Show simple item record

dc.contributor.authorPůža, Bedřichcs
dc.contributor.authorPartsvania, Ninocs
dc.date.accessioned2019-01-29T11:52:52Z
dc.date.available2019-01-29T11:52:52Z
dc.date.issued2014-09-30cs
dc.identifier.citationBoundary Value Problems. 2014, vol. 2014, issue 147, p. 1-17.en
dc.identifier.issn1687-2770cs
dc.identifier.other109736cs
dc.identifier.urihttp://hdl.handle.net/11012/137445
dc.description.abstractFor the singular in phase variables differential equation u'' = f (t, u, u') ), sufficient conditions are found for the existence of a solution satisfying the conditions Phi(u) = c, u(t) > 0, u'(t) < 0 for t > 0, where Phi : C([0, a]; R+) to R+ is a continuous nondecreasing functional, c > 0, and a > 0.en
dc.formattextcs
dc.format.extent1-17cs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofBoundary Value Problemscs
dc.relation.urihttps://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-014-0147-xcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectdifferential equationen
dc.subjectsecond orderen
dc.subjectsingular in phase variablesen
dc.subjectKneser solutionen
dc.subjectKneser problemen
dc.subjectnonlinearen
dc.titleThe nonlinear Kneser problem for singular in phase variables second-order differential equationsen
thesis.grantorVysoké učení technické v Brně. Fakulta podnikatelská. Ústav informatikycs
sync.item.dbidVAV-109736en
sync.item.dbtypeVAVen
sync.item.insts2019.08.08 16:54:38en
sync.item.modts2019.08.08 16:17:16en
dc.coverage.issue147cs
dc.coverage.volume2014cs
dc.identifier.doi10.1186/s13661-014-0147-xcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1687-2770/cs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International