Show simple item record

dc.contributor.authorRebenda, Josefcs
dc.date.accessioned2020-08-04T11:04:23Z
dc.date.available2020-08-04T11:04:23Z
dc.date.issued2019-11-09cs
dc.identifier.citationSymmetry. 2019, vol. 11, issue 11, p. 1-10.en
dc.identifier.issn2073-8994cs
dc.identifier.other159907cs
dc.identifier.urihttp://hdl.handle.net/11012/180783
dc.description.abstractThe differential transformation, an approach based on Taylor’s theorem, is proposed as convenient for finding an exact or approximate solution to the initial value problem with multiple Caputo fractional derivatives of generally non-commensurate orders. The multi-term differential equation is first transformed into a multi-order system and then into a system of recurrence relations for coefficients of formal fractional power series. The order of the fractional power series is discussed in relation to orders of derivatives appearing in the original equation. Application of the algorithm to an initial value problem gives a reliable and expected outcome including the phenomenon of symmetry in choice of orders of the differential transformation of the multi-order system.en
dc.formattextcs
dc.format.extent1-10cs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofSymmetrycs
dc.relation.urihttps://www.mdpi.com/2073-8994/11/11/1390cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectfractional differential equationen
dc.subjectnon-commensurate ordersen
dc.subjectinitial value problemen
dc.subjectdifferential transformen
dc.subjectfractional power seriesen
dc.titleApplication of Differential Transform to Multi-Term Fractional Differential Equations with Non-Commensurate Ordersen
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika pro materiálové vědycs
sync.item.dbidVAV-159907en
sync.item.dbtypeVAVen
sync.item.insts2020.08.04 13:04:22en
sync.item.modts2020.08.04 12:23:55en
dc.coverage.issue11cs
dc.coverage.volume11cs
dc.identifier.doi10.3390/sym11111390cs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2073-8994/cs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International