Show simple item record

dc.contributor.authorNishimura, H.
dc.date.accessioned2019-01-02T12:37:16Z
dc.date.available2019-01-02T12:37:16Z
dc.date.issued2017cs
dc.identifier.citationMathematics for Applications. 2017 vol. 6, č. 2, s. 171-189. ISSN 1805-3629cs
dc.identifier.issn1805-3629
dc.identifier.urihttp://hdl.handle.net/11012/137261
dc.description.abstractTopos theory is a category-theoretical axiomatization of set theory. Model categories are a category-theoretical framework for abstract homotopy theory. They are complete and cocomplete categories endowed with three classes of morphisms (called brations, co brations and weak equivalences) satisfying certain axioms. We would like to present an abstract framework for classical di erential geometry as an extension of topos theory, hopefully comparable with model categories for homotopy theory. Functors from the category W of Weil algebras to the category Sets of sets are called Weil spaces by Wolfgang Bertram and form the Weil topos after Eduardo J. Dubuc. The Weil topos is endowed intrinsically with the Dubuc functor, a functor from a larger category eW of cahiers algebras to the Weil topos standing for the incarnation of each algebraic entity of eW in the Weil topos. The Weil functor and the canonical ring object are to be de ned in terms of the Dubuc functor. The principal objective of this paper is to present a category-theoretical axiomatization of theWeil topos with the Dubuc functor intended to be an adequate framework for axiomatic classical di erential geometry. We will give an appropriate formulation and a rather complete proof of a generalization of the familiar and desired fact that the tangent space of a microlinear Weil space is a module over the canonical ring object.en
dc.formattextcs
dc.format.extent171-189cs
dc.format.mimetypeapplication/pdfen
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofMathematics for Applicationsen
dc.relation.urihttp://ma.fme.vutbr.cz/archiv/6_2/ma_6_2_nishimura_final.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.subjectdi eologyen
dc.subjectaxiomatic di erential geometryen
dc.subjectWeil algebraen
dc.subjectWeil spaceen
dc.subjectWeilologyen
dc.subjectsynthetic di erential geometryen
dc.subjecttopos theoryen
dc.subjectsmootheologyen
dc.titleWeil diffeology I: Classical differential geometryen
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
dc.coverage.issue2cs
dc.coverage.volume6cs
dc.identifier.doi10.13164/ma.2017.12en
dc.rights.accessopenAccessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record