• čeština
    • English
  • English 
    • čeština
    • English
  • Login
View Item 
  •   Repository Home
  • Časopisy
  • Mendel
  • Vol. 24, No. 1
  • View Item
  •   Repository Home
  • Časopisy
  • Mendel
  • Vol. 24, No. 1
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stress Measures in SOM Learning

Thumbnail
View/Open
30-Article Text-73-1-10-20190218.pdf (653.3Kb)
Date
2018-06-01
Author
Krbcova, Zuzana
Alternative metrics PlumX
http://hdl.handle.net/11012/179231
Altmetrics
10.13164/mendel.2018.1.107
http://hdl.handle.net/11012/179231
http://hdl.handle.net/11012/179231
Metadata
Show full item record
Abstract
Various stress measures can be used in generalized version of Sammon’s mapping. Kohonen SOM with iterative or batch learning is a standard tool for data self-organization, too. Our method applies stress functions to pattern relationships in SOM and converts batch learning to discrete optimization task. Due to NP–completeness of SOM learning, optimization heuristics have to be used. Simulated annealing making use of Lévy flights is the recommended heuristics for this task.
Keywords
SOM, metric space, stress function, optimization heuristics
Persistent identifier
http://hdl.handle.net/11012/179231
Document type
Peer reviewed
Document version
Final PDF
Source
Mendel. 2018 vol. 24, č. 1, s. 107-112. ISSN 1803-3814
https://mendel-journal.org/index.php/mendel/article/view/30
DOI
10.13164/mendel.2018.1.107
Collections
  • Vol. 24, No. 1 [24]
Citace PRO

Portal of libraries | Central library on Facebook
DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback | Theme by @mire NV
 

 

Browse

All of repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Portal of libraries | Central library on Facebook
DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback | Theme by @mire NV