[115] Wang Y, Mao H, Yi Z. Protein Secondary Structure Prediction by Using Deep
Learning Method. Know.-Based Syst. 2017, 118, 115-123.

[116] Ivakhnenko AG. Polynomial Theory of Complex Systems. IEEE Trans. Syst.,
Man, Cybern. 1971, SMC-1, 364-378.

[117] Bengio Y, Boulanger-Lewandowski N, Pascanu R. Advances in Optimizing
Recurrent Networks. IEEE International Conference on Acoustics, Speech and
Signal Processing 2013, 8624-8628.

[118] Cang Z, Wei GW. TopologyNet: Topology Based Deep Convolutional and
Multi-Task Neural Networks for Biomolecular Property Predictions. PLoS Com-
put. Biol. 2017, 13, e1005690.

[119] Laimer J, Hofer H, Fritz M, Wegenkittl S, Lackner P. MAESTRO - Multi
Agent Stability Predictor upon Point Mutations. BMC Bioinf. 2015, 16, 116.

[120] Khan S, Vihinen M. Performance of Protein Stability Predictors. Hum. Mutat.
2010, 31, 675-684.

[121] Usmanova DR, Bogatyreva NS, Arino BJ, Eremina AA, Gorshkova AA,
Kanevskiy GM, Lonishin LR, Meister AV, et. al. Self-Consistency Test Reveals
Systematic Bias in Programs for Prediction Change of Stability upon Mutation.
Bioinformatics 2018, 34, 3653-3658.

76



[122] Montanucci L, Martelli PL, Ben-Tal N, Fariselli PA. Natural Upper Bound to
the Accuracy of Predicting Protein Stability Changes upon Mutations. Bioinfor-
matics 2019, 35, 1513-1517.

[123] Rice P, Longden I, Bleasby A. EMBOSS: The European Molecular Biology
Open Software Suite. Trends Genet. 2000, 16, 276-277.

[124] Lu G, Moriyama EN. Vector NTI, a Balanced All-in-One Sequence Analysis
Suite. Briefings Bioinf. 2004. 5, 378-388.

[125] Bendl J, Soutrac J, Sebestova E, Vavra O, Musil M, Brezovsky J, Damborsky
J. HotSpot Wizard 2.0: Automated Design of Site-Specific Mutations an Smart
Libraries in Protein Engineering. Nucleic Acids Res. 2016, 44, W479-487.

[126] Stamatakis A. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-
Analysis of Large Phylogenetics. Bioinformatics 2014, 30, 1312-1313.

[127] Ashkenazzy H, Penn O, Doron-Faigenboim A, Cohen O, Cannarozzi G, Zomer
O, Pupko T. FastML: A Web Server for Probabilistic Reconstruction of Ances-
tral Sequences. Nucleic Acids Res. 2012, 40, W580-584.

[128] Diallo AB, Makarenkov V, Blanchette M. Ancestors 1.0: A Web Server for
Ancestral Sequence Reconstruction. Bioinformatics 2010, 26, 130-131.

[129] Westesson O, Barquist L, Holmes I. HandAlign: Bayesian Multiple Sequence
Alignment, Phylogeny and Ancestral Reconstruction. Bioinformatics 2012, 28,
1170-1171.

[130] Ronquist F, Teslenko M, Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu
L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: Efficient Bayesian Phylogenetic
Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012. 61,
539-542.

[131] Finn RD, Clements J, Eddy SR. HMMER Web Server: Interactive Sequence
Similarity Searching. Nucleic Acids Res. 2011, 39, W29-37.

[132] Altschul SF, Gertz EM, Agarwala R, Schaffer AA, Yu YK. PSI-BLAST Pseu-
docounts and the Minimum Description Length Principle. Nucleic Acids Res.
2009, 37, 815-824.

[133] Whitehead TA, Chevalier A, Song Y, Dreyfus C, Fleishman SJ, De Matos
C, Myers CA, Kamisetty H, Blair P, Wilson IA, Baker D. Optimization of
Affinity, Specificity and Function of Designed Influenza Inhibitors Using Deep
Sequencing. Nat. Biotechnol. 2012, 30, 543-548.

77



[134] Parthiban V, Gromiha MM, Schomburg D. CUPSAT: Prediction of Protein
Stability Upon Point Mutations. Nucleic Acids Res. 2006, 34, W239-242.

[135] Wang G, Dunbrack RL. PISCES: a Protein Sequence Culling Server. Bioin-
formatics 2003, 12, 1589-1591.

[136] Witvliet DK, Strokach A, Giraldo-Forero AF, Teyra J, Colak R, Kim PM.
ELASPIC Web-Server: Proteome-Wide Structure-Based Prediction of Mutation
Effects on Protein Stability and Binding Affinity. Bioinformatics 2016, 32, 1589-
1591.

[137] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Mi-
nority Over-Sampling Technique. J. of Artific. Intel. Res. 2002, 16, 321-357.

[138] He H, Bai Y, Garcia EA, Li S. ADASYN: Adaptive Synthetic Sampling Ap-
proach for Imbalanced Learning. IJCNN 2008, 1322-1328.

[139] Gopi S, Devanshu D, Krishna P, Naganathan AN. pStab: prediction of stable
mutants, unfolding curves, stability maps and protein electrostatic frustration.
Bioinformatics 2017, 43, 875-877.

[140] Frappier V, Chartier M, Najmanovich RJ. ENCoM server: exploring protein
conformational space and the effect of mutations on protein function and sta-
bility. Nucleic Acids Res. 2015, 43, W395-W400.

[141] Giollo M, Martin AJM, Walsh I, Ferrari C, Tosatto SCE. NeEMO: a method
using residue interaction networks to improve prediction of protein stability
upon mutation. BMC Genomics 2014, 15, S7.

[142] Pandurangan AP, Ochoa-Montano B, Acher DB, Blundell TL. SDM: a server
for predicting effects of mutations on protein stability. Nucleic Acids Res. 2017,
45, W229-W235.

[143] Masso M, Vaisman II. AUTO-MUTE 2.0: A Portable Framework with En-
hanced Capabilities for Predicting Protein Functional Consequences upon Mu-
tation. Adv. in Bioinf. 2014, 278385.

[144] Quan L, Lv Q, Zhang Y. STRUM: structure-based prediction of protein sta-
bility changes upon single-point mutation. Bioinformatics. 2016, 32, 2936-2946.

[145] Hu F, Lin Y, Tang J. MLGO: phylogeny reconstruction and ancestral inference
from gene-order data. BMC Bioinformatics. 2014, 15, 354.

[146] Sagulenko P, Puller V, Neher RA. TreeTime: Maximum-likelihood phylody-
namic analysis. Virus Evolution. 2018, 4, vex042.

78



[147] Hanson-Smith V, Johnson A. PhyloBot: A Web Portal for Automated Phy-
logenetics, Ancestral Sequence Reconstruction, and Exploration of Mutational
Trajectories. PLoS Comp. Biol. 2016, e1004976.

[148] Menzel P, Stadler PF, Gorodkin J. maxAlike: maximum likelihood-based se-
quence reconstruction with application to improved primer design for unknown
sequences. Bioinformatics. 2011, 27, 317-325.

[149] Pires DEV, Ascher DB, Blundell TL. mCSM: predicting the effects of muta-
tions in proteins using graph-based signatures. Bioinformatics. 2014, 30, 335-
342.

[150] Savojardo C, Fariselli P, Martelli PL, Casadio R. INPS-MD: a web server to
predict stability of protein variants from sequence and structure. Bioinformatics.
2016, 16, 2542-2544.

[151] Chen CW, Lin J, Chu YW. iStable: off-the-shelf predictor integration for pre-
dicting protein stability changes. BMC Bioinformatics. 2013, 14, S5.

[152] Tian J, Wu N, Chu X, Fan Y. Software Predicting changes in protein ther-
mostability brought about by single- or multi-site mutations. BMC Bioinformat-
ics. 2010, 11, 370.

[153] Saitou N, Nei M. The neighbor-joining method: a new method for reconstruct-
ing phylogenetic trees. Mol. Biol. and Evol. 1987, 4, 406-425.

[154] Sokal M. A statistical method for evaluating systematic relationships. Univ. of
Kansas Sci. Bulletin. 1958, 1409-1438.

[155] Price MN, Dehal PS, Arkin AP. FastTree 2 – Approximately Maximum-
Likelihood Trees for Large Alignments. PLoS One. 2010, 5, e9490.

[156] Sankoff, D. Simultaneous solution of the RNA folding, alignment and protose-
quence problems. SIAM J. Appl. Math. 1985, 45810–825.

[157] Takahashi K, Nei M. Efficiencies of fast algorithms of phylogenetic inference
under the criteria of maximum parsimony, minimum evolution, and maximum
likelihood when a large number of sequences are used. Mol. Biol. Evol. 2000, 17,
1251-8.

[158] Felsenstein J. Maximum-likelihood estimation of evolutionary trees from con-
tinuous characters. Am. J. Hum. Genet. 1973, 25, 471-492.

[159] Maddison WP, Donoghue MJ, Maddison DR. Outgroup analysis and parsi-
mony. Syst. Zool. 1984, 33, 83–103.

79



[160] Swofford DL, Olsen GJ, Waddell PJ, Hillis DM. Phylogenetic inference. Molec-
ular Systematics. 1996, ISBN 978-0878932825.

[161] Tria FDK, Landan G, Dagan T. Phylogenetic rooting using minimal ancestor
deviation. Nature Ecol. Evol. 2017,1,0193.

[162] Fitch WM, Margoliash E. Construction of phylogenetic trees. Science. 1967,
155, 279-284.

[163] Bolstad WM. Understanding Computational Bayesian Statistics. Wiley. 2010,
ISBN 0-470-04609-0.

[164] Felsenstein J. Cases in which parsimony or compatibility methods will be pos-
itively misleading. System. Zoology. 1978, 27, 401-410.

[165] Williams PD, Pollock DD, Blackburne BP, Goldstein RA. Assessing the accu-
racy of ancestral protein reconstruction methods. PLoS Comput. Biol. 2006, 2,
e69.

80



List of symbols, quantities and abbreviations
MSA Multiple-sequence alignment

ASR Ancestral sequence reconstruction

ML Maximum-likelihood

MSA Multiple-sequence alignment

BI Bayesian inference

CD Consensus design

CA Conservation analysis

PP Posterior probabilities

SVM Support vector machines

RF Random forest

HMM Hidden Markov Model

Å Ångström

G Gibbs free energy

𝑇𝑚 Melting temperature

PCC Pearson correlation coefficient

MCC Matthews correlation coefficient

ASA Accessible surface area

MD Molecular dynamics

PEEF Physical effective energy functions

SEEF Statistical effective energy functions

EEEF Empirical effective energy functions

PDB Protein Data Bank

RMSE Root-mean-square error

UPGMA Unweighted Paired Group Method

81





List of appendices

A Original publication I: FireProt 85

B Original publication II: FireProtASR 93

C Original publication III: FireProtDB 105

D Original publication IV: HotSpotWizard 2.0 113

E CD content 123

83





A Original publication I: FireProt

MUSIL M, STOURAC J, BENDL J, BREZOVSKY J, PROKOP
Z, ZENDULKA J, MARTINEK T, BEDNAR D, DAMBORSKY
J. FireProt: Web Server for Automated Design of Thermostable
Proteins. Nucleic Acids Research. 2017, 45(W1), W393-
W399.

Author participation: 60%
Journal impact factor: 11.501 (Q1)

85



Published online 26 April 2017 Nucleic Acids Research, 2017, Vol. 45, Web Server issue W393–W399

doi: 10.1093/nar/gkx285

FireProt: web server for automated design of
thermostable proteins

Milos Musil1,2,3,†, Jan Stourac1,3,†, Jaroslav Bendl1,2,3, Jan Brezovsky1,3, Zbynek Prokop1,3,

Jaroslav Zendulka2,4, Tomas Martinek1,2,4, David Bednar1,3,* and Jiri Damborsky1,3,*

1Loschmidt Laboratories, Department of Experimental Biology, Masaryk University, Brno, Czech Republic,
2Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech

Republic, 3International Centre for Clinical Research, St. Anne’s University Hospital Brno, Brno, Czech Republic and
4Centre of Excellence IT4Innovations, Technical University Ostrava, Ostrava

Received February 11, 2017; Revised April 02, 2017; Editorial Decision April 10, 2017; Accepted April 11, 2017

ABSTRACT

There is a continuous interest in increasing pro-

teins stability to enhance their usability in numer-

ous biomedical and biotechnological applications. A

number of in silico tools for the prediction of the

effect of mutations on protein stability have been de-

veloped recently. However, only single-point muta-

tions with a small effect on protein stability are typi-

cally predicted with the existing tools and have to be

followed by laborious protein expression, purifica-

tion, and characterization. Here, we present FireProt,

a web server for the automated design of multiple-

point thermostable mutant proteins that combines

structural and evolutionary information in its calcu-

lation core. FireProt utilizes sixteen tools and three

protein engineering strategies for making reliable

protein designs. The server is complemented with

interactive, easy-to-use interface that allows users

to directly analyze and optionally modify designed

thermostable mutants. FireProt is freely available at

http://loschmidt.chemi.muni.cz/fireprot.

INTRODUCTION

Proteins are widely used in numerous biomedical and
biotechnological applications. However, naturally occur-
ring proteins cannot usually withstand the harsh industrial
environment, since they are mostly evolved to function at
mild conditions (1). Protein engineering has revolutionized
the utilization of naturally available proteins for different
industrial applications by improving various protein fea-
tures such as stability, activity or enantioselectivity to sur-
pass their natural limitations. Protein stability is generally
strongly correlated with its expression yield (2), half-life (3),

serum survival time (4) and performance in the presence of
denaturing agents (5). Thus, stability is one of the key de-
terminants of proteins applicability in biotechnological pro-
cesses.

In the ideal case, the saturation mutagenesis would be
applied to evaluate every possible mutation on every posi-
tion of the engineered protein (6). However, such a search
space would be enormous and the experimental evalua-
tion can delay the design of truly thermostable protein for
months or even years. Therefore, there are demands for ef-
fective and precise predictive computation of protein sta-
bility. To satisfy this goal a number of in silico tools have
been developed recently. Some of these tools such as EASE-
MM (7), I-Mutant (8) or mCSM (9) are based on ma-
chine learning techniques. Others are using so-called ener-
getic functions. These programs can be further categorized
into two groups. The first group utilizes a physical effective
energy function for simulating the fundamental forces be-
tween atoms and is represented by the programs likeRosetta
(10) and Eris (11). The second group is based on statistical
potentials for which the energies are derived from frequen-
cies of residues or atom contacts reported in the datasets
of experimentally characterized protein mutants, e.g. Pop-
MuSiC (12) and FoldX (13). However, due to the poten-
tially antagonistic effect of mutations, only single-point mu-
tations are usually predicted in silico and have to be fol-
lowed by laborious and costly protein expression, purifica-
tion and characterization. Single-point mutations typically
enhance the melting temperature of target proteins by units
of degree (3,14). A much higher degree of stabilization can
be achieved by constructing multiple-point mutants (15).
We have recently developed the FireProt (16), combining
energy- and evolution-based approaches for reliable design
of stable multiple-point mutants. The protocol includes sev-
eral preceding filters that accelerate the calculation by omit-
ting potentially deleterious mutations. FireProt is currently

*To whom correspondence should be addressed. Tel: +420 5 4949 3467; Fax: +420 5 4949 6302; Email: jiri@chemi.muni.cz; Website address: http://
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†These authors contributed equally to the work as first authors.

C© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which

permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/n
a

r/a
rtic

le
/4

5
/W

1
/W

3
9

3
/3

7
6

0
1

8
5

 b
y
 g

u
e

s
t o

n
 1

4
 O

c
to

b
e

r 2
0

2
0



W394 Nucleic Acids Research, 2017, Vol. 45, Web Server issue

available only in a stand-alone format and requires exten-
sive experience in bioinformatics to carry out all necessary
steps of the work flow. Currently, we are aware of only one
server for design of stable multiple-point mutants - PROSS
(17), utilizing Rosetta modeling and phylogenetic sequence
information in its computation core.

Here, we present a web version of FireProt for the auto-
mated design of thermostable proteins. FireProt integrates
sixteen computational tools and utilizes both sequence and
structural information. FireProt web server provides users
with thermostable proteins, constructed by three distinct
strategies: (i) evolution-based approach, utilizing back-to-
consensus analysis; (ii) energy-based approach, evaluating
change in free energy upon mutation and (iii) combination
of both evolution-based and energy-based approaches. In
our view, it is very important to have this integrated ap-
proach, since phylogenetic analysis enables identification of
the mutations stabilized by entropy, which cannot be pre-
dicted by force field calculations (Beerens et al., under re-
view). The server allows users to include preferred muta-
tions into the thermostable protein, to generate correspond-
ing structures and sequences for gene syntheses. Compared
to the previously published FireProt protocol (16), mini-
mum effort and no bioinformatics knowledge is required
from users to calculate and analyze the results. Further-
more, all input parameters and computational protocols
were optimized to minimize otherwise highly time demand-
ing procedure. The server was complemented with a graph-
ical interface allowing users to directly analyze the protein
of interest and design multiple-point mutants.

MATERIALS AND METHODS

The basic workflow of FireProt strategy is outlined in Fig-
ure 1. In order to design a highly reliable thermostable
multiple-point mutant, a protein defined by the user is an-
notated using several prediction tools and databases (Phase
1). With this knowledge in hand, energy- and evolution-
based approach is applied to assemble a list of potentially
stabilizing single-point mutations (Phase 2). Finally, three
multiple-point mutants are generated in an additive man-
ner, while removing potentially antagonistic effects of mu-
tations (Phase 3).

Phase 1: Annotation of the protein

Initially, the user is requested to specify the protein struc-
ture, either by providing its PDB ID or by uploading a user-
defined PDB file. The biological assembly of the target pro-
tein is then automatically generated by the MakeMultimer
tool (http://watcut.uwaterloo.ca/tools/makemultimer/). Se-
quence homologs are obtained by performing a BLAST
search (18) against the UniRef90 database (19), using the
target protein sequence as an input query. Identified ho-
mologs are then aligned with the query protein using USE-
ARCH (20), while sequences whose identity with the query
is below or above the user defined thresholds (default: 30
and 90%) are excluded from the list of homologs. The
remaining sequences are clustered using UCLUST (20),
with a 90% identity threshold to remove close homologs.
The cluster representatives are sorted based on the BLAST

query coverage and by default, the first 200 of them are used
to create amultiple sequence alignment with Clustal Omega
tool (21). The multiple sequence alignment is used to: (i)
estimate the conservation coefficient of each residue posi-
tion in the protein based on the Jensen–Shannon entropy
(22); (ii) identify correlated positions employing a consen-
sual decision of the OMES (23), MI (24), aMIc (25), DCA
(26), SCA (27), ELSC (28), McBASC (29) and (iii) analyze
amino acid frequencies at individual positions within the
protein.

Phase 2: Prediction of single-point mutations

In accordance with the original FireProt protocol, poten-
tially stabilizing single-point mutations are identified via
two separate branches: one relying on the estimation of the
change of free energy upon mutation and second utilizing
back-to-consensus approach.

The first, energy-based approach is employing FoldX and
Rosetta tools that performed best on our testing dataset.
Preceding filters accelerate the calculation by omitting po-
tentially deleterious mutations. Prior to the identification of
the single-point mutations itself, the target protein structure
is amended and minimized. FoldX protocol is utilized to fill
in the missing atoms in the residues and patched structure
is consequently minimized with Rosetta minimizationmod-
ule. Conserved and correlated positions are immediately ex-
cluded from further analysis. It was observed that func-
tional and structural constraints in proteins generally lead
to the conservation of amino acid residues (30–33). Simi-
larly, correlated residues ordinarily help to maintain pro-
tein function, folding or stability (34–36). Mutations con-
ducted on these positions are therefore considered unsafe
by current FireProt strategy, even though there is certainly
a space for more sophisticated treatment of correlated posi-
tions, which will be further developed in future versions of
FireProt server.

The remaining positions are subjected to saturation mu-
tagenesis by using FoldX tool. Mutations with predicted
ddG over given threshold (default: –1 kcal/mol) are steered
away and rest is forwarded to Rosetta calculations. Finally,
the mutations predicted by Rosetta as strongly stabilizing
(default cut-off: –1 kcal/mol) are tagged as potential candi-
dates for the design of the multiple-point mutants.

A high time demands of Rosetta analysis were one of
the most excruciating issues with the original FireProt pro-
tocol. Even with the application of filters over 100 muta-
tions was usually left for precise, but slow, Rosetta calcula-
tions. For this reason, we have evaluated several force fields
and Rosetta protocols with the newly assembled dataset
containing 1573 mutations from ProTherm database (37)
and HotMuSiC dataset (38). Based on the results of the
evaluations, the best trade-off between the time require-
ments and precision was selected. With Rosetta protocol 3,
we have achieved more than tenfold increase in calculation
speed while preserving high prediction accuracy. Details on
dataset construction and protocols evaluation can be found
in the Supplement 1 (Supplementary Tables S1–S5).

The second approach is based on the information ob-
tained from multiple sequence alignment. The most com-
mon amino acid in each position of protein sequence often
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Figure 1. Workflow of FireProt strategy.

provides a non-negligible effect on protein stability (39–42).
Therefore, FireProt implements majority and frequency ra-
tio approach to identify mutations at positions where the
wild-type amino acid differs from the most prevalent one.
By default, the single out mutations are located in the posi-
tions where the consensus residue is present in at least 50%
of all analyzed sequences (majority method) or where con-
sensus residue frequency is 40% and is at least five times
more frequent than the wild-type amino acid (frequency ra-
tio method). These thresholds were chosen in accordance to
the previously published HotSpot Wizard method (43). Se-
lected mutations are evaluated by FoldX and the stabilizing
ones are listed as candidate mutations for the engineering
of multiple-point mutant.

Phase 3: Design of thermostable protein

In total, three protein designs are provided by FireProt
strategy. The first design includes only the mutations from
energy-based approach, the second contains the mutations
suggested by the evolution-based approach and the third is
the combination of both. Naturally, because of potentially
antagonistic effects between individual mutations, we can-
not combine individual mutations blindly.

To avoid possible clashes, FireProt strategy is trying to
minimize antagonistic effects by utilizing Rosetta. In the
first step, all pairs of single-pointmutationswithin the range
of 10 Å are evaluated separately for energy- and evolution-
based approach. Once change in free energy is obtained for
all residue pairs, FireProt starts to introduce them into the
multiple-point mutant in the order based on their predicted
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stability, excluding the mutations that are colliding with al-
ready included mutations. Algorithm stops once there are
no mutations left or the stabilizing effect of analyzed pair
drops below defined threshold.

Upon the completion of previous step, procedure is re-
peated this time considering only the pairs between the
mutations chosen for the construction of energy- and
evolution-basedmutants. Finally, structures of all threemu-
tants are modeled using the Rosetta protocol 16.

DESCRIPTION OF THE WEB SERVER

Input

The only required input to the web server is a tertiary struc-
ture of the protein of interest, provided either as a PDB ID
or a user-defined PDB file. The user can then choose a pre-
defined biological unit generated by theMakeMultimer tool
or manually select chains for which the calculation should
be performed. The calculations can be configured in either
basic or advanced mode.

In the basic mode, user is allowed to change the setting of
BLAST search and alignment construction. The advanced
mode expands the list of modifiable parameters by the ones
connected with: (i) the identification of consensus residues
by majority and frequency ratio approach, (ii) the thresh-
olds used by FoldX and Rosetta prediction tools and (iii)
the decision threshold employed in the consensual analysis
of correlated positions. Advanced mode allows expert users
to fine-tune the parameters of calculation according to stud-
ied systems. However, the presented default values are op-
timized to provide reliable results for most of the systems
and we therefore do not advice their change in the general
scenarios.

Output

Upon submission, a unique identifier is assigned to each job
to track the calculation and the ‘Results browser’ informs
the user about the status of the individual steps in the Fire-
Prot workflow (Figure 2B). Once the job is finished, users
can either directly download the results in the .zip archive or
navigate themselves into the ‘Results page’ for further anal-
ysis. The ‘Results page’ is intuitively organized into several
panels as described below.

Protein visualization. The wild-type and the mutant struc-
ture is interactively visualized in the web browser (Fig-
ure 2D) utilizing the Jsmol applet (http://wiki.jmol.org/
index.php/JSmol). Users can switch between different pro-
tein visualization styles and also highlight selected amino
acids in the protein structure. Residues that were included
into energy-based mutant are colored in orange, evolution-
based mutations are in blue and all other residues are in
gray. User selected residues that were not part of any mu-
tant are underlined in red.

Mutant overview. The ‘Mutant overview’ panel is orga-
nized into four tabs (Figure 2A). The first three tabs pro-
vide information about mutations included into combined,
energy-based and evolution-based mutant. The checkbox,

allowing users to visualize the chosen residues in Jsmol ap-
plet, can be found in each row together with all data rele-
vant for a given computational approach. The last tab con-
tains the list of all residues in the wild-type structure. While
‘wild-type’ tab is active, the wild-type structure is visualized
in Jsmol applet instead of the mutated one and the user is
allowed to introduce user-defined mutations into multiple-
point mutant via the ‘plus’ icon in the last column.

General information. The ‘FireProt protocol design’ panel
provides users with general information about the target
protein and the designs constructed by FireProt strategy,
such as a number of mutations and estimated change in free
energy (Figure 2C).

Mutant designer. The ‘Mutant designer’ panel allows the
user to design ownmultiple-point mutant by managing mu-
tations divided into energy- and evolution-based subset. If
all mutations in the subset have their predicted energy val-
ues assigned, a total change in Gibbs free energy is im-
mediately estimated assuming simple additivity. Users can
also generate an amino acid sequence from the designed
multiple-point mutant that combines mutations included
into energy- and evolution-based subsets. All prepared de-
signs can be downloaded in one .zip archive (Figure 2E).

EXPERIMENTAL VALIDATION

The original FireProt strategy was experimentally veri-
fied with three proteins (haloalkane dehalogenase DhaA,
PDB ID 4E46; � -hexachlorocyclohexane dehydrochlori-
nase LinA, PDB ID 3A76; and fibroblast growth factor
2, PDB ID 4OEE) and provided respective stabilization of
proteins �Tm = 25, 21 and 15◦C (Table 1). The original
protocol was modified to enable fully automated calcula-
tion at the reasonable time, while maintaining high pre-
diction accuracy (Supplementary Table S6). Prediction of
eight multiple-point mutants using this modified protocol
was validated using the data of FRESCO (44) and identi-
fied mutations were compared with another online protein
stabilization tool PROSS (17). FireProt and PROSS showed
similar predictive power, correctly identifying 29 and 20 po-
tentially stabilizing positions, respectively (Supplementary
Table S7).

CONCLUSIONS AND OUTLOOK

FireProt is a web server that provides users with a one-
stop-shop solution for the design of thermostable multiple-
point mutant proteins. In comparison with the standalone
FireProt strategy (16), all default parameters and compu-
tational protocols were optimized to increase the calcula-
tion speed, while maintaining the prediction accuracy. The
designs produced by the FireProt workflow were exper-
imentally verified and thus users can obtain highly reli-
able thermostable proteins with minimal experimental ef-
fort. The server is complemented by an easy-to-use graphi-
cal interface that allows users to interactively analyze indi-
vidual mutations selected as a part of energy- or evolution-
based approach together with the ability to design their own
multiple-point mutants on top of our robust strategy.
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Figure 2. FireProt’s graphical user interface showing the results obtained for the haloalkane dehalogenase DhaA (PDB ID: 4e46). (A) The ‘Mutant
overview’ panel provides a list of mutations introduced into protein structure. (B) The ‘Report’ panel shows the status of calculation in the individual
steps of the computational pipeline. (C) The ‘Protocol design’ panel provides general information about FireProt designs. (D) The JSmol ´Viewer´ allows
interactive visualization of the protein. (E) The ‘Mutant designer’ panel enables manual adjustment of a new combined mutant.

Table 1. Experimental validation of FireProt strategy

Protein Energy-based mutations Evolution-based mutations �Tm [◦C]
PDB ID

4E46 8 3 +25
3A76 4 3 +21
4OEE 4 2 +15
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The automation of the whole procedure makes the pro-
cess of the design of thermostable proteins accessible to
users without any prior expertise in bioinformatics since it
eliminates the need to select, install and evaluate tools, op-
timize their parameters, and interpret intermediate results.
However, the energy-based approach of the FireProt strat-
egy depends on the quality of provided protein structure
and therefore the prediction accuracy might be compro-
mised in the case of low-resolution structures or homology
models.

In the future, we plan to implement new strategies such as
a design based on the analysis of correlated positions that
would contribute to the construction of the final combined
mutant, elimination of highly flexible regions and introduc-
tion of disulfide bridges. Also, we plan to equip FireProt
with several new filters, e.g. exclusion of the amino acids lo-
cated in the close neighborhoods of the active sites or the
ones participating in oligomerization.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Abstract

There is a great interest in increasing proteins’ stability to widen their usability in numerous biomedical and

biotechnological applications. However, native proteins cannot usually withstand the harsh industrial environment, since

they are evolved to function under mild conditions. Ancestral sequence reconstruction is a well-established method for

deducing the evolutionary history of genes. Besides its applicability to discover the most probable evolutionary ancestors of

the modern proteins, ancestral sequence reconstruction has proven to be a useful approach for the design of highly stable

proteins. Recently, several computational tools were developed, which make the ancestral reconstruction algorithms

accessible to the community, while leaving the most crucial steps of the preparation of the input data on users’ side.

FireProtASR aims to overcome this obstacle by constructing a fully automated workflow, allowing even the unexperienced

users to obtain ancestral sequences based on a sequence query as the only input. FireProtASR is complemented with an

interactive, easy-to-use web interface and is freely available at https://loschmidt.chemi.muni.cz/fireprotasr/.

Key words: ancestral sequence reconstruction; ancestral enzymes; evolution; phylogeny-based analysis; protein stability

Introduction

Proteins arewidely used in numerous biomedical and biotechno-

logical applications. Native proteins have mainly evolved under

mild intracellular conditions [1]. Therefore, their applicability is

often limited in the harsh industrial environments characterized
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by inhospitable temperature, extreme pH, high pressure or the

presence of organic co-solvents. As a result, there is a continu-

ous interest in increasing protein stability. New approaches in

the field of protein engineering, such as fluorescence-activated

cell sorting and microfluidics, have widened the throughput of
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directed evolution experiments. However, saturation mutagen-

esis of all positions and systematic re-combinations of many

single-point mutations of the protein of interest is often out of

reach.

In the past decades, various computational methods were

designed to unburden costly and laborious experimentalwork by

narrowing down the search space for potential stabilizing muta-

tions. Most of those methods can be assigned to one of the three

categories: (i) machine learning, (ii) force-field-based predictions

and (iii) molecular evolution. Each category has its advantages

and shortcomings [2]. Machine-learning methods are able to

unearth hidden features and dependencies overreaching the

current state of expert knowledge, while still struggling with the

insufficient size, quality and diversity of the experimental data,

essential for training and validation of statistically significant

models. Force-field-based approaches are a robust solution for

the prediction of protein stability; however, they rely on the high-

resolution protein structures that are available for only a small

fraction of the known proteins. Evolution-based approaches do

not suffer from these limitations due to the rapid growth of the

sequence databases. However, this continuous growth widens

the search space and increases noise in the data, requiring

laborious and time-demanding manual corrections from the

side of the user with expert knowledge of the system of interest.

Inexperienced user may not therefore utilize evolution-based

methods effectively to obtain accurate and reliable results.

The two most widely used evolution-based methods for

stability engineering are ancestral sequence reconstruction

(ASR) and consensus design. Both methods start with the

multiple-sequence alignment (MSA) of the set of relevant

homolog sequences. Consensus design relies on the simple

analysis of the conservation of the amino acids on the individual

positions in the sequence alignment. As a result, it cannot

account for the coevolution of the residues located in the

sites responsible for the protein’s activity [3] and is utilized

mostly as a part of the hybrid workflows [4, 5]. In comparison,

ASR goes much further by also considering evolutionary

information depicted by the phylogenetic tree. This inclusion

of the evolutionary distances inscribed into the phylogenetic

tree is mostly negligent at the positions with low Shannon

entropy; however, the discrepancies grow stronger with noisy

MSA [6]. ASR is a probabilistic method that explores the deep

evolutionary history of homolog sequences to reassemble

protein’s evolutionary trajectory [7]. ASR is able to unearth

sequences of the long-extinct genes and organisms from which

the current ones evolved and is, therefore, an invaluable tool

in the field of evolutionary biology [8, 9]. ASR has also been

shown to be a very effective strategy not only for thermostability

engineering [10, 11], but also for improving other protein’s

characteristics such as specificity [12], activity, or expression

[13]. Furthermore, ASR was previously proven to be an effective

strategy for the stabilization of prokaryotic proteins [10, 11],

as well as for the improvement of significantly more complex

eukaryotic proteins such as cytochrome P450 [14, 15]. Two main

algorithms, maximum-likelihood [16, 17] (ML) and Bayesian

inference [18] (BI) were designed to infer ancestral sequence

from MSA and phylogenetic tree. Many tools were built over the

years to make those algorithms accessible to the community.

However, the requirement of the MSA of carefully selected

homologs and the rooted phylogenetic tree are still huge limiting

steps for the general use of ASRmethod by the non-expert users.

FireProtASR addresses those limitations by introducing one-

stop-shop solution for the ancestral sequence reconstruction.

It covers all steps of ancestral inference including search for

homolog sequences, selection of the biologically relevant sub-

set of the sequences, construction of the multiple-sequence

alignment, construction and rooting of the phylogenetic tree

and finally the ancestral inference with the use of ML. Our

computational workflow is fully automated and removes the

need for extensive expert knowledge of the system of interest

as well as employed bioinformatics tools. Furthermore, a novel

algorithm based on the localized weighted back-to-consensus

analysis was utilized to resolve an issue of the ancestral gaps

reconstruction. Assembled workflow and developed web server

were thoroughly validated using: (i) in-house laboratory experi-

ments, (ii) detailed comparison with three previously published

studies and (iii) a large number of proteins representing struc-

turally and functionally different families. FireProtASR does not

require installation and settings of any software packages as the

method is implemented in the interactive web interface freely

available at: https://loschmidt.chemi.muni.cz/fireprotasr/.

Methods

Workflow description

The basic workflow of the FireProtASR method is outlined in

Figure 1. To infer ancestral sequences representing all ancestral

nodes of the evolutionary tree in a fully automated way, a

set of biologically relevant homologous sequences must be

collected from genomic databases and reduced to a suitable

size (Phase 1). With the initial set of homologous sequences in

hand, several state-of-the-art methods are utilized to construct

a multiple-sequence alignment and a phylogenetic tree, which

are then used to support the inference of ancestral nodes

and reconstruction of ancestral gaps (Phase 2). The FireProtASR

workflow requires no user intervention beyond providing

a query sequence and (in the case of enzymes) selecting

catalytic residues used to identify a biologically relevant set

of homologous sequences. However, it is also possible to start

a calculation with a user-defined initial set of homologous

sequences, MSA, or even a phylogenetic tree instead of a single

sequence, thus skipping the first phase of the calculation.

Phase 1: collection of the initial set of homologous
sequences

The query sequence of the target protein in plain text or FASTA

format is the only input required from the side of the user.

Once the query sequence has been uploaded to the server and

checked for validity, searches for the catalytic residues are per-

formed automatically using SwissProt [19] and the Catalytic Site

Atlas [20]. The user can also specify the catalytic residues by

themselves if no/incorrect catalytic residues are found. Once the

catalytic residues and query sequence have been specified, an

in-house tool called EnzymeMiner [21] is used to collect an initial

set of homologous sequences. EnzymeMiner first performs two

rounds of PSI-BLAST [22] against the NCBI nr database [23]

and then filters out all sequences lacking the designated cat-

alytic residues, thereby ensuring the biological relevance of the

remaining homologs. EnzymeMiner searches can yield up to tens

of thousands of homologous sequences for large families. If no

catalytic residues were selected or provided by the user, BLAST

[24] will be used instead of EnzymeMiner, to obtain an initial set

of homologous sequences with potentially lower quality.

Next, the FireProtASR reduces the set of homologous sequences

to the required number,which is set to 150 sequences by default.

Several filters are applied during this process. First, all homologs
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Figure 1. Workflow diagram for the FireProtASR method. The workflow has two phases: (1) collection of the initial set of homologous sequences and (2) ancestral

sequence reconstruction. Colour coding: yellow denotes intermediate results and blue denotes computational tools. Grey and green denote inputs and outputs of the

calculations, respectively.

with sequence lengths 20% higher or lower than that of the

query sequence are excluded from the initial set. This sequence

length normalization is done to remove potential outliers that

could lead to a construction of a noisy MSA with many gaps.

Second, all homologs whose sequence identity to the query

falls outside a certain range are removed from the initial set.

By default, the upper and lower similarity limits are set to 90

and 30%, respectively. This step ensures that the phylogenetic

tree is unbiased towards the query sequence while removing

distant homologs thatwould degrade the quality of the sequence
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alignment. Third, USEARCH [25] is used to cluster the remaining

sequences with 90% sequence identity, and a single sequence is

randomly selected from each cluster.

Applying these filters produces a diverse set containing hun-

dreds to thousands of homologous sequences. An initial phylo-

genetic tree is quickly constructedwith the PASTA software suite

[26], using MAFFT [27] and the swift neighbour-joining algorithm

implemented in FastTree 2.0 [28]. The resulting phylogenetic tree

is then forwarded to Treemmer [29], which iteratively prunes

leaves from the input tree until a specific number of leaves

remains, while minimizing the loss of genetic diversity. The

pruned tree is then displayed to the user via the interactive

user interface, allowing the user to choose to exclude selected

branches or even whole subtrees of the phylogenetic tree from

further calculations.

Phase 2: ancestral sequence reconstruction

In the second phase, the ancestral sequences are inferred from

the initial set of up to 150 homologs approved by the user. To

begin with, a new MSA is constructed from the reduced set of

homologous sequences. For this task, ClustalΩ [30] is utilized

by default, but other methods will be available in upcoming

versions of FireProtASR. For inference of the final phylogenetic

tree, the best-fitting evolutionary matrix must be selected. This

is done using one of the modules of the IQTREE package [31].

Alternatively, if the user prefers a specific evolutionary matrix

for the biological system of interest, the appropriate model

and all the relevant modifiers can be specified manually when

setting up the calculation.

The evolutionary model and its parameter settings along

with the MSA are then forwarded into RAxML [17], which is used

to construct a robust phylogenetic tree. By default, fifty boot-

straps are performed at the start of the maximum-likelihood

search; since no outgroup is provided, the resulting phylogenetic

tree is unrooted. Automated outgroup sequence selection is

not straightforward, especially for prokaryotic proteins due to

the high frequency of horizontal gene transfers. Rooting of the

tree is therefore performed using a minimal ancestor deviation

algorithm, which was shown to achieve comparable levels of

accuracy to outgroup rooting in trees describing the evolution of

eukaryotes, and to surpass both outgroup and midpoint rooting

in the case of prokaryotes [32].

The MSA constructed with ClustalΩ, the selected evolution-

ary model, and the rooted phylogenetic tree from RAxML are

used as inputs for the Lazarus method [33], which is imple-

mented using the PAML software package [16]. The Lazarus

method was re-implemented for FireProtASR to enable calcu-

lations to be performed without specifying outgroup. Conse-

quently, ancestral sequences of all ancestral nodes are parsed

from their posterior probabilities and provided to users in sep-

arate files in FASTA format. Additionally, BLASTp [24] is used

to search for a template in the PDB database [34], and a model

structure of the query sequence is constructed by homology

modelling using the ProMod3 program [35]. This model is shown

in the web interface to allow users to visualize the differences

between the query sequence and the selected ancestor.

Finally, due to the large number of undesirable ancestral

gaps inserted into ancestral sequences by Lazarus, a novel algo-

rithm for ancestral gap reconstruction was designed for use in

FireProtASR. This algorithm is based on the principle of local-

ized weighted back-to-consensus because consensus analysis

has proven to be an effective approach for increasing proteins’

thermal stability [36–38]. To begin with, each terminal node of

the phylogenetic tree is assigned a binary vector of length equal

to the length of the corresponding sequence in the MSA. Each

position in this vector is assigned a value of −1 or 1, indicating

the presence of a gap or standard amino acid, respectively, at

the corresponding position of the relevant sequence. On moving

from the terminals towards the root of the tree, the probability

of a gap in ancestral node An at position i is calculated as Ani =
Aki

∗t1∗+Ali
∗t2

t1+t2
,whereAk,Al are the child nodes ofAn and t1, t2 are the

evolutionary distances between An and its child nodes. Taking

t3 to be the evolutionary distance between An and its parental

node, its value can be updated based on the values of t1 and

t2 as follows: t3_new = t3 +
t1+t2

2
. This new value is computed

before proceeding with the calculation for the parental node; its

use increases the relative impact of well-branched subtrees and

therefore limits the impact of lone sequences and small subtrees

compared to that of well-represented ones. Finally, ancestral

sequences are reconstructed based on the scores in the corre-

sponding vector. Positions with values lower than 0 are assigned

as gaps, and the remaining amino acids are selected based on

their posterior probabilities as estimated by Lazarus. The nature

of inconclusive positions with scores in the interval <−0.1, 0.1>

is determined based on the frequencies of gaps in the global

alignment and the state of the parental node. To include the

ancestral gap, frequencies of gaps in the global alignment should

reach over 60%, or over 40% if the ancestral gap is present in the

parental node sequence. The model case for a single position in

the sequence alignment is shown in Figure 2.

Experimental validation

The workflow was experimentally validated using haloalkane

dehalogenases as a model enzyme. This enzyme was selected

as a typical representative of the α/β superfamily, counting over

100 000 proteins. The sequence of the haloalkane dehalogenase

DhaA (UniProt ID P0A3G2) was used as the sole input for the

calculation. Six different ancestral sequences were selected and

experimentally characterized.

Chemicals and growth media

1-bromobutane and LB medium were purchased from Sigma-

Aldrich Co. (St. Louis, MO, USA). IPTG was purchased from

Duchefa Biochemie B.V. (Haarlem, The Netherlands). All

chemicals used in this work were of analytical grade.

Expression in Escherichia coli BL21 (DE3)

Escherichia coli Dh5α cells were obtained from Invitrogen and

Escherichia coli BL21 (DE3) from New England Biolabs. The

genes for the ancestral dehalogenases were synthesized and

subcloned into the expression vector pET21b. The generated

plasmids were transformed into chemo-competent E.coli BL21

(DE3) cells. Obtained colonies were used to prepare precultures

by inoculation into 10 ml of LB medium (with 100 μg/ml

ampicillin) followed by overnight incubation at 37◦C and

180 rpm. For expression of each variant, 1 l of LB medium

supplemented with 100 μg/ml ampicillin was inoculated with

5 mL of the appropriate pre-culture (1/200). The flasks were

incubated at 37◦C and 180 rpm until OD600 0.6–0.8 was reached,

then incubated at 20◦C for 30 min. β-D-1-thiogalactopyranoside

(IPTG, 0.2 mM) was then added for induction, and the culture

was incubated at 20◦C and 180 rpm overnight. Finally, the culture

was harvested by centrifugation at 4500× g, 4◦C for 15 min, after

which the cell pellets were frozen at −80◦C until further use.
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Figure 2. Ancestral gaps reconstruction algorithm. Green colour denotes the initial branch lengths of the phylogenetic tree. Black numbers indicate the values of the

vectors of the terminal and the ancestral sequences at the given position in the multiple sequence alignment. Red values show the modified branch lengths that are

updated after the calculation of the underlying ancestral node.

Protein purification

The cell pellets were suspended in 50 ml of equilibration buffer

(20 mM phosphate buffer pH 7.5 containing 0.5 M NaCl and

10 mM imidazole) and disrupted by sonication with a Hielscher

UP200S ultrasonic processor (Hielscher, Germany) four times for

4min each.Disrupted cellswere centrifuged at 13 000× g and 4◦C

for 1 h (Laborzentrifugen, Germany). The crude extract was then

collected, filtered and loaded onto a Ni-NTA Superflow Cartridge

(Qiagen, Germany) in equilibration buffer. Unbound and weakly

bound proteins were washed out using increasing imidazole

concentrations. The target enzyme was eluted with purification

buffer containing 300 mM of imidazole. The eluted protein was

dialyzed three times overnight against 50 mM of phosphate

buffer (pH 7.5), after which its purity was checked by SDS–

polyacrylamide gel electrophoresis (SDS–PAGE).About, 15% poly-

acrylamide gels were stained with Instant Blue (Fluka, Switzer-

land). Protein concentrations were determined by NanoDrop

(Sigma-Aldrich, USA). The enzymes were lyophilized using a

vacuum pump system for long-term storage.

Circular dichroism (CD) spectroscopy

CD spectra were recorded at 20◦C using a spectropolarimeter

Chirascan (Applied Photophysics, United Kingdom). Data were

collected from 190 to 260 nm, at 100 nm/min with a 1-s response

time and 1-nm bandwidth using a 0.1-cm quartz cuvette. Each

spectrum shown is the average of five individual scans and was

corrected for absorbance caused by the buffer. Collected CD data

were expressed in terms of the mean residue ellipticity (ΘMRE),

which was calculated using the equation:

ΘMRE =
Θobs · Mw · 100

n · c · l

whereΘobs is the observed ellipticity in degrees,Mw is the protein

molecular weight, n is number of residues, l is the cell path

length, c is the protein concentration (0.2 mg/ml) and the factor

100 originates from the conversion of the molecular weight to

mg/dmol.

Thermal denaturation

Thermal unfolding was followed by monitoring the ellipticity at

224 nm over the temperature range of 20–94◦C, with a resolution

of 0.1◦C at a heating rate of 1◦C/min. Recorded thermal denatura-

tion curveswere roughly normalized to represent signal changes

between approximately 1 and 0 and fitted to sigmoidal curves

using Origin 6.1 (OriginLab Corporation, USA). The melting tem-

perature (Tm) was evaluated as the midpoint of the normalized

thermal transition.

Enzymatic haloalkane dehalogenase activity

Dehalogenation activity was assayed using the colorimetric

method of Iwasaki et al. [49]. The release of halide ions was

analyzed spectrophotometrically at 460 nm using an Eon

microplate reader (BioTek, USA) after reaction with mercuric

thiocyanate and ferric ammonium sulfate. The reactions were

performed at 37◦C in 25-ml Reacti Flasks closed with Mininert

Valves. The reactionmixtures consisted of 10 ml 100 mM glycine

buffer (pH 8.6) and 10 μl of the substrate 1-bromobutane.

Reactions were initiated by adding the enzyme to a final

concentration of 0.01 (DhaA 172Loc), 0.0065 (DhaA 172Glob),

0.0052 (DhaA 230Glob), 0.028 (DhaA 238Loc) or 0.014 mg/ml

(DhaA 238Glob). Reactions were monitored by withdrawing 1 ml

of samples from the reaction mixture after 0, 5, 10, 15, 20 and

30min. The samples were immediatelymixedwith 0.1ml of 35%

nitric acid to stop the reaction. Dehalogenation activities were

quantified as rates of product formation over time. Each activity

was measured in three independent replicates.

Enzymatic luciferase activity

Luminescence activity measurements were performed with a

FLUOstar OPTIMA Microplate reader (BMG Labtech, Germany)

using coelenterazine as the substrate at 37◦C. A 25 μl of sample

of purified enzyme at a concentration of about 1 mg/ml was

placed into a microtiter plate well. After baseline collection for

10 s, the luminescence reaction was initiated by adding 225 μl

of 8.8 μM coelenterazine in reaction buffer (100 mM potassium

phosphate buffer, pH 7.5). Luminescence was recorded for 72.5 s,
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6 Musil et al.

and each sample was measured in at least three independent

experiments. The areas of the resulting luminescence intensity

peaks in relative luminescence units (RLU) were converted into

values in units of RLU/mg/s.

Results

Web server input

The only required input to the web server is a query sequence

of the target protein in plain text or FASTA format. Alternatively,

one can upload a FASTA file containing an initial set of sequence

homologs or a multiple sequence alignment (MSA). Rooted and

unrooted phylogenetic trees in the standard Newick format can

also be provided. When performing calculations in basic mode,

only the table containing the essential residues is available

to the user. Essential residues are identified automatically by

searching in SwissProt [19] and mCSA [20]. However, the initial

selection can be changed by the user. The default values and

settings of individual computational tools are optimized to pro-

vide reliable results for most systems. Operating in advanced

mode expands the list of modifiable parameters to include those

related to: (i) the thresholds of the homolog identity filters and

sequence clustering, (ii) selection of the evolutionary model and

(iii) construction of the phylogenetic tree.Advancedmode allows

experts to fine-tune the calculation’s parameters based on the

studied biological system, which may be useful when dealing

with particularly small or large protein families.

Selection and reduction

Upon submission, a unique identifier is assigned to each job to

track the calculation. The ‘calculation browser’ informs the user

about the status of the individual steps in the ancestral sequence

reconstruction workflow. Once the first phase of the job is fin-

ished, the initial phylogenetic tree is displayed to the user using

a strongly updated adaptation of PhyloTree library (Figure 3A)

[39], together with the table of removed sequences (Figure 3B).

By clicking on the individual leaves of the phylogenetic tree, the

user can exclude selected sequences from future calculations.

Furthermore, whole subtrees can be removed by choosing this

option in the menu of the selected ancestral node. The MSA of

the homologous sequences can be also visualized by switching

to the multiple sequence alignment tab. This mode is intended

for the expert users with the greater knowledge of the system

of interest as it allows for the removal of the noise and outliers

from the initial set of homolog sequences. If the expert mode

is utilized, it is recommended to exclude the sequences that do

not share the function similar to the query protein or that cause

a significant disturbance in the MSA.

Web server output

The calculation’s progress can be tracked in the ‘calculation

browser’ similarly to the selection step. Once finished, users

can either download the results in the zipped archive directly

from the calculation page or navigate to the ‘Result page’ for

further analysis. The ‘Result page’ is organized into several pan-

els allowing users to interactively visualize and design ancestral

enzymes.

Protein visualization

The homology model of the query protein predicted by ProMod3

is interactively visualized in the web browser using the JSmol

applet [40] (Figure 3D). Users can switch between different visu-

alization styles such as backbone, wireframe or cartoon and

change the quality of the visualized structure. It is also possible

to visualize the differences between the query and the selected

ancestral sequence on the modelled protein structure: substi-

tutions and deletions are shown in blue and red, respectively,

while insertions are indicated by regions between red and yellow

residues.

Ancestral tree panel

The ‘ancestral panel’ shows the final phylogenetic tree con-

structed by RAxML [17] along with further information about the

precalculated ancestral sequences (Figure 3E). By selecting any

of the ancestral nodes, it is possible to either (i) visualize the dif-

ferences between a wild-type protein and the selected ancestor

node on the protein structure or (ii) open a new window pro-

viding an overview of the posterior probabilities for individual

amino acids in the sequence of the selected ancestor (Figure 3G).

Posterior probabilities are shown in the bar-styled sequence logo

together with the percentages for each considered amino acid,

and each bar is expandedwith information about the charge and

hydrophobicity of themost probable amino acids. The bar repre-

sentationwas in part derived from the SequenceLogo library [41].

The user can edit the ancestral sequence and store it as a new

user-defined ancestor (Figure 3F). This option is useful for the

experts with more in-depth knowledge of the system of interest

and allows to force some specific mutations, e.g., the mutations

with the previously known effect on proteins stability, into the

constructed ancestral sequence. It can also be used to bring

some biological insight into the positions with noisy posterior

probabilities. Furthermore, the ancestral sequences’ MSA can be

visualized in the multiple sequence alignment tab for further

analysis.

Sequence designer

The ‘Sequence designer’ panel allows users to manage and edit

user-defined ancestral sequences. Additionally, new sequences

can be created by modifying existing custom ancestors

(Figure 3C). Differences between the query sequence and custom

ancestors can also be visualized on the protein structure in this

panel. All prepared designs can be downloaded in one zipped

archive together with the original ancestors and the structure

prepared by homology modelling.

Web server experimental validation

In one of our previous studies, we have presented experimental

characterizations of six inferred ancestral proteins from

haloalkane dehalogenase subfamily II [10]. Relative to their

contemporary counterparts, these ancestral proteins exhibited

higher thermal stability (by 8–24◦C), improved yields and

broadened substrate specificity. Those ancestral sequences

were reconstructed by clustering an initial set of homologous

sequences that was reduced by inspection in the sequence-

editing program BioEdit [42]. A multiple sequence alignment

was then manually curated using a structure-guided alignment

of eight proteins from HLD-II and poorly conserved regions were

removed from the alignment. The topology of the phylogenetic

tree was optimized by subtree pruning and re-grafting, and

the tree’s root was established using outgroup selected on the

basis of expert judgement. Finally, the ancestral sequences and

positioning of gaps were refined by manual inspection.
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FireProtASR 7

Figure 3. The FireProtASR graphical user interface showing results obtained for the haloalkane dehalogenase DhaA (UniProt ID P0A3G2, PDB ID 4E46). (A) The sequence-

filtering panel allows users to exclude selected branches from the calculation. (B) The reduction table shows the list of removed sequences. (C) The sequence designer

allows users to download and edit ancestral sequences. (D) The JSmol viewer provides interactive protein visualization. (E) The mutations panel contains all designed

ancestral sequences in the ancestral tree. (F) The edit window enables amino acid substitutions at individual positions. (G) The sequence information window shows

detailed information on selected ancestral sequences.

As part of the validation of FireProtASR, we tried to replicate

these results by using the sequence of haloalkane dehalogenase

DhaA (UniProt ID P0A3G2) as the only input query. All steps

of the calculation, including homologous sequence selection,

multiple sequence alignment construction, phylogenetic rooting

and ancestral reconstruction were carried out automatically.

Three pairs of ancestral sequences were selected, each pair

containing one ‘global’ and one ‘local’ ancestral node (Figure 4A).

Global ancestor (Glob) represents ancestral sequence obtained

directly from the fully automated workflow,while local ancestor
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8 Musil et al.

Figure 4. Results provided by the FireProtASR workflow using haloalkane dehalogenase DhaA as an input query. (A) Phylogenetic tree of the HLD-II constructed by

the FireProtASR strategy with indicated three global ancestors reconstructed within this study. (B) Phylogenetic tree for the local ancestor of the ancestral node 172.

(C) Phylogenetic tree for the local ancestor of ancestral node 230. (D) Phylogenetic tree for the local ancestor of ancestral node 238. (E) Multiple sequence alignment

comparing the query sequence with the suggested ancestral sequences and the result of the back-to-consensus analysis.

(Loc) was constructed by carrying out FireProtASR workflow for a

second time using only the sequences included in the subtree

beneath the selected ancestral node. Local ancestor therefore

represents a root of a phylogenetic tree constructed from only

the sequences most relevant to the selected ancestral node.

Node 238 (Figure 4D) is an ancestor of only five leaves and

was selected because of its close proximity to luciferase and

dehalogenase, providing a fair comparison to the previously

published ancestors. Similar comparison can be also achieved

with node 172 (Figure 4B), having several stable dehalogenases

in its progeny. Finally, node 230 (Figure 4C) was highlighted as a

more distant ancestor of both luciferase and dehalogenase. No

pruning, curation or re-grafting was performed in the process.

Selected ancestral sequences were then subjected to the exper-

imental validation. MSA of the query protein, selected ances-

tors, and the sequence provided by executing back-to-consensus

analysis is attached in Figure 4E.

Although the selected sequences have high implied sequence

similarity (92–97%) with the inferred ancestors, experimental

validation showed that the ancestors’ thermal stability was 20–

26◦C higher than that of wild-type DhaA (Table 1). The ancestral

proteins also exhibited high expressibility, solubility, yields and
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FireProtASR 9

Table 1. Characteristics of reconstructed and experimentally characterized ancestral haloalkane dehalogenases

Protein code Expression (% of

total protein)

Solubility (%) Yield (mg/l) Tm (◦C) HLD act.

(μmol/mg·s)

LUC act.

(RLU/mg·s)

DhaA wt 17 83.1 91.1 50.56±2.4 0.032± 0.0059 n.a.

DhaA 172Loc 23 85.5 74.9 71.60±0.7 0.038± 0.0002 1.41± 0.26

DhaA 172Glob 21 65.2 88.2 70.04±1.5 0.061± 0.0045 n.a.

DhaA 230Loc 20 n.d. n.d. n.d. n.d. n.d.

DhaA 230Glob 23 84.8 108.5 72.14±0.4 0.061± 0.0118 n.a.

DhaA 238Loc 23 63.2 74.9 70.36±0.6 0.014± 0.0021 353.5±14.58

DhaA 238Glob 19 83.3 94.4 76.19±0.2 0.030± 0.0012 3.18± 0.33

Notes: DhaA, haloalkane dehalogenase from Rhodococcus rhodochrous NCIMB 13064; wt, wild type; Loc, ancestral protein inferred from local alignment; Glob, ancestral

protein inferred from global alignment; Tm , melting temperature; HLD act., haloalkane dehalogenases activity; LUC act., luciferase activity; n.d., not determined due

to poor solubility of this protein; n.a., not active under tested conditions.

catalytic activity. Moreover, inference based on both haloalkane

dehalogenases and luciferases led to the discovery of the very

interesting enzyme ancHLD-Rluc, which exhibits dual dehaloge-

nase and monooxygenase activity. This experimental validation

provides direct experimental evidence of the good functionality

and reliability of the fully automated version of FireProtASR.

Additionally, results obtained using FireProtASR were thor-

oughly and quantitatively compared to three previously

published experimental studies. For this purpose, Euclidean

distance [43], and the Subtree prune and regraft distance

[44] were calculated to compare the trees obtained from

the FireProtASR and published literature. The two trees were

also graphically compared using the Jaccard index utilizing

ColorBrewer [45] scheme. Detailed comparison of all three

experimental studies with the results produced by FireProtASR

server is attached in Supplementary Data 1–3, available online at

https://academic.oup.com/bib. Finally, the robustness and relia-

bility of the FireProtASR server was tested using 60 diverse pro-

teins from various protein families (see Supplementary Data 4

available online at https://academic.oup.com/bib).

Discussion

ASRhas been shown to be a very effective strategy for the protein

thermostability engineering and as such was implemented in

various computational tools usingmaximum-likelihood (FastML

[46], RaxML [17], Ancestors [47]) or Bayesian inference (Han-

dAlign [48],MrBayes [18]) methods.However, a significant limita-

tion of those methods is that they require complex input data to

be uploaded by the users. Those requirements are reaching from

a simple set of homolog sequences to the MSA or even rooted

phylogenetic tree, leaving the most crucial and laborious parts

of the calculation in the hands of the users. Non-expert users

without the deep knowledge of the bioinformatics tools and the

systemof interest are therefore hindered from the successful use

of the ASR method.

FireProtASR is a web server that aims to provide users with

one-stop-shop solution for the ancestral sequence reconstruc-

tion. FireProtASR requires minimal input from the users, and

the whole calculation can be processed from a single protein

sequence, set of homolog sequences,MSA and phylogenetic tree.

All steps of the calculation, including the search for biologi-

cally relevant homolog sequences, dataset reduction and the

ancestral reconstruction are automated. Moreover, a novel algo-

rithmbased on localizedweighted back-to-consensus analysis is

implemented to resolve an issue with ancestral gap reconstruc-

tion. FireProtASR web server is also complemented by an easy-

to-use web interface that allows users to interactively analyze

sequences of the individual ancestral nodes together with the

ability to design their own ancestral sequences based on the

posterior probabilities of the existing nodes.

The robustness and reliability of the results produced by the

FireProtASR workflow was evaluated by experimental character-

ization of six ancestral sequences of haloalkane dehalogenase

from HLD-II subfamily. With the exception of the local variant

of the ancestral node 230, all designed ancestral sequences are

soluble and also retain high expressibility and yields on the

levels comparable to the DhaA wild type. However, the thermal

stability has increased by over 20◦C and global variants 172 and

230 have also increased the HLD activity by two-fold. Increase in

HLD activity cannot be observed in the constructed local variants

that utilize smaller subsets of homolog sequences, and thus

only a limited amount of evolutionary information. This would

encourage the usage of the global variants for the design of

highly stable and active proteins. However, more focused view

using a localized variants of the ancestral nodes can provide

some useful results as can be observed in the local variant of the

node 238 that shows both dehalogenase and monooxygenase

activity. High thermal stabilization was also achieved in those

variants.

Finally, the results provided by the FireProtASR web server are

consistent with the designs presented in the published literature

as the fully automatized designs obtained by FireProtASR method

maintain high sequence similarity (>90%) with the manually

designed and curated ancestors. Finally, the comprehensive

analysis of approximately 60 different proteins from various

protein families have proven the robustness and reliability of

the presented method.

The full automation of the FireProtASR method eliminates the

need to select, install and evaluate individual tools, optimize

their parameters and interpret intermediate results. Together

with its general applicability for a wide range of protein fami-

lies, FireProtASR makes the procedure of ancestral reconstruction

accessible to the users without any prior expertise in bioin-

formatics, and the intuitive web interface allows for a further

analysis utilizing both sequence and structural information.

Key Points

• FireProtASR is a web service for a fully automated

design of stable proteins using ancestral sequence

reconstruction and is accompanied by an interactive

and easy-to-use interface.
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10 Musil et al.

• FireProtASR allows users to utilize ancestral recon-

struction without prior knowledge of the necessary

bioinformatics tools and the biological system.
• The robustness and reliability of the FireProtASR

method were thoroughly tested by both laboratory

experiments and by comparing predictions with the

results published in scientific literature.
• Laboratory characterization of the ancestral designs

showed up to 26◦C improvement in thermostability

and some of the proteins poses even dual catalytic

activity.

Data availability

All data validating the robustness and accuracy of our ser-

vice are available in the Supplementary materials 1-4. Web

service and tutorials are freely available at https://loschmi

dt.chemi.muni.cz/fireprotasr/.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-

formatics.
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ABSTRACT

The majority of naturally occurring proteins have

evolved to function under mild conditions inside

the living organisms. One of the critical obstacles

for the use of proteins in biotechnological applica-

tions is their insufficient stability at elevated temper-

atures or in the presence of salts. Since experimental

screening for stabilizing mutations is typically labo-

rious and expensive, in silico predictors are often

used for narrowing down the mutational landscape.

The recent advances in machine learning and arti-

ficial intelligence further facilitate the development

of such computational tools. However, the accuracy

of these predictors strongly depends on the quality

and amount of data used for training and testing,

which have often been reported as the current bot-

tleneck of the approach. To address this problem,

we present a novel database of experimental ther-

mostability data for single-point mutants FireProtDB.

The database combines the published datasets, data

extracted manually from the recent literature, and

the data collected in our laboratory. Its user inter-

face is designed to facilitate both types of the ex-

pected use: (i) the interactive explorations of indi-

vidual entries on the level of a protein or mutation

and (ii) the construction of highly customized and

machine learning-friendly datasets using advanced

searching and filtering. The database is freely avail-

able at https://loschmidt.chemi.muni.cz/fireprotdb.

INTRODUCTION

Proteins play essential roles in many biotechnological and
biomedical applications, where they are often subjected to
extreme environments, e.g. elevated temperatures or the
presence of various salts. However, naturally occurring pro-
teins have mostly evolved to function in the mild environ-
mental conditions, and therefore their applicability is lim-
ited in the industrial applications. For this reason, protein
engineers generally aim to improve protein stability, and
thermostability is one of their primary targets (1) as it is cor-
related with serum survival time (2), half-life (3), expression
yield (4) and activity in the presence of denaturants (5). A
reliable assessment of the effect of amutation on protein sta-
bility is often performed experimentally. Extensive experi-
mental screening, however, is slow and costly, prompting the
use of in silico approaches for the pre-selection of promis-
ing mutations. These methods are usually based on one of
the three principles: (i) free energy calculations, (ii) phylo-
genetics or (iii) machine learning. With the recent advances
in artificial intelligence, tool developers increasingly resort
to the third group of methods. However, the accuracy of the
machine learning-based predictors is still severely limited by
the lack of high-quality data (6). Experimental characteri-
zations are usually not capable of producing large amounts
of data, and the majority of these measurements are scat-
tered in the scientific literature. Thus, there is a strong de-
mand for systematic collection, validation, and organiza-
tion of such data in a database.

Two attempts have been made to establish a systematic
and extensive collection of thermostability data so far. The
first and largest database is the Thermodynamic Database
for Proteins and Mutants–ProTherm (7). It was first re-
leased in 1999 with the aim to collect experimentally de-
termined thermodynamic parameters for wild-type proteins
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and their mutants from the published literature. Its latest
version contains >25 000 entries from 740 proteins, and it
serves as the primary source of protein stability data for the
development of new predictors. However, ProTherm was
last updated in 2013 so the database is already out-of-date.
Moreover, several critical issues have been reported, such
as inaccurate annotations or wrong signs of values (6,8–
10). This makes ProTherm even more difficult to use as
time-demanding manual filtering and validation steps are
required to confirm the values in the original articles. This
manual filtering led to the construction of many different,
often overlapping, subsets with corrected values and occa-
sionally new data. Some of these derivative datasets were
deposited to the VariBench database (11) without any at-
tempts to reintegrate the changes into ProTherm or create
an improved database. This changed in 2018 when Prota-
Bank (12) was released. This database aims to collect a wide
range of protein engineering data such as thermostability,
activity, expression, binding and several others. The devel-
opers imported all the data fromProTherm, yet they did not
seem to perform any manual curation. Therefore, the criti-
cal issues listed above were not resolved. And while Prota-
Bank enriched the ProTherm data with recent experimental
studies, the database does not offer any advanced search-
ing and filtering capabilities, at least in its non-commercial
version. This makes the data extraction and processing te-
dious by necessitating many manual steps and hindering
the application of such data-driven methods as machine
learning.

To overcome these limitations, we established the
FireProtDB database that holds manually curated ther-
mostability data for single-point mutants. The database
contains the data available in ProTherm, ProtaBank, and
our extensive manual literature search. Its user-friendly in-
terface allows easy and interactive browsing through the ex-
perimental data and provides links to the corresponding
UniProt and PDB entries. Moreover, advanced searching
and filtering capabilities, the ability to download the data in
a simple table format, and meticulous labelling of data en-
tries used for training and testing of published tools prompt
the further application of machine learning.

MATERIALS AND METHODS

Database architecture and data model

The top-level entity of the FireProtDB database is a unique
protein sequence entry with the assigned UniProt ID (13).
Protein sequences were preferred to structures due to the
broader availability of the former. Each sequence is a string
of amino acids in specified positions. Multiple mutations
can be assigned to a single position, and each mutation can
be evaluated by multiple measurements and derived val-
ues. The measurements represent the experimental values
of the Gibbs free energy changes upon mutation (��G) or
changes in melting temperatures (�Tm). The derived values
stand for averages or medians of multiple measurements for
a particular mutation. Each measurement is also accompa-
nied by a curation flag that indicates whether the value was
manually validated against the original publication to guar-
antee its correctness. Furthermore, each measurement and

derived value can be assigned tomultiple published datasets
to promote accurate validation and benchmarking of com-
putational tools.
From the structural point of view, each sequence can have

one or more assigned biological units that denote biolog-
ically relevant quaternary structures of asymmetric units
stored in the PDB database (14). For representative biolog-
ical units, the HotSpot Wizard 3.0 (15) calculation was ex-
ecuted to compute additional sequential and structural an-
notations. These annotations can help with the analysis of
selected mutations and serve as pre-calculated features ap-
plicable in machine learning models.

Stability data acquisition and curation

FireProtDB is composed of the data from four sources: the
ProTherm database, the ProtaBank database, manual min-
ing of the scientific literature, and data collected in our labo-
ratory (Figure 1). The primary data source was ProTherm.
Due to the multiple problems mentioned in the introduc-
tion, we followed several filtering steps. In the first step, we
retained only those entries that met the following four cri-
teria: (i) they have a single-point mutation; (ii) the mutation
is not an insertion or deletion; (iii) the protein has a Swis-
sProt accession code and/or a PDB identifier; (iv) the en-
try includes a measured ��G and/or �Tm. Secondly, we
performed a validity check of SwissProt accession codes
and updated obsolete entries. ProTherm references muta-
tions by their structure index, i.e., the residue number in
the structure, which in many cases does not match their
sequence index, i.e. the position in the sequence. To over-
come this issue, we used a similar approach as in PDBSWS
(16): use the Needleman-Wunsch algorithm (17) to con-
struct the global sequence alignment of sequences extracted
from PDB andUniProt entries andmap themutations onto
the UniProt sequences. In the next step, we confirmed that
the reported wild-type amino acids are in the correct po-
sitions in the structures and unified the reported units. Fi-
nally, wematched the datawith themanually curated entries
in the FireProt dataset (18), updated the values, andmarked
them as ‘curated’.

In addition to ProTherm, we explored the studies re-
ported in the ProtaBank database, extracted the thermosta-
bility data, and integrated them into our database. We also
performed a manual literature search using stability-based
keywords such as ‘protein stability’, ‘thermostability’, ‘free
energy upon mutation’, ‘protein stabilization’. We mined
the recent scientific articles reporting mutants with mea-
sured stability data and contacted the authors of the pub-
lications when the relevant data were not available in the
article. All such entries were marked as ‘curated’ as we ex-
tracted them directly from the original publications. Fi-
nally, we reviewed the thermostability data collected in our
lab throughout the last few years and added them to the
database. We perform experimental protein characteriza-
tion in our protein engineering projects on a regular basis,
and measuring protein stability is an essential part of such
characterization. In total, the three sources led to a signif-
icant enlargement of the data size by 62% in terms of all
the entries. The number of curated entries more than dou-
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Figure 1. A schematic representation of the data comprising FireProtDB. The primary source of data is filtered ProTherm (7). The FireProt data subset
(18) was manually curated, compared to the source publications, and marked with the ‘curated’ flag. The publications from ProtaBank (12) and manual
literature search were also used to deposit the data. Each mutation in the deposited data was annotated according to its membership in the published
datasets and those deposited on VariBench (11). The HotSpot Wizard 3.0 (15) annotation tool was applied to each protein entry with a known tertiary
structure.

bled compared to the previously collected cleaned FireProt
subset of ProTherm.

Dataset assignment

In the second acquisition step, we collected 40 datasets from
the VariBench database (11) and literature (18), which were
used previously for training or testing of existing predictors.
Since all these datasets are at least partially derived from
ProTherm, we could label each measurement in FireProtDB

by its membership in the datasets. These labels are partic-
ularly useful for the comparison of new prediction models
to the existing tools. This task is usually done by the perfor-
mance evaluation of predictors on a dataset that is entirely
independent of the training and test sets used for the devel-
opment of the tools. Since the dataset construction is often
laborious and consists of amanual data processing, the pos-
sibility to directly exclude the data present in given datasets
significantly simplifies and speeds up the construction pro-
cess.

Calculation of additional annotations

To provide our users with a more advanced description of
their proteins of interest, we enriched the database by sev-
eral important sequence- and structure-related information.
These calculations were performed by HotSpot Wizard 3.0
(15), which is currently the only tool capable of deriving
all these features in a single calculation (19) and provides
machine-readable results. HotSpotWizard was executed on
a representative biological unit of each protein and provided
the annotations for a structure, such as the residues located
in protein pockets and tunnels, and a sequence, such as cat-
alytic residues, evolutionary conservation scores, back-to-
consensus mutations, and correlated pairs. These annota-
tions can be helpful for a better understanding of structure-
function relationships as well as for generating features for
machine learning.

RESULTS

Web interface

The web interface was designed for both types of expected
users––protein chemists and software developers. Protein
chemists are often looking for the thermostability evidence
for their protein of interest, and they will benefit from its
interactivity and details pages with additional information.
Machine learning experts and bioinformaticians will be
more interested in advanced filtering capabilities facilitating
the process of construction of highly customized datasets
for the training or assessment of various predictors. The en-
try point to the database is the search form, which allows
browsing in two major ways: (i) a simple full-text search for
querying the database using protein name, UniProt acces-
sion codes, PDB identifiers, protein names, publications, au-
thors or organisms and (ii) an advanced search allowing the
users to construct complex rules based on the relational al-
gebra and all available database fields. The latter is one of
the key features of FireProtDB as it facilitates the construc-
tion of highly customized datasets needed for the develop-
ment of new predictors.
Once the user clicks on the ‘Search’ button, they are redi-

rected to the page with the result table. This table contains
a list of available experiments, their basic annotations, and
measured values. The table is paginated to eliminate possi-
ble performance issues and allows further interactive filter-
ing of displayed values. The user can then easily export the
search results in the CSV format using the ‘Export’ button
at the top or the bottom of the page.
Clicking on a mutation name leads to a page with a more

detailed view, showing all the data entries and datasets that
include the selected mutation. Clicking on a protein name
leads to a page providing the basic information such as
UniProt accession code, organism and Enzyme Commis-
sion number, as well as detailed annotation of secondary
structure, catalytic sites, natural variants and amino acid
charges derived from UniProt database using interactive
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Figure 2. Examples of filtering protocols in FireProtDB. Top: The request filters out the data collected at extreme pH or with extreme��G values, resulting
in >3500 data points left. Bottom: An example of excluding all the mutations that appear in PopMuSiC, FireProt, or PON-Tstab datasets.

Figure 3. An overview of the data deposited to FireProtDB. Left: The table shows the total number of each substitution pair with the wild type amino acids
in rows, mutant amino acids in columns, and the coloring according to the thresholds of 1 (light green), 10 (medium green) and 50 (dark green) entries for
the corresponding substitution. Right: Histograms showing the top seven proteins by their UniProt IDs, the ��G values, and the cumulative number of
amino acid substitutions.

ProtVista tracks (20). This page also contains a list of all
known biological units and a table with all experimental
measurements.

Search queries

Several types of search queries may be of interest to the
users. The first one relates to data filtering by values (10).

Typically, software developers filter out the data collected
at extreme pH (<6 or >8) due to changes in charged states
for ionizable residues. The entries with large absolute ��G
or �Tm are also sometimes excluded due to likely higher
measurement errors, and also because dramatic changes to
the stability may indicate significant structural alterations
to the wild type, whichmay become a problem for structure-
based features. The second type is relevant for benchmark-
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ing of a newly designed predictor against the existing tools
or creating a meta predictor. In either case, one usually
needs to derive a data subset that has not been used by
the existing predictors for training. The main reason is
the robust performance estimate, which is typically over-
optimistic for these sets (6). Two corresponding examples
of such filtering protocols are shown in Figure 2.

Database dump

For the users requesting even higher control over the data
and filtering capabilities, we offer the possibility to down-
load the complete dump of the database in the SQL for-
mat. This data file can be easily imported to any mod-
ern MariaDB server, version 10.2, and higher. Since the
database structure is complex and any custom query re-
quires joining of multiple tables, the dump also contains
a pre-defined view ‘mutation experiments summary’. The
summary combines all the tables and provides the data in
a similar structure as the CSV export from the user inter-
face. This view or its definition can serve as a useful starting
point for additional filtering or creating custom queries.

Data statistics

Currently, FireProtDB contains 13274 entries for 237 pro-
teins (Figure 3), from which 8189 measurements origi-
nated from ProTherm. The remaining 5085 entries were
added from our literature search (18%), publications from
ProtaBank (28%), VariBench (53%), and our own records
(1%). In total, 43% entries are destabilizing mutations
(�Tm←1 or ��G > 1 kcal/mol), 14% stabilizing (�Tm >

1 or ��G←1 kcal/mol), and 43% considered neutral (–1
≤ �Tm ≤ 1 or – 1≤ ��G≤ 1 kcal/mol). The database also
includes annotations for 40 various published datasets de-
rived fromProTherm, deposited toVariBench (11), or avail-
able in the corresponding articles and web servers. As far
as enzymes are concerned, those collected in the database
cover the first six EC classes, three of which by >40% on
the second level.

DISCUSSION

The availability of large high-quality datasets is one of
the critical requirements for the advancement of machine
learning-based in silico predictors. While some promising
high-throughput experimental methods have been released
recently (21,22), their validation is still ongoing, and protein
stability experiments are still time-consuming and expen-
sive. Building training and testing datasets is hindered by
the data being hidden in the original articles, generating a
strong demand for their systematic mining, collection, vali-
dation, and homogenization. The existing databases are not
fulfilling all the requirements as ProTherm is outdated and
contains incorrect data, and ProtaBank does not provide
advanced search and export tools and is partly commercial.
FireProtDB is a novel database for experimental ther-

mostability data of protein single-point mutants. It con-
sists of the data manually extracted from ProTherm, arti-
cles from ProtaBank, new data obtained by mining the re-
cent literature, and the data collected in our laboratory. The

database is accessible via a user-friendly graphical web in-
terface allowing the users to search and browse the data in-
teractively. Moreover, all the entries are annotated to indi-
cate whether they belong to the already published datasets.
These annotations, combined with the advanced searching
and filtering capabilities, make FireProtDB a valuable data
resource for machine learning developers interested in con-
structing highly customized datasets.
In the future, we will improve our searching queries and

employ automatic text-mining machine learning-based ap-
proaches (23–25) to accelerate literature mining and data
collection, which will be followed by manual curation. We
will also prepare an interactive form for data submissions
by the users. Finally, we will extend the set of automatically
generated features for mutations and add sequence similar-
ity filtering to improve the data usability by the community
of engineers applying machine learning to predict changes
in protein stability.
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ABSTRACT

HotSpot Wizard 2.0 is a web server for automated

identification of hot spots and design of smart li-

braries for engineering proteins’ stability, catalytic

activity, substrate specificity and enantioselectivity.

The server integrates sequence, structural and evo-

lutionary information obtained from 3 databases and

20 computational tools. Users are guided through

the processes of selecting hot spots using four dif-

ferent protein engineering strategies and optimizing

the resulting library’s size by narrowing down a set

of substitutions at individual randomized positions.

The only required input is a query protein structure.

The results of the calculations are mapped onto the

protein’s structure and visualized with a JSmol ap-

plet. HotSpot Wizard lists annotated residues suit-

able for mutagenesis and can automatically design

appropriate codons for each implemented strategy.

Overall, HotSpot Wizard provides comprehensive an-

notations of protein structures and assists protein

engineers with the rational design of site-specific

mutations and focused libraries. It is freely available

at http://loschmidt.chemi.muni.cz/hotspotwizard.

INTRODUCTION

The development of tailor-made enzymes for industrial
applications is facilitated by understanding the molecular
mechanisms of protein function. However, despite signifi-
cant advances in recent decades, it is not yet clear how a
protein’s sequence encodes its function (1,2). Traditional
directed evolution circumvents this problem by using re-
peated rounds of random mutagenesis and screening of
large sequence libraries to explore the mutational landscape

and find proteins with desired properties (2–5). This ap-
proach has the advantage of requiring no prior knowledge
of the protein’s structure or understanding of its structure–
function relationships (6), but necessitates the laborious and
costly screening of very large libraries (4). The efficiency
of directed evolution experiments can be significantly im-
proved by creating smaller, higher quality libraries that are
more likely to yield positive results. Such ‘smart’ libraries
can be generated by focusingmutagenesis on a limited num-
ber of ‘hot spot’ positions that are likely to affect the prop-
erty of interest, or by selecting a limited set of substitutions
(1–5).

The optimal strategy for identifying hot spots depends
on the property being targeted. Catalytic properties such
as activity, specificity and stereoselectivity are often re-
lated to amino acid residues that mediate substrate bind-
ing, transition-state stabilization or product release (7,8).
Such residues can be identified using tools for predicting
and analyzing enzyme-ligand interactions (9–11) or detect-
ing binding pockets or access tunnels (12–14). Strategies for
improving protein stability include rigidification of flexible
sites, cavity-filling, tunnel engineering, consensus and an-
cestral mutation methods, or redesigning of surface charges
(15–17). While hot spots for some of these strategies can
be identified straightforwardly using a single computational
tool (18), others require multi-step analyses or the use of
molecular modelling methods (19). Having obtained a set
of promising sites formanipulating the desired property, the
next challenge is to draw up a list of allowed substitutions
at individual positions. This can be done by considering the
amino acid distribution at the corresponding positions in
sequence homologs (20,21), by using reduced sets of amino
acids with either specific desired physicochemical properties
or a balanced set of these properties (22,23), or on the ba-
sis of the predicted effects of specific substitutions on the
protein’s properties (24,25). Finally, an appropriate degen-
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erate codon covering the specified set of amino acids must
be selected for each targeted position. Ideally, these codons
should exhibit minimal amino acid bias and minimize the
frequency of premature stop codons (26). Several tools are
available to facilitate this task and to calculate the size of
the designed library (27).

Here, we presentHotSpotWizard 2.0, aweb server for the
automated identification of hot spots and design of smart
libraries for engineering protein stability, enzymatic activ-
ity, substrate specificity and enantioselectivity. Compared
to its predecessor (28), HotSpot Wizard 2.0 introduces sev-
eral major improvements, extending the scope and qual-
ity of its analyses. It implements four different established
protein engineering strategies, enabling the user to selec-
tively target sites affecting the protein’s stability and cat-
alytic properties. Users can easily select suitable substitu-
tions for individual hot spots based on predictions of toler-
ated amino acids or amino acid distributions in sequence
homologs, and suitable degenerate codons for these sub-
stitutions can be designed automatically via the HotSpot
Wizard interface. A new graphical user interface provides
an intuitive and comprehensive overview of the results of
the analysis, allowing users to think directly about the ob-
tained designs. The resulting pipeline of twenty integrated
tools and three databases represents a unique one-stop solu-
tion that makes library design accessible even to users with
no prior knowledge of bioinformatics.

MATERIALS AND METHODS

The workflow of HotSpotWizard is outlined in Figure 1. In
order to explore themutational landscape and find themost
promisingmutagenesis targets, a protein selected by the user
is annotated using several prediction tools and databases
(Phase 1). With this knowledge in hand, four protein en-
gineering strategies are used to identify suitable hot spots
for improving desired protein properties (Phase 2). Finally,
suitable substitutions and appropriate degenerate codons
are proposed for each selected hot spot, enabling the design
of a smart library (Phase 3).

Phase 1: annotation of the protein

The first step in the workflow requires the user to specify
the protein structure of interest, either by providing its PDB
ID or by uploading a suitable PDB file. If possible, the bio-
logical assembly of the target protein is automatically gen-
erated by the MakeMultimer tool (http://watcut.uwaterloo.
ca/tools/makemultimer), and information about ‘essential
residues’ directly involved in catalysis or binding is obtained
from the Catalytic Site Atlas (29) and UniProtKB/Swiss-
Prot (30) databases. The DSSP algorithm (31) is then used
to assign the protein’s secondary structure, and its acces-
sible surface area is computed using the Shrake and Rup-
ley algorithm (32) with BioJava (33). The average B-factors
are computed for the protein’s amino acid residues (34).
The raw B-factor values are accompanied by residue rank-
ings ranging from 1–100%; rankings of 1–25%, 26–75% and
76–100% indicate high, moderate and low levels of relative
structural flexibility, respectively. Protein pockets are then
identified with Fpocket (35). For each chain, the pocket

containing the greatest number of essential residues is iden-
tified as the catalytic pocket. If there are two or more pock-
ets that satisfy this criterion, a decision is made according to
the Fpocket score. Having identified the putative catalytic
pockets, their centers of mass are determined and used as
starting points to identify access tunnels with CAVER (36).
Sequence homologs of the target protein are then obtained
by performing a BLAST (37) search against the UniRef90
(38) database, using the target protein sequence as a query.
All identified homologs are aligned with the query protein
using USEARCH (39). By default, sequences whose iden-
tity with the query is below 30% or above 90% are excluded
from the list of homologs. The remaining sequences are then
clustered using UCLUST (39), with a 90% identity thresh-
old to remove close homologs. The cluster representatives
are sorted based on the BLAST query coverage and by de-
fault, the first 200 of them are used to create a sequence
data set. A multiple sequence alignment of the resulting se-
quence data set is created with Clustal Omega (40) and used
to (i) estimate the conservation of each position in the pro-
tein based on the Jensen–Shannon entropy (41); (ii) identify
correlated positions using an ensemble of theMI (42), aMIc
(43), OMES (44), SCA (45), DCA (46), McBASC (47) and
ELSC (48) methods; (iii) predict the tolerated amino acids
at each position in the protein sequence using RAPHYD
(see Supplementary Data 1); and (iv) analyze amino acid
frequencies at individual positions within the protein. The
conservation scores are used to assign mutability values to
individual residues. To facilitate interpretation, these values
are divided into three groups: values of 1–3, 4–5 and 6–9 in-
dicate low, moderate and high mutability, respectively.

Phase 2: identification of mutagenesis hot spots

Based on the comprehensive annotation of the target pro-
tein, four protein engineering strategies are used to iden-
tify different types of hot spots: (i) functional hot spots,
(ii) stability hot spots based on structural flexibility, (iii)
stability hot spots based on sequence consensus and (iv)
correlated hot spots. Some examples illustrating the use of
these strategies to engineer selected properties in 12 differ-
ent proteins (34,49–62) are shown in Figure 2. Functional
hot spots correspond to highly mutable residues located in
the catalytic pockets or tunnels connecting these pockets
with the bulk solvent. Residues located in close proximity
to the active site have been identified as good mutagenesis
targets for engineering activity, enantioselectivity and sub-
strate specificity (52,63,64). To prevent mutagenesis at posi-
tions that are indispensable for protein function, all essen-
tial residues are designed immutable and thus excluded from
the list of potential hot spots. Supplementary Data 2 shows
that HotSpot Wizard provides a significantly greater pro-
portion of viable mutants than random mutagenesis. Sta-
bility hot spots are identified by analyzing structural flex-
ibility and sequence consensus. The former approach aims
to rigidify flexible protein regions by mutating residues with
high average B-factors (34). B-factor provides a metric for
flexibility which is due in part to inherent flexibility of the
macromolecule, but also includes stabilizing/destabilizing
energy from packing in the crystal lattice. The rationale for
targeting these flexible residues is that they have relatively
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Figure 1. Workflow of HotSpot Wizard.

few contacts with neighbors, so their substitution can pro-
duce more interactions (34,54,55). In contrast, the sequence
consensus protocol implements majority and frequency ra-
tio approaches, both of which suggest mutations at posi-
tions where the wild-type amino acid differs from the most
prevalent amino acid (i.e. the consensus residue) at a given
position in the multiple sequence alignment. The assump-
tion that the most common amino acid is likely to be stabi-
lizing has proven to be very successful at creating more sta-
ble proteins (56–58,65). By default, if the consensus residue
is present in at least 50% of all analyzed sequences, the cor-
responding position is identified as a hot spot in the major-
ity approach. The frequency ratio approach has a less strict
criterion for the consensus residue’s frequency – the default
value is 40%, but it must also be at least five times more
frequent than the wild-type residue as a hot spot. The fi-
nal strategy involves searching for coordinated changes of
the amino acids at two separate positions within the pro-
tein. Such pairs of positions are referred to as correlated
hot spots, and arise when one amino acid substitution has
an unfavorable effect that is compensated for by a second
mutation of a residue that is located in close structural prox-
imity to the first. This second, correlated mutation typi-
cally helps to maintain protein function, stability or fold-
ing (66).Methods developed for identifying correlated pairs
have revealed mutations responsible for modulating sub-
strate specificity (67), enantioselectivity (68) and mutagene-
sis targets for stability engineering (69). The identification of
correlated positions in HotSpot Wizard is based on an en-
semble of seven prediction tools. Each tool generates a raw
score for each pair of residues in the protein that measures
the pair’s degree of correlation. The mean and standard de-
viation of the degrees of correlation for all pairs of residues
in the protein are then calculated and the raw scores are con-
verted into Z-scores, whichmeasure the number of standard

deviations by which each pair’s raw score deviates from the
mean. Based on the work ofMartin et al. (70), a pair is con-
sidered to be correlated if its average Z-score≥ 3.5 and both
of its positions have at least a moderate degree of mutability
– by definition, highly conserved positions cannot co-evolve
(71).

Phase 3: design of the smart library

The efficiency of directed evolution experiments can be im-
proved by focusing mutagenesis on a limited number of hot
spots, but also by restricting the number of allowed substitu-
tions at individual positions using appropriate codons (20–
25). For each protein engineering strategy, HotSpotWizard
provides a way to prioritize amino acids at the randomized
positions (Table 1) and identifies degenerate codons encod-
ing all desired amino acids with the minimum redundancy
and the smallest possible ratio of stop codons. Alternatively,
the SwiftLib tool (73) can be used to calculate optimal de-
generate codons while keeping the library diversity within
the specified limits (the default 10 000). Although the re-
sulting library may not necessarily fully cover the desired
set of amino acids, the probability of omitting the impor-
tant amino acids is relatively low as their weights are set
according to selected prioritization method (e.g. based on
amino acid distributions in sequence homologs). For both
approaches, the most common metrics, such as expected
coverage or library size, are computed with TopLib (72).

DESCRIPTION OF THE WEB SERVER

Input

The only required input to the web server is a tertiary struc-
ture of the query protein, provided either as a PDB ID or a
PDB file. The user can then choose a predefined biological
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Figure 2. Some notable applications of the four protein engineering strategies implemented in the HotSpot Wizard web server.
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Table 1. Methods for selecting substitutions at hot spot positions identified using the four different protein engineering strategies

Selection mode Availability in strategies Description

Amino acid frequency FUNC, FLEX suggests amino acid residues fulfilling the criterion of minimal frequency
in the multiple sequence alignment

Mutational landscape FUNC, FLEX suggests amino acid residues fulfilling the criterion of minimal
probability of preservation of protein function

Sequence consensus CONS suggests amino acid residues fulfilling the criteria of at least one of
approaches implemented in sequence consensus strategy: (i) majority
approach or (ii) frequency ratio approach

Correlated positions CORREL suggests amino acid residues fulfilling the criterion of minimal frequency
of co-occurrence with some other specific residue from coupled position

Manual ALL manual selection of amino acid residues

FUNC – Analysis of functional hot spots; FLEX – Analysis of stability hot spots/structural flexibility approach; CONS – Analysis of stability hot spots
/ sequence consensus approach; CORREL – Analysis of correlated hot spots

unit generated by the MakeMultimer tool or manually se-
lect chains for which the calculation should be performed.
The calculations can be configured in either basic or ad-
vanced mode. Basic mode directs the user’s attention to the
most important parameters, providing an overview of the
identified essential residues and highlighting the main pa-
rameters involved in the identification of pockets and tun-
nels. The designation of essential residues is a key step in the
functional strategy because these residues are excluded from
the list of potential hot spots and are also used to detect
catalytic pockets and access tunnels. The user should there-
fore inspect the automatically generated list of essential
residues and correct it if necessary. If no essential residues
are detected, the user should specify them manually. In ba-
sicmode, the user can specify three parameters: (i) the probe
radius, which is used in pocket identification and defines the
minimum radius of an alpha sphere in a pocket (default 2.8
Å); (ii) the minimum probe radius, which defines the mini-
mum radius of a putative tunnel (default 1.4 Å); and (iii) the
clustering threshold, which determines how the hierarchi-
cally clustered tunnels are cut and thus affects the number
of tunnels that can be identified (default 3.5 Å). Advanced
mode allows expert users to fine-tune parameters of individ-
ual calculations in the pipeline to achieve more specialized
objectives.

Output

Upon submission, a unique identifier is assigned to each job
to track the calculation. The ‘Results browser’ panel pro-
vides information on the status of individual steps in the
computational pipeline (Figure 3A). Once the job is fin-
ished, the navigation panel provides links to the results ob-
tained using each of the four different protein engineering
strategies (Figure 3B). The result pages for each strategy are
all organized in the same way, which is described below.

Residue features. The ‘Residue features’ panel lists all of
the identified hot spots together with information relevant
to the selected protein engineering strategy (Figure 3C).
Several checkboxes can be found at the top of this panel, al-
lowing users to reduce the list of hot spots by applying addi-
tional criteria such as excluding buried residues, correlated
positions or residues forming a catalytic pocket. The ‘Show
all residues’ button enables users to inspect any residue of
the target protein and possibly select hot spots based on

their own criteria. Importantly, a pop-up window contain-
ing detailed information about a given residue is displayed
after clicking the ‘book’ icon in the last column of the ta-
ble. Users can visualize individual residues within the pro-
tein structure by selecting the ‘eye’ icon in the first column,
and can add residues to the list of mutagenesis hot spots by
clicking the ‘plus’ icon in the second column. All selected
mutagenesis hot spots listed in the ‘Residues selected for
mutagenesis’ panel (Figure 3D) can be used for designing
a smart library by clicking the ‘Design library’ button.

Residue details. The information in the ‘Residue de-
tails’ panel is organized into several tabs (Figure 3F):
(i) ‘Overview’, which provides basic information on the
residue’s characteristics such as its mutability, average
B-factor and secondary structure; (ii) ‘Annotations’, de-
scribing the residue’s function (only available for essential
residues); (iii) ‘Tunnels and Pockets’, which lists the pockets
and/or tunnels of which the residue is a part; (iv) ‘Sequence
consensus’, listing potential consensusmutations for a given
position; (v) ‘Amino acid frequencies’, providing the distri-
bution of amino acids in the corresponding column of the
multiple sequence alignment; (vi) ‘Mutational landscape’,
quantifying the probability of preservation of protein func-
tion for individual substitutions at a given site; and (vii)
‘Correlated positions’, listing all positions correlated with
the site in question.

Design of smart library. The ‘Library design’ panel allows
the user to select a set of substitutions and design degenerate
codons for systematic mutagenesis of the selected positions
(Figure 3G). An automatic method for prioritizing amino
acids suitable for the chosen protein engineering strategy
will be pre-selected. The panel contains two tabs, each cor-
responding to one library optimization mode. In the ‘Stan-
dard mode’, users can manually define their own set of re-
quired substitutions for individual positions if they so de-
sire. After any change in the list of amino acids, HotSpot
Wizard automatically identifies the most suitable codons
covering all desired amino acids with the lowest possible re-
dundancy, and the library size corresponding to the spec-
ified expected coverage. The parameters of the library can
be modified interchangeably, allowing the user to adjust the
final library based on its size or preferred degree of its cov-
erage. In the ‘SwiftLib mode’, users specify the maximum
acceptable library diversity and the method reports the op-
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Figure 3. HotSpot Wizard’s graphical user interface, showing results obtained for the haloalkane dehalogenase LinB (PDB ID: 1CV2). (A) The ‘Report’
panel shows the status of the calculations in the individual steps of the computational pipeline. (B) Results obtained using the four protein engineering
strategies. (C) The ‘Residue features’ panel, which provides an overview of the identified hot spots. (D) The ‘Residues selected for mutagenesis’ panel,
which presents a user-adjustable list of residues representing targets for mutagenesis. (E) The JSmol viewer allows interactive visualization of the protein
and the identified tunnels and pockets. (F) The ‘Residue details’ pop-up window, which provides comprehensive information on the residue’s annotations,
organized under several tabs. (G) The ‘Library design’ panel, which shows the list of substitutions and appropriate codons for randomization of selected
positions.

timal combination of codons with the minimal redundancy
of amino acids. However, this efficiency is often achieved
at the price of omitting some of desired amino acids with
lower weights. The initial amino acid weights derived from
the selected prioritization scheme can be changed by select-
ing the ‘Edit amino acid weights’. Additionally, users can
request multiple solutions and thus inspect also the solu-
tions which are considered as less optimal by the method,
but may better meet the users’ needs. Finally, users can gen-

erate a nucleotide sequence from the designed amino acid
sequence based on the codon usage of selected organism
(default is Escherichia coli) with the European Molecular
Biology Open Software Suite (EMBOSS) Backtranseq tool
(74).

Protein visualization. The protein of interest is interac-
tively visualized in the web browser using the JSmol ap-
plet (http://wiki.jmol.org/index.php/JSmol). Users can dis-
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play individual amino acid residues as well as identified tun-
nels and pockets (Figure 3E). The hot spot residues are col-
ored in red, residues in tunnels and pockets in yellow and
all other residues in grey.

Structural features. The main characteristics of all pock-
ets and access tunnels are presented in the ‘Pockets’ and
‘Tunnels’ panels, respectively. These panels allow users to
visualize individual pockets and tunnels in the structure and
to open a pop-up window showing a list of all the residues
comprising the chosen structural feature.

CONCLUSIONS AND OUTLOOK

HotSpot Wizard 2.0 is a web server for the automatic iden-
tification of hot spots and the design of site-specific muta-
tions and mutant libraries for engineering protein stability,
catalytic activity, substrate specificity and enantioselectiv-
ity. The server provides a unified interface allowing users
to apply four well-established protein engineering strate-
gies that combine structural, functional and evolutionary
information to identify suitable positions for mutagenesis.
Moreover, HotSpot Wizard integrates several schemes for
automatic prioritization of mutations and codon optimiza-
tion for selected hot spot positions to facilitate the design
of smart libraries. The automation of the multi-step proce-
dure makes the process of library design accessible to users
without expertise in bioinformatics because it eliminates the
need to select, install and evaluate tools, optimize their pa-
rameters, perform conversions between different data for-
mats, and interpret intermediate results.

In the future, we plan to implement a protocol for struc-
ture prediction based on homology modeling, extending
the applicability of HotSpot Wizard to proteins for which
no experimental structure is yet available. Additionally, we
aim to assess other established protein engineering strate-
gies and, if they prove suitable, to develop new modules so
they can be added to the server’s portfolio of methods.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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