Zobrazit minimální záznam

dc.contributor.authorPůža, Bedřichcs
dc.contributor.authorPartsvania, Ninocs
dc.date.accessioned2019-01-29T11:52:52Z
dc.date.available2019-01-29T11:52:52Z
dc.date.issued2014-09-30cs
dc.identifier.citationBoundary Value Problems. 2014, vol. 2014, issue 147, p. 1-17.en
dc.identifier.issn1687-2770cs
dc.identifier.other109736cs
dc.identifier.urihttp://hdl.handle.net/11012/137445
dc.description.abstractFor the singular in phase variables differential equation u'' = f (t, u, u') ), sufficient conditions are found for the existence of a solution satisfying the conditions Phi(u) = c, u(t) > 0, u'(t) < 0 for t > 0, where Phi : C([0, a]; R+) to R+ is a continuous nondecreasing functional, c > 0, and a > 0.en
dc.formattextcs
dc.format.extent1-17cs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofBoundary Value Problemscs
dc.relation.urihttps://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-014-0147-xcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectdifferential equationen
dc.subjectsecond orderen
dc.subjectsingular in phase variablesen
dc.subjectKneser solutionen
dc.subjectKneser problemen
dc.subjectnonlinearen
dc.titleThe nonlinear Kneser problem for singular in phase variables second-order differential equationsen
thesis.grantorVysoké učení technické v Brně. Fakulta podnikatelská. Ústav informatikycs
sync.item.dbidVAV-109736en
sync.item.dbtypeVAVen
sync.item.insts2019.01.29 12:44:13en
sync.item.modts2019.01.29 12:22:23en
dc.coverage.issue147cs
dc.coverage.volume2014cs
dc.identifier.doi10.1186/s13661-014-0147-xcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1687-2770/cs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Soubory tohoto záznamu

Thumbnail

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Creative Commons Attribution 4.0 International
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Creative Commons Attribution 4.0 International