

GENERALIZED EULER VECTOR FIELDS ASSOCIATED TO THE WEIL BUNDLES

P. M. KOUOTCHOP WAMBA

Abstract. The notion of a Euler vector field is usually defined on the tangent bundle of a finite dimensional manifold M. In this paper, we generalize this notion to the Weil bundle $T^A M$, for any Weil algebra A and we study some properties.

1. INTRODUCTION

Let M be a smooth manifold of dimension $m \geq 1$, we denote by TM the tangent bundle of M. Usually, an Euler vector field is defined as a vector field on TMgenerated by the infinitesimal homotheties on the fibers of TM and is denoted by ξ_{TM} . In local coordinate system (x^1, \cdots, x^m) of M, we denote by (x^i, \dot{x}^i) the local coordinate (adapted) of TM. The local expression of ξ_{TM} is given by $\xi_{TM} = \dot{x}^i \frac{\partial}{\partial \dot{x}^i}$. The Euler vector field plays an essential role in the geometry of tangent bundle and is used in the global formulation of second order ordinary differential equation on a manifold M, it is also used to generalize to tensor fields the well known Euler's theorem on homogeneous functions. On the other hand, given a Weil algebra A, there is a product preserving functor T^A from the category $\mathcal{M}f$ of all smooth manifolds and all smooth maps to $\mathcal{M}f$ which generalizes the tangent functor called Weil functor associated to A (see [4]). We adopt the notations of [4] and by $T^A M$ we denote the smooth manifold of all A-velocities of M and consider each element of $T^A M$ in the form of an A-jet $j^A \varphi, \varphi \in C^{\infty}(\mathbb{R}^k, M)$. By $\pi_M^A: T^A M \to M$ we denote the canonical projection such that, $\pi_M^A(j^A \varphi) = \varphi(0)$ and, for any $f \in C^\infty(M, N)$, the map $T^A f \in C^\infty(T^A M, T^A N)$ is defined by $T^{A}f(j^{A}\varphi) = j^{A}(f \circ \varphi)$ where $\varphi \in C^{\infty}(\mathbb{R}^{k}, M)$. When A is the space of all r-jets of \mathbb{R}^k into \mathbb{R} with source $0 \in \mathbb{R}^k$ denoted by $J_0^r(\mathbb{R}^k, \mathbb{R})$, the corresponding Weil functor is the functor of k-dimensional velocities of order r and denoted by T_{k}^{r} , in particular for k = 1, it is called a tangent functor of order r and denoted by T^r .

The aim of this paper is to generalize the concept of Euler vector field on the Weil bundle T^AM , which will be able to be one of the mains element of the generalized Lagrangian mechanic on T^AM . We will denote it by ξ_{T^AM} . Beyond these considerations, we prove that the Euler vector field obtained is such that, for any $f \in C^{\infty}(M, N)$, the vector fields ξ_{T^AM} and ξ_{T^AN} are T^Af -related. In particular, we have a natural transformation

$$\xi_A: T^A \to T \circ T^A$$
 (over the identity on T^A).

MSC (2010): primary 53C15, 58A20; secondary 53C75, 53D05, 58A32.

Keywords: Weil functor, Euler vector field, Dirac structures and natural transformations.

We define a natural Euler vector field associated to the Weil functor T^A as a natural transformation $\xi: T^A \to T \circ T^A$ (over the identity on T^A) and prove that there is a canonical bijective correspondence between the set of all natural Euler vector fields $T^A \to TT^A$ and the set of all derivations of A. In the particular case where $A = J_0^r (\mathbb{R}, \mathbb{R})$, we prove that any natural Euler vector field $\xi: T^r \to T \circ T^r$ is of the form

$$\sum_{\beta=1}^{r} a_{\beta} \xi_{\beta}$$

where a_1, \dots, a_r are the real numbers and ξ_β $(1 \leq \beta \leq r)$ is the natural Euler vector field generated by the derivation ϕ_β on $J_0^r(\mathbb{R}, \mathbb{R}) \simeq \mathbb{R}^{r+1}$ defined below.

So, the paper is organized as follows. In Section 2, we recall briefly the main result of [3], about lifts of tensor fields to the Weil bundle. In Section 3, we define the generalized Euler vector field on $T^A M$ and establish some properties. In Section 4, the concept of homogeneous tensor fields on the manifold $T^A M$ is defined and some properties are studied. In the last Section some homogenity properties of the tangent lifts of order r of Poisson and Dirac manifolds related to Euler vector field ξ_{T^rM} are established which generalize the similar results established in [8] and [9].

All manifolds and maps considered in the paper are assumed to be infinitely differentiable. We fix a Weil algebra A of height $h \ge 2$ and of width $k \ge 1$, for any $g \in C^{\infty}(\mathbb{R}^k, \mathbb{R})$ and any multiindex $\beta = (\beta_1, \dots, \beta_k)$, we denote by

$$D_{\beta}(g)(z) = \frac{1}{\beta!} \frac{\partial^{|\beta|}g}{(\partial z_{1})^{\beta_{1}} \cdots (\partial z_{k})^{\beta_{k}}}(z)$$

the partial derivative with respect to the multiindex β of g.

2. Preliminaries

Let A be a Weil algebra, it is a real commutative and finite dimensional algebra with unit which is of the form $A = \mathbb{R} \cdot 1_A \oplus N_A$, where N_A is the ideal of nilpotent elements of A. For any multiindex $\alpha \neq 0$, the vector $e_\alpha = j^A(x^\alpha)$ is an element of N_A and the family $\{e_\alpha, 0 < |\alpha| \le h\}$ generates N_A . We denote by B_A the set of all multiindices such that $(e_\alpha)_{\alpha \in B_A}$ is a basis of N_A and \overline{B}_A its complementary with respect to the set $\{\gamma \in \mathbb{N}^n, 1 \le |\gamma| \le h\}$. We put $e_0 = 1_A$, it is clear that $(e_0, e_\alpha)_{\alpha \in B_A}$ is a basis of A. For $\beta \in \overline{B}_A$, we put $e_\beta = \lambda_\beta^\alpha e_\alpha$ and we have $|\alpha| = |\beta|$ or $\lambda_\beta^\alpha = 0$. So,

$$e_{\alpha} \cdot e_{\beta} = \begin{cases} e_{\alpha+\beta} & \text{if} \quad \alpha+\beta \in B_{A} \\ \lambda_{\alpha+\beta}^{\gamma} e_{\gamma} & \text{if} \quad \alpha+\beta \in \overline{B}_{A} \end{cases}$$

Using this basis of A, one deduces an adapted local coordinate system of $T^A M$ in the following way: let (U, x^i) be a local coordinate system of M, an adapted local coordinate system induced by (U, x^i) over the open $T^A U$ of $T^A M$ denoted by $(x_0^i, x_\alpha^i)_{\alpha \in B_A}$ is given by

$$\begin{cases} x_0^i &= x^i \circ \pi_M^A \\ x_\alpha^i &= \overline{x}_\alpha^i + \sum_{\beta \in \overline{B}_A} \lambda_\beta^\alpha \overline{x}_\beta^i \ \text{, where } \overline{x}_\beta^i \left(j^A g \right) = \frac{1}{\beta!} \cdot D_\beta \left(x^i \circ g \right) \left(z \right) \Big|_{z=0} \end{cases}$$

In the sequel, the coordinate function x_0^i is denoted by x^i . The upper index (α) on the tensor fields φ on M is the α -lift of φ to its Weil bundle (see [2,9]). More precisely, for $f \in C^{\infty}(M)$ and $\alpha \in \mathbb{N}^n$ such that $0 \leq |\alpha| \leq h$, we define the map $f^{(\alpha)} \in C^{\infty}(T^A M)$ (α -lift of f) in the following way

$$f^{(\alpha)}\left(j^{A}\varphi\right) = \frac{1}{\alpha!} D_{\alpha}\left(f\circ\varphi\right)\left(z\right)\Big|_{z=0}$$

for any $j^A \varphi \in T^A M$. In the same way for $X \in \mathfrak{X}(M)$, $X^{(\alpha)} \in \mathfrak{X}(T^A M)$ denote the α -lift of X. In local coordinate (x^1, \cdots, x^m) such that $X = X^i \frac{\partial}{\partial x^i}$, we have

$$X^{(\alpha)} = \sum_{\beta \in B_A} \left(\left(X^i \right)^{(\beta - \alpha)} + \sum_{\gamma \in \overline{B_A}} \lambda_{\gamma}^{\beta} \left(X^i \right)^{(\gamma - \alpha)} \right) \frac{\partial}{\partial x_{\beta}^i}$$

For the measures of convenience, we put $f^{(\alpha)} = 0$ and $X^{(\alpha)} = 0$ for $|\alpha| > h$ or $\alpha \notin \mathbb{N}^k$.

Proposition 2.1. For any tensor field \mathbf{t} of type (0, p) on M, the tensor field $\mathbf{t}^{(\alpha)}$ is the only tensor field of type (0, p) on $T^A M$ satisfying

$$\boldsymbol{t}^{(\alpha)}\left(X_1^{(\beta_1)},\cdots,X_p^{(\beta_p)}\right) = \left(\boldsymbol{t}\left(X_1,\cdots,X_p\right)\right)^{(\alpha-\beta)}$$

where $\beta = \beta_1 + \dots + \beta_p$ and $X_1, \dots, X_p \in \mathfrak{X}(M)$.

Proof. See [3].

3. Main results

We recall that, for any $t \in \mathbb{R}$

$$\exp(t) = e^t = 1 + \sum_{p \ge 1} \frac{t^p}{p!}.$$

3.1. Euler vector fields on $T^A M$.

Let M be a smooth manifold of dimension $m \ge 1$. For any $\varphi \in C^{\infty}(\mathbb{R}^k, M)$, we consider the family of smooth maps $\{\varphi_t\}_{t\in\mathbb{R}} \subset C^{\infty}(\mathbb{R}^k, M)$ such that

$$\varphi_t\left(z\right) = \varphi\left(\exp\left(t\right)z\right)$$

for any $z \in \mathbb{R}^k$. We consider the smooth map

$$\begin{split} \Psi_{A,M} : & \mathbb{R} \times T^A M \to T^A M \\ & \left(t, j^A \varphi \right) & \mapsto \quad j^A \left(\varphi_t \right) \end{split}$$

The map $\Psi_{A,M}$ is a one parameter subgroup of a vector field, which we denote by ξ_{T^AM} .

Definition 3.1. The vector field ξ_{T^AM} is called a generalized Euler vector field on T^AM .

Let (U, x^i) be a local coordinate system of M and (x^i, x^i_{α}) the local coordinate system of $T^A M$ induced by (U, x^i) . We have $\frac{d(x^i \circ \Psi_{A,M}(t, j^A \varphi))}{dt}\Big|_{t=0} = 0$, by the same way using the equalities

$$\frac{d\left(x_{\alpha}^{i}\circ\Psi_{A,M}\left(t,j^{A}\varphi\right)\right)}{dt}\Big|_{t=0} = |\alpha|\,\overline{x}_{\alpha}^{i}\left(j^{A}\varphi\right) + \sum_{\beta\in\overline{B_{A}}}|\beta|\,\lambda_{\beta}^{\alpha}\overline{x}_{\beta}^{i}\left(j^{A}\varphi\right) = |\alpha|\,x_{\alpha}^{i}\left(j^{A}\varphi\right),$$

we deduce that the local expression of ξ_{T^AM} is given by

$$\xi_{T^AM} = \sum_{\alpha \in B_A} |\alpha| \, x^i_\alpha \frac{\partial}{\partial x^i_\alpha}.$$

Example 3.2. (1) For $A = J_0^1(\mathbb{R}^k, \mathbb{R})$, we have

$$\xi_{T_k^1 M} = \sum_{|\alpha|=1} x_\alpha^i \frac{\partial}{\partial x_\alpha^i}.$$

In particular, when k = 1, we have

$$\xi_{TM} = \dot{x}^i \frac{\partial}{\partial \dot{x}^i}.$$

Therefore, ξ_{TM} is the classic Euler vector field on TM.

(2) More generally, if $A = J_0^r (\mathbb{R}^k, \mathbb{R})$, for each manifold M, the Euler vector field on $T_k^r M$ is given by

$$\xi_{T_k^r M} = \sum_{1 \le |\alpha| \le r} |\alpha| \, x_\alpha^i \frac{\partial}{\partial x_\alpha^i}$$

In particular, when k = 1, we obtain

$$\xi_{T^rM} = \sum_{\alpha=1}^r \alpha x^i_\alpha \frac{\partial}{\partial x^i_\alpha}.$$

Proposition 3.3. The Euler vector field ξ_{T^AM} is the only vector field on T^AM satisfying

$$\xi_{T^AM}\left(g^{(\alpha)}\right) = |\alpha| \, g^{(\alpha)}$$

for any $0 \leq |\alpha| \leq h$ and $g \in C^{\infty}(M)$.

Proof. Let $j^A \varphi \in T^A M$ and $0 \le |\alpha| \le h$. Then, we have

$$\xi_{T^{A}M}\left(g^{(\alpha)}\right)\left(j^{A}\varphi\right) = \frac{d}{dt}\left[g^{(\alpha)}\left(j^{A}\varphi_{t}\right)\right]\Big|_{t=0} = \frac{d}{dt}\left[\frac{1}{\alpha!}D_{\alpha}\left(g\circ\varphi_{t}\right)\right]\Big|_{t=0}$$
$$= \frac{1}{\alpha!}\frac{d}{dt}\left[D_{\alpha}\left(g\circ\varphi\right)\left(0\right)\exp\left(\left|\alpha\right|t\right)\right]\Big|_{t=0}$$
$$= \left|\alpha\right|\left(\frac{1}{\alpha!}D_{\alpha}\left(g\circ\varphi\right)\left(0\right)\right)$$

and we deduce $\xi_{T^AM}(g^{(\alpha)}) = |\alpha| g^{(\alpha)}$.

Remark 3.4. In particular, when $A = \mathbb{D}$, we have the classic formulas

$$\begin{cases} \xi_{TM} (g^{(0)}) = 0 \\ \xi_{TM} (g^{(1)}) = g^{(1)} \end{cases}$$

where $g^{(0)} = g \circ \pi_M$ and $g^{(1)}(v) = v(g)(\varsigma)$, with $v \in T_{\varsigma}M$.

Proposition 3.5. Let $X \in \mathfrak{X}(M)$, we have

$$\left[X^{(\alpha)}, \xi_{T^A M}\right] = |\alpha| X^{(\alpha)}$$

for any $0 \leq |\alpha| \leq h$.

Proof. By calculation.

Proposition 3.6. For any tensor field \mathbf{t} of the type (0, p) on M, we have $\mathcal{L}_{\xi_{TA_M}} \boldsymbol{t}^{(\alpha)} = |\alpha| \boldsymbol{t}^{(\alpha)}$

for any $0 \leq |\alpha| \leq h$.

Proof. For any
$$X_1, \dots, X_p \in \mathfrak{X}(M)$$
 and multiindices β_1, \dots, β_p we have
 $\mathcal{L}_{\xi_{TA_M}} t^{(\alpha)} \left(X_1^{(\beta_1)}, \dots, X_p^{(\beta_p)} \right)$
 $= \mathcal{L}_{\xi_{TA_M}} \left(t \left(X_1, \dots, X_p \right) \right)^{(\alpha - \beta)} - \sum_{i=1}^p t^{(\alpha)} \left(X_1^{(\beta_1)}, \dots, \mathcal{L}_{\xi_{TA_M}} X_i^{(\beta_i)}, \dots, X_p^{(\beta_p)} \right)$
 $= |\alpha - \beta| \left(t \left(X_1, \dots, X_p \right) \right)^{(\alpha - \beta)} + |\beta| \left(t \left(X_1, \dots, X_p \right) \right)^{(\alpha - \beta)}$
 $= |\alpha| t^{(\alpha)} \left(X_1^{(\beta_1)}, \dots, X_p^{(\beta_p)} \right).$
So, $\mathcal{L}_{\xi_{TA_M}} t^{(\alpha)} = |\alpha| t^{(\alpha)}.$

3.2. Natural Euler vector fields

Let M and N be smooth manifolds, we begin this subsection by the fundamental property.

Proposition 3.7. For any $f \in C^{\infty}(M, N)$, the Euler vector fields ξ_{T^AM} on $T^A M$ and $\xi_{T^A N}$ on $T^A N$ are $T^A f$ -related.

Proof. Let $j^A \varphi \in T^A M$. Then we have

$$TT^{A}f \circ \xi_{T^{A}M} \left(j^{A}\varphi \right) = TT^{A}f \left(\frac{d}{dt} \Psi_{A,M} \left(t, j^{A}\varphi \right) \Big|_{t=0} \right)$$
$$= \frac{d}{dt} \left[T^{A}f \left(j^{A}\varphi_{t} \right) \right] \Big|_{t=0} = \frac{d}{dt} \left(j^{A} \left(f \circ \varphi_{t} \right) \right) \Big|_{t=0}$$
$$= \frac{d}{dt} \Psi_{A,M} \left(t, j^{A} \left(f \circ \varphi \right) \right) \Big|_{t=0} = \xi_{T^{A}N} \circ T^{A}f \left(j^{A}\varphi \right).$$
herefore, $TT^{A}f \circ \xi_{TAM} = \xi_{TAN} \circ T^{A}f.$

Therefore, $TT^A f \circ \xi_{T^A M} = \xi_{T^A N} \circ T^A f$.

Definition 3.8. We call natural Euler vector fields associated to T^A any natural transformation $T^A \to T \circ T^A$ over the identity of T^A .

Example 3.9. By Proposition 3.7, it follows that the family $\{\xi_{T^AM}\}$ is a natural transformation $T^A \to T \circ T^A$ over the identity of T^A . So, it is a natural Euler vector field associated to T^A which we denote $\xi_A : T^A \to T \circ T^A$.

Given two Weil algebras A and B, all natural transformations $T^A \to T^B$ correspond exactly to the algebra homomorphism from A to B. In fact, for a natural transformation $\varphi^{A,B}: T^A \to T^B$, the algebra homomorphism associated is given by the linear map

$$\varphi_{\mathbb{R}}^{A,B}: A = T^{A}\mathbb{R} \to T^{B}\mathbb{R} = B.$$

On the other hand, the functor $T \circ T^A$ corresponds to Weil algebra $\mathbb{D} \otimes A$ which is identified with the Weil algebra $A^2 = A \times A$ endowed by the following structure: for any $(a, b), (a', b') \in A^2$,

$$(a,b) \cdot (a',b') = (aa',ab'+a'b).$$

Proposition 3.10. Let $\varphi^{A,B} : T^A \to T^B$, the algebra homomorphism associated to Weil algebras A and B. We have

$$T\left(\varphi_{M}^{A,B}\right)\circ\xi_{T^{A}M}=\xi_{T^{B}M}\circ\varphi_{M}^{A,B}$$

for any m-dimensional manifold M. In other words, the vector fields ξ_{T^AM} and ξ_{T^BM} are $\varphi_M^{A,B}$ -related.

Proof. Let $j^A g \in T^A M$, we put $F_t = \Psi_{A,M}(t, \cdot)$. We have

$$T\left(\varphi_{M}^{A,B}\right) \circ \xi_{T^{A}M}\left(j^{A}g\right) = T\left(\varphi_{M}^{A,B}\right) \left(\frac{d}{dt}F_{t}\left(j^{A}g\right)\Big|_{t=0}\right)$$
$$= \frac{d}{dt}\left(\varphi_{M}^{A,B} \circ F_{t}\left(j^{A}g\right)\right)\Big|_{t=0}$$
$$= \frac{d}{dt}\left(F_{t} \circ \varphi_{M}^{A,B}\left(j^{A}g\right)\right)\Big|_{t=0}$$
$$= \xi_{T^{B}M}\left(\varphi_{M}^{A,B}\left(j^{A}g\right)\right).$$

Thus, we get $T\left(\varphi_{M}^{A,B}\right) \circ \xi_{T^{A}M}\left(j^{A}g\right) = \xi_{T^{B}M}\left(\varphi_{M}^{A,B}\left(j^{A}g\right)\right)$ for any $j^{A}g \in T^{A}M$.

Remark 3.11. We assume that A is a (k, r)-algebra. The surjective algebra homomorphism $\varrho: J_0^r(\mathbb{R}^k, \mathbb{R}) \to A$ determines a natural transformation $\varrho: T_k^r \to T^A$. So, for any manifold M the vector fields $\xi_{T_k^r M}$ and $\xi_{T^A M}$ are ϱ_M -related.

Applying the theory of Weil functors, we characterize all natural Euler vector fields on Weil functors (bundles) as follows.

Theorem 3.12. There is a bijective correspondence between the set of natural Euler vector fields $T^A \to T \circ T^A$ and the set of the derivations of A.

Proof. Let $\varphi_A : T^A \to T \circ T^A$ the natural Euler vector field, the map $\varphi_{A,\mathbb{R}} : A \to A \times A$ is an algebra homomorphism over A. It has the form

$$\varphi_{A,\mathbb{R}}\left(a\right) = \left(a, D\left(a\right)\right)$$

where $D: A \to A$ is a linear map. On the other hand, for any $a, b \in A$,

$$\varphi_{A,\mathbb{R}}(ab) = \varphi_{A,\mathbb{R}}(a) \cdot \varphi_{A,\mathbb{R}}(b)$$

Since

$$\begin{cases} \varphi_{A,\mathbb{R}}(a) \cdot \varphi_{A,\mathbb{R}}(b) = (ab, aD(b) + bD(a)) \\ \varphi_{A,\mathbb{R}}(ab) = (ab, D(ab)) \end{cases}$$

we obtain D(ab) = aD(b) + bD(a). So, D is a derivation of A. Inversely, consider $D: A \to A$ the derivation, the map

$$\begin{array}{rccc} \varphi_D^A : & A & \to & A \times A \\ & a & \mapsto & (a, D(a)) \end{array}$$

is a morphism of Weil algebras. It induces a natural transformation $\overline{\varphi}_D^A : T^A \to T \circ T^A$. It is clear that $\overline{\varphi}_{D,\mathbb{R}}^A = \varphi_{A,\mathbb{R}}$. The rest of the proof is similar to Theorem (35.13) in [4].

Remark 3.13. Let $D: A \to A$ be a derivation, we consider the Euler vector field ξ_{D,T^AM} induced by D on a *m*-dimensional manifold M. In local coordinate (x_1, \dots, x_m) , we have

$$\xi_{D,T^{A}M} = \sum_{\alpha,\beta \in B_{A}} \left(e_{\beta}^{*} \circ D\left(e_{\alpha} \right) \right) x_{\alpha}^{i} \frac{\partial}{\partial x_{\alpha}^{i}}$$

where $(e_{\alpha})_{\alpha \in B_A}$ is the basis of N_A , $(e_{\alpha}^*)_{\alpha \in B_A}$ its dual and $D(e_0) = 0$.

Let $\varphi_1: T^A \to T \circ T^A$ and $\varphi_2: T^A \to T \circ T^A$ be two natural Euler vector fields. For any real number b, we define the natural Euler vector fields $\varphi_1 + \varphi_2$ and $b\varphi_1$ by

$$\begin{array}{rcl} (\varphi_1 + \varphi_2)_M &=& \varphi_{1,M} + \varphi_{2,M} \\ (b\varphi_1)_M &=& b\varphi_{1,M} \end{array}$$

for any manifold M. Note that $\varphi_{1,M} + \varphi_{2,M}$ is the sum of the vector fields $\varphi_{1,M}$ and $\varphi_{2,M}$, while $b\varphi_{1,M}$ is the product of vector field $\varphi_{1,M}$ by the scalar b. We denote by **Der** (A) the vector space of all the derivations of A and **Nev** (A) the space of all natural Euler vector fields. By the theorem above, we have a map

$$\begin{array}{rcl} \Phi: & \mathbf{Der}(A) & \to & \mathbf{Nev}(A) \\ & D & \mapsto & \overline{\varphi}_D^A \end{array}$$

So, we have

Corollary 3.14. The map Φ : **Der**(A) \rightarrow **Nev**(A) is an isomorphism of vector spaces.

Example 3.15. We consider the classical Euler vector field ξ_{TM} defined on TM. The Euler vector field ξ_{TM} is obtained with the help of the derivation d defined on $\mathbb{D} \simeq \mathbb{R}^2$ such that,

$$d\left(x,y\right) = \left(0,y\right)$$

for any $(x, y) \in \mathbb{R}^2$.

Example 3.16. The natural Euler vector field $\xi_A : T^A \to T \circ T^A$ (Example 3.9) is determined by the derivation $D_A : A \to A$ defined by

$$D_A\left(e_\alpha\right) = |\alpha|e_\alpha$$

for any $0 \leq |\alpha| \leq h$.

P. M. KOUOTCHOP WAMBA

Example 3.17. All natural Euler vector fields associated to the tangent functor T are of the form

 $b\xi_{TM}$

where b is a real parameter. In fact, the structure of Weil algebra $\mathbb{D}=\mathbb{R}^2$ is given by

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2, x_1 y_2 + x_2 y_1).$$

Let $\varphi_M : TM \to TTM$ be the Euler vector field on TM, it is associated to a derivation $d : \mathbb{R}^2 \to \mathbb{R}^2$. It has the form

$$d\left(x,y\right) = \left(0,by\right)$$

with $b \in \mathbb{R}$. It follows that the Euler vector field associated to φ_M is $b\xi_{TM}$.

In the next subsection, we generalize this result of the previous example to a tangent bundle of a higher order.

3.3. The natural Euler vector fields $T^r \to T \circ T^r$

Using the identification $\mathbb{R}^{r+1} \simeq J_0^r(\mathbb{R}, \mathbb{R})$ with the canonical basis $(e_\alpha)_{0 \le \alpha \le r}$ such that

$$e_{\alpha} \cdot e_{\beta} = \frac{(\alpha + \beta)!}{\alpha!\beta!} e_{\alpha + \beta},$$

we have

Lemma 3.18. For any $0 < \beta \leq r$, the linear map $\phi_{\beta} : J_0^r(\mathbb{R}, \mathbb{R}) \to J_0^r(\mathbb{R}, \mathbb{R})$ defined by

$$\begin{cases} \phi_{\beta} (e_{0}) &= 0\\ \phi_{\beta} (e_{\alpha+1}) &= \frac{(\alpha+\beta)!}{\alpha!\beta!} e_{\alpha+\beta} \end{cases}$$

is a derivation.

Proof. By calculation.

Remark 3.19. For any $\beta = 1, \dots, r$, we denote by $\xi_{\beta} : T^r \to T \circ T^r$ the natural Euler vector field related to ϕ_{β} . For any manifold M of dimension $m \ge 1$, we have locally

$$\xi_{\beta,T^rM} = \sum_{\alpha=0}^{r-\beta} \frac{(\alpha+\beta)!}{\alpha!\beta!} x^i_{\alpha+1} \frac{\partial}{\partial x^i_{\alpha+1}}.$$

Lemma 3.20. Any derivation $\phi : \mathbb{R}^{r+1} \to \mathbb{R}^{r+1}$ is of the form

$$\phi = \sum_{\beta=1}^{r} a_{\beta} \cdot \phi_{\beta}$$

where a_1, \cdots, a_r are the real numbers.

Proof. For any $\alpha = 0, \dots, r$, we have $e_0 \cdot e_\alpha = e_\alpha$, therefore $\phi(e_\alpha) \cdot e_0 + \phi(e_0) \cdot e_\alpha = \phi(e_\alpha)$. It follows that

$$\phi(e_0) \cdot e_{\alpha} = 0, \quad \forall \alpha = 0, \cdots, r.$$

28

Thus, $\phi(e_0) = 0$. We put

$$\phi\left(e_{1}\right)=\sum_{\beta=0}^{r}a_{\beta}e_{\beta}$$

with a_0, a_1, \dots, a_r being real numbers. Using the relation $e_1 \cdot e_1 = 2e_2$, we have

$$\phi(e_2) = \phi(e_1) \cdot e_1 = \sum_{\beta=0}^{r-1} (\beta+1) a_\beta e_{\beta+1}.$$

In the same way, $e_2 \cdot e_1 = 3e_3$, it follows that, $3\phi(e_3) = \phi(e_2) \cdot e_1 + \phi(e_1) \cdot e_2$. Now

$$\phi(e_2) \cdot e_1 = \sum_{\substack{\beta=0\\ r-2}}^{r-2} (\beta+1) (\beta+2) a_{\beta} e_{\beta+2},$$

$$\phi(e_1) \cdot e_2 = \sum_{\substack{\beta=0\\ \beta=0}}^{r-2} \frac{(\beta+1) (\beta+2)}{2} a_{\beta} e_{\beta+2}.$$

We deduce that,

$$\phi(e_2) \cdot e_1 + \phi(e_1) \cdot e_2 = \sum_{\beta=0}^{r-2} 3 \frac{(\beta+1)(\beta+2)}{2} a_\beta e_{\beta+2}.$$

So,

$$\phi(e_3) = \sum_{\beta=0}^{n-2} \frac{(\beta+1)(\beta+2)}{2} a_{\beta} e_{\beta+2}.$$

Looking the at expressions of $\phi(e_1)$, $\phi(e_2)$ and $\phi(e_3)$ we put

$$\phi(e_{\alpha}) = \sum_{\beta=0}^{r-\alpha+1} \frac{(\alpha+\beta-1)!}{(\beta-1)!\alpha!} a_{\beta} e_{\alpha+\beta-1}.$$

By induction, using the relation $e_{\alpha} \cdot e_1 = (\alpha + 1) e_{\alpha+1}$, we obtain

$$(\alpha + 1) \phi (e_{\alpha+1}) = \phi (e_{\alpha}) \cdot e_1 + \phi (e_1) \cdot e_{\alpha}.$$

Now,

$$\phi(e_{\alpha}) \cdot e_{1} = \sum_{\beta=0}^{r-\alpha+1} \frac{(\alpha+\beta-1)!}{(\beta-1)!\alpha!} a_{\beta} e_{\alpha+\beta-1} \cdot e_{1} = \sum_{\beta=0}^{r-\alpha} \frac{(\alpha+\beta)!}{(\beta-1)!\alpha!} a_{\beta} e_{\alpha+\beta},$$

$$\phi(e_{1}) \cdot e_{\alpha} = \sum_{\beta=0}^{r} a_{\beta} e_{\beta} \cdot e_{\alpha} = \sum_{\beta=0}^{r-\alpha} \frac{(\alpha+\beta)!}{\beta!\alpha!} a_{\beta} e_{\alpha+\beta}.$$

We deduce that

$$\phi(e_{\alpha}) \cdot e_{1} + \phi(e_{1}) \cdot e_{\alpha} = \sum_{\beta=0}^{r-\alpha} \frac{(\alpha+1)(\alpha+\beta)!}{\beta!\alpha!} a_{\beta} e_{\alpha+\beta}.$$

Thus,

$$\phi(e_{\alpha+1}) = \sum_{\beta=0}^{r-\alpha} \frac{(\alpha+\beta)!}{\beta!\alpha!} a_{\beta} e_{\alpha+\beta}.$$

On the other hand, $\phi(e_r) = a_0 e_{r-1} + a_1 e_r$ and $e_r \cdot e_1 = 0$. Thus, $\phi(e_r) \cdot e_1 + \phi(e_1) \cdot e_r = 0$. As

$$\phi(e_r) \cdot e_1 = ra_0 e_r, \phi(e_1) \cdot e_r = a_0 e_r,$$

it follows that $a_0 = 0$. So, for any $\alpha = 0, \dots, r-1$, we have

$$\phi(e_{\alpha+1}) = \sum_{\beta=1}^{r-\alpha} a_{\beta} \frac{(\alpha+\beta)!}{\beta!\alpha!} e_{\alpha+\beta} = \sum_{\beta=1}^{r-\alpha} a_{\beta} \phi_{\beta}(e_{\alpha+1}).$$

This yields the result.

Theorem 3.21. All natural Euler vector fields $T^r \to T \circ T^r$ are of the form

 \Box

$$\sum_{\beta=1}^r a_\beta \xi_{\beta,\cdot}$$

where a_1, \cdots, a_r are real numbers.

Proof. Let $E: T^r \to T \circ T^r$ be a natural Euler vector field, it induces a derivation $\phi: \mathbb{R}^{r+1} \to \mathbb{R}^{r+1}$, where the structure of Weil algebra is defined above. So, by the previous lemma, there are the real numbers a_1, \dots, a_r such that

$$\phi = \sum_{\beta=1}^{r} a_{\beta} \phi_{\beta}$$

On the other hand, for any manifold M, locally we have

$$E_{T^{r}M} = \sum_{\substack{\alpha,\gamma=1\\r}}^{r} \left(e_{\gamma}^{*} \circ \phi(e_{\alpha})\right) x_{\alpha}^{i} \frac{\partial}{\partial x_{\alpha}^{i}}$$
$$= \sum_{\substack{\beta=1\\r}}^{r} \sum_{\alpha,\gamma=1}^{r} a_{\beta} \left(e_{\gamma}^{*} \circ \phi_{\beta}(e_{\alpha})\right) x_{\alpha}^{i} \frac{\partial}{\partial x_{\alpha}^{i}}$$
$$= \sum_{\substack{\beta=1\\\beta=1}}^{r} a_{\beta} \xi_{\beta,T^{r}M}.$$

Thus, we obtain $E = \sum_{\beta=1}^{r} a_{\beta} \xi_{\beta,..}$

3.4. Absolute operators seen as natural Euler vector fields

Let F be a bundle functor on the category $\mathcal{M}f$. We denote by 0_M the zero vector field on M.

Definition 3.22. ([4]) A natural operator $R : T \rightsquigarrow T \circ F$ is said to be an absolute operator if $R_M X = R_M 0_M$ for every vector field X of M.

Let D be a derivation of A, for any real number t, $\phi_t = \exp(tD) \in \operatorname{Aut}(A)$, where $\operatorname{Aut}(A)$ is the group of all automorphisms of A. It is a Lie subgroup of Lie group GL(A). The map $\phi_t : A \to A$ is an automorphism of A inducing a natural transformation $\phi_{t,M} : T^A M \to T^A M$. Consider the map $D(M) : \mathbb{R} \times T^A M \to T^A M$ such that

$$D(M)(t,\xi) = \phi_{t,M}(\xi)$$

for any $(t,\xi) \in \mathbb{R} \times T^A M$. It is one parameter subgroup of the vector field $X_{D(M)}$: $T^A M \to TT^A M$. On the other hand, for any $f \in C^{\infty}(M, N)$ we have $T^A f \circ \phi_{t,M} = \phi_{t,N} \circ T^A f$ for every t. It follows that $X_{D(M)}$ and $X_{D(N)}$ are $T^A f$ -related. We get a natural Euler vector field $X_D : T^A \to T \circ T^A$ associated to D.

Remark 3.23. The constant map $X \mapsto X_{D(M)}$ for all $X \in \mathfrak{X}(TM)$ forms an absolute operator, $\operatorname{Op}(D) : T \rightsquigarrow T \circ T^A$, which is said to be generated by D. In [4], it is shown that every absolute operator $R : T \rightsquigarrow T \circ T^A$ is of the form $R = \operatorname{Op}(D)$.

Corollary 3.24. There is bijective correspondence between the set of absolute operators and the set of natural Euler vector fields associated to T^A .

The main result on the prolongations of vector fields related to Weil bundle is given by I. Kolář ([4]). In fact, it proves that all natural operators $T \rightsquigarrow T \circ T^A$ are of the form

$$\operatorname{af}(c) \circ \mathcal{T}^{A} + \operatorname{op}(D)$$

where af (c) is the natural affinor determined by $c \in A$, \mathcal{T}^A the flow operator and op (D) the absolute operator determined by the derivation D.

Corollary 3.25. Let $X \in \mathfrak{X}(M)$, any prolongation of X from M to T^AM is of the form

$$\sum_{0 \le |\alpha| \le h} a_{\alpha} X^{(\alpha)} + E$$

where E is an Euler vector on T^AM induced by some derivation of A and a_0, a_α are the real numbers.

Proof. Let $X \in \mathfrak{X}(M)$ and \widetilde{X} be a prolongation of X on $T^A M$. We have $\widetilde{X} = af(a) \circ \mathcal{T}^A X + Op(D) 0_M$, for a some derivation D and $a \in A$. As $a = \sum_{0 \le |\alpha| \le h} a_\alpha e_\alpha$

we obtain

$$\widetilde{X} = \sum_{0 \le |\alpha| \le h} a_{\alpha} X^{(\alpha)} + E$$

where E is the Euler vector field induced by D.

Corollary 3.26. All prolongations of the vector field X from M to $T^r M$ are of the form

$$\sum_{\alpha=0}^{r} a_{\alpha} X^{(\alpha)} + \sum_{\beta=1}^{r} b_{\beta} \xi_{\beta,M}$$

where a_{α}, b_{β} are real numbers.

4. Homogeneous tensor fields on the Weil bundles

The notion of homogenity for functions on \mathbb{R}^n can be extended in an obvious way for functions, vector fields, differential forms, multivector fields on the Weil bundle $T^A M$ of a manifold M of dimension m > 0. In this subsection, we generalize the results of [2] while replacing the tangent bundle of higher order by any Weil bundle.

4.1. Homogeneous tensor fields

Let M be a smooth manifold of dimension m > 0. We denote by $\xi_{T^A M}$ the Euler vector field on the Weil bundle $T^A M$. The global flow of $\xi_{T^A M}$ is given by the map

$$F_t: T^A M \to T^A M, \quad j^A g \mapsto j^A (g_t)$$

for any real number t.

Definition 4.1. A tensor φ on $T^A M$ is said to be homogeneous of degree $|\alpha|$ $(\alpha \in \mathbb{N}^k)$ if

$$F_t^* \varphi = e^{|\alpha|t} \varphi$$

for any real number t.

Proposition 4.2. A tensor φ on T^AM is homogeneous of degree $|\alpha|$ if and only if

$$\mathcal{L}_{\xi_{TA_{M}}}\varphi = |\alpha|\varphi$$

Proof. Supposing that φ is homogeneous tensor fields of degree $|\alpha|$, we have:

$$\mathcal{L}_{\xi_{T^{A_{M}}}}\varphi = \lim_{t \to 0} \left(\frac{F_{t}^{*}\varphi - \varphi}{t}\right) = \lim_{t \to 0} \left(\frac{e^{|\alpha|t} - 1}{t}\right)\varphi = |\alpha|\varphi$$

Inversely, supposing that $\mathcal{L}_{\xi_{T^A_M}} \varphi = |\alpha| \varphi$, for any $z \in T^A M$ the function $X : t \mapsto F_t^* \varphi(z)$ is the solution of a differential equation $\frac{du}{dt} = |\alpha| u$ with initial condition $u(0) = \varphi(z)$. Indeed, $X(0) = \varphi(z)$ and $\frac{d}{dt} (F_t^* \varphi) = F_t^* \mathcal{L}_{\xi_{T^A_M}} \varphi = |\alpha| F_t^* \varphi$, it follows that $F_t^* \varphi(z) = e^{|\alpha| t} \varphi(z)$.

Example 4.3. (1) Let φ be a tensor field of the type (0, p) on a manifold M, for any $|\alpha| \leq h$, the tensor $\varphi^{(\alpha)}$ (α -prolongation of φ on $T^A M$) is a homogeneous tensor field of degree $|\alpha|$.

- (2) Let X be a vector field on a manifold M. The vector field $X^{(\alpha)}$ (α -prolongation of X on $T^A M$) is a homogeneous vector field of degree $-|\alpha|$.
- (3) If f_1 and f_2 are homogeneous functions of degree $|\alpha_1|$ and $|\alpha_2|$ respectively on $T^A M$. Then $f_1 \cdot f_2$ is a homogeneous function of degree $|\alpha_1| + |\alpha_2|$.

Proposition 4.4. If φ_1 and φ_2 are homogeneous tensor fields on $T^A M$ of degree $|\alpha_1|$ and $|\alpha_2|$ respectively. Then, $\varphi_1 \otimes \varphi_2$ is homogeneous tensor field on $T^A M$ of degree $|\alpha_1| + |\alpha_2|$.

Proof. Given φ_1 and φ_2 as in the statement, we have:

 $\mathcal{L}_{\xi_{T^{A_{M}}}}(\varphi_{1} \otimes \varphi_{2}) = (\mathcal{L}_{\xi_{T^{A_{M}}}}\varphi_{1}) \otimes \varphi_{2} + \varphi_{1} \otimes (\mathcal{L}_{\xi_{T^{A_{M}}}}\varphi_{2}) = |\alpha_{1}| \varphi_{1} \otimes \varphi_{2} + |\alpha_{2}| \varphi_{1} \otimes \varphi_{2}.$ It follows that $\varphi_{1} \otimes \varphi_{2}$ is a homogeneous tensor field of degree $|\alpha_{1}| + |\alpha_{2}|.$

Corollary 4.5. If X_1 and X_2 are homogeneous vector fields on T^AM of degree $|\alpha_1|$ and $|\alpha_2|$ respectively. Then $[X_1, X_2]$ is homogeneous vector field on T^AM of degree $|\alpha_1| + |\alpha_2|$.

Proof. Let X_1 and X_2 be homogeneous vector fields on $T^A M$ of degree $|\alpha_1|$ and $|\alpha_2|$. Using the Jacobi identity, we have

$$\mathcal{L}_{\xi_{T^{A_M}}}[X_1, X_2] = \left[X_1, \mathcal{L}_{\xi_{T^{A_M}}} X_2\right] + \left[\mathcal{L}_{\xi_{T^{A_M}}} X_1, X_2\right] = \left(|\alpha_1| + |\alpha_2|\right) [X_1, X_2].$$

Therefore, $[X_1, X_2]$ is a homogeneous vector field of degree $|\alpha_1| + |\alpha_2|$.

Corollary 4.6. Let X be a homogeneous vector field of degree $|\alpha|$ and f a homogeneous function of degree $|\beta|$. Then X (f) is a homogeneous function of degree $|\alpha| - |\beta|$.

Proof. We have

$$\mathcal{L}_{\xi_{T^{A}M}}X(f) = \left(\mathcal{L}_{\xi_{T^{A}M}}X\right)(f) - \left|\beta\right|X(f) = \left|\alpha\right|X(f) - \left|\beta\right|X(f)$$

and, therefore, X(f) is a homogeneous function of degree $|\alpha| - |\beta|$.

4.2. Particular case of the differential forms

- **Proposition 4.7.** (1) Let ω_1 and ω_2 be homogeneous forms of degree $|\alpha_1|$ and $|\alpha_2|$ respectively. Then $\omega_1 \wedge \omega_2$ is homogeneous form of degree $|\alpha_1| + |\alpha_2|$.
- (2) Let ω be a homogeneous p-form of degree $|\alpha|$ and X_1, \dots, X_p , p homogeneous vector fields of degree $|\alpha_1|, \dots, |\alpha_p|$. Then $\omega(X_1, \dots, X_p)$ is a homogeneous function of degree $|\alpha| + |\alpha_1| + \dots + |\alpha_p|$.

Proof. We know that

$$\mathcal{L}_{\xi_{T^{A_M}}}(\omega(X_1,\cdots,X_p)) = \mathcal{L}_{\xi_{T^{A_M}}}\omega(X_1,\cdots,X_p) + \sum_{i=1}^n \omega(X_1,\cdots,\mathcal{L}_{\xi_{T^{A_M}}}X_i,\cdots,X_p).$$

As $\mathcal{L}_{\xi_{T^A M}} \omega = |\alpha| \omega$ and $\mathcal{L}_{\xi_{T^A M}} X_i = |\alpha_i| X_i$ for any $i \leq p$, we have

$$= |\alpha| \omega (X_1, \cdots, X_p) + (|\alpha_1| + \cdots + |\alpha_p|) \omega (X_1, \cdots, X_p).$$

So, we obtain the result.

Remark 4.8. Let $(x^i, x^i_{\alpha})_{\alpha \in B_A}$ be an adapted local coordinate system of $T^A M$. The local expression of the Pfaff form ω on $T^A M$ is given by

$$\omega = a_0^i dx^i + \sum_{\alpha \in B_A} a_i^\alpha dx_\alpha^i$$

and we have

$$\mathcal{L}_{\xi_{T^{A}M}}\omega = \sum_{\alpha \in B_{A}} \xi_{T^{A}M}\left(a_{i}^{\alpha}\right) dx_{\alpha}^{i} + a_{i}^{\alpha}\xi_{T^{A}M}\left(dx_{\alpha}^{i}\right).$$

Now, $\xi_{T^AM} = \sum_{\beta \in B_A} |\beta| x_{\beta}^j \frac{\partial}{\partial x_{\beta}^j}$ and $\xi_{T^AM} \left(dx_{\alpha}^i \right) = |\alpha| dx_{\alpha}^i$ and we have

$$\mathcal{L}_{\xi_{T^A}}\omega = \sum_{\alpha,\beta\in B_A} |\beta| \, x_{\beta}^j \frac{\partial a_i^{\alpha}}{\partial x_{\beta}^j} dx_{\alpha}^i + |\alpha| \, a_i^{\alpha} dx_{\alpha}^i = \sum_{\alpha\in B_A} (\sum_{\beta\in B_A} |\beta| \, x_{\beta}^j \frac{\partial a_i^{\alpha}}{\partial x_{\beta}^j} + |\alpha| \, a_i^{\alpha}) dx_{\alpha}^i.$$

If ω is homogeneous of degree $|\gamma|$, then we have $a_0^i = 0$ and

$$\sum_{\beta \in B_A} |\beta| \, x_{\beta}^j \frac{\partial a_i^{\alpha}}{\partial x_{\beta}^j} + |\alpha| \, a_i^{\alpha} = |\gamma| \, a_i^{\alpha}.$$

Thus, we obtain

$$\sum_{\beta \in B_A} |\beta| \, x_{\beta}^j \frac{\partial a_i^{\alpha}}{\partial x_{\beta}^j} = \left(|\gamma| - |\alpha| \right) a_i^{\alpha}.$$

It follows that, for each $0 < i \leq m$ and $\alpha \in B_A$, the function a_i^{α} is homogeneous of degree $|\gamma| - |\alpha|$.

Proposition 4.9. Let ω be a homogeneous p-form on T^AM of degree $|\alpha|$. Then $d\omega, i_{\xi_{TA}}\omega$ are homogeneous of degree $|\alpha|$.

Proof. In the first case,

$$\mathcal{L}_{\xi_{T^{A}M}}(d\omega) = d(\mathcal{L}_{\xi_{T^{A}M}}\omega) = |\alpha| \, d\omega.$$

By the same argument,

$$\mathcal{L}_{\xi_{T^A_M}}(i_{\xi_{T^A_M}}\omega) = i_{\xi_{T^A_M}}d(i_{\xi_{T^A_M}}\omega) = i_{\xi_{T^A_M}}(\mathcal{L}_{\xi_{T^A_M}}\omega) = |\alpha|(i_{\xi_{T^A_M}}\omega).$$

Therefore $i_{\xi_{TA_M}}\omega$ and $d\omega$ are homogeneous of degree $|\alpha|$.

4.3. Case of multivector fields

- Proposition 4.10. (1) Let π_1 and π_2 be homogeneous multivector fields on T^AM of degree $|\alpha_1|$ and $|\alpha_2|$ respectively. Then, $\pi_1 \wedge \pi_2$ is homogeneous multivector field of degree $|\alpha_1| + |\alpha_2|$.
 - (2) If $\pi = X_1 \wedge \cdots \wedge X_p$ is a simple multivector field on $T^A M$, where X_1, \cdots, X_p are p homogeneous vector fields of degree $|\alpha_1|, \cdots, |\alpha_p|$. Then, π is a homogeneous multivector field on $T^A M$ of degree $|\alpha_1| + \cdots + |\alpha_p|$.
- (3) Let π_1 and π_2 be homogeneous multivector fields on $T^A M$ of degree $|\alpha_1|$ and $|\alpha_2|$ respectively. Then, $[\pi_1, \pi_2]$ is a homogeneous multivector field of degree $|\alpha_1| + |\alpha_2|$.

Proof. Let $\pi_1 \in \mathfrak{X}^p(T^AM)$ and $\pi_2 \in \mathfrak{X}^q(T^AM)$, we have:

$$\mathcal{L}_{\xi_{T^{A_{M}}}}[\pi_{1},\pi_{2}] = -(-1)^{(p-1)(q-1)} [\pi_{2},\mathcal{L}_{\xi_{T^{A_{M}}}}\pi_{1}] + [\pi_{1},\mathcal{L}_{\xi_{T^{A_{M}}}}\pi_{2}]$$

= $-(-1)^{(p-1)(q-1)} |\alpha_{1}| [\pi_{2},\pi_{1}] + |\alpha_{2}| [\pi_{1},\pi_{2}].$
uce that \mathcal{L}_{ϵ} , $[\pi_{1},\pi_{2}] = (|\alpha_{1}| + |\alpha_{2}|) [\pi_{1},\pi_{2}].$

We deduce that $\mathcal{L}_{\xi_{TA_M}}[\pi_1, \pi_2] = (|\alpha_1| + |\alpha_2|)[\pi_1, \pi_2].$

Proposition 4.11. Let $\pi \in \mathfrak{X}^p(T^AM)$ be a homogeneous multivector field of degree $|\alpha|$. For any p homogeneous functions f_1, \dots, f_p on T^AM of degree $|\alpha_1|, \cdots, |\alpha_p|$ the function $\pi(df_1, \cdots, df_p)$ is homogeneous of degree $|\alpha| + |\alpha_1| + |\alpha_1|$ $\cdots + |\alpha_p|.$

Proof. We have,

$$\mathcal{L}_{\xi_{TA_M}} \left(\pi \left(df_1, \cdots, df_p \right) \right)$$

= $\mathcal{L}_{\xi_{TA_M}} \pi \left(df_1, \cdots, df_p \right) + \sum_{i=1}^p \pi \left(df_1, \cdots \mathcal{L}_{\xi_{TA_M}} df_i, \cdots, df_p \right)$
= $|\alpha| \pi \left(df_1, \cdots, df_p \right) + \sum_{i=1}^n |\alpha_i| \pi \left(df_1, \cdots, df_p \right).$

We deduce that

$$\mathcal{L}_{\xi_{T^A_M}}\left(\pi\left(df_1,\cdots,df_p\right)\right) = \left(|\alpha| + |\alpha_1| + \cdots + |\alpha_p|\right)\pi\left(df_1,\cdots,df_p\right).$$

Let M be a smooth *m*-dimensional manifold. A Poisson structure on M is a \mathbb{R} -bilinear Lie bracket $\{\cdot, \cdot\}$ on $C^{\infty}(M)$ satisfying the Leibnitz rule

$$\{f, gh\} = \{f, g\}h + g\{f, h\}, \quad \forall f, g, h \in C^{\infty}(M).$$
(4.1)

It follows from (4.1) that there exists a bivector field $w \in \mathfrak{X}^{2}(M)$ such that

$$\{f,g\}_w = w\left(df,dg\right).$$

The Jacobi identity for $\{\cdot, \cdot\}_w$ is equivalent to the Poisson condition [w, w] = 0, where $[\cdot, \cdot]$ is the Schouten-Nijenhuis bracket. In this case, one says that the bivector field w defines the Poisson structure on M.

Proposition 4.12. Let π be a Poisson bivector on T^AM homogeneous of degree $|\alpha|$. For any homogeneous function f of degree $|\beta|$, the hamiltonian vector field X_f is a homogeneous vector field of degree $|\alpha| + |\beta|$.

Proof. Let $g \in C^{\infty}(M)$ and $|\gamma| \leq h$, we have:

$$\mathcal{L}_{\xi_{T^{A_{M}}}}X_{f}\left(g^{(\gamma)}\right) = \left[\xi_{T^{A_{M}}}, X_{f}\right]\left(g^{(\gamma)}\right) = \xi_{T^{A_{M}}}\left(\pi\left(df, dg^{(\gamma)}\right)\right) - \left|\gamma\right|X_{f}\left(g^{(\gamma)}\right)$$
$$= \left(\left|\alpha\right| + \left|\beta\right| + \left|\gamma\right|\right)\pi\left(df, dg^{(\gamma)}\right) - \left|\gamma\right|X_{f}\left(g^{(\gamma)}\right) = \left(\left|\alpha\right| + \left|\beta\right|\right)X_{f}\left(g^{(\gamma)}\right).$$
Therefore, $\mathcal{L}_{\xi_{T^{A_{M}}}}X_{f} = \left(\left|\alpha\right| + \left|\beta\right|\right)X_{f}.$

Corollary 4.13. Let π be a Poisson bivector on T^AM homogeneous of degree $|\alpha|$. If f_1 and f_2 are homogeneous functions of degree $|\alpha_1|$ and $|\alpha_2|$ respectively. Then, the function $\{f_1, f_2\}$ is homogeneous of degree $|\alpha| + |\alpha_1| + |\alpha_2|$.

5. Homogeneous properties of Euler vector fields on some geometric structures

In the sequel, by $\langle \cdot, \cdot \rangle_M$ we denote the canonical pairing $TM \times_M T^*M \to \mathbb{R}$.

5.1. Case of the tangent lifts of Poisson manifolds

For any manifold M of dimension $m \ge 1$, there is a canonical diffeomorphism (see [1,3,5])

$$\mathcal{L}_M^r: T^rTM \to TT^rM$$

which is an isomorphism of vector bundles from

$$T^r(\pi_M): T^rTM \to T^rM$$
 to $\pi_{T^rM}: TT^rM \to T^rM.$

It is called the canonical isomorphism of flow associated to the bundle functor T^r . Consider the linear form τ_r on $J_0^r(\mathbb{R},\mathbb{R})$ defined by $\tau_r(j_0^rg) = \frac{1}{r!}\frac{d^rg}{dt^r}(t)\Big|_{t=0}$ and the canonical map

$$\alpha_M^r: T^*T^rM \to T^rT^*M$$

which is an isomorphism of vector bundles

 $\pi^*_{T^rM}: T^*T^rM \to T^rM \quad \text{and} \quad T^r\left(\pi^*_M\right): T^rT^*M \to T^rM$

P.M. KOUOTCHOP WAMBA

such that, for any $(u, u^*) \in T^r T M \oplus T^* T^r M$, <

$$\kappa_{M}^{r}\left(u\right), u^{*}\rangle_{T^{r}M} = \langle u, \alpha_{M}^{r}\left(u^{*}\right)\rangle_{T^{r}M}^{\prime}$$

where $\langle \cdot, \cdot \rangle'_{T^r M} = \tau_r \circ T^r (\langle \cdot, \cdot \rangle_M)$ (see [1]). We denote by ε_M^r the inverse of α_M^r . Let (x^1, \cdots, x^m) be a local coordinate system of M, we introduce the coordi-

nates (x^i, p_j) in T^*M , $(x^i, p_j, x^i_\beta, p^\beta_j)$ in T^rT^*M and $(x^i, x^i_\beta, \pi_j, \pi^\beta_j)$ in T^*T^rM . We have:

$$\alpha_M^r(x^i, \pi_j, x_\beta^i, \pi_j^\beta) = (x^i, x_\beta^i, p_j, p_j^\beta), \text{ with } \begin{cases} p_j = \pi_j^r \\ p_j^\beta = \pi_j^{r-\beta} \end{cases}$$

Let (M, w) be a Poisson manifold. The complete lift of higher order of w in the sense of [6] and denoted by $w^{(c)}$ is a Poisson bivector field on $T^r M$ since the Poisson condition $[w^{(c)}, w^{(c)}] = 0$, is satisfied. Denoting by $\sharp_w : T^*M \to TM$ the anchor map induced by w, we have

$$\sharp_{w^{(c)}} = \alpha_M^r \circ T^r \left(\sharp_w \right) \circ \kappa_M^r$$

Let (x^1, \dots, x^m) be a local coordinate system of M such that $w = w^{ij} \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j}$. we have

$$w^{(c)} = \left(w^{ij}\right)^{(\alpha+\beta-r)} \frac{\partial}{\partial x^i_{\alpha}} \wedge \frac{\partial}{\partial x^j_{\beta}}.$$

In [6], we have shown that, for any $f, g \in C^{\infty}(M)$, we have:

$$\left\{ f^{(\alpha)}, g^{(\beta)} \right\}_{w^{(c)}} = \{f, g\}_{w}^{(\alpha+\beta-r)}$$

with $0 \leq \alpha, \beta \leq r$.

Definition 5.1. The Poisson manifold (M, w) is said homogeneous related to a vector field $X \in \mathfrak{X}(M)$ if $\mathcal{L}_X w = -w$.

Theorem 5.2. The Poisson manifold $(T^rM, w^{(c)})$ is a homogeneous Poisson manifold related to $\frac{1}{r} \cdot \xi_{T^rM}$. More precisely,

$$\left[\xi_{T^rM}, w^{(c)}\right] = -rw^{(c)}.$$

Proof. For any $f, g \in C^{\infty}(M)$, we have

$$\begin{bmatrix} \xi_{T^{r}M}, w^{(c)} \end{bmatrix} \left(df^{(\alpha)} \wedge dg^{(\beta)} \right) = \left\langle \xi_{T^{r}M}, d\left(i_{w^{(c)}} \left(df^{(\alpha)} \wedge dg^{(\beta)} \right) \right) \right\rangle_{T^{r}M} \\ - \left\langle w^{(c)}, d\left(\left(i_{\xi_{T^{r}M}} df^{(\alpha)} \right) \wedge dg^{(\beta)} \right) \right\rangle_{T^{r}M}.$$

Therefore,

$$\begin{split} & \left[\xi_{T^{r}M}, w^{(c)}\right] \left(df^{(\alpha)} \wedge dg^{(\beta)}\right) \\ &= -\left\langle w^{(c)}, \alpha df^{(\alpha)} \wedge dg^{(\beta)} + \beta df^{(\alpha)} \wedge dg^{(\beta)}\right\rangle_{T^{r}M} + \xi_{T^{r}M} \left(\left\{f,g\right\}_{w}^{(\alpha+\beta-r)}\right) \\ &= (\alpha+\beta-r)\left\{f,g\right\}_{w}^{(\alpha+\beta-r)} - \left\langle w^{(c)}, (\alpha+\beta) df^{(\alpha)} \wedge dg^{(\beta)}\right\rangle \\ &= (\alpha+\beta-r)\left\{f,g\right\}_{w}^{(\alpha+\beta-r)} - (\alpha+\beta)\left\{f,g\right\}_{w}^{(\alpha+\beta-r)}. \end{split}$$

We deduce that

$$\begin{bmatrix} \xi_{T^rM}, w^{(c)} \end{bmatrix} \left(df^{(\alpha)} \wedge dg^{(\beta)} \right) = -r \left\{ f, g \right\}_w^{(\alpha+\beta-r)} = -rw^{(c)} \left(df^{(\alpha)} \wedge dg^{(\beta)} \right).$$

Thus, $\begin{bmatrix} \xi_{T^rM}, w^{(c)} \end{bmatrix} = -rw^{(c)}.$

Remark 5.3. For r = 1, we obtain the result established by I. Vaisman in [9].

5.2. Tangent Dirac structures of higher order

Let M be a smooth manifold of dimension $m \ge 1$. We recall that, an almost Dirac structure on M is a subbundle of $L \subset TM \oplus T^*M$ of rank m which is maximally isotrope related to the canonical pairing on $TM \oplus T^*M$ defined by

$$\langle X \oplus \omega, Y \oplus \varpi \rangle_+ = \frac{1}{2} \left(\langle Y, \omega \rangle_M + \langle X, \varpi \rangle_M \right).$$

We put

$$\langle X \oplus \omega, Y \oplus \varpi \rangle_{-} = \frac{1}{2} \left(\langle Y, \omega \rangle_{M} - \langle X, \varpi \rangle_{M} \right)$$

If the space of local sections of L denoted by $\Gamma(L)$ is closed under the bracket,

$$[X \oplus \omega, Y \oplus \varpi] = [X, Y] \oplus \left(\mathcal{L}_X \varpi - \mathcal{L}_Y \omega + d\left(\langle X \oplus \omega, Y \oplus \varpi \rangle_{-}\right)\right)$$

we say that L is a Dirac structure on M.

Definition 5.4. A Dirac structure *L* on *M* is called a homogeneous Dirac structure related to a vector field *Z* on *M* if, for any $(X, \omega) \in \Gamma(L)$, $([Z, X] + X, \mathcal{L}_Z \omega) \in \Gamma(L)$.

Let $L \subset TM \oplus T^*M$ be a Dirac structure, we put

$$\mathcal{T}^r L = (\kappa_M^r \oplus \varepsilon_M^r) (T^r L) \subset TT^r M \oplus T^* T^r M.$$

The subbundle $\mathcal{T}^r L \subset TT^r M \oplus T^*T^r M$ is a Dirac structure on $T^r M$ (see [5]). It is called tangent Dirac structure of higher order.

Lemma 5.5. Let $L \subset TM \oplus T^*M$ be a Dirac structure on M. We have: $X^{(\beta)} \oplus w^{(r-\beta)} \in \Gamma(\mathcal{T}^rL)$

for any $X \oplus w \in \Gamma(L)$ and $\beta = 0, \cdots, r$.

Proof. See [7].

Theorem 5.6. The Dirac structure $\mathcal{T}^r L$ on $T^r M$ is a homogeneous Dirac structure related to Euler vector field $\frac{\xi_T r_M}{r}$.

Proof. We recall that the space of sections of $\mathcal{T}^r L$ is generated by the space

$$\left\{X^{(\alpha)} \oplus w^{(r-\alpha)}, X \oplus w \in \Gamma(L) \text{ and } \alpha = 0, \cdots, r\right\}.$$

For each section (X_1, w_1) of L, using the equalities

$$\begin{pmatrix} \left[\frac{\xi_{T^{T}M}}{r}, X_1^{(\alpha)}\right] &= -\frac{\alpha}{r} X_1^{(\alpha)} \\ \mathcal{L}_{\frac{\xi_{T^{T}M}}{r}} w_1^{(r-\alpha)} &= \left(1 - \frac{\alpha}{r}\right) w_1^{(r-\alpha)}$$

we have

$$\begin{split} \left(\left[\frac{\xi_{T^r M}}{r}, X_1^{(\alpha)} \right] + X_1^{(\alpha)} \right) \oplus \mathcal{L}_{\frac{\xi_{T^r M}}{r}} w_1^{(r-\alpha)} = X_1^{(\alpha)} \oplus w_1^{(r-\alpha)} - \frac{\alpha}{r} \left(X_1^{(\alpha)} \oplus w_1^{(r-\alpha)} \right) \\ X_1^{(\alpha)} \oplus w_1^{(r-\alpha)} \text{ is a section of } \mathcal{T}^r L, \text{ which means that} \\ \left(\left[\frac{\xi_{T^r M}}{r}, X_1^{(\alpha)} \right] + X_1^{(\alpha)} \right) \oplus \mathcal{L}_{\frac{\xi_{T^r M}}{r}} w_1^{(r-\alpha)} = \left(1 - \frac{\alpha}{r} \right) \left(X_1^{(\alpha)} \oplus w_1^{(r-\alpha)} \right) \end{split}$$

is a section of $\mathcal{T}^r L$. Thus, $\mathcal{T}^r L$ is a homogeneous Dirac structure related to the vector field $\frac{\xi_{T^r M}}{r}$.

References

- F. Cantrijn, M. Crampin, W. Sarlet and D. Saunders, The canonical isomorphism between T^kT^{*} and T^{*}T^k, C. R. Acad. Sci., Paris, Sr. II **309** (1989), 1509–1514.
- [2] M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, North-Holland Mathematics Studies 112, Elsevier Science Publishers, 1985.
- [3] J. Gancarzewicz, W. Mikulski and Z. Pogoda, Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J. 135 (1994), 41 pp.
- [4] I. Kolář, P. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
- [5] P. M. Kouotchop Wamba, A. Ntyam and J. Wouafo Kamga, Tangent Dirac structures of higher order, Arch. Math., Brno 47 (2011), 17–22.
- [6] P. M. Kouotchop Wamba, A. Ntyam and J. Wouafo Kamga, Tangent lifts of higher order of multivector fields and applications, J. Math. Sci. Adv. Appl. 15 (2012), 13–36.
- [7] P. M. Kouotchop Wamba, A. Ntyam and J. Wouafo Kamga, Some properties of tangent Dirac structures of higher order, Arch. Math., Brno 48 (2012), 233–241.
- [8] G. Mitric and I. Vaisman, Poisson structures on tangent bundles, Differ. Geom. Appl. 18 (2003), 207–228.
- [9] I. Vaisman, Tangent Dirac structures and submanifolds, Int. J. Geom. Methods Mod. Phys. 2 (2005), 759–775.

P.M. Kouotchop Wamba, Department of Mathematics, University of Yaounde I, Higher Teacher Training College, PO.BOX 47 Yaounde, Cameroon *e-mail*: wambapm@yahoo.fr