dc.contributor.author Rebenda, Josef cs dc.date.accessioned 2020-08-04T11:04:23Z dc.date.available 2020-08-04T11:04:23Z dc.date.issued 2019-11-09 cs dc.identifier.citation Symmetry. 2019, vol. 11, issue 11, p. 1-10. en dc.identifier.issn 2073-8994 cs dc.identifier.other 159907 cs dc.identifier.uri http://hdl.handle.net/11012/180783 dc.description.abstract The differential transformation, an approach based on Taylor’s theorem, is proposed as convenient for finding an exact or approximate solution to the initial value problem with multiple Caputo fractional derivatives of generally non-commensurate orders. The multi-term differential equation is first transformed into a multi-order system and then into a system of recurrence relations for coefficients of formal fractional power series. The order of the fractional power series is discussed in relation to orders of derivatives appearing in the original equation. Application of the algorithm to an initial value problem gives a reliable and expected outcome including the phenomenon of symmetry in choice of orders of the differential transformation of the multi-order system. en dc.format text cs dc.format.extent 1-10 cs dc.format.mimetype application/pdf cs dc.language.iso en cs dc.publisher MDPI cs dc.relation.ispartof Symmetry cs dc.relation.uri https://www.mdpi.com/2073-8994/11/11/1390 cs dc.rights Creative Commons Attribution 4.0 International cs dc.rights.uri http://creativecommons.org/licenses/by/4.0/ cs dc.subject fractional differential equation en dc.subject non-commensurate orders en dc.subject initial value problem en dc.subject differential transform en dc.subject fractional power series en dc.title Application of Differential Transform to Multi-Term Fractional Differential Equations with Non-Commensurate Orders en thesis.grantor Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika pro materiálové vědy cs sync.item.dbid VAV-159907 en sync.item.dbtype VAV en sync.item.insts 2020.08.04 13:04:22 en sync.item.modts 2020.08.04 12:23:55 en dc.coverage.issue 11 cs dc.coverage.volume 11 cs dc.identifier.doi 10.3390/sym11111390 cs dc.rights.access openAccess cs dc.rights.sherpa http://www.sherpa.ac.uk/romeo/issn/2073-8994/ cs dc.type.driver article en dc.type.status Peer-reviewed en dc.type.version publishedVersion en
﻿

### This item appears in the following Collection(s)

Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International