Show simple item record

dc.contributor.authorUrbán, Andráscs
dc.contributor.authorZaremba, Matoušcs
dc.contributor.authorMalý, Milancs
dc.contributor.authorJózsa, Viktorcs
dc.contributor.authorJedelský, Jancs
dc.date.accessioned2019-03-27T07:57:59Z
dc.date.available2019-03-27T07:57:59Z
dc.date.issued2017-02-07cs
dc.identifier.citationINTERNATIONAL JOURNAL OF MULTIPHASE FLOW. 2017, vol. 95, issue 1, p. 1-11.en
dc.identifier.issn0301-9322cs
dc.identifier.other133072cs
dc.identifier.urihttp://hdl.handle.net/11012/138389
dc.description.abstractAirblast atomizers are especially useful and commonplace in liquid fuel combustion applications. However, the spray formation processes, the droplet dynamics and the final drop size distributions are still not sufficiently understood due to the coupled gas-liquid interactions and turbulence generation. Therefore, empirical and semi-empirical approaches are typically used to estimate the global spray parameters. To develop a physical understanding of the spray evolution, a plain-jet airblast atomizer was investigated in an atmospheric spray rig using the Phase-Doppler technique. The simultaneous drop size and axial and radial velocity components were measured on radial traverses across the spray at various axial distances from the nozzle for a range of atomizing pressures. The droplet turbulent and mean kinetic energies were found to be proportional to the atomizing pressure. Hence, the scatter of the radial motion of the droplets increased with the atomizing pressure. A droplet stability analysis was performed to locate the regions characterized by ongoing secondary atomization. The volume-to-surface diameter, D32, of the fully developed spray was compared with estimates provided by five published formulae. The role of liquid viscosity, hence the Ohnesorge number, was found to be negligible in the investigated regime. Three commonly used size distribution functions were fitted to the measured data to analyze their dependence on the atomizing pressure. The Gamma distribution function was found to give the best approximation to the atomization process.en
dc.formattextcs
dc.format.extent1-11cs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofINTERNATIONAL JOURNAL OF MULTIPHASE FLOWcs
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0301932216303093cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectPlain-jet airblast atomizeren
dc.subjectDroplet size distributionen
dc.subjectLiquid breakupen
dc.subjectPhase-Doppler Anemometryen
dc.subjectSauter mean diameteren
dc.subjectSpray stabilityen
dc.titleDroplet dynamics and size characterization of high-velocity airblast atomizationen
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Energetický ústavcs
sync.item.dbidVAV-133072en
sync.item.dbtypeVAVen
sync.item.insts2019.06.17 10:24:02en
sync.item.modts2019.05.18 00:42:23en
dc.coverage.issue1cs
dc.coverage.volume95cs
dc.identifier.doi10.1016/j.ijmultiphaseflow.2017.02.001cs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0301-9322/cs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International