• čeština
    • English
    • русский
    • Deutsch
    • français
    • polski
    • українська
  • français 
    • čeština
    • English
    • русский
    • Deutsch
    • français
    • polski
    • українська
  • Ouvrir une session
Voir le document 
  •   Accueil de DSpace
  • Závěrečné práce
  • dizertační práce
  • Fakulta strojního inženýrství
  • 2019
  • Voir le document
  •   Accueil de DSpace
  • Závěrečné práce
  • dizertační práce
  • Fakulta strojního inženýrství
  • 2019
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geopolymers Incorporating Wastes and Composites Processing

Geopolymers Incorporating Wastes and Composites Processing

Thumbnail
Voir/Ouvrir
Posudek-Oponent prace-Gianmarco Taveri_thesis.pdf (42.18Ko)
Posudek-Oponent prace-Ing. Vaclav Pouchly Ph.D.pdf (65.88Ko)
Posudek-Vedouci prace-stanovisko skolitele.pdf (63.56Ko)
final-thesis.pdf (2.042Mo)
thesis-1.pdf (7.035Mo)
review_113904.html (1.714Ko)
Auteur
Taveri, Gianmarco
Advisor
Dlouhý, Ivo
Referee
Perná,, Ivana
Pouchlý, Václav
Grade
P
Altmetrics
Metadata
Afficher la notice complète
Résumé
Buildings construction and realization of public infrastructures have always been a primary need in the human society, developing low cost and user-friendly materials which also encounter safety and durability requirements. Portland cement is the most used material in construction industry from the industrial revolution up to date, but the raising concerns related to the climate change are pushing the governments worldwide to replace it with more eco-friendly and greener materials. Geopolymers are considered to be best alternatives to Portland cement in construction industry, but issues related to cost and mechanical properties are still hindering the commercialization of this material. Geopolymer incorporating wastes is one of the solutions. Fly ash, a thermal power plant by-product, and borosilicate glass, a recycled glass from pharmaceutical vials, are suitable candidates in geopolymers activation. NMR and FTIR spectroscopies demonstrated that borates from borosilicate glass are active compounds in geopolymerization, substituting the alumina is its role, composing a B-Al-Si network never observed before. Various fly ash and borosilicate glass weight contents were studied in terms of mechanical properties (compression test, 3-point bending test). It was found that fly ash 55 wt.% and borosilicate 45 wt.% composition activated in 13 M NaOH solution holds the best compressive and flexural strength (45 and 4 MPa respectively), 25% stronger than similar counterparts found in literature. Cellulose fibres in different weight contents were dispersed into the geopolymeric paste to produce geopolymer composites, with the aim to render the material more suitable for structural applications. 3-point bending test showed an improvement of the flexural strength of about 165% (12 MPa), while the chevron notch method displayed a fracture toughness of 0.7 MPam1/2, in line with the results of geopolymer composites found in literature. In this thesis work, fly ash was also successfully densified in 3 M NaOH solution and distilled water through a new method based on hydraulic pressure, called hydro-pressure sintering. This innovative technology involves a drastic reduction of NaOH utilization in geopolymerization, rendering the material more eco-friendly. XRD spectroscopy conducted on produced samples revealed a higher formation of crystals, most likely induced by the application of hydraulic pressure (450 MPa).
 
Buildings construction and realization of public infrastructures have always been a primary need in the human society, developing low cost and user-friendly materials which also encounter safety and durability requirements. Portland cement is the most used material in construction industry from the industrial revolution up to date, but the raising concerns related to the climate change are pushing the governments worldwide to replace it with more eco-friendly and greener materials. Geopolymers are considered to be best alternatives to Portland cement in construction industry, but issues related to cost and mechanical properties are still hindering the commercialization of this material. Geopolymer incorporating wastes is one of the solutions. Fly ash, a thermal power plant by-product, and borosilicate glass, a recycled glass from pharmaceutical vials, are suitable candidates in geopolymers activation. NMR and FTIR spectroscopies demonstrated that borates from borosilicate glass are active compounds in geopolymerization, substituting the alumina is its role, composing a B-Al-Si network never observed before. Various fly ash and borosilicate glass weight contents were studied in terms of mechanical properties (compression test, 3-point bending test). It was found that fly ash 55 wt.% and borosilicate 45 wt.% composition activated in 13 M NaOH solution holds the best compressive and flexural strength (45 and 4 MPa respectively), 25% stronger than similar counterparts found in literature. Cellulose fibres in different weight contents were dispersed into the geopolymeric paste to produce geopolymer composites, with the aim to render the material more suitable for structural applications. 3-point bending test showed an improvement of the flexural strength of about 165% (12 MPa), while the chevron notch method displayed a fracture toughness of 0.7 MPam1/2, in line with the results of geopolymer composites found in literature. In this thesis work, fly ash was also successfully densified in 3 M NaOH solution and distilled water through a new method based on hydraulic pressure, called hydro-pressure sintering. This innovative technology involves a drastic reduction of NaOH utilization in geopolymerization, rendering the material more eco-friendly. XRD spectroscopy conducted on produced samples revealed a higher formation of crystals, most likely induced by the application of hydraulic pressure (450 MPa).
 
Keywords
Geopolymers, polycondensation, composite materials, mechanical properties, fracture toughness, hydro-pressure sintering, spectroscopy., Geopolymers, polycondensation, composite materials, mechanical properties, fracture toughness, hydro-pressure sintering, spectroscopy.
Language
angličtina (English)
Study brunch
Fyzikální a materiálové inženýrství
Composition of Committee
prof. RNDr. Karel Maca, Dr. (předseda) Ing. Ivana Perná, Ph.D. (člen) Ing. Václav Pouchlý, Ph.D., ING-PAED IGIP (člen) Ing. Hynek Hadraba, Ph.D. (člen) prof. Ing. Martin Trunec, Dr. (člen)
Date of defence
2019-08-19
Process of defence
Uchazeč přednesl obhabjobu DDP ve stanoveném rozsahu a shrnul nejdůležitější výsledky a přínosy DDP. V následující diskusi uchazeč zodpověděl uspokojivě dotazy obou oponentů a následně členů oponentní komise. Komise zkonstatovala, že na základě proběhlého oponentního řízení uchazeč splnil všechny požadavky potřebné k obhajobě DDP.
Result of the defence
práce byla úspěšně obhájena
URI
http://hdl.handle.net/11012/180701
Source
TAVERI, G. Geopolymers Incorporating Wastes and Composites Processing [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2019.
Collections
  • 2019 [36]
Citace PRO

Portal of libraries | Central library on Facebook
DSpace software copyright © 2002-2015  DuraSpace
Contactez-nous | Faire parvenir un commentaire | Theme by @mire NV
 

 

Parcourir

Tout DSpaceCommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

Mon compte

Ouvrir une sessionS'inscrire

Statistiques

Statistiques d'usage de visualisation

Portal of libraries | Central library on Facebook
DSpace software copyright © 2002-2015  DuraSpace
Contactez-nous | Faire parvenir un commentaire | Theme by @mire NV