Design of a 5 GHz Reflectarray with Reduced Size Unit Cell and Extremely Low Phase Sensitivity

Loading...
Thumbnail Image
Date
2018-09
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
This article presents a novel, compact reflectarray antenna operating at 5 GHz. The array consists of two types of phasing element - square ring and complementary square ring. The complementary square ring is used for the phase values that are not covered by the single ring element. The grid size of the array is 0.28λ × 0.28λ at operating frequency 5 GHz that is much smaller than the conventional periodicity 0.5λ × 0.5λ. The aim of unit cell design is to have a slower slope of the reflection phase graph without sacrificing the phase range of 360° where in general there is a trade-off between these two goals. The maximum slope in reflection phase graph is obtained here is 34°/mm. The proposed array is fabricated on a low loss PTFE substrate of thickness 3.175 mm (0.053λ at 5 GHz) and illuminated by a horn antenna. Radiation pattern results show a very precised far-field beam with 3-dB beamwidth of 7° and 7.3° for two principle planes respectively. The gain of the antenna is 26 dBi at 5 GHz.
Description
Citation
Radioengineering. 2018 vol. 27, č. 3, s. 718-723. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2018/18_03_0718_0723.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/
Collections
Citace PRO