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GENERALIZED EULER VECTOR FIELDS ASSOCIATED
TO THE WEIL BUNDLES

P.M. KOUOTCHOP WAMBA

Abstract. The notion of a Euler vector field is usually defined on the tangent bundle
of a finite dimensional manifold M. In this paper, we generalize this notion to the
Weil bundle T4 M, for any Weil algebra A and we study some properties.

1. INTRODUCTION

Let M be a smooth manifold of dimension m > 1, we denote by T'M the tangent
bundle of M. Usually, an Euler vector field is defined as a vector field on T'M
generated by the infinitesimal homotheties on the fibers of TM and is denoted by
&rar- Inlocal coordinate system (al, .-+ 2™) of M, we denote by (2%, %) the local
coordinate (adapted) of TM. The local expression of &1y is given by Erpr = zt 82,3 .
The Euler vector field plays an essential role in the geometry of tangent bundle
and is used in the global formulation of second order ordinary differential equation
on a manifold M, it is also used to generalize to tensor fields the well known
Euler’s theorem on homogeneous functions. On the other hand, given a Weil
algebra A, there is a product preserving functor T4 from the category Mf of
all smooth manifolds and all smooth maps to M f which generalizes the tangent
functor called Weil functor associated to A (see [4]). We adopt the notations of
[4] and by TAM we denote the smooth manifold of all A-velocities of M and
consider each element of T4 M in the form of an A-jet j4p, p € C™ (]Rk, M) By
wﬁ : TAM — M we denote the canonical projection such that, 7T1\A/I (jAcp) = ¢ (0)
and, for any f € C> (M, N), the map T4f € C> (TAM, TAN) is defined by
TAf (jAgo) = j4 (f o ) where ¢ € C™ (Rk, M) When A is the space of all r-jets
of R* into R with source 0 € R¥ denoted by Jj (Rk,R), the corresponding Weil
functor is the functor of k-dimensional velocities of order r and denoted by 77, in
particular for £ =1, it is called a tangent functor of order r and denoted by 7.

The aim of this paper is to generalize the concept of Euler vector field on the
Weil bundle T4M, which will be able to be one of the mains element of the
generalized Lagrangian mechanic on T4 M. We will denote it by &7a,;. Beyond
these considerations, we prove that the Euler vector field obtained is such that,
for any f € O (M, N), the vector fields &pay, and Epay are T4 f-related. In
particular, we have a natural transformation

Ea:TA =S ToTA (over the identity on TA) .
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We define a natural Euler vector field associated to the Weil functor 74 as a natural
transformation ¢ : T4 — T o T4 (over the identity on TA) and prove that there
is a canonical bijective correspondence between the set of all natural Euler vector
fields T4 — TT# and the set of all derivations of A. In the particular case where
A = JJ (R,R), we prove that any natural Euler vector field £ : 7" — T o T" is of
the form

.
> ass
=1

where aq,---,a, are the real numbers and g (1 < 8 < r) is the natural Euler
vector field generated by the derivation ¢g on J§ (R,R) ~ R"! defined below.

So, the paper is organized as follows. In Section 2, we recall briefly the main
result of [3], about lifts of tensor fields to the Weil bundle. In Section 3, we
define the generalized Euler vector field on T4 M and establish some properties.
In Section 4, the concept of homogeneous tensor fields on the manifold T4M is
defined and some properties are studied. In the last Section some homogenity
properties of the tangent lifts of order r of Poisson and Dirac manifolds related
to Euler vector field {7y are established which generalize the similar results
established in [8] and [9].

All manifolds and maps considered in the paper are assumed to be infinitely
differentiable. We fix a Weil algebra A of height A > 2 and of width k > 1, for
any g € C (Rk,R) and any multiindex 8 = (51, , k), we denote by

1 olblg
B @020) - (921)

Dg (9) (2)

the partial derivative with respect to the multiindex 8 of g.

2. PRELIMINARIES

Let A be a Weil algebra, it is a real commutative and finite dimensional algebra
with unit which is of the form A = R-14 & N4, where N4 is the ideal of nilpotent
elements of A. For any multiindex o # 0, the vector e, = j* () is an element
of N4 and the family {e,, 0 < |a| < h} generates N4. We denote by B4 the set
of all multiindices such that (e,) «EBa is a basis of N4 and B, its complementary
with respect to the set {y € N, 1 <| v |< h}. We put eg = 14, it is clear that
(€0, €a)qep, 18 a basis of A. For 8 € Ba, we put eg = Ageq and we have [af = |3
or Az = 0. So,

o en €a+p if a—i—ﬁEEA.
T Ne, i a+BeBy

Using this basis of A, one deduces an adapted local coordinate system of T4M
in the following way: let (U, x’) be a local coordinate system of M, an adapted
local coordinate system induced by (U, xi) over the open TAU of TAM denoted
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by (xé, asfl)aeBA is given by

I%) — xioﬂAA/I
v, = w30 Agm, vhere 7 (14) = 4Dy (' 00) ()]
BEBA

In the sequel, the coordinate function xf is denoted by x?. The upper index («)
on the tensor fields ¢ on M is the a-lift of ¢ to its Weil bundle (see [2,9]). More
precisely, for f € C*°(M) and a € N™ such that 0 < |a| < h, we define the map
@) e c°(TAM) (a-lift of ) in the following way

7 (1) = %Da (foe)(@)|
for any j4¢p € TAM. In the same way for X € X(M), X(®) € X(TAM) denote
the a-lift of X. In local coordinate (z',--- ,2™) such that X = X?-2. we have

ozt
x (@) _ Z ((Xi)(ﬂ—a)+ Z )\5 (Xi)(’y—a)> 0

ozt
BeBa ~EBA B

For the measures of convenience, we put f(® = 0 and X(® = 0 for |a| > h or
a ¢ Nk,

Proposition 2.1. For any tensor field t of type (0,p) on M, the tensor field
t(®) is the only tensor field of type (0,p) on TAM satisfying
(@) (Xysl),... ,Xigm) = (X1, X))
where B =01+ -+ B and X1,--- , X, € X (M).
Proof. See [3]. O

3. MAIN RESULTS

We recall that, for any t € R
P
exp(t) =e' =1+ E —-

lep'

3.1. Euler vector fields on T4 M.

Let M be a smooth manifold of dimension m > 1. For any ¢ € C*° (Rk, M), we
consider the family of smooth maps {¢;},.p C C* (R¥, M) such that

o1 (2) = ¢ (exp (t) 2)
for any z € R¥. We consider the smooth map
Uan: RxTAM — TAM
(t.i%e) = (e
The map W4 5s is a one parameter subgroup of a vector field, which we denote by
Eran-

Definition 3.1. The vector field 74, is called a generalized Euler vector field
on TAM.
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Let (U7 xl) be a local coordinate system of M and (mi, J:fl) the local coordinate
. zto ¢ SA
system of TAM induced by (U, mz). We have a( ‘I’A’x(m ?)) = 0, by the
same way using the equalities

d (i, 0 War (t,54)) ‘
dt t=0

‘t:O

= lalZ, (%) + Y 1BIATS (57) = lalal, (i7¢)
BEBA
we deduce that the local expression of {74y, is given by
, 0
é-TAM: Z |a‘x0zax .

i
a€EBA @

Example 3.2. (1) For A= J} (Rk,R), we have

In particular, when k = 1, we have
0
oxt’
Therefore, &7y is the classic Euler vector field on TM.

(2) More generally, if A = JJ (Rk , R), for each manifold M, the Euler vector
field on 17 M is given by

)
§rrm = Z |a\%ax4

3
I<]al<r «

%

rm =&

In particular, when k£ = 1, we obtain

gT""M = ZO[I’L a

—
— ox?,

Proposition 3.3. The Euler vector field &4y is the only vector field on TAM
satisfying

Eram <g(a)> = |a|g(a)
for any 0 <|a| < h and g € C> (M).
Proof. Let j4¢ € TAM and 0 < |a| < h. Then, we have

Eram <g(a)) (ite) = a [g(a) (jAQOt)} d {lDa (gowt)] ‘

T dt t=0 - dt |a!
_1d
T aldt

~lal (50aa0) )

t=0

[Da (g2 ) (0)exp (lal )] _

and we deduce &rapy (9'9) = | g@). -



GENERALIZED EULER VECTOR FIELDS... 25

Remark 3.4. In particular, when A =D, we have the classic formulas

{fTM (9©@) = 0

M (9(1)) = 9(1)
where g(© = g oy and g™ (v) = v (g) (<), with v € T. M.
Proposition 3.5. Let X € X (M), we have
[X(a)7§TA]VI} = |a] X
for any 0 < |a| < h.
Proof. By calculation. O
Proposition 3.6. For any tensor field t of the type (0,p) on M, we have
LiTAMt(a) = |a (@)
for any 0 < |a| < h.
Proof. For any Xi,---,X, € X(M) and multiindices f1,--- , 5, we have
'C&TAMt(Q) ()(1(/31)7 . ’ngﬁp))

TAM™ 2

p
=Le ., (X1, X))@ P - Zt(a) <X£61)7"' Le , X ,Xz(ff’))

=lo = Bl (¢ (X1, X)) T 4Bl (X, X))

— |a|t(®@ (Xfﬁl)’ . 7X155p>) _
So, £5TAMt(°“) = |a| t(@). O
3.2. Natural Euler vector fields

Let M and N be smooth manifolds, we begin this subsection by the fundamental
property.

Proposition 3.7. For any f € C*°(M, N), the Euler vector fields &payr on
TAM and Epay on TAN are TA f-related.

Proof. Let j4¢ € TAM. Then we have

TTAf ogran (j4¢) = TTAf (%WAM(,]' ?) t:o)
- AT )] — 2 (A o)
= LWy (L4 ’ =&ran o TAf (%) .
Therefore, TTAf o épap = Epay o TAS. O

Definition 3.8. We call natural Euler vector fields associated to T4 any nat-
ural transformation 74 — T o T over the identity of T4.

Example 3.9. By Proposition 3.7, it follows that the family {&rap 1} is a
natural transformation T4 — T o T over the identity of 7. So, it is a natural
Euler vector field associated to T4 which we denote &4 : T4 — T o T4.
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Given two Weil algebras A and B, all natural transformations 74 — T8 corre-
spond exactly to the algebra homomorphism from A to B. In fact, for a natural
transformation 4B : T4 — T8, the algebra homomorphism associated is given
by the linear map

B.A=T4R - TPR = B.

On the other hand, the functor T'o T4 corresponds to Weil algebra D ® A which is
identified with the Weil algebra A2 = A x A endowed by the following structure:
for any (a,b), (a’,b') € A2,

(a,b) - (a’,b) = (ad,ab +a'b).

Proposition 3.10. Let o8 : T4 — T8, the algebra homomorphism associ-
ated to Weil algebras A and B. We have

A,B A,B
T (SOM ) ofran =&rmp © Pr

for any m-dimensional manifold M. In other words, the vector fields Epays and
Ereap are wﬁB-related,

Proof. Let j4g € TAM, we put F; = W 4 5(t,-). We have

T ((p’]?/[’B> olrayy (jAg) =T (‘pf/fB) (iFt (jAg) ‘t—O)

- (o wg)) -

Thus, we get T' ((pﬁl’B) olpayy (jAg) Erm ((pM A ) for any j g eTAM.
O

Remark 3.11. We assume that A is a (k,r)-algebra. The surjective algebra
homomorphism g : J§(R¥, R) — A determines a natural transformation o : T} —
TA. So, for any manifold M the vector fields &rym and Epayy are gpr-related.

Applying the theory of Weil functors, we characterize all natural Euler vector
fields on Weil functors (bundles) as follows.

Theorem 3.12. There is a bijective correspondence between the set of natural
Euler vector fields T4 — T o T4 and the set of the derivations of A.

Proof. Let ¢4 : T4 — T o T4 the natural Euler vector field, the map pa g :
A — A x A is an algebra homomorphism over A. It has the form

par(a) = (a,D(a))
where D : A — A is a linear map. On the other hand, for any a,b € A,

par(ab) =par(a) par ().
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Since
var(a) - par () = (ab,aD (b)+bD (a))

vaR(ab) = (ab, D (ab)) ’

we obtain D (ab) = aD (b) + bD (a). So, D is a derivation of A.
Inversely, consider D : A — A the derivation, the map
ep A =  AxA
a +— (a,D(a))

is a morphism of Weil algebras. It induces a natural transformation @4 : T4 —

T oTA. Tt is clear that @éR = @A r. The rest of the proof is similar to Theorem
(35.13) in [4]. O

Remark 3.13. Let D : A — A be a derivation, we consider the Euler vector
field {p rap induced by D on a m-dimensional manifold M. In local coordinate
(w1, ,Zm), we have

épran = ) (ehoD(ea)) To gyt
a,BEBA @
where (€4),cp, is the basis of Na, (€},),cp, its dual and D (eg) = 0.

Let o1 : T4 — ToT4 and ¢, : T4 — ToT* be two natural Euler vector fields.
For any real number b, we define the natural Euler vector fields ¢1 + w2 and by
by

(pr+w2)y = Qrm+p2um

(b1) s = bpim
for any manifold M. Note that @1 as + @2, is the sum of the vector fields @1 pr
and 2 pr, while by pr is the product of vector field ¢1 3 by the scalar b. We
denote by Der (A) the vector space of all the derivations of A and Nev (A) the
space of all natural Euler vector fields. By the theorem above, we have a map
®: Der(A) — Nev(A4)
D - S

So, we have

Corollary 3.14. The map ® : Der(A) — Nev(A) is an isomorphism of vector
spaces.

Example 3.15. We consider the classical Euler vector field £7)s defined on
TM. The Euler vector field &7y is obtained with the help of the derivation d
defined on D ~ R? such that,

d(z,y) = (0,y)
for any (z,y) € R%

Example 3.16. The natural Euler vector field £4 : T4 — ToT# (Example 3.9)
is determined by the derivation D4 : A — A defined by

Da (ea) = |aleq

for any 0 < |a| < h.
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Example 3.17. All natural Euler vector fields associated to the tangent functor
T are of the form

b&r
where b is a real parameter. In fact, the structure of Weil algebra D = R? is given
by
(x1,91) - (%2,92) = (T122, T1Y2 + T21) -
Let wp : TM — TTM be the Euler vector field on TM, it is associated to a
derivation d : R? — R2. It has the form
d(z,y) = (0,by)
with b € R. It follows that the Euler vector field associated to s is brps.

In the next subsection, we generalize this result of the previous example to a
tangent bundle of a higher order.

3.3. The natural Euler vector fields 7" — T oT"

Using the identification R"*! ~ J§ (R, R) with the canonical basis (€4)q<, <, Such
that o

(a+ B)!
€a €8 = Tﬁlea-&-ﬁv

we have

Lemma 3.18. For any 0 < B < r, the linear map ¢p : J;(R,R) = JJ(R,R)
defined by

$s(e0) = 0
« !
¢p (eat1) (anrgﬂg) €a+p

1s a derivation.

Proof. By calculation. O

Remark 3.19. For any 8 = 1,---,r, we denote by g : T" — T o T" the
natural Euler vector field related to ¢g. For any manifold M of dimension m > 1,
we have locally

r—p
(a+pB)! 0
Es,rrm = Tot1 g7
az:% algl T oxl
Lemma 3.20. Any derivation ¢ : R™t' — R™+! is of the form
T
6= ag- g
p=1
where ay,--- ,a, are the real numbers.
Proof. For any a =0,---,7, we have e - e, = eq, therefore ¢ (ey) - eo + ¢ (eg) -

ea = ¢ (eq). Tt follows that
d(eg)  ea =0, VYa=0,---,r
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Thus, ¢ (eg) = 0. We put
,
¢(er) =Y apes
5=0

with ag,aq, - ,a, being real numbers. Using the relation ey - e; = 2e5, we have
r—1
¢(ea) = (e1)-er =Y (B+1)agepsa.
B=0
In the same way, es-e; = 3eg, it follows that, 3¢ (e3) = ¢ (e2) -e1+ ¢ (e1) - e2. Now
r—2
plea) e = > (B+1)(B+2)agessa,
B=0
r—2
+1 +2
bler)-es = [;) (8 )2(3 )aﬁ€5+2-

We deduce that,

r—2

¢ (e2) e1+¢(e1) ez = ;}3(ﬁ+1)2(ﬂ+2)0565+2-

So,

n—2 1 9

bles) =3 (B+ )2(6 + )%eﬁ+2

B=0

Looking the at expressions of ¢ (e1), ¢ (e2) and ¢ (e3) we put
r—a+l1
(a+p5—1)!
¢ (ea) = 52:20 Waﬁe(wrﬁfy

By induction, using the relation e, - 1 = (o + 1) 441, we obtain

(O‘ + 1) ¢ (ea+1) =¢ (ea) -e1+ ¢ (31) c€q-

Now,
Slen-e rfl(a+5—l)!ae . Tia (oz—l—ﬁ)!ae
a) 1= (B = g BCats-17C1 = B 1)l “BCatss
= (8—1Dla! = (B—1'la!
. = (o + B)!
od(e1) eq = BZ ageg - €q = 52 (B!T!)agea_w.
=0 —0
We deduce that
— (a+ 1) (a+B)!
¢ (ea) -e1+d(e1) eq = Z ( ),( , f) ageots
=0 Pla
Thus,
r—o a+ '
¢ (eat1) = Z ( Blal a3€ats
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On the other hand, ¢ (e,;) = ape,—1 + are, and e, - ey = 0. Thus, ¢ (e,) - e1 +
¢(e1) e =0. As

p(er)-er = rager,
ler)-er = ager,
it follows that ag = 0. So, for any a« =0,--- ,r — 1, we have
¢ (ea+1) Z ea+/3 Z agdp (eat1)
This yields the result. O

Theorem 3.21. All natural Euler vector fields T™ — T o T" are of the form

T
> asts,
f=1

where ay,--- ,a, are real numbers.

Proof. Let E: T" — T oT" be a natural Euler vector field, it induces a deriva-
tion ¢ : R™! — R™! where the structure of Weil algebra is defined above. So,

by the previous lemma, there are the real numbers aq,--- , a, such that
K
¢ = Z agdp
B=1

On the other hand, for any manifold M, locally we have

T

Ern = ) (€500 (ea)) g

,“/ 1
= Y a0 0 ()
B=1a,y=1
T
= Zaﬁfﬂﬂ"rkj.
B=1
T
Thus, we obtain E = ) agégs,.. O
=1

3.4. Absolute operators seen as natural Euler vector fields

Let F be a bundle functor on the category M f. We denote by 0j; the zero vector
field on M.

Definition 3.22. ([4]) A natural operator R : T ~» T o F' is said to be an
absolute operator if Ry; X = R0, for every vector field X of M.

Let D be a derivation of A, for any real number ¢, ¢, = exp (tD) € Aut (A),
where Aut (A) is the group of all automorphisms of A. It is a Lie subgroup of Lie
group GL (A). The map ¢, : A — A is an automorphism of A inducing a natural
transformation ¢; ar : TAM — TAM. Consider the map D (M) : R x TAM —
TAM such that

D (M) (t,8) = ¢u.m (§)
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for any (t,&) € Rx TAM. It is one parameter subgroup of the vector field Xpmy :
TAM — TTAM. On the other hand, for any f € C°° (M, N) we have T4 fog, pr =
¢t N O TAf for every t. It follows that Xpry and Xp(y) are T4 f-related. We
get a natural Fuler vector field Xp : TA — T o T4 associated to D.

Remark 3.23. The constant map X — Xp,) for all X € X(T'M) forms an
absolute operator, Op(D) : T ~» T o T#, which is said to be generated by D.

In [4], it is shown that every absolute operator R : T' ~» T o T is of the form
R = Op(D).

Corollary 3.24. There is bijective correspondence between the set of absolute
operators and the set of natural Euler vector fields associated to T.

The main result on the prolongations of vector fields related to Weil bundle is
given by L. Kolaf ([4]). In fact, it proves that all natural operators T ~ T o T4
are of the form

af (¢) o T4 + op (D)
where af (c) is the natural affinor determined by ¢ € A, T4 the flow operator and
op (D) the absolute operator determined by the derivation D.

Corollary 3.25. Let X € X (M), any prolongation of X from M to TAM is

of the form
> aX+E
0<lal<h

where E is an Euler vector on TAM induced by some derivation of A and ag, aq
are the real numbers.

Proof. Let X € X (M) and X be a prolongation of X on TAM. We have X =
af (a)oTAX +Op (D) 0y, for a some derivation D and a € A. Asa = Z An€q

0<lal<h
we obtain
X = Z X+ F
0<|al<h
where FE is the Euler vector field induced by D. O

Corollary 3.26. All prolongations of the vector field X from M to T"M are

of the form
Z an X + Z ba&p,m
a=0 B=1

where aq,bg are real numbers.
4. HOMOGENEOUS TENSOR FIELDS ON THE WEIL BUNDLES

The notion of homogenity for functions on R™ can be extended in an obvious way
for functions, vector fields, differential forms, multivector fields on the Weil bundle
TAM of a manifold M of dimension m > 0. In this subsection, we generalize the
results of [2] while replacing the tangent bundle of higher order by any Weil bundle.
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4.1. Homogeneous tensor fields

Let M be a smooth manifold of dimension m > 0. We denote by &raj, the Euler
vector field on the Weil bundle T4M. The global flow of £7a,, is given by the
map

Fp:TAM - TAM,  j%g— j* (g:)

for any real number ¢.

Definition 4.1. A tensor ¢ on T4 M is said to be homogeneous of degree ||
(a € Nk) if
Fro=elolty
for any real number t.

Proposition 4.2. A tensor ¢ on TAM is homogeneous of degree |a| if and
only if
CETAMQO = |al¢e.

Proof. Supposing that ¢ is homogeneous tensor fields of degree ||, we have:

T Fe—-—p\ . elolt —1 _
o=l () <im (T e = el

Inversely, supposing that L¢_, ¢ = || @, for any z € TAM the function X : t

F} ¢ (2) is the solution of a differential equation 2% = || u with initial condition
u(0) = ¢ (2). Indeed, X (0) = ¢ (z) and % (Fy'p) = FyLe 4,0 = la| Fip, it
follows that Fj¢ (2) = el*ltp (2). O

Example 4.3. (1) Let ¢ be a tensor field of the type (0, p) on a manifold
M, for any |a| < h, the tensor ¢(® (a-prolongation of ¢ on TAM) is
a homogeneous tensor field of degree |«|.
(2) Let X be a vector field on a manifold M. The vector field X(®) (a-
prolongation of X on T4 M) is a homogeneous vector field of degree — |a|.
(3) If f1 and f; are homogeneous functions of degree || and |az| respectively
on TAM. Then f; - f, is a homogeneous function of degree || + |az|.

Proposition 4.4. If @1 and g are homogeneous tensor fields on TAM of
degree || and |ag| respectively. Then, p1 ® @2 is homogeneous tensor field on
TAM of degree |ay| + |as].

Proof. Given ¢1 and 2 as in the statement, we have:
Le a, (01002) = (Le ,, P1)0p2+013(Le | P2) = |a1] p1@p2+|az| p1@p2.
It follows that o1 ® (2 is a homogeneous tensor field of degree || + |a]. O

Corollary 4.5. If X, and X5 are homogeneous vector fields on TAM of degree
|o1| and |ag| respectively. Then [X1, X3] is homogeneous vector field on TAM of
degree |a1| + |ag].

Proof. Let X1 and X5 be homogeneous vector fields on T4 M of degree |a; | and
|az]. Using the Jacobi identity, we have

Le o, [X1, Xo) = [ X0, Le, Xo] 4 [Le,a, X1, Xo| = (|aa| + |oe]) [X1, Xo] .
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Therefore, [ X7, X5] is a homogeneous vector field of degree |a;| + |as|. O

Corollary 4.6. Let X be a homogeneous vector field of degree || and f a ho-
mogeneous function of degree |B8]. Then X (f) is a homogeneous function of degree
laf —|B].

Proof. We have

Lepay X () = (Lepa,, X) () = 1B X (f) = lal X () = [B X ()

and, therefore, X (f) is a homogeneous function of degree || — |f]. O

4.2. Particular case of the differential forms

Proposition 4.7. (1) Let wy and we be homogeneous forms of degree |a |
and |ag| respectively. Then wi A we is homogeneous form of degree |a1| +
|aa].

(2) Let w be a homogeneous p-form of degree |a| and X1,--- ,X,, p homoge-
neous vector fields of degree |a1|, - ,|ap|. Then w(Xq,---,X,) s a ho-
mogeneous function of degree || + |a1| + - -+ + |-

Proof. We know that

ﬁ{TAM(OJ (Xl,'“ ,Xp)) = ,CgTAMUJ(Xl,--- ,Xp)

n

+ > WXy, L, Xiv e, Xp).

i=1
As L¢ , w=|a|lwand L¢ , X; = |o;| X; for any i < p, we have
= lafw (X1, -, Xp) + (Jaa ]+ + oo (Xa, -, Xp) -

So, we obtain the result. O

Remark 4.8. Let (:c",fvf;)aeBA

The local expression of the Pfaff form w on T4 M is given by

w = aydz’ + E aidz,

a€EBA

be an adapted local coordinate system of T4 M.

and we have

ﬁgTAM Z ETAM dl’ +(Z fTAM (dl’ )

a€EBa

Now, &pay = Z |ﬂ\xﬁai and Epayy (dal) = |al dzf, and we have

BEBA T
o= X kg olat = (3 191,55 +lolatyi
a,BEBA ac€Ba BEBA

If w is homogeneous of degree ||, then we have a) = 0 and

> I8l = [yl ai
8

BEBa
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Thus, we obtain

aa? o
Y Blah——5 = (= lal)af"

J
BEBaA Oxp
It follows that, for each 0 < i < m and o € By, the function af* is homogeneous
of degree |y| — |a].

Proposition 4.9. Let w be a homogeneous p-form on TAM of degree |o|. Then
dw, ig,,, w are homogeneous of degree |a|.

Proof. In the first case,
Leoy,, (dw) =d(Le, , W)= |a]dw.
By the same argument,

[’ﬁTAM (ifTAMw) = iiTAMd(iﬁTAMW) = ifTAM (£€TAMW) = |a| (ifTAMw)'

Therefore i¢_, w and dw are homogeneous of degree |a]. O

4.3. Case of multivector fields

Proposition 4.10. (1) Letm and ma be homogeneous multivector fields on
TAM of degree |ay| and |as| respectively. Then, w1 A Ty is homogeneous
multivector field of degree |aq| + |aa].

(2) If = X1/ --AX, is a simple multivector field on TAM , where X1, -+ , X,
are p homogeneous vector fields of degree |oa|,- -+ ,|ap|. Then, 7 is a ho-
mogeneous multivector field on TAM of degree o] + -+ + |ay|.

(3) Let my and w2 be homogeneous multivector fields on TAM of degree |a|
and |az| respectively. Then, 1, T3] is a homogeneous multivector field of
degree |aq| + |zl

Proof. Let m € XP (TAM) and my € X4 (TAM), we have:

_ (_1)(?—1)((1—1) [W27£§TAIVI7T1} + [ﬂ-l)LETAIWﬂ-Q:I

Le . [mi,m] =
— (=)@ 0| [mg, 1] + Jag| [y, 2] -

We deduce that L¢_, = [m1, 2] = (|| + |aal) [r1, 2] O

Proposition 4.11. Let # € XP (TAM) be a homogeneous multivector field
of degree |a|. For any p homogeneous functions fi,---, f, on TAM of degree
la1], -, |ap| the function m(dfi,--- ,dfp) is homogeneous of degree |a| + |ou| +

Proof. We have,
Le,ay, (m(dfy,- -+ dfp))

P

=Le , m(dfv,- dfy) + Y wldfy, - Le, o dfi - o dfy)

i=1

:|O‘|7T(df17"' 7dfp)+z‘ai‘7r(dflﬂ"' 7dfp)'

i=1
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We deduce that

Lepay, (mldfrs--dfy)) = (laf +|ea] + -+ ap) 7 (dfr, -+ dfp) -
O

Let M be a smooth m-dimensional manifold. A Poisson structure on M is
a R-bilinear Lie bracket {-,-} on C'*° (M) satisfying the Leibnitz rule

{f,9h}y ={f.gth+g{f.h}, Vf g,heC™(M). (4.1)
It follows from (4.1) that there exists a bivector field w € X2 (M) such that
{f: 9}, = w(df,dg).
The Jacobi identity for {-,-}, is equivalent to the Poisson condition [w,w] = 0,

where [, -] is the Schouten-Nijenhuis bracket. In this case, one says that the
bivector field w defines the Poisson structure on M.

Proposition 4.12. Let 7 be a Poisson bivector on T4 M homogeneous of degree
|a|. For any homogeneous function f of degree |3|, the hamiltonian vector field
Xy is a homogeneous vector field of degree |a| + |3].

Proof. Let g € C* (M) and |y| < h, we have:
Lepun, Xs (97) = (6rare. X4) (67) = &rans (7 (df,dg™) ) = 1) X (42)

= (o] + 181+ ) 7 (df.dg™) = 17 X7 (97) = (lal + 18) X7 (9) -
Therefore, L¢_, Xy = (la| +|B]) X;. 0
Corollary 4.13. Let 7 be a Poisson bivector on T4M homogeneous of degree

lal. If f1 and fa are homogeneous functions of degree || and |az| respectively.
Then, the function {f1, fa} is homogeneous of degree |a| + || + |az].

5. HOMOGENEOUS PROPERTIES OF EULER VECTOR FIELDS ON SOME
GEOMETRIC STRUCTURES

In the sequel, by (-, -),, we denote the canonical pairing TM x s T*M — R.

5.1. Case of the tangent lifts of Poisson manifolds
For any manifold M of dimension m > 1, there is a canonical diffeomorphism (see
[1,3,5])
Ky :T"TM — TT™M
which is an isomorphism of vector bundles from
T (mpr) : T"TM = T" M to wpep : TT"M — T"M.
It is called the canonical isomorphism of flow associated to the bundle functor 1.

Consider the linear form 7, on Jj (R,R) defined by 7, (j59) = %fl;;‘.’ (t) . and
. —

the canonical map
Ay TT"M - T'T*M
which is an isomorphism of vector bundles
wpeyy LT M — T"M and T (ny) :T"T"M — T M
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such that, for any (u,u*) € T"TM & T*T"M,

(ks (w) s u)rrar = (u; oy (u)) e ag
where (-, Yy = 70 T" ({-,-)ar) (see [1]). We denote by €7, the inverse of oy;.
Let (x',---,2™) be a local coordinate system of M, we introduce the coordi-
nates (z°,p;) in T*M, (xi,pj,x%,pf) in T"T*M and (xi,xg,ﬂj,ﬂ'f) in T*T"M.
We have:

. ) . 8 . p; = "
Ozg/l(ajl,ﬂ'j,it%,ﬂ'?) = (2", z,p;,p; ), With { pj@ _ wzf*ﬁ .
J J

Let (M, w) be a Poisson manifold. The complete lift of higher order of w in the
sense of [6] and denoted by w(® is a Poisson bivector field on T"M since the
Poisson condition [w(c), w(c)] = 0, is satisfied. Denoting by #,, : T*M — TM the
anchor map induced by w, we have

B = a0 T" (Huw) © Ky

Let (z!,--+,2™) be a local coordinate system of M such that w = w%
we have

o o
927\ 927

w® = (w) ) O 2
8.’1)& 8(5%
In [6], we have shown that, for any f,g € C*> (M), we have:
{f(a)’ g(ﬂ) }w(c) ={f, g}ija-i-ﬁ—r)
with 0 < a, 5 <.

Definition 5.1. The Poisson manifold (M, w) is said homogeneous related to
a vector field X € X(M) if Lxw = —w.

Theorem 5.2. The Poisson manifold (TTM,w(C)) is a homogeneous Poisson
manifold related to % ~&rrar. More precisely,

erone, ] = —ru®
Proof. For any f,g € C* (M), we have
[Errar, w O] (df ) NdgD) = (&rrar,d (i (A NdgD))) oy,
— <w(0), d ((igTTMdf(a)) A dg(6)>>T"'M .
Therefore,
[&TM’U,(C)} (df(a) A dg(ﬁ))
= — (W, adf@ A dg® + Baf @ Ndg?) + Erar ({£,9)577)
= (a+ B =) {f.a}, "7 — (W (a+ ) df™) A dg'?)
=(a+ 8- L3 —(a+8) {£a3 7"
We deduce that
[fTTM,w(C)] (dﬂa) A dgw)) = —r {f,g}@HF) = 4 (df<a> A dgw)) '
Thus, [ﬁTrM,w(C)] = —rw(®), 0
Remark 5.3. For r = 1, we obtain the result established by I. Vaisman in [9].
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5.2. Tangent Dirac structures of higher order

Let M be a smooth manifold of dimension m > 1. We recall that, an almost Dirac
structure on M is a subbundle of L C TM & T*M of rank m which is maximally
isotrope related to the canonical pairing on TM @ T* M defined by

(XowYom), = o(Vu)y+X o).
We put
(XouwY®m) = 3({Vuly - (X,o)).

If the space of local sections of L denoted by I' (L) is closed under the bracket,
XowYow =[XY]d (Lxw—Lyw+d((XDw,Y ®w)_))
we say that L is a Dirac structure on M.

Definition 5.4. A Dirac structure L on M is called a homogeneous Dirac struc-
ture related to a vector field Z on M if, for any (X,w) € I' (L), ([Z,X] + X, Lzw) €
T (L).

Let L C TM & T*M be a Dirac structure, we put
T'L=(ky®ey) T'L)ycCTT" Mo T*T"M.

The subbundle 7"L C TT"M & T*T"M is a Dirac structure on T"M (see [5]). It
is called tangent Dirac structure of higher order.

Lemma 5.5. Let LCTM & T*M be a Dirac structure on M. We have:
XB) =8 T (T"L)
for any X ®w €T (L) and B=0,--- 7.
Proof. See [7]. O

Theorem 5.6. The Dirac structure T "L on T"M is a homogeneous Dirac
structure related to Fuler vector field &%

Proof. We recall that the space of sections of 7" L is generated by the space
{X(a) ew" Y Xawe I'(L) and a=0,--- ,7'}.

For each section (X7, w;) of L, using the equalities

|:§T7'M , X£a)} _ _gXl(D‘)
Lopyul™ = (1-2)u{™

we have

(FT;M ) Xifa)} + X3Ea)> ® Legry w:(Lria) = X1(a) ® wi(lria) - % (Xl(a) @ wET*a))

Xfa) @ wlr_a) is a section of 7L, which means that

([t ) ot = (1) (317 0t )
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is a section of 7"L. Thus, T"L is a homogeneous Dirac structure related to the
vector field &TM O
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