On elliptic curves with a closed component passing through a hexagon

Zobrazit/ otevřít
Datum
2019-06-01Autor
Altmetrics
10.2478/auom-2019-0019
Metadata
Zobrazit celý záznamAbstrakt
In general, there exists an ellipse passing through the vertices of a convex pentagon, but there is no ellipse passing through the vertices of a convex hexagon. Thus, attention is turned to algebraic curves of the third degree, namely to the closed component of certain elliptic curves. This closed curve will be called the spekboom curve. Results of numerical experiments and some hypotheses regarding hexagons of special shape
connected with the existence of this curve passing through the vertices are presented and suggested.
Some properties of the spekboom curve are described, too.
Klíčová slova
algebraic closed curves, elliptic curve, hexagonTrvalý odkaz
http://hdl.handle.net/11012/178355Typ dokumentu
Recenzovaný dokumentVerze dokumentu
Finální verze PDFZdrojový dokument
Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica. 2019, vol. 27, issue 2, p. 67-82.http://www.anstuocmath.ro/mathematics/anale2019vol2/03_Kures.pdf
Kolekce
- Ústav matematiky [58]